Enthalpy-entropy compensation analysis of the triclocarban dissolution process in some {1, 4-dioxane (1)+ water (2)} mixtures

Se informó la solubilidad en equilibrio del triclocarbán en mezclas de {1,4-dioxano (1) + agua (2)} a 293,15 K a 313,15 K. La solubilidad de la fracción molar aumenta continuamente de agua pura a 1,4-dioxano puro a todas las temperaturas. El comportamiento de solubilidad se correlacionó adecuadament...

Full description

Autores:
Delgado, Daniel Ricardo
Mogollon Waltero, Edgar M
Ortiz, Claudia Patricia
Peña, María Á
Almanza, Ovidio A
Martínez, Fleming
Jouyban, Abolghasem
Tipo de recurso:
Article of journal
Fecha de publicación:
2018
Institución:
Universidad Cooperativa de Colombia
Repositorio:
Repositorio UCC
Idioma:
OAI Identifier:
oai:repository.ucc.edu.co:20.500.12494/15546
Acceso en línea:
https://hdl.handle.net/20.500.12494/15546
Palabra clave:
Triclocarbán
Solubilidad
Mezclas de {1,4-dioxano + agua}
Triclocarban
Solubility
{1,4-dioxane + water} mixtures
Jouyban-Acree model
Thermodynamic quantities
Modelo Jouyban-Acree
Cantidades termodinámicas
Rights
closedAccess
License
Atribución – No comercial – Compartir igual
id COOPER2_1cb99d460e6fc03671d0b13e9ae632e3
oai_identifier_str oai:repository.ucc.edu.co:20.500.12494/15546
network_acronym_str COOPER2
network_name_str Repositorio UCC
repository_id_str
dc.title.spa.fl_str_mv Enthalpy-entropy compensation analysis of the triclocarban dissolution process in some {1, 4-dioxane (1)+ water (2)} mixtures
title Enthalpy-entropy compensation analysis of the triclocarban dissolution process in some {1, 4-dioxane (1)+ water (2)} mixtures
spellingShingle Enthalpy-entropy compensation analysis of the triclocarban dissolution process in some {1, 4-dioxane (1)+ water (2)} mixtures
Triclocarbán
Solubilidad
Mezclas de {1,4-dioxano + agua}
Triclocarban
Solubility
{1,4-dioxane + water} mixtures
Jouyban-Acree model
Thermodynamic quantities
Modelo Jouyban-Acree
Cantidades termodinámicas
title_short Enthalpy-entropy compensation analysis of the triclocarban dissolution process in some {1, 4-dioxane (1)+ water (2)} mixtures
title_full Enthalpy-entropy compensation analysis of the triclocarban dissolution process in some {1, 4-dioxane (1)+ water (2)} mixtures
title_fullStr Enthalpy-entropy compensation analysis of the triclocarban dissolution process in some {1, 4-dioxane (1)+ water (2)} mixtures
title_full_unstemmed Enthalpy-entropy compensation analysis of the triclocarban dissolution process in some {1, 4-dioxane (1)+ water (2)} mixtures
title_sort Enthalpy-entropy compensation analysis of the triclocarban dissolution process in some {1, 4-dioxane (1)+ water (2)} mixtures
dc.creator.fl_str_mv Delgado, Daniel Ricardo
Mogollon Waltero, Edgar M
Ortiz, Claudia Patricia
Peña, María Á
Almanza, Ovidio A
Martínez, Fleming
Jouyban, Abolghasem
dc.contributor.author.none.fl_str_mv Delgado, Daniel Ricardo
Mogollon Waltero, Edgar M
Ortiz, Claudia Patricia
Peña, María Á
Almanza, Ovidio A
Martínez, Fleming
Jouyban, Abolghasem
dc.subject.spa.fl_str_mv Triclocarbán
Solubilidad
Mezclas de {1,4-dioxano + agua}
topic Triclocarbán
Solubilidad
Mezclas de {1,4-dioxano + agua}
Triclocarban
Solubility
{1,4-dioxane + water} mixtures
Jouyban-Acree model
Thermodynamic quantities
Modelo Jouyban-Acree
Cantidades termodinámicas
dc.subject.other.spa.fl_str_mv Triclocarban
Solubility
{1,4-dioxane + water} mixtures
Jouyban-Acree model
Thermodynamic quantities
Modelo Jouyban-Acree
Cantidades termodinámicas
description Se informó la solubilidad en equilibrio del triclocarbán en mezclas de {1,4-dioxano (1) + agua (2)} a 293,15 K a 313,15 K. La solubilidad de la fracción molar aumenta continuamente de agua pura a 1,4-dioxano puro a todas las temperaturas. El comportamiento de solubilidad se correlacionó adecuadamente por medio de una serie de modelos de cosolvencia, incluido el modelo Jouyban-Acree. Sobre la base de las ecuaciones de Gibbs y van't Hoff, se calcularon las respectivas cantidades termodinámicas de disolución. Se observa un análisis de compensación de entalpía-entropía no lineal que indica un mecanismo de disolución diferente con la variación en la composición de las mezclas.
publishDate 2018
dc.date.issued.none.fl_str_mv 2018-12-01
dc.date.accessioned.none.fl_str_mv 2019-12-11T15:04:06Z
dc.date.available.none.fl_str_mv 2019-12-11T15:04:06Z
dc.type.none.fl_str_mv Artículo
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.uri.spa.fl_str_mv 10.1016/j.molliq.2018.09.026
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12494/15546
dc.identifier.bibliographicCitation.spa.fl_str_mv Delgado, D. R., Mogollon-Waltero, E. M., Ortiz, C. P., Peña, M. Á., Almanza, O. A., Martínez, F., Jouyban, A. (2018). Enthalpy-entropy compensation analysis of the triclocarban dissolution process in some {1,4-dioxane (1) + water (2)} mixtures, Journal of Molecular Liquids Volume 271, 1 December 2018, Pages 522-529
identifier_str_mv 10.1016/j.molliq.2018.09.026
Delgado, D. R., Mogollon-Waltero, E. M., Ortiz, C. P., Peña, M. Á., Almanza, O. A., Martínez, F., Jouyban, A. (2018). Enthalpy-entropy compensation analysis of the triclocarban dissolution process in some {1,4-dioxane (1) + water (2)} mixtures, Journal of Molecular Liquids Volume 271, 1 December 2018, Pages 522-529
url https://hdl.handle.net/20.500.12494/15546
dc.relation.isversionof.spa.fl_str_mv https://www.sciencedirect.com/science/article/abs/pii/S0167732218318312
dc.relation.ispartofjournal.spa.fl_str_mv Journal of Molecular Liquids
dc.relation.references.spa.fl_str_mv S. Budavari, M.J. O'Neil, A. Smith, P.E. Heckelman, J.R. Obenchain Jr., J.A.R. Gallipeau, M.A. D'Arecea The Merck Index, an Encyclopedia of Chemicals, Drugs, and Biologicals (13th ed.), Merck & Co., Inc., Whitehouse Station, NJ (2001) Google Scholar [2] K. Vimalkumar, E. Arun, S. Krishna-Kumar, R.K. Poopal, N.P. Nikhil, A. Subramanian, R. Babu-Rajendran Occurrence of triclocarban and benzotriazole ultraviolet stabilizers in water, sediment, and fish from Indian rivers Sci. Total Environ., 625 (2018), pp. 1351-1360 Article Download PDFView Record in ScopusGoogle Scholar [3] J.R. Rochester, A.L. Bolden, K.E. Pelch, C.F. Kwiatkowski Potential developmental and reproductive impacts of triclocarban: a scoping review J. Toxicol., 2017 (2017), Article 9679738 Google Scholar [4] R.J. Witorsch, J.A. Thomas Personal care products and endocrine disruption: a critical review of the literature Crit. Rev. Toxicol., 40 (2010), pp. 1-30 CrossRefView Record in ScopusGoogle Scholar [5] J. Chen, K.C. Ahn, N.A. Gee, M.I. Ahmed, A.J. Duleba, L. Zhao, S.J. Gee, B.D. Hammock, B.L. Lasley Triclocarban enhances testosterone action: a new type of endocrine disruptor? Endocrinology, 149 (2008), pp. 1173-1179 CrossRefView Record in ScopusGoogle Scholar [6] A.J. Duleba, M.I. Ahmed, M. Sun, A.C. Gao, J. Villanueva, A.J. Conley, J.L. Turgeon, K. Benirschke, N.A. Gee, J. Chen, P.G. Green, B.L. Lasley Effects of triclocarban on intact immature male rat: augmentation of androgen action Reprod. Sci., 18 (2011), pp. 119-127 CrossRefView Record in ScopusGoogle Scholar [7] H.A. Enright, M.J.S. Falso, M.A. Malfatti, V. Lao, E.A. Kuhn, N. Hum, Y. Shi, A.P. Sales, K.W. Haack, K.S. Kulp, B.A. Buchholz, G.G. Loots, G. Bench, K.W. Turteltaub Maternal exposure to an environmentally relevant dose of triclocarban results in perinatal exposure and potential alterations in offspring development in the mouse model PLoS One, 12 (2017), Article e0181996 CrossRefView Record in ScopusGoogle Scholar [8] D.I. Caviedes, D.R. Delgado, A. Olaya Environmental normatively to regulate the presence of residual pharmaceutical products in aquatic environments Rev. Jurídica Piélagus, 16 (2017), pp. 121-130 View Record in ScopusGoogle Scholar [9] D.I. Caviedes, D.M. Camacho, D.R. Delgado Treatments for the removal of antibacterial and antimicrobial agents present in wastewater Rev. Logos, Cienc. Tecnol., 9 (2017), pp. 43-62 View Record in ScopusGoogle Scholar [10] T.M. Letcher Thermodynamics, Solubility and Environmental Issues Elsevier, Amsterdam (2007) Google Scholar [11] D.L. Armstrong, N. Lozano, C.P. Rice, M. Ramirez, A. Torrents Degradation of triclosan and triclocarban and formation of transformation products in activated sludge using bench top bioreactors Environ. Res., 161 (2018), pp. 17-25 Article Download PDFView Record in ScopusGoogle Scholar [12] Q. Fu, X. Wu, Q. Ye, F. Ernst, J. Gan Biosolids inhibit bioavailability and plant uptake of triclosan and triclocarban Water Res., 102 (2016), pp. 117-124 Article Download PDFView Record in ScopusGoogle Scholar [13] D.M. Jiménez, Z.J. Cárdenas, D.R. Delgado, A. Jouyban, F. Martínez Solubility and solution thermodynamics of meloxicam in 1,4-dioxane and water mixtures Ind. Eng. Chem. Res., 53 (2014), pp. 16550-16558 CrossRefView Record in ScopusGoogle Scholar [14] M.A. Ruidiaz, D.R. Delgado, F. Martínez, Y. Marcus Solubility and preferential solvation of indomethacin in 1,4-dioxane + water solvent mixtures Fluid Phase Equilib., 299 (2010), pp. 259-265 Article Download PDFView Record in ScopusGoogle Scholar [15] D.M. Jiménez, Z.J. Cárdenas, F. Martínez Solubility and solution thermodynamics of meloxicam in polyethylene glycol 400 + water mixtures J. Mol. Liq., 211 (2015), pp. 233-238 CrossRefGoogle Scholar [16] S. Nozohouri, A. Shayanfar, Z.J. Cárdenas, F. Martinez, A. Jouyban Solubility of celecoxib in N-methyl-2-pyrolidone + water mixtures at various temperatures: experimental data and thermodynamic analysis Korean J. Chem. Eng., 34 (2017), pp. 1435-1443 CrossRefView Record in ScopusGoogle Scholar [17] D.R. Delgado, G.A. Rodríguez, F. Martínez Thermodynamic study of the solubility of sulfapyridine in some ethanol + water mixtures J. Mol. Liq., 177 (2013), pp. 156-161 Article Download PDFView Record in ScopusGoogle Scholar [18] D.M. Jiménez, Z.J. Cárdenas, D.R. Delgado, M.Á. Peña, F. Martínez Solubility temperature dependence and preferential solvation of sulfadiazine in 1,4-dioxane + water co-solvent mixtures Fluid Phase Equilib., 397 (2015), pp. 26-36 Article Download PDFView Record in ScopusGoogle Scholar [19] S.J. Rodríguez, D.M. Cristancho, P.C. Neita, E.F. Vargas, F. Martínez Solution thermodynamics of the sunscreen ethylhexyltriazone in some ethanol + ethyl acetate mixtures J. Solut. Chem., 39 (2010), pp. 1122-1133 CrossRefView Record in ScopusGoogle Scholar [20] D.M. Cristancho, A. Jouyban, F. Martínez Solubility, solution thermodynamics, and preferential solvation of piroxicam in ethyl acetate + ethanol mixtures J. Mol. Liq., 221 (2016), pp. 72-81 Article Download PDFView Record in ScopusGoogle Scholar [21] A.C. Gaviria-Castillo, J.D. Artunduaga-Tole, J.D. Rodríguez-Rubiano, J.A. Zuñiga-Andrade, D.R. Delgado, A. Jouyban, F. Martínez Solution thermodynamics and preferential solvation of triclocarban in {1,4-dioxane (1) + water (2)} mixtures at 298.15 K Phys. Chem. Liq. (2018), pp. 1-12, 10.1080/00319104.2017.1416613 (Forthcoming) Google Scholar [22] A. Jouyban Handbook of Solubility Data for Pharmaceuticals CRC Press, Boca Raton (FL) (2010) Google Scholar [23] F. Martinez, A. Jouyban, W.E. Acree Jr. Pharmaceuticals solubility is still nowadays widely studied everywhere (editorial) Pharm. Sci., 23 (2017), pp. 1-2 (Tabriz) CrossRefView Record in ScopusGoogle Scholar [24] D.R. Delgado, O.A. Almanza, F. Martínez, M.A. Peña, A. Jouyban, W.E. Acree Jr. Solution thermodynamics and preferential solvation of sulfamethazine in (methanol + water) mixtures J. Chem. Thermodyn., 97 (2016), pp. 264-276 Article Download PDFView Record in ScopusGoogle Scholar [25] Z.J. Cárdenas, D.M. Jiménez, O.A. Almanza, A. Jouyban, F. Martínez, W.E. Acree Jr. Solubility and preferential solvation of sulphanilamide, sulfamethizole and sulfapyridine in methanol + water mixtures at 298.15 K J. Solut. Chem., 45 (2016), pp. 1479-1503 CrossRefView Record in ScopusGoogle Scholar [26] Z.J. Cárdenas, D.M. Jiménez, D.R. Delgado, O.A. Almanza, A. Jouyban, F. Martínez, W.E. Acree Jr. Solubility and preferential solvation of some n-alkyl parabens in methanol + water mixtures at 298.15 K J. Chem. Thermodyn., 108 (2017), pp. 26-37 Article Download PDFView Record in ScopusGoogle Scholar [27] Z.J. Cárdenas, D.M. Jiménez, O.A. Almanza, A. Jouyban, F. Martínez, W.E. Acree Jr. Solubility and preferential solvation of caffeine and theophylline in {methanol + water} mixtures at 298.15 K J. Solut. Chem., 46 (2017), pp. 1605-1624 CrossRefView Record in ScopusGoogle Scholar [28] Z.J. Cárdenas, O.A. Almanza, A. Jouyban, F. Martínez, W.E. Acree Jr. Solubility and preferential solvation of phenacetin in methanol + water mixtures at 298.15 K Phys. Chem. Liq., 56 (2018), pp. 16-32 CrossRefView Record in ScopusGoogle Scholar [29] Z.J. Cárdenas, D.M. Jiménez, O.A. Almanza, A. Jouyban, F. Martínez, W.E. Acree Jr Solubility and preferential solvation of benzocaine in {methanol (1) + water (2)} mixtures at 298.15 K Phys. Chem. Liq., 56 (2018), pp. 465-481 View Record in ScopusGoogle Scholar [30] A.F.M. Barton Handbook of Solubility Parameters and Other Cohesion Parameters (2nd ed.), CRC Press, New York (1991) Google Scholar [31] K.A. Connors Thermodynamics of Pharmaceutical Systems: An Introduction for Students of Pharmacy Wiley-Interscience, Hoboken (NJ) (2002) Google Scholar [32] A. Martin, P. Bustamante, A.H.C. Chun Physical Chemical Principles in the Pharmaceutical Sciences (4th ed.), Lea & Febiger, Philadelphia (PA) (1993) Google Scholar [33] D.R. Delgado, A.R. Holguín, F. Martínez Solution thermodynamics of triclosan and triclocarban in some volatile organic solvents Vitae, Rev. Fac. Quim. Farm., 19 (2012), pp. 79-92 View Record in ScopusGoogle Scholar [34] M.A. Peña, A. Reíllo, B. Escalera, P. Bustamante Solubility parameter of drugs for predicting the solubility profile type within a wide polarity range in solvent mixtures Int. J. Pharm., 321 (2006), pp. 155-161 Article Download PDFView Record in ScopusGoogle Scholar [35] M.A. Peña, B. Escalera, A. Reíllo, A.B. Sánchez, P. Bustamante Thermodynamics of cosolvent action: phenacetin, salicylic acid and probenecid J. Pharm. Sci., 98 (2009), pp. 1129-1135 Article Download PDFCrossRefView Record in ScopusGoogle Scholar [36] D.A. Chiappetta, J. Degrossi, R.A. Lizarazo, D.L. Salinas, F. Martínez, A. Sosnik Molecular implications in the solubilization of the antibacterial agent triclocarban by means of branched poly(ethylene oxide)-poly(propylene oxide) polymeric micelles L. Segewicz, M. Petrowsky (Eds.), Polymer Aging, Stabilizers and Amphiphilic Block Copolymers, Nova Science Publishers, Inc., New York (2010), pp. 197-211 (Chapter 5) View Record in ScopusGoogle Scholar [37] A. Jouyban Review of the cosolvency models for predicting solubility of drugs in water-cosolvent mixtures J. Pharm. Pharm. Sci., 11 (2008), pp. 32-58 CrossRefView Record in ScopusGoogle Scholar [38] A. Jouyban-Gharamaleki, L. Valaee, M. Barzegar-Jalali, B.J. Clark, W.E. Acree Jr. Comparison of various cosolvency models for calculating solute solubility in water-cosolvent mixtures Int. J. Pharm., 177 (1999), pp. 93-101 Article Download PDFView Record in ScopusGoogle Scholar [39] A. Jouyban-Gharamaleki The modified Wilson model and predicting drug solubility in water-cosolvent mixtures Chem. Pharm. Bull.(Tokyo), 46 (1998), pp. 1058-1061 CrossRefView Record in ScopusGoogle Scholar [40] W.E. Acree Jr. Mathematical representation of thermodynamic properties: part 2. Derivation of the combined nearly ideal binary solvent (NIBS)/Redlich-Kister mathematical representation from a two-body and three-body interactional mixing model Thermochim. Acta, 198 (1992), pp. 71-79 Article Download PDFView Record in ScopusGoogle Scholar [41] A. Jouyban-Gharamaleki, W.E. Acree Jr. Comparison of models for describing multiple peaks in solubility profiles Int. J. Pharm., 167 (1998), pp. 177-182 Article Download PDFView Record in ScopusGoogle Scholar [42] A. Jouyban, M. Khoubnasabjafari, H.K. Chan, W.E. Acree Jr. Mathematical representation of solubility of amino acids in binary aqueous-organic solvent mixtures at various temperatures using the Jouyban-Acree model Pharmazie, 61 (2006), pp. 789-792 View Record in ScopusGoogle Scholar [43] A. Jouyban, W.E. Acree Jr. Mathematical derivation of the Jouyban-Acree model to represent solute solubility data in mixed solvents at various temperatures J. Mol. Liq., 256 (2018), pp. 541-547 Article Download PDFView Record in ScopusGoogle Scholar [44] A. Jouyban, S. Soltanpour, S. Soltani, E. Tamizi, M.A.A. Fakhree, W.E. Acree Jr. Prediction of drug solubility in mixed solvents using computed Abraham parameters J. Mol. Liq., 146 (2009), pp. 82-88 Article Download PDFView Record in ScopusGoogle Scholar [45] Pharma Algorithms ADME Boxes, Version 3.0 Pharma Algorithms Inc., 591 Indian Road, Toronto, ON M6P 2C4, Canada (2006) Google Scholar [46] A. Kristl, G. Vesnaver Thermodynamic investigation of the effect of 1-octanol-water mutual miscibility on the partitioning and solubility of some guanine derivatives J. Chem. Soc. Faraday Trans., 91 (1995), pp. 995-998 View Record in ScopusGoogle Scholar [47] R.R. Krug, W.G. Hunter, R.A. Grieger Enthalpy-entropy compensation. 1. Some fundamental statistical problems associated with the analysis of van't Hoff and Arrhenius data J. Phys. Chem., 80 (1976), pp. 2335-2341 CrossRefView Record in ScopusGoogle Scholar [48] R.R. Krug, W.G. Hunter, R.A. Grieger Enthalpy-entropy compensation. 2. Separation of the chemical from the statistical effect J. Phys. Chem., 80 (1976), pp. 2341-2351 CrossRefView Record in ScopusGoogle Scholar [49] G.L. Perlovich, S.V. Kurkov, A.N. Kinchin, A. Bauer-Brandl Thermodynamics of solutions III: comparison of the solvation of (+)-naproxen with other NSAIDs Eur. J. Pharm. Biopharm., 57 (2004), pp. 411-420 Article Download PDFView Record in ScopusGoogle Scholar [50] G.L. Perlovich, N.N. Strakhova, V.P. Kazachenko, T.V. Volkova, V.V. Tkachev, K.J. Schaper, O.A. Raevsky Sulfonamides as a subject to study molecular interactions in crystals and solutions: sublimation, solubility, solvation, distribution and crystal structure Int. J. Pharm., 349 (2008), pp. 300-312 View Record in ScopusGoogle Scholar [51] A.R. Holguín, D.R. Delgado, F. Martínez Thermodynamic study of the solubility of triclocarban in ethanol + propylene glycol mixtures Quim Nova, 35 (2012), pp. 280-285 CrossRefView Record in ScopusGoogle Scholar [52] D.R. Delgado, A.R. Holguín, O.A. Almanza, F. Martínez, Y. Marcus Solubility and preferential solvation of meloxicam in ethanol + water solvent mixtures Fluid Phase Equilib., 305 (2011), pp. 88-95 Article Download PDFView Record in ScopusGoogle Scholar [53] P. Bustamante, S. Romero, A. Peña, B. Escalera, A. Reillo Nonlinear enthalpy-entropy compensation for the solubility of drugs in solvent mixtures: paracetamol, acetanilide and nalidixic acid in dioxane-water J. Pharm. Sci., 87 (1998), pp. 1590-1596 Article Download PDFView Record in ScopusGoogle Scholar [54] F. Martínez, M.A. Peña, P. Bustamante Thermodynamic analysis and enthalpy-entropy compensation for the solubility of indomethacin in aqueous and non-aqueous mixtures Fluid Phase Equilib., 308 (2011), pp. 98-106 Article Download PDFView Record in ScopusGoogle Scholar [55] D.R. Delgado, A. Romdhani, F. Martínez Thermodynamics of sulphanilamide solubility in propylene glycol + water mixtures Lat. Am. J. Pharm., 30 (2011), pp. 2024-2030 View Record in ScopusGoogle Scholar [56] M. Gantiva, F. Martínez Thermodynamic analysis of the solubility of ketoprofen in some propylene glycol + water cosolvent mixtures Fluid Phase Equilib., 293 (2010), pp. 242-250 Article Download PDFView Record in ScopusGoogle Scholar
K. Vimalkumar, E. Arun, S. Krishna-Kumar, R.K. Poopal, N.P. Nikhil, A. Subramanian, R. Babu-Rajendran, Occurrence of triclocarban and benzotriazole ultraviolet stabilizers in water, sediment, and fish from Indian rivers, Sci. Total Environ. 625 (2018) 1351–1360
J.R. Rochester, A.L. Bolden, K.E. Pelch, C.F. Kwiatkowski, Potential developmental and reproductive impacts of triclocarban: a scoping review, J. Toxicol. 2017 (2017), 9679738.
R.J. Witorsch, J.A. Thomas, Personal care products and endocrine disruption: a critical review of the literature, Crit. Rev. Toxicol. 40 (2010) 1–30.
J. Chen, K.C. Ahn, N.A. Gee, M.I. Ahmed, A.J. Duleba, L. Zhao, S.J. Gee, B.D. Hammock, B.L. Lasley, Triclocarban enhances testosterone action: a new type of endocrine disruptor? Endocrinology 149 (2008) 1173–1179.
A.J. Duleba, M.I. Ahmed, M. Sun, A.C. Gao, J. Villanueva, A.J. Conley, J.L. Turgeon, K. Benirschke, N.A. Gee, J. Chen, P.G. Green, B.L. Lasley, Effects of triclocarban on intact immature male rat: augmentation of androgen action, Reprod. Sci. 18 (2011) 119–127
H.A. Enright, M.J.S. Falso, M.A. Malfatti, V. Lao, E.A. Kuhn, N. Hum, Y. Shi, A.P. Sales, K.W. Haack, K.S. Kulp, B.A. Buchholz, G.G. Loots, G. Bench, K.W. Turteltaub, Maternal exposure to an environmentally relevant dose of triclocarban results in perinatal exposure and potential alterations in offspring development in the mouse model, PLoS One 12 (2017), e0181996.
D.I. Caviedes, D.R. Delgado, A. Olaya, Environmental normatively to regulate the presence of residual pharmaceutical products in aquatic environments, Rev. Jurídica Piélagus 16 (2017) 121–130.
D.I. Caviedes, D.M. Camacho, D.R. Delgado, Treatments for the removal of antibacterial and antimicrobial agents present in wastewater, Rev. Logos, Cienc. Tecnol. 9 (2017) 43–62.
T.M. Letcher, Thermodynamics, Solubility and Environmental Issues, Elsevier, Amsterdam, 2007.
D.L. Armstrong, N. Lozano, C.P. Rice, M. Ramirez, A. Torrents, Degradation of triclosan and triclocarban and formation of transformation products in activated sludge using bench top bioreactors, Environ. Res. 161 (2018) 17–25
Q. Fu, X. Wu, Q. Ye, F. Ernst, J. Gan, Biosolids inhibit bioavailability and plant uptake of triclosan and triclocarban, Water Res. 102 (2016) 117–124.
D.M. Jiménez, Z.J. Cárdenas, D.R. Delgado, A. Jouyban, F. Martínez, Solubility and solution thermodynamics of meloxicam in 1,4-dioxane and water mixtures, Ind. Eng. Chem. Res. 53 (2014) 16550–16558.
M.A. Ruidiaz, D.R. Delgado, F. Martínez, Y. Marcus, Solubility and preferential solvation of indomethacin in 1,4-dioxane + water solvent mixtures, Fluid Phase Equilib. 299 (2010) 259–265.
D.M. Jiménez, Z.J. Cárdenas, F. Martínez, Solubility and solution thermodynamics of meloxicam in polyethylene glycol 400 + water mixtures, J. Mol. Liq. 211 (2015) 233–238.
S. Nozohouri, A. Shayanfar, Z.J. Cárdenas, F. Martinez, A. Jouyban, Solubility of celecoxib in N-methyl-2-pyrolidone + water mixtures at various temperatures: experimental data and thermodynamic analysis, Korean J. Chem. Eng. 34 (2017) 1435–1443.
D.R. Delgado, G.A. Rodríguez, F. Martínez, Thermodynamic study of the solubility of sulfapyridine in some ethanol + water mixtures, J. Mol. Liq. 177 (2013) 156–161.
D.M. Jiménez, Z.J. Cárdenas, D.R. Delgado, M.Á. Peña, F. Martínez, Solubility temperature dependence and preferential solvation of sulfadiazine in 1,4-dioxane + water co-solvent mixtures, Fluid Phase Equilib. 397 (2015) 26–36.
] S.J. Rodríguez, D.M. Cristancho, P.C. Neita, E.F. Vargas, F. Martínez, Solution thermodynamics of the sunscreen ethylhexyltriazone in some ethanol + ethyl acetate mixtures, J. Solut. Chem. 39 (2010) 1122–1133.
D.M. Cristancho, A. Jouyban, F. Martínez, Solubility, solution thermodynamics, and preferential solvation of piroxicam in ethyl acetate + ethanol mixtures, J. Mol. Liq. 221 (2016) 72–81.
A.C. Gaviria-Castillo, J.D. Artunduaga-Tole, J.D. Rodríguez-Rubiano, J.A. ZuñigaAndrade, D.R. Delgado, A. Jouyban, F. Martínez, Solution thermodynamics and preferential solvation of triclocarban in {1,4-dioxane (1) + water (2)} mixtures at 298.15 K, Phys. Chem. Liq. (2018) 1–12, https://doi.org/10.1080/00319104.2017. 1416613 (Forthcoming).
A. Jouyban, Handbook of Solubility Data for Pharmaceuticals, CRC Press, Boca Raton (FL), 2010.
F. Martinez, A. Jouyban, W.E. Acree Jr., Pharmaceuticals solubility is still nowadays widely studied everywhere (editorial), Pharm. Sci. 23 (2017) 1–2 (Tabriz).
] D.R. Delgado, O.A. Almanza, F. Martínez, M.A. Peña, A. Jouyban, W.E. Acree Jr., Solution thermodynamics and preferential solvation of sulfamethazine in (methanol + water) mixtures, J. Chem. Thermodyn. 97 (2016) 264–276.
Z.J. Cárdenas, D.M. Jiménez, O.A. Almanza, A. Jouyban, F. Martínez, W.E. Acree Jr., Solubility and preferential solvation of sulphanilamide, sulfamethizole and sulfapyridine in methanol + water mixtures at 298.15 K, J. Solut. Chem. 45 (2016) 1479–1503
] Z.J. Cárdenas, D.M. Jiménez, D.R. Delgado, O.A. Almanza, A. Jouyban, F. Martínez, W.E. Acree Jr., Solubility and preferential solvation of some n-alkyl parabens in methanol + water mixtures at 298.15 K, J. Chem. Thermodyn. 108 (2017) 26–37
Z.J. Cárdenas, D.M. Jiménez, O.A. Almanza, A. Jouyban, F. Martínez, W.E. Acree Jr., Solubility and preferential solvation of caffeine and theophylline in {methanol + water} mixtures at 298.15 K, J. Solut. Chem. 46 (2017) 1605–1624.
Z.J. Cárdenas, O.A. Almanza, A. Jouyban, F. Martínez, W.E. Acree Jr., Solubility and preferential solvation of phenacetin in methanol + water mixtures at 298.15 K, Phys. Chem. Liq. 56 (2018) 16–32.
Z.J. Cárdenas, D.M. Jiménez, O.A. Almanza, A. Jouyban, F. Martínez, W.E. Acree Jr, Solubility and preferential solvation of benzocaine in {methanol (1) + water (2)} mixtures at 298.15 K, Phys. Chem. Liq. 56 (2018) 465–481.
A.F.M. Barton, Handbook of Solubility Parameters and Other Cohesion Parameters, 2nd ed. CRC Press, New York, 1991.
K.A. Connors, Thermodynamics of Pharmaceutical Systems: An Introduction for Students of Pharmacy, Wiley-Interscience, Hoboken (NJ), 2002.
A. Martin, P. Bustamante, A.H.C. Chun, Physical Chemical Principles in the Pharmaceutical Sciences, 4th ed. Lea & Febiger, Philadelphia (PA), 1993.
D.R. Delgado, A.R. Holguín, F. Martínez, Solution thermodynamics of triclosan and triclocarban in some volatile organic solvents, Vitae, Rev. Fac. Quim. Farm. 19 (2012) 79–92.
M.A. Peña, A. Reíllo, B. Escalera, P. Bustamante, Solubility parameter of drugs for predicting the solubility profile type within a wide polarity range in solvent mixtures, Int. J. Pharm. 321 (2006) 155–161.
M.A. Peña, B. Escalera, A. Reíllo, A.B. Sánchez, P. Bustamante, Thermodynamics of cosolvent action: phenacetin, salicylic acid and probenecid, J. Pharm. Sci. 98 (2009) 1129–1135.
D.A. Chiappetta, J. Degrossi, R.A. Lizarazo, D.L. Salinas, F. Martínez, A. Sosnik, Molecular implications in the solubilization of the antibacterial agent triclocarban by means of branched poly(ethylene oxide)-poly(propylene oxide) polymeric micelles, in: L. Segewicz, M. Petrowsky (Eds.), Polymer Aging, Stabilizers and Amphiphilic Block Copolymers, Nova Science Publishers, Inc., New York 2010, pp. 197–211 , (Chapter 5).
A. Jouyban, Review of the cosolvency models for predicting solubility of drugs in water-cosolvent mixtures, J. Pharm. Pharm. Sci. 11 (2008) 32–58.
A. Jouyban-Gharamaleki, L. Valaee, M. Barzegar-Jalali, B.J. Clark, W.E. Acree Jr., Comparison of various cosolvency models for calculating solute solubility in watercosolvent mixtures, Int. J. Pharm. 177 (1999) 93–101.
A. Jouyban-Gharamaleki, The modified Wilson model and predicting drug solubility in water-cosolvent mixtures, Chem. Pharm. Bull.(Tokyo) 46 (1998) 1058–1061.
W.E. Acree Jr., Mathematical representation of thermodynamic properties: part 2. Derivation of the combined nearly ideal binary solvent (NIBS)/Redlich-Kister mathematical representation from a two-body and three-body interactional mixing model, Thermochim. Acta 198 (1992) 71–79.
A. Jouyban-Gharamaleki, W.E. Acree Jr., Comparison of models for describing multiple peaks in solubility profiles, Int. J. Pharm. 167 (1998) 177–182.
A. Jouyban, M. Khoubnasabjafari, H.K. Chan, W.E. Acree Jr., Mathematical representation of solubility of amino acids in binary aqueous-organic solvent mixtures at various temperatures using the Jouyban-Acree model, Pharmazie 61 (2006) 789–792.
A. Jouyban, W.E. Acree Jr., Mathematical derivation of the Jouyban-Acree model to represent solute solubility data in mixed solvents at various temperatures, J. Mol. Liq. 256 (2018) 541–547
A. Jouyban, S. Soltanpour, S. Soltani, E. Tamizi, M.A.A. Fakhree, W.E. Acree Jr., Prediction of drug solubility in mixed solvents using computed Abraham parameters, J. Mol. Liq. 146 (2009) 82–88.
dc.rights.license.none.fl_str_mv Atribución – No comercial – Compartir igual
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/closedAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_14cb
rights_invalid_str_mv Atribución – No comercial – Compartir igual
http://purl.org/coar/access_right/c_14cb
eu_rights_str_mv closedAccess
dc.format.extent.spa.fl_str_mv p. 522- 529
dc.coverage.temporal.spa.fl_str_mv vol. 271
dc.publisher.spa.fl_str_mv Elsevier
Universidad Cooperativa de Colombia, Facultad de Ingenierías, Ingeniería Industrial, Neiva
dc.publisher.program.spa.fl_str_mv Ingeniería Industrial
dc.publisher.place.spa.fl_str_mv Neiva
institution Universidad Cooperativa de Colombia
bitstream.url.fl_str_mv https://repository.ucc.edu.co/bitstreams/6107bdbd-c7f5-4725-9733-78701e7720b1/download
https://repository.ucc.edu.co/bitstreams/0956df6d-22ae-4b60-8894-112df1f55a98/download
https://repository.ucc.edu.co/bitstreams/9de1765d-7b9a-4f20-b16a-1aeb0777656b/download
https://repository.ucc.edu.co/bitstreams/35e04555-beb9-4c4e-bbbc-1d2ca5e6669d/download
bitstream.checksum.fl_str_mv d39744ad62b38d2fa345505c9b8ca9fa
bed7128158dc8267e038499874c184c6
3bce4f7ab09dfc588f126e1e36e98a45
a55cd82b89fd59f08f03a4945c1d9108
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Cooperativa de Colombia
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1814246822689898496
spelling Delgado, Daniel RicardoMogollon Waltero, Edgar MOrtiz, Claudia PatriciaPeña, María ÁAlmanza, Ovidio AMartínez, FlemingJouyban, Abolghasemvol. 2712019-12-11T15:04:06Z2019-12-11T15:04:06Z2018-12-0110.1016/j.molliq.2018.09.026https://hdl.handle.net/20.500.12494/15546Delgado, D. R., Mogollon-Waltero, E. M., Ortiz, C. P., Peña, M. Á., Almanza, O. A., Martínez, F., Jouyban, A. (2018). Enthalpy-entropy compensation analysis of the triclocarban dissolution process in some {1,4-dioxane (1) + water (2)} mixtures, Journal of Molecular Liquids Volume 271, 1 December 2018, Pages 522-529Se informó la solubilidad en equilibrio del triclocarbán en mezclas de {1,4-dioxano (1) + agua (2)} a 293,15 K a 313,15 K. La solubilidad de la fracción molar aumenta continuamente de agua pura a 1,4-dioxano puro a todas las temperaturas. El comportamiento de solubilidad se correlacionó adecuadamente por medio de una serie de modelos de cosolvencia, incluido el modelo Jouyban-Acree. Sobre la base de las ecuaciones de Gibbs y van't Hoff, se calcularon las respectivas cantidades termodinámicas de disolución. Se observa un análisis de compensación de entalpía-entropía no lineal que indica un mecanismo de disolución diferente con la variación en la composición de las mezclas.The equilibrium solubility of triclocarban in {1,4-dioxane (1) + water (2)} mixtures at 293.15 K to 313.15 K was reported. Mole fraction solubility increases continuously from neat water to neat 1,4-dioxane at all temperatures. Solubility behavior was adequately correlated by means of a number of cosolvency models including the Jouyban-Acree model. Based on the Gibbs and van't Hoff equations the respective apparent thermodynamic quantities of dissolution were calculated. Non-linear enthalpy-entropy compensation analysis is observed indicating different dissolution mechanism with the variation in mixtures composition.Highlights. -- Abstract. -- Keywords. -- 1. Introduction. -- 2. Experimental. -- 2.1. Reagents. -- 2.2. Preparation of solvent mixtures. -- 2.3. Solubility determinations. -- 2.4. Calorimetric study. -- 3. Results and discussion. -- 3.1. Equilibrium solubility of TCC. -- 3.2. The cosolvency models applied to TCC solubility. -- 3.3. Activity coefficients of TCC. -- 3.4. Apparent thermodynamic quantities of TCC (3) dissolution. -- 3.5. Thermodynamic functions of TCC transfer. -- 3.6. Apparent thermodynamic quantities of TCC mixing. -- 3.7. Enthalpy–entropy compensation analysis of TCC. -- 4. Conclusions. -- Acknowledgments. -- Disclosure statement. -- References.http://scienti.colciencias.gov.co:8081/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001402116https://orcid.org/0000-0002-4835-9739https://scienti.colciencias.gov.co/gruplac/jsp/visualiza/visualizagr.jsp?nro=00000000004151danielr.delgado@campusucc.edu.cohttps://scholar.google.com/citations?hl=es&user=OW0mejcAAAAJ&view_op=list_worksp. 522- 529ElsevierUniversidad Cooperativa de Colombia, Facultad de Ingenierías, Ingeniería Industrial, NeivaIngeniería IndustrialNeivahttps://www.sciencedirect.com/science/article/abs/pii/S0167732218318312Journal of Molecular LiquidsS. Budavari, M.J. O'Neil, A. Smith, P.E. Heckelman, J.R. Obenchain Jr., J.A.R. Gallipeau, M.A. D'Arecea The Merck Index, an Encyclopedia of Chemicals, Drugs, and Biologicals (13th ed.), Merck & Co., Inc., Whitehouse Station, NJ (2001) Google Scholar [2] K. Vimalkumar, E. Arun, S. Krishna-Kumar, R.K. Poopal, N.P. Nikhil, A. Subramanian, R. Babu-Rajendran Occurrence of triclocarban and benzotriazole ultraviolet stabilizers in water, sediment, and fish from Indian rivers Sci. Total Environ., 625 (2018), pp. 1351-1360 Article Download PDFView Record in ScopusGoogle Scholar [3] J.R. Rochester, A.L. Bolden, K.E. Pelch, C.F. Kwiatkowski Potential developmental and reproductive impacts of triclocarban: a scoping review J. Toxicol., 2017 (2017), Article 9679738 Google Scholar [4] R.J. Witorsch, J.A. Thomas Personal care products and endocrine disruption: a critical review of the literature Crit. Rev. Toxicol., 40 (2010), pp. 1-30 CrossRefView Record in ScopusGoogle Scholar [5] J. Chen, K.C. Ahn, N.A. Gee, M.I. Ahmed, A.J. Duleba, L. Zhao, S.J. Gee, B.D. Hammock, B.L. Lasley Triclocarban enhances testosterone action: a new type of endocrine disruptor? Endocrinology, 149 (2008), pp. 1173-1179 CrossRefView Record in ScopusGoogle Scholar [6] A.J. Duleba, M.I. Ahmed, M. Sun, A.C. Gao, J. Villanueva, A.J. Conley, J.L. Turgeon, K. Benirschke, N.A. Gee, J. Chen, P.G. Green, B.L. Lasley Effects of triclocarban on intact immature male rat: augmentation of androgen action Reprod. Sci., 18 (2011), pp. 119-127 CrossRefView Record in ScopusGoogle Scholar [7] H.A. Enright, M.J.S. Falso, M.A. Malfatti, V. Lao, E.A. Kuhn, N. Hum, Y. Shi, A.P. Sales, K.W. Haack, K.S. Kulp, B.A. Buchholz, G.G. Loots, G. Bench, K.W. Turteltaub Maternal exposure to an environmentally relevant dose of triclocarban results in perinatal exposure and potential alterations in offspring development in the mouse model PLoS One, 12 (2017), Article e0181996 CrossRefView Record in ScopusGoogle Scholar [8] D.I. Caviedes, D.R. Delgado, A. Olaya Environmental normatively to regulate the presence of residual pharmaceutical products in aquatic environments Rev. Jurídica Piélagus, 16 (2017), pp. 121-130 View Record in ScopusGoogle Scholar [9] D.I. Caviedes, D.M. Camacho, D.R. Delgado Treatments for the removal of antibacterial and antimicrobial agents present in wastewater Rev. Logos, Cienc. Tecnol., 9 (2017), pp. 43-62 View Record in ScopusGoogle Scholar [10] T.M. Letcher Thermodynamics, Solubility and Environmental Issues Elsevier, Amsterdam (2007) Google Scholar [11] D.L. Armstrong, N. Lozano, C.P. Rice, M. Ramirez, A. Torrents Degradation of triclosan and triclocarban and formation of transformation products in activated sludge using bench top bioreactors Environ. Res., 161 (2018), pp. 17-25 Article Download PDFView Record in ScopusGoogle Scholar [12] Q. Fu, X. Wu, Q. Ye, F. Ernst, J. Gan Biosolids inhibit bioavailability and plant uptake of triclosan and triclocarban Water Res., 102 (2016), pp. 117-124 Article Download PDFView Record in ScopusGoogle Scholar [13] D.M. Jiménez, Z.J. Cárdenas, D.R. Delgado, A. Jouyban, F. Martínez Solubility and solution thermodynamics of meloxicam in 1,4-dioxane and water mixtures Ind. Eng. Chem. Res., 53 (2014), pp. 16550-16558 CrossRefView Record in ScopusGoogle Scholar [14] M.A. Ruidiaz, D.R. Delgado, F. Martínez, Y. Marcus Solubility and preferential solvation of indomethacin in 1,4-dioxane + water solvent mixtures Fluid Phase Equilib., 299 (2010), pp. 259-265 Article Download PDFView Record in ScopusGoogle Scholar [15] D.M. Jiménez, Z.J. Cárdenas, F. Martínez Solubility and solution thermodynamics of meloxicam in polyethylene glycol 400 + water mixtures J. Mol. Liq., 211 (2015), pp. 233-238 CrossRefGoogle Scholar [16] S. Nozohouri, A. Shayanfar, Z.J. Cárdenas, F. Martinez, A. Jouyban Solubility of celecoxib in N-methyl-2-pyrolidone + water mixtures at various temperatures: experimental data and thermodynamic analysis Korean J. Chem. Eng., 34 (2017), pp. 1435-1443 CrossRefView Record in ScopusGoogle Scholar [17] D.R. Delgado, G.A. Rodríguez, F. Martínez Thermodynamic study of the solubility of sulfapyridine in some ethanol + water mixtures J. Mol. Liq., 177 (2013), pp. 156-161 Article Download PDFView Record in ScopusGoogle Scholar [18] D.M. Jiménez, Z.J. Cárdenas, D.R. Delgado, M.Á. Peña, F. Martínez Solubility temperature dependence and preferential solvation of sulfadiazine in 1,4-dioxane + water co-solvent mixtures Fluid Phase Equilib., 397 (2015), pp. 26-36 Article Download PDFView Record in ScopusGoogle Scholar [19] S.J. Rodríguez, D.M. Cristancho, P.C. Neita, E.F. Vargas, F. Martínez Solution thermodynamics of the sunscreen ethylhexyltriazone in some ethanol + ethyl acetate mixtures J. Solut. Chem., 39 (2010), pp. 1122-1133 CrossRefView Record in ScopusGoogle Scholar [20] D.M. Cristancho, A. Jouyban, F. Martínez Solubility, solution thermodynamics, and preferential solvation of piroxicam in ethyl acetate + ethanol mixtures J. Mol. Liq., 221 (2016), pp. 72-81 Article Download PDFView Record in ScopusGoogle Scholar [21] A.C. Gaviria-Castillo, J.D. Artunduaga-Tole, J.D. Rodríguez-Rubiano, J.A. Zuñiga-Andrade, D.R. Delgado, A. Jouyban, F. Martínez Solution thermodynamics and preferential solvation of triclocarban in {1,4-dioxane (1) + water (2)} mixtures at 298.15 K Phys. Chem. Liq. (2018), pp. 1-12, 10.1080/00319104.2017.1416613 (Forthcoming) Google Scholar [22] A. Jouyban Handbook of Solubility Data for Pharmaceuticals CRC Press, Boca Raton (FL) (2010) Google Scholar [23] F. Martinez, A. Jouyban, W.E. Acree Jr. Pharmaceuticals solubility is still nowadays widely studied everywhere (editorial) Pharm. Sci., 23 (2017), pp. 1-2 (Tabriz) CrossRefView Record in ScopusGoogle Scholar [24] D.R. Delgado, O.A. Almanza, F. Martínez, M.A. Peña, A. Jouyban, W.E. Acree Jr. Solution thermodynamics and preferential solvation of sulfamethazine in (methanol + water) mixtures J. Chem. Thermodyn., 97 (2016), pp. 264-276 Article Download PDFView Record in ScopusGoogle Scholar [25] Z.J. Cárdenas, D.M. Jiménez, O.A. Almanza, A. Jouyban, F. Martínez, W.E. Acree Jr. Solubility and preferential solvation of sulphanilamide, sulfamethizole and sulfapyridine in methanol + water mixtures at 298.15 K J. Solut. Chem., 45 (2016), pp. 1479-1503 CrossRefView Record in ScopusGoogle Scholar [26] Z.J. Cárdenas, D.M. Jiménez, D.R. Delgado, O.A. Almanza, A. Jouyban, F. Martínez, W.E. Acree Jr. Solubility and preferential solvation of some n-alkyl parabens in methanol + water mixtures at 298.15 K J. Chem. Thermodyn., 108 (2017), pp. 26-37 Article Download PDFView Record in ScopusGoogle Scholar [27] Z.J. Cárdenas, D.M. Jiménez, O.A. Almanza, A. Jouyban, F. Martínez, W.E. Acree Jr. Solubility and preferential solvation of caffeine and theophylline in {methanol + water} mixtures at 298.15 K J. Solut. Chem., 46 (2017), pp. 1605-1624 CrossRefView Record in ScopusGoogle Scholar [28] Z.J. Cárdenas, O.A. Almanza, A. Jouyban, F. Martínez, W.E. Acree Jr. Solubility and preferential solvation of phenacetin in methanol + water mixtures at 298.15 K Phys. Chem. Liq., 56 (2018), pp. 16-32 CrossRefView Record in ScopusGoogle Scholar [29] Z.J. Cárdenas, D.M. Jiménez, O.A. Almanza, A. Jouyban, F. Martínez, W.E. Acree Jr Solubility and preferential solvation of benzocaine in {methanol (1) + water (2)} mixtures at 298.15 K Phys. Chem. Liq., 56 (2018), pp. 465-481 View Record in ScopusGoogle Scholar [30] A.F.M. Barton Handbook of Solubility Parameters and Other Cohesion Parameters (2nd ed.), CRC Press, New York (1991) Google Scholar [31] K.A. Connors Thermodynamics of Pharmaceutical Systems: An Introduction for Students of Pharmacy Wiley-Interscience, Hoboken (NJ) (2002) Google Scholar [32] A. Martin, P. Bustamante, A.H.C. Chun Physical Chemical Principles in the Pharmaceutical Sciences (4th ed.), Lea & Febiger, Philadelphia (PA) (1993) Google Scholar [33] D.R. Delgado, A.R. Holguín, F. Martínez Solution thermodynamics of triclosan and triclocarban in some volatile organic solvents Vitae, Rev. Fac. Quim. Farm., 19 (2012), pp. 79-92 View Record in ScopusGoogle Scholar [34] M.A. Peña, A. Reíllo, B. Escalera, P. Bustamante Solubility parameter of drugs for predicting the solubility profile type within a wide polarity range in solvent mixtures Int. J. Pharm., 321 (2006), pp. 155-161 Article Download PDFView Record in ScopusGoogle Scholar [35] M.A. Peña, B. Escalera, A. Reíllo, A.B. Sánchez, P. Bustamante Thermodynamics of cosolvent action: phenacetin, salicylic acid and probenecid J. Pharm. Sci., 98 (2009), pp. 1129-1135 Article Download PDFCrossRefView Record in ScopusGoogle Scholar [36] D.A. Chiappetta, J. Degrossi, R.A. Lizarazo, D.L. Salinas, F. Martínez, A. Sosnik Molecular implications in the solubilization of the antibacterial agent triclocarban by means of branched poly(ethylene oxide)-poly(propylene oxide) polymeric micelles L. Segewicz, M. Petrowsky (Eds.), Polymer Aging, Stabilizers and Amphiphilic Block Copolymers, Nova Science Publishers, Inc., New York (2010), pp. 197-211 (Chapter 5) View Record in ScopusGoogle Scholar [37] A. Jouyban Review of the cosolvency models for predicting solubility of drugs in water-cosolvent mixtures J. Pharm. Pharm. Sci., 11 (2008), pp. 32-58 CrossRefView Record in ScopusGoogle Scholar [38] A. Jouyban-Gharamaleki, L. Valaee, M. Barzegar-Jalali, B.J. Clark, W.E. Acree Jr. Comparison of various cosolvency models for calculating solute solubility in water-cosolvent mixtures Int. J. Pharm., 177 (1999), pp. 93-101 Article Download PDFView Record in ScopusGoogle Scholar [39] A. Jouyban-Gharamaleki The modified Wilson model and predicting drug solubility in water-cosolvent mixtures Chem. Pharm. Bull.(Tokyo), 46 (1998), pp. 1058-1061 CrossRefView Record in ScopusGoogle Scholar [40] W.E. Acree Jr. Mathematical representation of thermodynamic properties: part 2. Derivation of the combined nearly ideal binary solvent (NIBS)/Redlich-Kister mathematical representation from a two-body and three-body interactional mixing model Thermochim. Acta, 198 (1992), pp. 71-79 Article Download PDFView Record in ScopusGoogle Scholar [41] A. Jouyban-Gharamaleki, W.E. Acree Jr. Comparison of models for describing multiple peaks in solubility profiles Int. J. Pharm., 167 (1998), pp. 177-182 Article Download PDFView Record in ScopusGoogle Scholar [42] A. Jouyban, M. Khoubnasabjafari, H.K. Chan, W.E. Acree Jr. Mathematical representation of solubility of amino acids in binary aqueous-organic solvent mixtures at various temperatures using the Jouyban-Acree model Pharmazie, 61 (2006), pp. 789-792 View Record in ScopusGoogle Scholar [43] A. Jouyban, W.E. Acree Jr. Mathematical derivation of the Jouyban-Acree model to represent solute solubility data in mixed solvents at various temperatures J. Mol. Liq., 256 (2018), pp. 541-547 Article Download PDFView Record in ScopusGoogle Scholar [44] A. Jouyban, S. Soltanpour, S. Soltani, E. Tamizi, M.A.A. Fakhree, W.E. Acree Jr. Prediction of drug solubility in mixed solvents using computed Abraham parameters J. Mol. Liq., 146 (2009), pp. 82-88 Article Download PDFView Record in ScopusGoogle Scholar [45] Pharma Algorithms ADME Boxes, Version 3.0 Pharma Algorithms Inc., 591 Indian Road, Toronto, ON M6P 2C4, Canada (2006) Google Scholar [46] A. Kristl, G. Vesnaver Thermodynamic investigation of the effect of 1-octanol-water mutual miscibility on the partitioning and solubility of some guanine derivatives J. Chem. Soc. Faraday Trans., 91 (1995), pp. 995-998 View Record in ScopusGoogle Scholar [47] R.R. Krug, W.G. Hunter, R.A. Grieger Enthalpy-entropy compensation. 1. Some fundamental statistical problems associated with the analysis of van't Hoff and Arrhenius data J. Phys. Chem., 80 (1976), pp. 2335-2341 CrossRefView Record in ScopusGoogle Scholar [48] R.R. Krug, W.G. Hunter, R.A. Grieger Enthalpy-entropy compensation. 2. Separation of the chemical from the statistical effect J. Phys. Chem., 80 (1976), pp. 2341-2351 CrossRefView Record in ScopusGoogle Scholar [49] G.L. Perlovich, S.V. Kurkov, A.N. Kinchin, A. Bauer-Brandl Thermodynamics of solutions III: comparison of the solvation of (+)-naproxen with other NSAIDs Eur. J. Pharm. Biopharm., 57 (2004), pp. 411-420 Article Download PDFView Record in ScopusGoogle Scholar [50] G.L. Perlovich, N.N. Strakhova, V.P. Kazachenko, T.V. Volkova, V.V. Tkachev, K.J. Schaper, O.A. Raevsky Sulfonamides as a subject to study molecular interactions in crystals and solutions: sublimation, solubility, solvation, distribution and crystal structure Int. J. Pharm., 349 (2008), pp. 300-312 View Record in ScopusGoogle Scholar [51] A.R. Holguín, D.R. Delgado, F. Martínez Thermodynamic study of the solubility of triclocarban in ethanol + propylene glycol mixtures Quim Nova, 35 (2012), pp. 280-285 CrossRefView Record in ScopusGoogle Scholar [52] D.R. Delgado, A.R. Holguín, O.A. Almanza, F. Martínez, Y. Marcus Solubility and preferential solvation of meloxicam in ethanol + water solvent mixtures Fluid Phase Equilib., 305 (2011), pp. 88-95 Article Download PDFView Record in ScopusGoogle Scholar [53] P. Bustamante, S. Romero, A. Peña, B. Escalera, A. Reillo Nonlinear enthalpy-entropy compensation for the solubility of drugs in solvent mixtures: paracetamol, acetanilide and nalidixic acid in dioxane-water J. Pharm. Sci., 87 (1998), pp. 1590-1596 Article Download PDFView Record in ScopusGoogle Scholar [54] F. Martínez, M.A. Peña, P. Bustamante Thermodynamic analysis and enthalpy-entropy compensation for the solubility of indomethacin in aqueous and non-aqueous mixtures Fluid Phase Equilib., 308 (2011), pp. 98-106 Article Download PDFView Record in ScopusGoogle Scholar [55] D.R. Delgado, A. Romdhani, F. Martínez Thermodynamics of sulphanilamide solubility in propylene glycol + water mixtures Lat. Am. J. Pharm., 30 (2011), pp. 2024-2030 View Record in ScopusGoogle Scholar [56] M. Gantiva, F. Martínez Thermodynamic analysis of the solubility of ketoprofen in some propylene glycol + water cosolvent mixtures Fluid Phase Equilib., 293 (2010), pp. 242-250 Article Download PDFView Record in ScopusGoogle ScholarK. Vimalkumar, E. Arun, S. Krishna-Kumar, R.K. Poopal, N.P. Nikhil, A. Subramanian, R. Babu-Rajendran, Occurrence of triclocarban and benzotriazole ultraviolet stabilizers in water, sediment, and fish from Indian rivers, Sci. Total Environ. 625 (2018) 1351–1360J.R. Rochester, A.L. Bolden, K.E. Pelch, C.F. Kwiatkowski, Potential developmental and reproductive impacts of triclocarban: a scoping review, J. Toxicol. 2017 (2017), 9679738.R.J. Witorsch, J.A. Thomas, Personal care products and endocrine disruption: a critical review of the literature, Crit. Rev. Toxicol. 40 (2010) 1–30.J. Chen, K.C. Ahn, N.A. Gee, M.I. Ahmed, A.J. Duleba, L. Zhao, S.J. Gee, B.D. Hammock, B.L. Lasley, Triclocarban enhances testosterone action: a new type of endocrine disruptor? Endocrinology 149 (2008) 1173–1179.A.J. Duleba, M.I. Ahmed, M. Sun, A.C. Gao, J. Villanueva, A.J. Conley, J.L. Turgeon, K. Benirschke, N.A. Gee, J. Chen, P.G. Green, B.L. Lasley, Effects of triclocarban on intact immature male rat: augmentation of androgen action, Reprod. Sci. 18 (2011) 119–127H.A. Enright, M.J.S. Falso, M.A. Malfatti, V. Lao, E.A. Kuhn, N. Hum, Y. Shi, A.P. Sales, K.W. Haack, K.S. Kulp, B.A. Buchholz, G.G. Loots, G. Bench, K.W. Turteltaub, Maternal exposure to an environmentally relevant dose of triclocarban results in perinatal exposure and potential alterations in offspring development in the mouse model, PLoS One 12 (2017), e0181996.D.I. Caviedes, D.R. Delgado, A. Olaya, Environmental normatively to regulate the presence of residual pharmaceutical products in aquatic environments, Rev. Jurídica Piélagus 16 (2017) 121–130.D.I. Caviedes, D.M. Camacho, D.R. Delgado, Treatments for the removal of antibacterial and antimicrobial agents present in wastewater, Rev. Logos, Cienc. Tecnol. 9 (2017) 43–62.T.M. Letcher, Thermodynamics, Solubility and Environmental Issues, Elsevier, Amsterdam, 2007.D.L. Armstrong, N. Lozano, C.P. Rice, M. Ramirez, A. Torrents, Degradation of triclosan and triclocarban and formation of transformation products in activated sludge using bench top bioreactors, Environ. Res. 161 (2018) 17–25Q. Fu, X. Wu, Q. Ye, F. Ernst, J. Gan, Biosolids inhibit bioavailability and plant uptake of triclosan and triclocarban, Water Res. 102 (2016) 117–124.D.M. Jiménez, Z.J. Cárdenas, D.R. Delgado, A. Jouyban, F. Martínez, Solubility and solution thermodynamics of meloxicam in 1,4-dioxane and water mixtures, Ind. Eng. Chem. Res. 53 (2014) 16550–16558.M.A. Ruidiaz, D.R. Delgado, F. Martínez, Y. Marcus, Solubility and preferential solvation of indomethacin in 1,4-dioxane + water solvent mixtures, Fluid Phase Equilib. 299 (2010) 259–265.D.M. Jiménez, Z.J. Cárdenas, F. Martínez, Solubility and solution thermodynamics of meloxicam in polyethylene glycol 400 + water mixtures, J. Mol. Liq. 211 (2015) 233–238.S. Nozohouri, A. Shayanfar, Z.J. Cárdenas, F. Martinez, A. Jouyban, Solubility of celecoxib in N-methyl-2-pyrolidone + water mixtures at various temperatures: experimental data and thermodynamic analysis, Korean J. Chem. Eng. 34 (2017) 1435–1443.D.R. Delgado, G.A. Rodríguez, F. Martínez, Thermodynamic study of the solubility of sulfapyridine in some ethanol + water mixtures, J. Mol. Liq. 177 (2013) 156–161.D.M. Jiménez, Z.J. Cárdenas, D.R. Delgado, M.Á. Peña, F. Martínez, Solubility temperature dependence and preferential solvation of sulfadiazine in 1,4-dioxane + water co-solvent mixtures, Fluid Phase Equilib. 397 (2015) 26–36.] S.J. Rodríguez, D.M. Cristancho, P.C. Neita, E.F. Vargas, F. Martínez, Solution thermodynamics of the sunscreen ethylhexyltriazone in some ethanol + ethyl acetate mixtures, J. Solut. Chem. 39 (2010) 1122–1133.D.M. Cristancho, A. Jouyban, F. Martínez, Solubility, solution thermodynamics, and preferential solvation of piroxicam in ethyl acetate + ethanol mixtures, J. Mol. Liq. 221 (2016) 72–81.A.C. Gaviria-Castillo, J.D. Artunduaga-Tole, J.D. Rodríguez-Rubiano, J.A. ZuñigaAndrade, D.R. Delgado, A. Jouyban, F. Martínez, Solution thermodynamics and preferential solvation of triclocarban in {1,4-dioxane (1) + water (2)} mixtures at 298.15 K, Phys. Chem. Liq. (2018) 1–12, https://doi.org/10.1080/00319104.2017. 1416613 (Forthcoming).A. Jouyban, Handbook of Solubility Data for Pharmaceuticals, CRC Press, Boca Raton (FL), 2010.F. Martinez, A. Jouyban, W.E. Acree Jr., Pharmaceuticals solubility is still nowadays widely studied everywhere (editorial), Pharm. Sci. 23 (2017) 1–2 (Tabriz).] D.R. Delgado, O.A. Almanza, F. Martínez, M.A. Peña, A. Jouyban, W.E. Acree Jr., Solution thermodynamics and preferential solvation of sulfamethazine in (methanol + water) mixtures, J. Chem. Thermodyn. 97 (2016) 264–276.Z.J. Cárdenas, D.M. Jiménez, O.A. Almanza, A. Jouyban, F. Martínez, W.E. Acree Jr., Solubility and preferential solvation of sulphanilamide, sulfamethizole and sulfapyridine in methanol + water mixtures at 298.15 K, J. Solut. Chem. 45 (2016) 1479–1503] Z.J. Cárdenas, D.M. Jiménez, D.R. Delgado, O.A. Almanza, A. Jouyban, F. Martínez, W.E. Acree Jr., Solubility and preferential solvation of some n-alkyl parabens in methanol + water mixtures at 298.15 K, J. Chem. Thermodyn. 108 (2017) 26–37Z.J. Cárdenas, D.M. Jiménez, O.A. Almanza, A. Jouyban, F. Martínez, W.E. Acree Jr., Solubility and preferential solvation of caffeine and theophylline in {methanol + water} mixtures at 298.15 K, J. Solut. Chem. 46 (2017) 1605–1624.Z.J. Cárdenas, O.A. Almanza, A. Jouyban, F. Martínez, W.E. Acree Jr., Solubility and preferential solvation of phenacetin in methanol + water mixtures at 298.15 K, Phys. Chem. Liq. 56 (2018) 16–32.Z.J. Cárdenas, D.M. Jiménez, O.A. Almanza, A. Jouyban, F. Martínez, W.E. Acree Jr, Solubility and preferential solvation of benzocaine in {methanol (1) + water (2)} mixtures at 298.15 K, Phys. Chem. Liq. 56 (2018) 465–481.A.F.M. Barton, Handbook of Solubility Parameters and Other Cohesion Parameters, 2nd ed. CRC Press, New York, 1991.K.A. Connors, Thermodynamics of Pharmaceutical Systems: An Introduction for Students of Pharmacy, Wiley-Interscience, Hoboken (NJ), 2002.A. Martin, P. Bustamante, A.H.C. Chun, Physical Chemical Principles in the Pharmaceutical Sciences, 4th ed. Lea & Febiger, Philadelphia (PA), 1993.D.R. Delgado, A.R. Holguín, F. Martínez, Solution thermodynamics of triclosan and triclocarban in some volatile organic solvents, Vitae, Rev. Fac. Quim. Farm. 19 (2012) 79–92.M.A. Peña, A. Reíllo, B. Escalera, P. Bustamante, Solubility parameter of drugs for predicting the solubility profile type within a wide polarity range in solvent mixtures, Int. J. Pharm. 321 (2006) 155–161.M.A. Peña, B. Escalera, A. Reíllo, A.B. Sánchez, P. Bustamante, Thermodynamics of cosolvent action: phenacetin, salicylic acid and probenecid, J. Pharm. Sci. 98 (2009) 1129–1135.D.A. Chiappetta, J. Degrossi, R.A. Lizarazo, D.L. Salinas, F. Martínez, A. Sosnik, Molecular implications in the solubilization of the antibacterial agent triclocarban by means of branched poly(ethylene oxide)-poly(propylene oxide) polymeric micelles, in: L. Segewicz, M. Petrowsky (Eds.), Polymer Aging, Stabilizers and Amphiphilic Block Copolymers, Nova Science Publishers, Inc., New York 2010, pp. 197–211 , (Chapter 5).A. Jouyban, Review of the cosolvency models for predicting solubility of drugs in water-cosolvent mixtures, J. Pharm. Pharm. Sci. 11 (2008) 32–58.A. Jouyban-Gharamaleki, L. Valaee, M. Barzegar-Jalali, B.J. Clark, W.E. Acree Jr., Comparison of various cosolvency models for calculating solute solubility in watercosolvent mixtures, Int. J. Pharm. 177 (1999) 93–101.A. Jouyban-Gharamaleki, The modified Wilson model and predicting drug solubility in water-cosolvent mixtures, Chem. Pharm. Bull.(Tokyo) 46 (1998) 1058–1061.W.E. Acree Jr., Mathematical representation of thermodynamic properties: part 2. Derivation of the combined nearly ideal binary solvent (NIBS)/Redlich-Kister mathematical representation from a two-body and three-body interactional mixing model, Thermochim. Acta 198 (1992) 71–79.A. Jouyban-Gharamaleki, W.E. Acree Jr., Comparison of models for describing multiple peaks in solubility profiles, Int. J. Pharm. 167 (1998) 177–182.A. Jouyban, M. Khoubnasabjafari, H.K. Chan, W.E. Acree Jr., Mathematical representation of solubility of amino acids in binary aqueous-organic solvent mixtures at various temperatures using the Jouyban-Acree model, Pharmazie 61 (2006) 789–792.A. Jouyban, W.E. Acree Jr., Mathematical derivation of the Jouyban-Acree model to represent solute solubility data in mixed solvents at various temperatures, J. Mol. Liq. 256 (2018) 541–547A. Jouyban, S. Soltanpour, S. Soltani, E. Tamizi, M.A.A. Fakhree, W.E. Acree Jr., Prediction of drug solubility in mixed solvents using computed Abraham parameters, J. Mol. Liq. 146 (2009) 82–88.TriclocarbánSolubilidadMezclas de {1,4-dioxano + agua}TriclocarbanSolubility{1,4-dioxane + water} mixturesJouyban-Acree modelThermodynamic quantitiesModelo Jouyban-AcreeCantidades termodinámicasEnthalpy-entropy compensation analysis of the triclocarban dissolution process in some {1, 4-dioxane (1)+ water (2)} mixturesArtículohttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionAtribución – No comercial – Compartir igualinfo:eu-repo/semantics/closedAccesshttp://purl.org/coar/access_right/c_14cbPublicationTEXTEnthalpy-entropy compensation analysis of the triclocarban dissolution process in some 1,4-dioxane (1) + water (2) mixtures.pdf.txtEnthalpy-entropy compensation analysis of the triclocarban dissolution process in some 1,4-dioxane (1) + water (2) mixtures.pdf.txtExtracted texttext/plain51243https://repository.ucc.edu.co/bitstreams/6107bdbd-c7f5-4725-9733-78701e7720b1/downloadd39744ad62b38d2fa345505c9b8ca9faMD53ORIGINALEnthalpy-entropy compensation analysis of the triclocarban dissolution process in some 1,4-dioxane (1) + water (2) mixtures.pdfEnthalpy-entropy compensation analysis of the triclocarban dissolution process in some 1,4-dioxane (1) + water (2) mixtures.pdfArtículo Científicoapplication/pdf880421https://repository.ucc.edu.co/bitstreams/0956df6d-22ae-4b60-8894-112df1f55a98/downloadbed7128158dc8267e038499874c184c6MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-84334https://repository.ucc.edu.co/bitstreams/9de1765d-7b9a-4f20-b16a-1aeb0777656b/download3bce4f7ab09dfc588f126e1e36e98a45MD52THUMBNAILEnthalpy-entropy compensation analysis of the triclocarban dissolution process in some 1,4-dioxane (1) + water (2) mixtures.pdf.jpgEnthalpy-entropy compensation analysis of the triclocarban dissolution process in some 1,4-dioxane (1) + water (2) mixtures.pdf.jpgGenerated Thumbnailimage/jpeg5747https://repository.ucc.edu.co/bitstreams/35e04555-beb9-4c4e-bbbc-1d2ca5e6669d/downloada55cd82b89fd59f08f03a4945c1d9108MD5420.500.12494/15546oai:repository.ucc.edu.co:20.500.12494/155462024-08-10 20:59:28.702restrictedhttps://repository.ucc.edu.coRepositorio Institucional Universidad Cooperativa de Colombiabdigital@metabiblioteca.comVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEKUkVQT1NJVE9SSU9TIElOU1RJVFVDSU9OQUxFUwpMSUNFTkNJQSBERSBVU08KClBvciBtZWRpbyBkZWwgcHJlc2VudGUgZG9jdW1lbnRvLCBlbCBBdXRvcihlcyksIG1heW9yIChlcykgZGUgZWRhZCwgcXVpZW4gZW4gYWRlbGFudGUgc2UgZGVub21pbmFyw6EgZWwgQVVUT1IsIGNvbmZpZXJlIGEgbGEgVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEsIGNvbiBOSVQuIDg2MC0wMjk5MjQtNywgdW5hIExJQ0VOQ0lBIERFIFVTTyBkZSBvYnJhLCBiYWpvIGxhcyBzaWd1aWVudGVzIGNvbmRpY2lvbmVzLgoKQ0zDgVVTVUxBUwoKUFJJTUVSQS4gT2JqZXRvLiBFTCBBVVRPUiBwb3IgZXN0ZSBhY3RvIGF1dG9yaXphIGxhIHV0aWxpemFjacOzbiBkZSBsYSBvYnJhLCBkZSBjb25mb3JtaWRhZCBjb24gbG8gZXN0aXB1bGFkbyBhIGNvbnRpbnVhY2nDs246IAoKKGEpIFBhcmEgZWZlY3RvcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSBzZSBhdXRvcml6YSBsYSByZXByb2R1Y2Npw7NuIGRlIGxhIG9icmEgYW50ZXJpb3JtZW50ZSBjaXRhZGEsIGxhIGN1YWwgc2UgYWxvamFyw6EgZW4gZm9ybWF0byBkaWdpdGFsIGVuIGxhcyBwbGF0YWZvcm1hcyBvIHJlcG9zaXRvcmlvcyBhZG1pbmlzdHJhZG9zIHBvciBsYSBVTklWRVJTSURBRCBvIGVuIG90cm8gdGlwbyBkZSByZXBvc2l0b3Jpb3MgZXh0ZXJub3MgbyBww6FnaW5hcyB3ZWIgZXNjb2dpZG9zIHBvciBsYSBVTklWRVJTSURBRCwgcGFyYSBmaW5lcyBkZSBkaWZ1c2nDs24geSBkaXZ1bGdhY2nDs24uIEFkaWNpb25hbG1lbnRlLCBzZSBhdXRvcml6YSBhIHF1ZSBsb3MgdXN1YXJpb3MgaW50ZXJub3MgeSBleHRlcm5vcyBkZSBkaWNoYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgcmVwcm9kdXpjYW4gbyBkZXNjYXJndWVuIGxhIG9icmEsIHNpbiDDoW5pbW8gZGUgbHVjcm8sIHBhcmEgZmluZXMgcHJpdmFkb3MsIGVkdWNhdGl2b3MgbyBhY2Fkw6ltaWNvczsgc2llbXByZSB5IGN1YW5kbyBubyBzZSB2aW9sZW4gYWN1ZXJkb3MgY29uIGVkaXRvcmVzLCBwZXJpb2RvcyBkZSBlbWJhcmdvIG8gYWN1ZXJkb3MgZGUgY29uZmlkZW5jaWFsaWRhZCBxdWUgYXBsaXF1ZW4uCgooYikgU2UgYXV0b3JpemEgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBkZSBsYSBvYnJhIG1lbmNpb25hZGEsIGVuIGFjY2VzbyBhYmllcnRvLCBwYXJhIHN1IHV0aWxpemFjacOzbiBlbiBsYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgYWRtaW5pc3RyYWRvcyBwb3IgbGEgVU5JVkVSU0lEQUQuCgooYykgTG8gYW50ZXJpb3IgZXN0YXLDoSBzdWpldG8gYSBsYXMgZGVmaW5pY2lvbmVzIGNvbnRlbmlkYXMgZW4gbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MyB5IGxhIExleSAyMyBkZSAxOTgyLgoKClNFR1VOREEuIE9yaWdpbmFsaWRhZCB5IHJlY2xhbWFjaW9uZXMuIEVsIEFVVE9SIGRlY2xhcmEgcXVlIGxhIE9CUkEgZXMgb3JpZ2luYWwgeSBxdWUgZXMgZGUgc3UgY3JlYWNpw7NuIGV4Y2x1c2l2YSwgbm8gZXhpc3RpZW5kbyBpbXBlZGltZW50byBkZSBjdWFscXVpZXIgbmF0dXJhbGV6YSAoZW1iYXJnb3MsIHVzbyBkZSBtYXRlcmlhbCBwcm90ZWdpZG8gcG9yIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGxhIGNvbmNlc2nDs24gZGUgbG9zIGRlcmVjaG9zIHByZXZpc3RvcyBlbiBlc3RlIGFjdWVyZG8uIEVsIEFVVE9SIHJlc3BvbmRlcsOhIHBvciBjdWFscXVpZXIgYWNjacOzbiBkZSByZWl2aW5kaWNhY2nDs24sIHBsYWdpbyB1IG90cmEgY2xhc2UgZGUgcmVjbGFtYWNpw7NuIHF1ZSBhbCByZXNwZWN0byBwdWRpZXJhIHNvYnJldmVuaXIuCgpURVJDRVJBLiBDb250cmFwcmVzdGFjacOzbi4gRWwgQVVUT1IgYXV0b3JpemEgYSBxdWUgc3Ugb2JyYSBzZWEgdXRpbGl6YWRhIGRlIGNvbmZvcm1pZGFkIGNvbiBsYSBjbMOhdXN1bGEgUFJJTUVSQSBkZSBmb3JtYSBncmF0dWl0YSwgZXMgZGVjaXIsIHF1ZSBsYSB1dGlsaXphY2nDs24gZGUgbGEgbWlzbWEgbm8gZ2VuZXJhIG5pbmfDum4gcGFnbyBvIHJlZ2Fsw61hcyBlbiBmYXZvciBkZSBlc3RlLgoKQ1VBUlRBLiBUaXR1bGFyaWRhZCBkZSBkZXJlY2hvcy4gRWwgcHJlc2VudGUgY29udHJhdG8gbm8gdHJhbnNmaWVyZSBsYSB0aXR1bGFyaWRhZCBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBzb2JyZSBsYXMgb2JyYXMgYW50ZXJpb3JtZW50ZSBtZW5jaW9uYWRhcyBhIGxhIFVOSVZFUlNJREFELiDDmm5pY2FtZW50ZSBoYWNlIHJlbGFjacOzbiBhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgZW4gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGFudGVyaW9ybWVudGUgcGFjdGFkb3MuCgpRVUlOVEEuIENyw6lkaXRvcy4gTGEgVU5JVkVSU0lEQUQgc2UgY29tcHJvbWV0ZSBhIGRhciBhbCBBVVRPUiwgZWwgcmVjb25vY2ltaWVudG8gZGVudHJvIGNhZGEgZm9ybWEgZGUgdXRpbGl6YWNpw7NuIGVuIGxhIG9icmEuIExvcyBjcsOpZGl0b3MgZGViZW4gZmlndXJhciBlbiBjYWRhIHVubyBkZSBsb3MgZm9ybWF0b3MgbyByZWdpc3Ryb3MgZGUgcHVibGljYWNpw7NuLiBObyBjb25zdGl0dWlyw6EgdW5hIHZpb2xhY2nDs24gYSBsb3MgZGVyZWNob3MgbW9yYWxlcyBkZWwgYXV0b3IgbGEgbm8gcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBvIGRlbcOhcyB1dGlsaXphY2lvbmVzIGRlIGxhIG9icmEuIExhIHV0aWxpemFjacOzbiBvIG5vIGRlIGxhIG9icmEsIGFzw60gY29tbyBzdSBmb3JtYSBkZSB1dGlsaXphY2nDs24gc2Vyw6EgZmFjdWx0YWQgZXhjbHVzaXZhIGRlIGxhIFVOSVZFUlNJREFELgogClNFWFRBLiBEdXJhY2nDs24geSB0ZXJyaXRvcmlvLiBMYSBwcmVzZW50ZSBsaWNlbmNpYSBkZSB1c28gcXVlIHNlIG90b3JnYSBhIGZhdm9yIGRlIGxhIFVOSVZFUlNJREFEIHRlbmRyw6EgdW5hIGR1cmFjacOzbiBlcXVpdmFsZW50ZSBhbCB0w6lybWlubyBkZSBwcm90ZWNjacOzbiBsZWdhbCBkZSBsYSBvYnJhIHkgcGFyYSB0b2RvcyBsb3MgcGHDrXNlcyBkZWwgbXVuZG8uCgpTw4lQVElNQS4gVXNvIGRlIENyZWF0aXZlIENvbW1vbnMuIEVsIEFVVE9SIGF1dG9yaXphcsOhIGxhIGRpZnVzacOzbiBkZSBzdSBjb250ZW5pZG8gYmFqbyB1bmEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBhdHJpYnVjacOzbiA0LjAgaW50ZXJuYWNpb25hbCwgcXVlIGRlYmVyw6EgaW5jbHVpcnNlIGVuIGVsIGNvbnRlbmlkby4gCgpPQ1RBVkEuIERlcmVjaG8gZGUgZXhjbHVzacOzbi4gQ2FkYSBhdXRvciBwdWVkZSBpbmRpY2FyIGVuIGVsIG1vbWVudG8gZGUgZGVww7NzaXRvIGRlbCBjb250ZW5pZG8gcXVlIGVsIHRleHRvIGNvbXBsZXRvIGRlIGxhIHByb2R1Y2Npw7NuIGFjYWTDqW1pY2EgbyBjaWVudMOtZmljYSBubyBlc3RlIGNvbiBhY2Nlc28gYWJpZXJ0byBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIHBvciBtb3Rpdm9zIGRlIGNvbmZpZGVuY2lhbGlkYWQsIHBvcnF1ZSBzZSBlbmN1ZW50cmUgZW4gdsOtYXMgZGUgb2J0ZW5lciB1biBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbmR1c3RyaWFsIG8gZXhpc3RpciBhY3VlcmRvcyBwcmV2aW9zIGNvbiB0ZXJjZXJvcyAoZWRpdG9yaWFsZXMsIHJldmlzdGFzIGNpZW50w61maWNhcywgb3RyYXMgaW5zdGl0dWNpb25lcykuIEVsIGF1dG9yIHNlIGNvbXByb21ldGUgYSBkZXBvc2l0YXIgbG9zIG1ldGFkYXRvcyBlIGluZm9ybWFyIGVsIHRpZW1wbyBkZSBlbWJhcmdvIGR1cmFudGUgZWwgY3VhbCBlbCB0ZXh0byBjb21wbGV0byB0ZW5kcsOhIGFjY2VzbyByZXN0cmluZ2lkby4gCgpOT1ZFTkEuIEVsIEFVVE9SIGFsIGFjZXB0YXIgZXN0YSBsaWNlbmNpYSBhZHVjZSBxdWUgZXN0YSBwcm9kdWNjacOzbiBzZSBkZXNhcnJvbGzDsyBlbiBlbCBwZXJpb2RvIGVuIHF1ZSBzZSBlbmN1ZW50cmEgY29uIHbDrW5jdWxvcyBjb24gTGEgVW5pdmVyc2lkYWQuCgpEw4lDSU1BLiBOb3JtYXMgYXBsaWNhYmxlcy4gUGFyYSBsYSBpbnRlcnByZXRhY2nDs24geSBjdW1wbGltaWVudG8gZGVsIHByZXNlbnRlIGFjdWVyZG8gbGFzIHBhcnRlcyBzZSBzb21ldGVuIGEgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgbGEgTGV5IDIzIGRlIDE5ODIgeSBkZW3DoXMgbm9ybWFzIGFwbGljYWJsZXMgZGUgQ29sb21iaWEuIEFkZW3DoXMsIGEgbGFzIG5vcm1hcyBJbnN0aXR1Y2lvbmFsZXMgcXVlIGFwbGlxdWVuLgoKTGEgcHJlc2VudGUgbGljZW5jaWEgc2UgYXV0b3JpemEgZW4gbGEgZmVjaGEgZGUgcHVibGljYWNpw7NuIGVuIGxvcyByZXBvc2l0b3Jpb3MgaW5zdGl0dWNpb25hbGVzLgo=