Efectos del material particulado sobre las células endoteliales, epiteliales y del sistema inmune
El material particulado (PM, del inglés Particulate Matter) es un contaminante del aire que se clasifica según su diámetro aerodinámico en partículas con diámetro menor a 10 µm (PM10), diámetro menor a 2,5 µm (PM2.5) y las partículas ultra-finas con un diámetro menor a 0,1 µm (PM0.1). El PM10 se alo...
- Autores:
-
Cano-Granada, Danna
Ramírez-Ramírez, Mariana
Gómez Gallego, Diana Maryory
Hernández López, Juan Carlos
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2022
- Institución:
- Universidad Cooperativa de Colombia
- Repositorio:
- Repositorio UCC
- Idioma:
- OAI Identifier:
- oai:repository.ucc.edu.co:20.500.12494/45952
- Acceso en línea:
- https://hdl.handle.net/20.500.12494/45952
- Palabra clave:
- Contaminación del aire
material particulado
endotelio
epitelio
inflamación
estrés oxidativo
mutagenicidad
- Rights
- openAccess
- License
- Atribución
id |
COOPER2_1e3c3ccd5cc80aeb521a9fec7cf19ce3 |
---|---|
oai_identifier_str |
oai:repository.ucc.edu.co:20.500.12494/45952 |
network_acronym_str |
COOPER2 |
network_name_str |
Repositorio UCC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Efectos del material particulado sobre las células endoteliales, epiteliales y del sistema inmune |
title |
Efectos del material particulado sobre las células endoteliales, epiteliales y del sistema inmune |
spellingShingle |
Efectos del material particulado sobre las células endoteliales, epiteliales y del sistema inmune Contaminación del aire material particulado endotelio epitelio inflamación estrés oxidativo mutagenicidad |
title_short |
Efectos del material particulado sobre las células endoteliales, epiteliales y del sistema inmune |
title_full |
Efectos del material particulado sobre las células endoteliales, epiteliales y del sistema inmune |
title_fullStr |
Efectos del material particulado sobre las células endoteliales, epiteliales y del sistema inmune |
title_full_unstemmed |
Efectos del material particulado sobre las células endoteliales, epiteliales y del sistema inmune |
title_sort |
Efectos del material particulado sobre las células endoteliales, epiteliales y del sistema inmune |
dc.creator.fl_str_mv |
Cano-Granada, Danna Ramírez-Ramírez, Mariana Gómez Gallego, Diana Maryory Hernández López, Juan Carlos |
dc.contributor.author.none.fl_str_mv |
Cano-Granada, Danna Ramírez-Ramírez, Mariana Gómez Gallego, Diana Maryory Hernández López, Juan Carlos |
dc.subject.spa.fl_str_mv |
Contaminación del aire material particulado endotelio epitelio inflamación estrés oxidativo mutagenicidad |
topic |
Contaminación del aire material particulado endotelio epitelio inflamación estrés oxidativo mutagenicidad |
description |
El material particulado (PM, del inglés Particulate Matter) es un contaminante del aire que se clasifica según su diámetro aerodinámico en partículas con diámetro menor a 10 µm (PM10), diámetro menor a 2,5 µm (PM2.5) y las partículas ultra-finas con un diámetro menor a 0,1 µm (PM0.1). El PM10 se aloja en el sistema respiratorio, mientras que el PM2.5 y PM0.1 tienen la capacidad de pasar a la circulación, por lo que puede generar alteraciones sistémicas. Aunque se ha documentado varias enfermedades que se asocian a la exposición a PM, como respiratorias, cardiovasculares, y en el sistema nervioso central, que ocasionan en el mundo 4,2 millones de muertes prematuras al año. Hay pocas revisiones que aborden los mecanismos celulares y moleculares en células epiteliales y endoteliales de los tejidos expuestos al PM, que puedan ocasionar dichas enfermedades, siendo este el objetivo de la presente revisión. Para esta, se realizó una búsqueda en la base de datos del NCBI y Google Scholar enfocada en publicaciones científicas que abordaran la expresión de moléculas pro-inflamatorias, moléculas de adhesión y radicales oxidativos, entre otros, y su relación con los efectos ocasionados por el PM. Entre los principales hallazgos se destaca el aumento de citoquinas pro-inflamatorias y disfunción en los componentes de la respuesta inmune; la formación de especies reactivas del oxígeno; cambios en la función epitelial y endotelial, evidenciados por la alteración de la expresión de moléculas de adhesión; así como el incremento de moléculas implicadas en la coagulación. Se requieren estudios complementarios que contribuyan al entendimiento de los efectos moleculares asociados con los efectos deletéreos en la salud y el futuro planteamiento de estrategias para atenuar esta respuesta. |
publishDate |
2022 |
dc.date.accessioned.none.fl_str_mv |
2022-07-28T19:50:36Z |
dc.date.available.none.fl_str_mv |
2022-07-28T19:50:36Z |
dc.date.issued.none.fl_str_mv |
2022-02-15 |
dc.type.none.fl_str_mv |
Artículos Científicos |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coarversion.none.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.none.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
status_str |
publishedVersion |
dc.identifier.uri.spa.fl_str_mv |
10.21931/RB/2022.07.01.4 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12494/45952 |
dc.identifier.bibliographicCitation.spa.fl_str_mv |
Cano-Granda D V, Ramírez-Ramírez M, Gómez-Gallego D M, Hernandez JC. Efectos del material particulado sobre las células endoteliales, epiteliales y del sistema inmune. Revis Bionatura 2022;7(1). 4. http://dx.doi.org/10.21931/RB/2022.07.01.4 http://dx.doi. org/10.21931/RB/2022.07.01.4 |
identifier_str_mv |
10.21931/RB/2022.07.01.4 Cano-Granda D V, Ramírez-Ramírez M, Gómez-Gallego D M, Hernandez JC. Efectos del material particulado sobre las células endoteliales, epiteliales y del sistema inmune. Revis Bionatura 2022;7(1). 4. http://dx.doi.org/10.21931/RB/2022.07.01.4 http://dx.doi. org/10.21931/RB/2022.07.01.4 |
url |
https://hdl.handle.net/20.500.12494/45952 |
dc.relation.isversionof.spa.fl_str_mv |
https://www.revistabionatura.com/files/2022.07.01.4.pdf |
dc.relation.ispartofjournal.spa.fl_str_mv |
Bionatura |
dc.relation.references.spa.fl_str_mv |
NAAQS Table [Internet]. Available from: https://www.epa.gov/ criteria-air-pollutants/naaqs-table Conceptos básicos sobre el material particulado (PM, por sus siglas en inglés) [Internet]. Available from: https://espanol.epa. gov/espanol/conceptos-basicos-sobre-el-material-particulado-pm-por-sus-siglas-en-ingles Partículas ultrafinas [Internet]. Available from: https://www. baaqmd.gov/about-air-quality/special-air-monitoring-projects/ special-reports/ultrafine-particulate-matter?sc_lang=es-MX- &switch_lang=true Arias-Pérez RD, Taborda NA, Gómez DM, Narvaez JF, Porras J, Hernandez JC. Inflammatory effects of particulate matter air pollution. Environ Sci Pollut Res [Internet]. 2020 Sep 1; Available from: http://link.springer.com/10.1007/s11356-020-10574-w Bedoya J. Comparación entre medidores Hi-Vol y PM10. 1993;108–11. Harrison RM, Yin J. Particulate matter in the atmosphere: Which particle properties are important for its effects on health? Sci Total Environ. 2000; Ambient (outdoor) air pollution [Internet]. Available from: https:// www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health Liu S, Zhou Y, Liu S, Chen X, Zou W, Zhao D, et al. Association between exposure to ambient particulate matter and chronic obstructive pulmonary disease: Results from a cross-sectional study in China. Thorax. 2017; Gruzieva O, Bergström A, Hulchiy O, Kull I, Lind T, Melén E, et al. Exposure to air pollution from traffic and childhood asthma until 12 years of age. Epidemiology. 2013; Samoli E, Nastos PT, Paliatsos AG, Katsouyanni K, Priftis KN. Acute effects of air pollution on pediatric asthma exacerbation: Evidence of association and effect modification. Environ Res. 2011; Kim KH, Kabir E, Kabir S. A review on the human health impact of airborne particulate matter. Environment International. 2015. Loaiza-Ceballos MC, Marin-Palma D, Zapata W, Hernandez JC. Viral respiratory infections and air pollutants. Air Qual Atmos Heal [Internet]. 2021 Sep 15; Available from: https://link.springer. com/10.1007/s11869-021-01088-6 .De Grove KC, Provoost S, Brusselle GG, Joos GF, Maes T. Insights in particulate matter-induced allergic airway inflammation: Focus on the epithelium. Clinical and Experimental Allergy. 2018 .Cuellar A. LINFOPOYETINA ESTROMAL TÍMICA REGULACIÓN DE LA RESPUESTA INMUNE Y LA ENFERMEDAD ALÉRGICA. Pontif Univ javeriana. 2007; .Feng S, Gao D, Liao F, Zhou F, Wang X. The health effects of ambient PM2.5 and potential mechanisms. Ecotoxicology and Environmental Safety. 2016. Brook RD, Rajagopalan S, Pope CA, Brook JR, Bhatnagar A, DiezRoux A V., et al. Particulate matter air pollution and cardiovascular disease: An update to the scientific statement from the american heart association. Circulation. 2010 Simkhovich BZ, Kleinman MT, Kloner RA. Air Pollution and Cardiovascular Injury. Epidemiology, Toxicology, and Mechanisms. Journal of the American College of Cardiology. 2008. Miller KA, Siscovick DS, Sheppard L, Shepherd K, Sullivan JH, Anderson GL, et al. Long-term exposure to air pollution and incidence of cardiovascular events in women. N Engl J Med. 2007; Pope CA, Bhatnagar A, McCracken JP, Abplanalp W, Conklin DJ, O’Toole T. Exposure to Fine Particulate Air Pollution Is Associated with Endothelial Injury and Systemic Inflammation. Circ Res. 2016 Ridker PM, Rifai N, Rose L, Buring JE, Cook NR. Comparison of C-reactive protein and low-density lipoprotein cholesterol levels in the prediction of first cardiovascular events. N Engl J Med. 2002 Hu H, Wu J, Li Q, Asweto C, Feng L, Yang X, et al. Fine particulate matter induces vascular endothelial activation via IL-6 dependent JAK1/STAT3 signaling pathway. Toxicol Res (Camb) [Internet]. 2016;5(3):946–53. Available from: https://academic.oup.com/ toxres/article/5/3/946-953/5568598 Xu X, Qimuge A, Wang H, Xing C, Gu Y, Liu S, et al. IRE1 /XBP1s branch of UPR links HIF1 activation to mediate ANGII-dependent endothelial dysfunction under particulate matter (PM) 2.5 exposure. Sci Rep [Internet]. 2017 Dec 18;7(1):13507. Available from: http://www.nature.com/articles/s41598-017-13156-y Chen R, Li H, Cai J, Wang C, Lin Z, Liu C, et al. Fine particulate air pollution and the expression of microRNAs and circulating cytokines relevant to inflammation, coagulation, and vasoconstriction. Environ Health Perspect. 2018; Raudoniute J, Stasiulaitiene I, Kulvinskiene I, Bagdonas E, Garbaras A, Krugly E, et al. Pro-inflammatory effects of extracted urban fine particulate matter on human bronchial epithelial cells BEAS-2B. Environ Sci Pollut Res [Internet]. 2018 Nov 17;25(32):32277–91. Available from: http://link.springer. com/10.1007/s11356-018-3167-8 La célula. 3. Membrana celular.COMPLEJOS de UNIÓN [Internet]. Available from: https://mmegias.webs.uvigo.es/5-celulas/3-complejos.php Rui W, Guan L, Zhang F, Zhang W, Ding W. PM2.5-induced oxidative stress increases adhesion molecules expression in human endothelial cells through the ERK/AKT/NF-κB-dependent pathway. J Appl Toxicol. 2016 Alfaro-Moreno E, Martínez L, García-Cuellar C, Bonner JC, Clifford Murray J, Rosas I, et al. Biologic effects induced in vitro by PM10 from three different zones of Mexico City. Environ Health Perspect. 2002; SANGUINETI AC, RODRÍGUEZ-TAFUR J. MOLECULAS DE ADHESION Y PIEL. DERMATOLOGÍA Peru. 1999;9. He D, Wu S, Zhao H, Qiu H, Fu Y, Li X, et al. Association between particulate matter 2.5 and diabetes mellitus: A meta-analysis of cohort studies. J Diabetes Investig. 2017; Subramanian M, Thorp E, Hansson GK, Tabas I. Treg-mediated suppression of atherosclerosis requires MYD88 signaling in DCs. J. Clin. Invest. 123(1), 179–188 (2013). Thompson JE. Airborne Particulate Matter. J Occup Environ Med [Internet]. 2018 May;60(5):392–423. Available from: http://journals.lww.com/00043764-201805000-00002 Kilian J, Kitazawa M. The emerging risk of exposure to air pollution on cognitive decline and Alzheimer’s disease – Evidence from epidemiological and animal studies. Biomedical Journal. 2018. Li X, Huang S, Jiao A, Yang X, Yun J, Wang Y, et al. Association between ambient fine particulate matter and preterm birth or term low birth weight: An updated systematic review and meta-analysis. Environmental Pollution. 2017. Gómez-Gallego DM, Hernández JC, Ossa JAM la. Efectos adversos de la exposición prenatal al material particulado del aire sobre el feto y el recién nacido. Iatreia [Internet]. 2021 Sep 8;1(1 SE-Artículos de revisión). Available from: https://revistas.udea. edu.co/index.php/iatreia/article/view/346016 Shoenfelt J, Mitkus RJ, Zeisler R, Spatz RO, Powell J, Fenton MJ, et al. Involvement of TLR2 and TLR4 in inflammatory immune responses induced by fine and coarse ambient air particulate matter. J Leukoc Biol. 2009; Chi GC, Liu Y, MacDonald JW, Barr RG, Donohue KM, Hensley MD, et al. Long-term outdoor air pollution and DNA methylation in circulating monocytes: Results from the Multi-Ethnic Study of Atherosclerosis (MESA). Environ Heal A Glob Access Sci Source. 2016 Filella X, Molina R, Ballesta AM. Estructura y función de las citocinas. Med Integr. 2003; Shi Y, Zhao T, Yang X, Sun B, Li Y, Duan J, et al. PM2.5-induced alteration of DNA methylation and RNA-transcription are associated with inflammatory response and lung injury. Sci Total Environ. 2019; Soukup JM, Becker S. Human alveolar macrophage responses to air pollution particulates are associated with insoluble components of coarse material, including particulate endotoxin. Toxicol Appl Pharmacol. 2001; Matthews NC, Pfeffer PE, Mann EH, Kelly FJ, Corrigan CJ, Hawrylowicz CM, et al. Urban Particulate Matter–Activated Human Dendritic Cells Induce the Expansion of Potent Inflammatory Th1, Th2, and Th17 Effector Cells. Am J Respir Cell Mol Biol [Internet]. 2016 Feb;54(2):250–62. Available from: http://www.atsjournals.org/doi/10.1165/rcmb.2015-0084OC Glencross DA, Ho T-R, Camiña N, Hawrylowicz CM, Pfeffer PE. Air pollution and its effects on the immune system. Free Radic Biol Med. 2020 May;151 .Liu J, Li S, Fei X, Nan X, Shen Y, Xiu H, et al. Increased alveolar epithelial TRAF6 via autophagy-dependent TRIM37 degradation mediates particulate matter-induced lung metastasis. Autophagy [Internet]. 2021 Sep 15;1–19. Available from: https://www. tandfonline.com/doi/full/10.1080/15548627.2021.1965421 SANGUINETI AC R-TJ. MOLECULAS DE ADHESION Y PIEL. DERMATOLOGÍA Peru. 1999;9 Wang G, Zhang G, Gao X, Zhang Y, Fan W, Jiang J, et al. Oxidative stress-mediated epidermal growth factor receptor activation regulates PM2.5-induced over-secretion of pro-inflammatory mediators from human bronchial epithelial cells. Biochim Biophys Acta - Gen Subj [Internet]. 2020 Oct;1864(10):129672. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0304416520301847 Saavedra Ramírez PG, Vásquez Duque GM, González Naranjo LA. Interleucina-6: ¿amiga o enemiga? Bases para comprender su utilidad como objetivo terapéutico. Iatreia. 2011; Yang J, Chen Y, Yu Z, Ding H, Ma Z. The influence of PM2.5 on lung injury and cytokines in mice. Exp Ther Med [Internet]. 2019 Aug 1; Available from: http://www.spandidos-publications. com/10.3892/etm.2019.7839 Varfolomeev E, Vucic D. Intracellular regulation of TNF activity in health and disease. Cytokine [Internet]. 2018 Jan;101:26–32. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1043466616304896 Xu X, Jiang SY, Wang TY, Bai Y, Zhong M, Wang A, et al. Inflammatory Response to Fine Particulate Air Pollution Exposure: Neutrophil versus Monocyte. PLoS One. 2013; Deshmane SL, Kremlev S, Amini S, Sawaya BE. Monocyte Chemoattractant Protein-1 (MCP-1): An Overview. J Interf Cytokine Res [Internet]. 2009 Jun;29(6):313–26. Available from: http:// www.liebertpub.com/doi/10.1089/jir.2008.0027 Kumar RK, Shadie AM, Bucknall MP, Rutlidge H, Garthwaite L, Herbert C, et al. Differential injurious effects of ambient and traffic-derived particulate matter on airway epithelial cells. Respirology. 2015 Sawant K V., Poluri KM, Dutta AK, Sepuru KM, Troshkina A, Garofalo RP, et al. Chemokine CXCL1 mediated neutrophil recruitment: Role of glycosaminoglycan interactions. Sci Rep. 2016; .Rodier F, Coppé JP, Patil CK, Hoeijmakers WAM, Muñoz DP, Raza SR, et al. Persistent DNA damage signalling triggers senescence-associated inflammatory cytokine secretion. Nat Cell Biol. 2009; Gualtieri M, Øvrevik J, Mollerup S, Asare N, Longhin E, Dahlman HJ, et al. Airborne urban particles (Milan winter-PM2.5) cause mitotic arrest and cell death: Effects on DNA, mitochondria, AhR binding and spindle organization. Mutat Res - Fundam Mol Mech Mutagen. 2011 Marazita MC. P19INK4D y su fosforilación secuencial son críticas para el mantenimiento de la integridad del genoma [Internet]. 2010. Available from: https://bibliotecadigital.exactas.uba.ar/ download/tesis/tesis_n4610_Marazita.pdf Jarvis IWH, Enlo-Scott Z, Nagy E, Mudway IS, Tetley TD, Arlt VM, et al. Genotoxicity of fine and coarse fraction ambient particulate matter in immortalised normal (TT1) and cancer-derived (A549) alveolar epithelial cells. Environ Mol Mutagen. 2018; Munschauer M, Nguyen CT, Sirokman K, Hartigan CR, Hogstrom L, Engreitz JM, et al. The NORAD lncRNA assembles a topoisomerase complex critical for genome stability. Nature. 2018; Soghli N, Yousefi T, Abolghasemi M, Qujeq D. NORAD, a critical long non-coding RNA in human cancers. Life Sci [Internet]. 2021 Jan;264:118665. Available from: https://linkinghub.elsevier.com/ retrieve/pii/S0024320520314181 Santibáñez-Andrade M, Sánchez-Pérez Y, Chirino YI, Morales-Bárcenas R, García-Cuellar CM. Long non-coding RNA NORAD upregulation induced by airborne particulate matter (PM10) exposure leads to aneuploidy in A549 lung cells. Chemosphere. 2020; Kang D, Jung IB, Lee SY, Park SJ, Kwon SJ, Park DH, et al. Particulate matter less than 10 µm (PM 10 ) activates cancer related genes in lung epithelial cells. Inhal Toxicol [Internet]. 2020 Dec 5;32(13–14):487–93. Available from: https://www.tandfonline. com/doi/full/10.1080/08958378.2020.1850936 Zhao H, Zhu X, Luo Y, Liu S, Wu W, Zhang L, et al. LINC01816 promotes the migration, invasion and epithelial-mesenchymal transition of thyroid carcinoma cells by sponging miR-34c-5p and regulating CRABP2 expression levels. Oncol Rep [Internet]. 2021 Mar 30;45(5):81. Available from: http://www.spandidos-publications.com/10.3892/or.2021.8032 .Davies K. Free Radical Biology & Medicine. 2003 Griffiths HR. Antioxidants and protein oxidation. In: Free Radical Research. 2000 Gualtieri M, Longhin E, Mattioli M, Mantecca P, Tinaglia V, Mangano E, et al. Gene expression profiling of A549 cells exposed to Milan PM2.5. Toxicol Lett. 2012; Abbas I, Badran G, Verdin A, Ledoux F, Roumie M, Lo Guidice JM, et al. In vitro evaluation of organic extractable matter from ambient PM2.5 using human bronchial epithelial BEAS-2B cells: Cytotoxicity, oxidative stress, pro-inflammatory response, genotoxicity, and cell cycle deregulation. Environ Res. 2019; Hussain T, Al-Attas OS, Al-Daghri NM, Mohammed AA, De Rosas E, Ibrahim S, et al. Induction of CYP1A1, CYP1A2, CYP1B1, increased oxidative stress and inflammation in the lung and liver tissues of rats exposed to incense smoke. Mol Cell Biochem [Internet]. 2014 Jun 21;391(1–2):127–36. Available from: http://link. springer.com/10.1007/s11010-014-1995-5 Mazuryk O, Stochel G, Brindell M. Variations in Reactive Oxygen Species Generation by Urban Airborne Particulate Matter in Lung Epithelial Cells—Impact of Inorganic Fraction. Front Chem [Internet]. 2020 Dec 17;8. Available from: https://www.frontiersin.org/ articles/10.3389/fchem.2020.581752/ful Sotty J, Kluza J, De Sousa C, Tardivel M, Anthérieu S, Alleman L-Y, et al. Mitochondrial alterations triggered by repeated exposure to fine (PM2.5-0.18) and quasi-ultrafine (PM0.18) fractions of ambient particulate matter. Environ Int [Internet]. 2020 Sep;142:105830. Available from: https://linkinghub.elsevier.com/ retrieve/pii/S0160412020317852 Wang J, Huang J, Wang L, Chen C, Yang D, Jin M, et al. Urban particulate matter triggers lung inflammation via the ROS-MAPKNF-κB signaling pathway. J Thorac Dis. 2017; Yabluchanskiy A, Ma Y, Iyer RP, Hall ME, Lindsey ML. Matrix metalloproteinase-9: Many shades of function in cardiovascular disease. Physiology. 2013. Funk CD, FitzGerald GA. COX-2 inhibitors and cardiovascular risk. Journal of Cardiovascular Pharmacology. 2007. Liguori I, Russo G, Curcio F, Bulli G, Aran L, Della-Morte D, et al. Oxidative stress, aging, and diseases. Clin Interv Aging [Internet]. 2018 Apr;Volume 13:757–72. Available from: https://www.dovepress.com/ oxidative-stress-aging-and-diseases-peer-reviewed-article-CIA Leclercq B, Kluza J, Antherieu S, Sotty J, Alleman LY, Perdrix E, et al. Air pollution-derived PM2.5 impairs mitochondrial function in healthy and chronic obstructive pulmonary diseased human bronchial epithelial cells. Environ Pollut. 2018; Königsberg Fainstein M. Nrf2: LA HISTORIA DE UN NUEVO FACTOR DE TRANSCRIPCIÓN QUE RESPONDE A ESTRÉS OXIDATIVO*. 2007 Michael S, Montag M, Dott W. Pro-inflammatory effects and oxidative stress in lung macrophages and epithelial cells induced by ambient particulate matter. Environ Pollut [Internet]. 2013 Dec;183:19–29. Available from: https://linkinghub.elsevier.com/ retrieve/pii/S0269749113000419 Ionescu-Tucker A, Cotman CW. Emerging roles of oxidative stress in brain aging and Alzheimer’s disease. Neurobiol Aging [Internet]. 2021 Nov;107:86–95. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0197458021002402 Barnes PJ. Oxidative stress-based therapeutics in COPD. Redox Biol [Internet]. 2020 Jun;33:101544. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2213231720301610 Pawlina W. Histología Texto Y Atlas Correlación con Biología Molecular y Celular. Ross Histología texto y atlas. 2015 Zhao R, Guo Z, Zhang R, Deng C, Xu J, Dong W, et al. Nasal epithelial barrier disruption by particulate matter ≤2.5 µm via tight junction protein degradation. J Appl Toxicol. 2018; Raudoniute J, Stasiulaitiene I, Kulvinskiene I, Bagdonas E, Garbaras A, Krugly E, et al. Pro-inflammatory effects of extracted urban fine particulate matter on human bronchial epithelial cells BEAS-2B. Environ Sci Pollut Res. 2018; .Pérez B F, Méndez G A, Lagos R A, Vargas M SL. Dinámica y patología del barrido mucociliar como mecanismo defensivo del pulmón y alternativas farmacológicas de tratamiento. Rev Med Chil [Internet]. 2014 May;142(5):606–15. Available from: http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0034-98872014000500009&lng=en&nrm=iso&tlng=en Jia J, Xia J, Zhang R, Bai Y, Liu S, Dan M, et al. Investigation of the impact of PM2.5 on the ciliary motion of human nasal epithelial cells. Chemosphere. 2019; Rivas-Santiago CE, Sarkar S, Cantarella P, Osornio-Vargas Á, Quintana-Belmares R, Meng Q, et al. Air pollution particulate matter alters antimycobacterial respiratory epithelium innate immunity. Infect Immun. 2015; Lerner CA, Sundar IK, Rahman I. Mitochondrial redox system, dynamics, and dysfunction in lung inflammaging and COPD. Int J Biochem Cell Biol. 2016; Xiaoqin YJ, Wang X, Hu D. Mitochondrial alterations during oxidative stress in chronic obstructive pulmonary disease. International Journal of COPD. 2017. Chen ZH, Kim HP, Sciurba FC, Lee SJ, Feghali-Bostwick C, Stolz DB, et al. Egr-1 regulates autophagy in cigarette smoke-induced chronic obstructive pulmonary disease. PLoS One. 2008; Carvajal Carvajal C. El endotelio: estructura, función y disfunción endotelial. Med Leg Costa Rica. 2017; Wang G, Zhang X, Liu X, Zheng J, Chen R, Kan H. Ambient fine particulate matter induce toxicity in lung epithelial-endothelial co-culture models. Toxicol Lett. 2019; Long Y-M, Yang X-Z, Yang Q-Q, Clermont AC, Yin Y-G, Liu G-L, et al. PM2.5 induces vascular permeability increase through activating MAPK/ERK signaling pathway and ROS generation. J Hazard Mater [Internet]. 2020 Mar;386:121659. Available from: https:// linkinghub.elsevier.com/retrieve/pii/S0304389419316139 Zhang WC, Wang YG, Zhu ZF, Wu FQ, Peng YD, Chen ZY, et al. Regulatory T cells protect fine particulate matter-induced inflammatory responses in human umbilical vein endothelial cells. Mediators Inflamm. 2014; Riggs DW, Zafar N, Krishnasamy S, Yeager R, Rai SN, Bhatnagar A, et al. Exposure to airborne fine particulate matter is associated with impaired endothelial function and biomarkers of oxidative stress and inflammation. Environ Res [Internet]. 2020 Jan;180:108890. Available from: https://linkinghub.elsevier.com/ retrieve/pii/S0013935119306875 Guyton A, Hall JE. Tratado de fisiologia medica. 12th ed. 221 p. Pacurari M, Kafoury R, Tchounwou PB, Ndebele K. The Renin-Angiotensin-Aldosterone System in Vascular Inflammation and Remodeling. Int J Inflam [Internet]. 2014;2014:1–13. Available from: http://www.hindawi.com/journals/iji/2014/689360/ Hurtubise J, McLellan K, Durr K, Onasanya O, Nwabuko D, Ndisang JF. The different facets of dyslipidemia and hypertension in atherosclerosis. Curr Atheroscler Rep. 2016; Ellingsen DG, Chashchin M, Seljeflot I, Berlinger B, Chashchin V, Stockfelt L, et al. A study of atherothrombotic biomarkers in welders. Int Arch Occup Environ Health. 2019; .Rückerl R, Ibald-Mulli A, Koenig W, Schneider A, Woelke G, Cyrys J, et al. Air pollution and markers of inflammation and coagulation in patients with coronary heart disease. Am J Respir Crit Care Med. 2006; Finch J, Conklin DJ. Air Pollution-Induced Vascular Dysfunction: Potential Role of Endothelin-1 (ET-1) System. Cardiovasc Toxicol. 2016; Shen C, Liu J, Zhu F, Lei R, Cheng H, Zhang C, et al. The effects of cooking oil fumes-derived PM 2.5 on blood vessel formation through ROS-mediated NLRP3 inflammasome pathway in human umbilical vein endothelial cells. Ecotoxicol Environ Saf. 2019 Amabile N, Rautou PE, Tedgui A, Boulanger CM. Microparticles: Key protagonists in cardiovascular disorders. Seminars in Thrombosis and Hemostasis. 2010. Chuang HC, Ho KF, Cao JJ, Chuang KJ, Ho SSH, Feng PH, et al. Effects of non-protein-type amino acids of fine particulate matter on E-cadherin and inflammatory responses in mice. Toxicol Lett. 2015; Liu B, Wu S De, Shen LJ, Zhao TX, Wei Y, Tang XL, et al. Spermatogenesis dysfunction induced by PM2.5 from automobile exhaust via the ROS-mediated MAPK signaling pathway. Ecotoxicol Environ Saf. 2019; Flores N. Endotelina-1: Vasoconstrictor Intrínseco Del Endotelio Vascular. Rev Med. 2013; |
dc.rights.license.none.fl_str_mv |
Atribución |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Atribución http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
1-7 |
dc.coverage.temporal.spa.fl_str_mv |
7/1 |
dc.publisher.spa.fl_str_mv |
Universidad Cooperativa de Colombia, Facultad de Ciencias de la Salud, Programa de Medicina, Medellín y Envigado, Colombia, 00000 |
dc.publisher.program.spa.fl_str_mv |
Medicina |
dc.publisher.place.spa.fl_str_mv |
Medellín |
institution |
Universidad Cooperativa de Colombia |
bitstream.url.fl_str_mv |
https://repository.ucc.edu.co/bitstreams/f0c3479b-c352-4790-b335-14a8d5c3c9d2/download https://repository.ucc.edu.co/bitstreams/8638a96c-0923-43b8-9c00-8cf8f7356aae/download https://repository.ucc.edu.co/bitstreams/701cbb00-bda7-4ffe-9d92-b8b8127b2867/download https://repository.ucc.edu.co/bitstreams/0c5deec1-9d67-4eae-9a87-1efd6799b2ba/download |
bitstream.checksum.fl_str_mv |
0c1605e1b765eae9d9b8579dbd820abf 8a4605be74aa9ea9d79846c1fba20a33 7347459ca20c2af837ea06fe0da157fd 94481b66b9dcbdaed731cdf4848dc286 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Cooperativa de Colombia |
repository.mail.fl_str_mv |
bdigital@metabiblioteca.com |
_version_ |
1811565501429579776 |
spelling |
Cano-Granada, DannaRamírez-Ramírez, MarianaGómez Gallego, Diana Maryory Hernández López, Juan Carlos 7/12022-07-28T19:50:36Z2022-07-28T19:50:36Z2022-02-1510.21931/RB/2022.07.01.4https://hdl.handle.net/20.500.12494/45952Cano-Granda D V, Ramírez-Ramírez M, Gómez-Gallego D M, Hernandez JC. Efectos del material particulado sobre las células endoteliales, epiteliales y del sistema inmune. Revis Bionatura 2022;7(1). 4. http://dx.doi.org/10.21931/RB/2022.07.01.4 http://dx.doi. org/10.21931/RB/2022.07.01.4El material particulado (PM, del inglés Particulate Matter) es un contaminante del aire que se clasifica según su diámetro aerodinámico en partículas con diámetro menor a 10 µm (PM10), diámetro menor a 2,5 µm (PM2.5) y las partículas ultra-finas con un diámetro menor a 0,1 µm (PM0.1). El PM10 se aloja en el sistema respiratorio, mientras que el PM2.5 y PM0.1 tienen la capacidad de pasar a la circulación, por lo que puede generar alteraciones sistémicas. Aunque se ha documentado varias enfermedades que se asocian a la exposición a PM, como respiratorias, cardiovasculares, y en el sistema nervioso central, que ocasionan en el mundo 4,2 millones de muertes prematuras al año. Hay pocas revisiones que aborden los mecanismos celulares y moleculares en células epiteliales y endoteliales de los tejidos expuestos al PM, que puedan ocasionar dichas enfermedades, siendo este el objetivo de la presente revisión. Para esta, se realizó una búsqueda en la base de datos del NCBI y Google Scholar enfocada en publicaciones científicas que abordaran la expresión de moléculas pro-inflamatorias, moléculas de adhesión y radicales oxidativos, entre otros, y su relación con los efectos ocasionados por el PM. Entre los principales hallazgos se destaca el aumento de citoquinas pro-inflamatorias y disfunción en los componentes de la respuesta inmune; la formación de especies reactivas del oxígeno; cambios en la función epitelial y endotelial, evidenciados por la alteración de la expresión de moléculas de adhesión; así como el incremento de moléculas implicadas en la coagulación. Se requieren estudios complementarios que contribuyan al entendimiento de los efectos moleculares asociados con los efectos deletéreos en la salud y el futuro planteamiento de estrategias para atenuar esta respuesta.https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000283088http://orcid.org/0000-0002-9200-5698https://scienti.colciencias.gov.co/gruplac/jsp/visualiza/visualizagr.jsp?nro=00000000011355juankhernandez@gmail.com1-7Universidad Cooperativa de Colombia, Facultad de Ciencias de la Salud, Programa de Medicina, Medellín y Envigado, Colombia, 00000MedicinaMedellínhttps://www.revistabionatura.com/files/2022.07.01.4.pdfBionaturaNAAQS Table [Internet]. Available from: https://www.epa.gov/ criteria-air-pollutants/naaqs-tableConceptos básicos sobre el material particulado (PM, por sus siglas en inglés) [Internet]. Available from: https://espanol.epa. gov/espanol/conceptos-basicos-sobre-el-material-particulado-pm-por-sus-siglas-en-inglesPartículas ultrafinas [Internet]. Available from: https://www. baaqmd.gov/about-air-quality/special-air-monitoring-projects/ special-reports/ultrafine-particulate-matter?sc_lang=es-MX- &switch_lang=trueArias-Pérez RD, Taborda NA, Gómez DM, Narvaez JF, Porras J, Hernandez JC. Inflammatory effects of particulate matter air pollution. Environ Sci Pollut Res [Internet]. 2020 Sep 1; Available from: http://link.springer.com/10.1007/s11356-020-10574-wBedoya J. Comparación entre medidores Hi-Vol y PM10. 1993;108–11.Harrison RM, Yin J. Particulate matter in the atmosphere: Which particle properties are important for its effects on health? Sci Total Environ. 2000;Ambient (outdoor) air pollution [Internet]. Available from: https:// www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-healthLiu S, Zhou Y, Liu S, Chen X, Zou W, Zhao D, et al. Association between exposure to ambient particulate matter and chronic obstructive pulmonary disease: Results from a cross-sectional study in China. Thorax. 2017;Gruzieva O, Bergström A, Hulchiy O, Kull I, Lind T, Melén E, et al. Exposure to air pollution from traffic and childhood asthma until 12 years of age. Epidemiology. 2013;Samoli E, Nastos PT, Paliatsos AG, Katsouyanni K, Priftis KN. Acute effects of air pollution on pediatric asthma exacerbation: Evidence of association and effect modification. Environ Res. 2011;Kim KH, Kabir E, Kabir S. A review on the human health impact of airborne particulate matter. Environment International. 2015.Loaiza-Ceballos MC, Marin-Palma D, Zapata W, Hernandez JC. Viral respiratory infections and air pollutants. Air Qual Atmos Heal [Internet]. 2021 Sep 15; Available from: https://link.springer. com/10.1007/s11869-021-01088-6.De Grove KC, Provoost S, Brusselle GG, Joos GF, Maes T. Insights in particulate matter-induced allergic airway inflammation: Focus on the epithelium. Clinical and Experimental Allergy. 2018.Cuellar A. LINFOPOYETINA ESTROMAL TÍMICA REGULACIÓN DE LA RESPUESTA INMUNE Y LA ENFERMEDAD ALÉRGICA. Pontif Univ javeriana. 2007;.Feng S, Gao D, Liao F, Zhou F, Wang X. The health effects of ambient PM2.5 and potential mechanisms. Ecotoxicology and Environmental Safety. 2016.Brook RD, Rajagopalan S, Pope CA, Brook JR, Bhatnagar A, DiezRoux A V., et al. Particulate matter air pollution and cardiovascular disease: An update to the scientific statement from the american heart association. Circulation. 2010Simkhovich BZ, Kleinman MT, Kloner RA. Air Pollution and Cardiovascular Injury. Epidemiology, Toxicology, and Mechanisms. Journal of the American College of Cardiology. 2008.Miller KA, Siscovick DS, Sheppard L, Shepherd K, Sullivan JH, Anderson GL, et al. Long-term exposure to air pollution and incidence of cardiovascular events in women. N Engl J Med. 2007;Pope CA, Bhatnagar A, McCracken JP, Abplanalp W, Conklin DJ, O’Toole T. Exposure to Fine Particulate Air Pollution Is Associated with Endothelial Injury and Systemic Inflammation. Circ Res. 2016Ridker PM, Rifai N, Rose L, Buring JE, Cook NR. Comparison of C-reactive protein and low-density lipoprotein cholesterol levels in the prediction of first cardiovascular events. N Engl J Med. 2002Hu H, Wu J, Li Q, Asweto C, Feng L, Yang X, et al. Fine particulate matter induces vascular endothelial activation via IL-6 dependent JAK1/STAT3 signaling pathway. Toxicol Res (Camb) [Internet]. 2016;5(3):946–53. Available from: https://academic.oup.com/ toxres/article/5/3/946-953/5568598Xu X, Qimuge A, Wang H, Xing C, Gu Y, Liu S, et al. IRE1 /XBP1s branch of UPR links HIF1 activation to mediate ANGII-dependent endothelial dysfunction under particulate matter (PM) 2.5 exposure. Sci Rep [Internet]. 2017 Dec 18;7(1):13507. Available from: http://www.nature.com/articles/s41598-017-13156-yChen R, Li H, Cai J, Wang C, Lin Z, Liu C, et al. Fine particulate air pollution and the expression of microRNAs and circulating cytokines relevant to inflammation, coagulation, and vasoconstriction. Environ Health Perspect. 2018;Raudoniute J, Stasiulaitiene I, Kulvinskiene I, Bagdonas E, Garbaras A, Krugly E, et al. Pro-inflammatory effects of extracted urban fine particulate matter on human bronchial epithelial cells BEAS-2B. Environ Sci Pollut Res [Internet]. 2018 Nov 17;25(32):32277–91. Available from: http://link.springer. com/10.1007/s11356-018-3167-8La célula. 3. Membrana celular.COMPLEJOS de UNIÓN [Internet]. Available from: https://mmegias.webs.uvigo.es/5-celulas/3-complejos.phpRui W, Guan L, Zhang F, Zhang W, Ding W. PM2.5-induced oxidative stress increases adhesion molecules expression in human endothelial cells through the ERK/AKT/NF-κB-dependent pathway. J Appl Toxicol. 2016Alfaro-Moreno E, Martínez L, García-Cuellar C, Bonner JC, Clifford Murray J, Rosas I, et al. Biologic effects induced in vitro by PM10 from three different zones of Mexico City. Environ Health Perspect. 2002;SANGUINETI AC, RODRÍGUEZ-TAFUR J. MOLECULAS DE ADHESION Y PIEL. DERMATOLOGÍA Peru. 1999;9.He D, Wu S, Zhao H, Qiu H, Fu Y, Li X, et al. Association between particulate matter 2.5 and diabetes mellitus: A meta-analysis of cohort studies. J Diabetes Investig. 2017;Subramanian M, Thorp E, Hansson GK, Tabas I. Treg-mediated suppression of atherosclerosis requires MYD88 signaling in DCs. J. Clin. Invest. 123(1), 179–188 (2013).Thompson JE. Airborne Particulate Matter. J Occup Environ Med [Internet]. 2018 May;60(5):392–423. Available from: http://journals.lww.com/00043764-201805000-00002Kilian J, Kitazawa M. The emerging risk of exposure to air pollution on cognitive decline and Alzheimer’s disease – Evidence from epidemiological and animal studies. Biomedical Journal. 2018.Li X, Huang S, Jiao A, Yang X, Yun J, Wang Y, et al. Association between ambient fine particulate matter and preterm birth or term low birth weight: An updated systematic review and meta-analysis. Environmental Pollution. 2017.Gómez-Gallego DM, Hernández JC, Ossa JAM la. Efectos adversos de la exposición prenatal al material particulado del aire sobre el feto y el recién nacido. Iatreia [Internet]. 2021 Sep 8;1(1 SE-Artículos de revisión). Available from: https://revistas.udea. edu.co/index.php/iatreia/article/view/346016Shoenfelt J, Mitkus RJ, Zeisler R, Spatz RO, Powell J, Fenton MJ, et al. Involvement of TLR2 and TLR4 in inflammatory immune responses induced by fine and coarse ambient air particulate matter. J Leukoc Biol. 2009;Chi GC, Liu Y, MacDonald JW, Barr RG, Donohue KM, Hensley MD, et al. Long-term outdoor air pollution and DNA methylation in circulating monocytes: Results from the Multi-Ethnic Study of Atherosclerosis (MESA). Environ Heal A Glob Access Sci Source. 2016Filella X, Molina R, Ballesta AM. Estructura y función de las citocinas. Med Integr. 2003;Shi Y, Zhao T, Yang X, Sun B, Li Y, Duan J, et al. PM2.5-induced alteration of DNA methylation and RNA-transcription are associated with inflammatory response and lung injury. Sci Total Environ. 2019;Soukup JM, Becker S. Human alveolar macrophage responses to air pollution particulates are associated with insoluble components of coarse material, including particulate endotoxin. Toxicol Appl Pharmacol. 2001;Matthews NC, Pfeffer PE, Mann EH, Kelly FJ, Corrigan CJ, Hawrylowicz CM, et al. Urban Particulate Matter–Activated Human Dendritic Cells Induce the Expansion of Potent Inflammatory Th1, Th2, and Th17 Effector Cells. Am J Respir Cell Mol Biol [Internet]. 2016 Feb;54(2):250–62. Available from: http://www.atsjournals.org/doi/10.1165/rcmb.2015-0084OCGlencross DA, Ho T-R, Camiña N, Hawrylowicz CM, Pfeffer PE. Air pollution and its effects on the immune system. Free Radic Biol Med. 2020 May;151.Liu J, Li S, Fei X, Nan X, Shen Y, Xiu H, et al. Increased alveolar epithelial TRAF6 via autophagy-dependent TRIM37 degradation mediates particulate matter-induced lung metastasis. Autophagy [Internet]. 2021 Sep 15;1–19. Available from: https://www. tandfonline.com/doi/full/10.1080/15548627.2021.1965421SANGUINETI AC R-TJ. MOLECULAS DE ADHESION Y PIEL. DERMATOLOGÍA Peru. 1999;9Wang G, Zhang G, Gao X, Zhang Y, Fan W, Jiang J, et al. Oxidative stress-mediated epidermal growth factor receptor activation regulates PM2.5-induced over-secretion of pro-inflammatory mediators from human bronchial epithelial cells. Biochim Biophys Acta - Gen Subj [Internet]. 2020 Oct;1864(10):129672. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0304416520301847Saavedra Ramírez PG, Vásquez Duque GM, González Naranjo LA. Interleucina-6: ¿amiga o enemiga? Bases para comprender su utilidad como objetivo terapéutico. Iatreia. 2011;Yang J, Chen Y, Yu Z, Ding H, Ma Z. The influence of PM2.5 on lung injury and cytokines in mice. Exp Ther Med [Internet]. 2019 Aug 1; Available from: http://www.spandidos-publications. com/10.3892/etm.2019.7839Varfolomeev E, Vucic D. Intracellular regulation of TNF activity in health and disease. Cytokine [Internet]. 2018 Jan;101:26–32. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1043466616304896Xu X, Jiang SY, Wang TY, Bai Y, Zhong M, Wang A, et al. Inflammatory Response to Fine Particulate Air Pollution Exposure: Neutrophil versus Monocyte. PLoS One. 2013;Deshmane SL, Kremlev S, Amini S, Sawaya BE. Monocyte Chemoattractant Protein-1 (MCP-1): An Overview. J Interf Cytokine Res [Internet]. 2009 Jun;29(6):313–26. Available from: http:// www.liebertpub.com/doi/10.1089/jir.2008.0027Kumar RK, Shadie AM, Bucknall MP, Rutlidge H, Garthwaite L, Herbert C, et al. Differential injurious effects of ambient and traffic-derived particulate matter on airway epithelial cells. Respirology. 2015Sawant K V., Poluri KM, Dutta AK, Sepuru KM, Troshkina A, Garofalo RP, et al. Chemokine CXCL1 mediated neutrophil recruitment: Role of glycosaminoglycan interactions. Sci Rep. 2016;.Rodier F, Coppé JP, Patil CK, Hoeijmakers WAM, Muñoz DP, Raza SR, et al. Persistent DNA damage signalling triggers senescence-associated inflammatory cytokine secretion. Nat Cell Biol. 2009;Gualtieri M, Øvrevik J, Mollerup S, Asare N, Longhin E, Dahlman HJ, et al. Airborne urban particles (Milan winter-PM2.5) cause mitotic arrest and cell death: Effects on DNA, mitochondria, AhR binding and spindle organization. Mutat Res - Fundam Mol Mech Mutagen. 2011Marazita MC. P19INK4D y su fosforilación secuencial son críticas para el mantenimiento de la integridad del genoma [Internet]. 2010. Available from: https://bibliotecadigital.exactas.uba.ar/ download/tesis/tesis_n4610_Marazita.pdfJarvis IWH, Enlo-Scott Z, Nagy E, Mudway IS, Tetley TD, Arlt VM, et al. Genotoxicity of fine and coarse fraction ambient particulate matter in immortalised normal (TT1) and cancer-derived (A549) alveolar epithelial cells. Environ Mol Mutagen. 2018;Munschauer M, Nguyen CT, Sirokman K, Hartigan CR, Hogstrom L, Engreitz JM, et al. The NORAD lncRNA assembles a topoisomerase complex critical for genome stability. Nature. 2018;Soghli N, Yousefi T, Abolghasemi M, Qujeq D. NORAD, a critical long non-coding RNA in human cancers. Life Sci [Internet]. 2021 Jan;264:118665. Available from: https://linkinghub.elsevier.com/ retrieve/pii/S0024320520314181Santibáñez-Andrade M, Sánchez-Pérez Y, Chirino YI, Morales-Bárcenas R, García-Cuellar CM. Long non-coding RNA NORAD upregulation induced by airborne particulate matter (PM10) exposure leads to aneuploidy in A549 lung cells. Chemosphere. 2020;Kang D, Jung IB, Lee SY, Park SJ, Kwon SJ, Park DH, et al. Particulate matter less than 10 µm (PM 10 ) activates cancer related genes in lung epithelial cells. Inhal Toxicol [Internet]. 2020 Dec 5;32(13–14):487–93. Available from: https://www.tandfonline. com/doi/full/10.1080/08958378.2020.1850936Zhao H, Zhu X, Luo Y, Liu S, Wu W, Zhang L, et al. LINC01816 promotes the migration, invasion and epithelial-mesenchymal transition of thyroid carcinoma cells by sponging miR-34c-5p and regulating CRABP2 expression levels. Oncol Rep [Internet]. 2021 Mar 30;45(5):81. Available from: http://www.spandidos-publications.com/10.3892/or.2021.8032.Davies K. Free Radical Biology & Medicine. 2003Griffiths HR. Antioxidants and protein oxidation. In: Free Radical Research. 2000Gualtieri M, Longhin E, Mattioli M, Mantecca P, Tinaglia V, Mangano E, et al. Gene expression profiling of A549 cells exposed to Milan PM2.5. Toxicol Lett. 2012;Abbas I, Badran G, Verdin A, Ledoux F, Roumie M, Lo Guidice JM, et al. In vitro evaluation of organic extractable matter from ambient PM2.5 using human bronchial epithelial BEAS-2B cells: Cytotoxicity, oxidative stress, pro-inflammatory response, genotoxicity, and cell cycle deregulation. Environ Res. 2019;Hussain T, Al-Attas OS, Al-Daghri NM, Mohammed AA, De Rosas E, Ibrahim S, et al. Induction of CYP1A1, CYP1A2, CYP1B1, increased oxidative stress and inflammation in the lung and liver tissues of rats exposed to incense smoke. Mol Cell Biochem [Internet]. 2014 Jun 21;391(1–2):127–36. Available from: http://link. springer.com/10.1007/s11010-014-1995-5Mazuryk O, Stochel G, Brindell M. Variations in Reactive Oxygen Species Generation by Urban Airborne Particulate Matter in Lung Epithelial Cells—Impact of Inorganic Fraction. Front Chem [Internet]. 2020 Dec 17;8. Available from: https://www.frontiersin.org/ articles/10.3389/fchem.2020.581752/fulSotty J, Kluza J, De Sousa C, Tardivel M, Anthérieu S, Alleman L-Y, et al. Mitochondrial alterations triggered by repeated exposure to fine (PM2.5-0.18) and quasi-ultrafine (PM0.18) fractions of ambient particulate matter. Environ Int [Internet]. 2020 Sep;142:105830. Available from: https://linkinghub.elsevier.com/ retrieve/pii/S0160412020317852Wang J, Huang J, Wang L, Chen C, Yang D, Jin M, et al. Urban particulate matter triggers lung inflammation via the ROS-MAPKNF-κB signaling pathway. J Thorac Dis. 2017;Yabluchanskiy A, Ma Y, Iyer RP, Hall ME, Lindsey ML. Matrix metalloproteinase-9: Many shades of function in cardiovascular disease. Physiology. 2013.Funk CD, FitzGerald GA. COX-2 inhibitors and cardiovascular risk. Journal of Cardiovascular Pharmacology. 2007.Liguori I, Russo G, Curcio F, Bulli G, Aran L, Della-Morte D, et al. Oxidative stress, aging, and diseases. Clin Interv Aging [Internet]. 2018 Apr;Volume 13:757–72. Available from: https://www.dovepress.com/ oxidative-stress-aging-and-diseases-peer-reviewed-article-CIALeclercq B, Kluza J, Antherieu S, Sotty J, Alleman LY, Perdrix E, et al. Air pollution-derived PM2.5 impairs mitochondrial function in healthy and chronic obstructive pulmonary diseased human bronchial epithelial cells. Environ Pollut. 2018;Königsberg Fainstein M. Nrf2: LA HISTORIA DE UN NUEVO FACTOR DE TRANSCRIPCIÓN QUE RESPONDE A ESTRÉS OXIDATIVO*. 2007Michael S, Montag M, Dott W. Pro-inflammatory effects and oxidative stress in lung macrophages and epithelial cells induced by ambient particulate matter. Environ Pollut [Internet]. 2013 Dec;183:19–29. Available from: https://linkinghub.elsevier.com/ retrieve/pii/S0269749113000419Ionescu-Tucker A, Cotman CW. Emerging roles of oxidative stress in brain aging and Alzheimer’s disease. Neurobiol Aging [Internet]. 2021 Nov;107:86–95. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0197458021002402Barnes PJ. Oxidative stress-based therapeutics in COPD. Redox Biol [Internet]. 2020 Jun;33:101544. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2213231720301610Pawlina W. Histología Texto Y Atlas Correlación con Biología Molecular y Celular. Ross Histología texto y atlas. 2015Zhao R, Guo Z, Zhang R, Deng C, Xu J, Dong W, et al. Nasal epithelial barrier disruption by particulate matter ≤2.5 µm via tight junction protein degradation. J Appl Toxicol. 2018;Raudoniute J, Stasiulaitiene I, Kulvinskiene I, Bagdonas E, Garbaras A, Krugly E, et al. Pro-inflammatory effects of extracted urban fine particulate matter on human bronchial epithelial cells BEAS-2B. Environ Sci Pollut Res. 2018;.Pérez B F, Méndez G A, Lagos R A, Vargas M SL. Dinámica y patología del barrido mucociliar como mecanismo defensivo del pulmón y alternativas farmacológicas de tratamiento. Rev Med Chil [Internet]. 2014 May;142(5):606–15. Available from: http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0034-98872014000500009&lng=en&nrm=iso&tlng=enJia J, Xia J, Zhang R, Bai Y, Liu S, Dan M, et al. Investigation of the impact of PM2.5 on the ciliary motion of human nasal epithelial cells. Chemosphere. 2019;Rivas-Santiago CE, Sarkar S, Cantarella P, Osornio-Vargas Á, Quintana-Belmares R, Meng Q, et al. Air pollution particulate matter alters antimycobacterial respiratory epithelium innate immunity. Infect Immun. 2015;Lerner CA, Sundar IK, Rahman I. Mitochondrial redox system, dynamics, and dysfunction in lung inflammaging and COPD. Int J Biochem Cell Biol. 2016;Xiaoqin YJ, Wang X, Hu D. Mitochondrial alterations during oxidative stress in chronic obstructive pulmonary disease. International Journal of COPD. 2017.Chen ZH, Kim HP, Sciurba FC, Lee SJ, Feghali-Bostwick C, Stolz DB, et al. Egr-1 regulates autophagy in cigarette smoke-induced chronic obstructive pulmonary disease. PLoS One. 2008;Carvajal Carvajal C. El endotelio: estructura, función y disfunción endotelial. Med Leg Costa Rica. 2017;Wang G, Zhang X, Liu X, Zheng J, Chen R, Kan H. Ambient fine particulate matter induce toxicity in lung epithelial-endothelial co-culture models. Toxicol Lett. 2019;Long Y-M, Yang X-Z, Yang Q-Q, Clermont AC, Yin Y-G, Liu G-L, et al. PM2.5 induces vascular permeability increase through activating MAPK/ERK signaling pathway and ROS generation. J Hazard Mater [Internet]. 2020 Mar;386:121659. Available from: https:// linkinghub.elsevier.com/retrieve/pii/S0304389419316139Zhang WC, Wang YG, Zhu ZF, Wu FQ, Peng YD, Chen ZY, et al. Regulatory T cells protect fine particulate matter-induced inflammatory responses in human umbilical vein endothelial cells. Mediators Inflamm. 2014;Riggs DW, Zafar N, Krishnasamy S, Yeager R, Rai SN, Bhatnagar A, et al. Exposure to airborne fine particulate matter is associated with impaired endothelial function and biomarkers of oxidative stress and inflammation. Environ Res [Internet]. 2020 Jan;180:108890. Available from: https://linkinghub.elsevier.com/ retrieve/pii/S0013935119306875Guyton A, Hall JE. Tratado de fisiologia medica. 12th ed. 221 p.Pacurari M, Kafoury R, Tchounwou PB, Ndebele K. The Renin-Angiotensin-Aldosterone System in Vascular Inflammation and Remodeling. Int J Inflam [Internet]. 2014;2014:1–13. Available from: http://www.hindawi.com/journals/iji/2014/689360/Hurtubise J, McLellan K, Durr K, Onasanya O, Nwabuko D, Ndisang JF. The different facets of dyslipidemia and hypertension in atherosclerosis. Curr Atheroscler Rep. 2016;Ellingsen DG, Chashchin M, Seljeflot I, Berlinger B, Chashchin V, Stockfelt L, et al. A study of atherothrombotic biomarkers in welders. Int Arch Occup Environ Health. 2019;.Rückerl R, Ibald-Mulli A, Koenig W, Schneider A, Woelke G, Cyrys J, et al. Air pollution and markers of inflammation and coagulation in patients with coronary heart disease. Am J Respir Crit Care Med. 2006;Finch J, Conklin DJ. Air Pollution-Induced Vascular Dysfunction: Potential Role of Endothelin-1 (ET-1) System. Cardiovasc Toxicol. 2016;Shen C, Liu J, Zhu F, Lei R, Cheng H, Zhang C, et al. The effects of cooking oil fumes-derived PM 2.5 on blood vessel formation through ROS-mediated NLRP3 inflammasome pathway in human umbilical vein endothelial cells. Ecotoxicol Environ Saf. 2019Amabile N, Rautou PE, Tedgui A, Boulanger CM. Microparticles: Key protagonists in cardiovascular disorders. Seminars in Thrombosis and Hemostasis. 2010.Chuang HC, Ho KF, Cao JJ, Chuang KJ, Ho SSH, Feng PH, et al. Effects of non-protein-type amino acids of fine particulate matter on E-cadherin and inflammatory responses in mice. Toxicol Lett. 2015;Liu B, Wu S De, Shen LJ, Zhao TX, Wei Y, Tang XL, et al. Spermatogenesis dysfunction induced by PM2.5 from automobile exhaust via the ROS-mediated MAPK signaling pathway. Ecotoxicol Environ Saf. 2019;Flores N. Endotelina-1: Vasoconstrictor Intrínseco Del Endotelio Vascular. Rev Med. 2013;Contaminación del airematerial particuladoendotelioepitelioinflamaciónestrés oxidativomutagenicidadEfectos del material particulado sobre las células endoteliales, epiteliales y del sistema inmuneArtículos Científicoshttp://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionAtribucióninfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2PublicationORIGINALRevision Moleculas Adhesion 2022.pdfRevision Moleculas Adhesion 2022.pdfapplication/pdf363922https://repository.ucc.edu.co/bitstreams/f0c3479b-c352-4790-b335-14a8d5c3c9d2/download0c1605e1b765eae9d9b8579dbd820abfMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repository.ucc.edu.co/bitstreams/8638a96c-0923-43b8-9c00-8cf8f7356aae/download8a4605be74aa9ea9d79846c1fba20a33MD52THUMBNAILRevision Moleculas Adhesion 2022.pdf.jpgRevision Moleculas Adhesion 2022.pdf.jpgGenerated Thumbnailimage/jpeg4981https://repository.ucc.edu.co/bitstreams/701cbb00-bda7-4ffe-9d92-b8b8127b2867/download7347459ca20c2af837ea06fe0da157fdMD53TEXTRevision Moleculas Adhesion 2022.pdf.txtRevision Moleculas Adhesion 2022.pdf.txtExtracted texttext/plain48603https://repository.ucc.edu.co/bitstreams/0c5deec1-9d67-4eae-9a87-1efd6799b2ba/download94481b66b9dcbdaed731cdf4848dc286MD5420.500.12494/45952oai:repository.ucc.edu.co:20.500.12494/459522024-08-20 16:24:09.076open.accesshttps://repository.ucc.edu.coRepositorio Institucional Universidad Cooperativa de Colombiabdigital@metabiblioteca.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |