Smart Factory Using Virtual Reality and Online Multi-User: Towards a Metaverse for Experimental Frameworks

La realidad virtual (VR) se ha acercado al público en general durante la última década a medida que está cada vez más disponible para plataformas móviles y de escritorio. Como resultado, la realidad virtual para consumidores puede redefinir la forma en que las personas aprenden al crear una experien...

Full description

Autores:
Alpala, Luis Omar
Quiroga Parra, Darío de Jesús
Torres, Juan Carlos
Peluffo Ordóñez, Diego H.
Tipo de recurso:
Article of investigation
Fecha de publicación:
2023
Institución:
Universidad Cooperativa de Colombia
Repositorio:
Repositorio UCC
Idioma:
OAI Identifier:
oai:repository.ucc.edu.co:20.500.12494/52988
Acceso en línea:
https://doi.org/10.3390/app12126258
https://hdl.handle.net/20.500.12494/52988
Palabra clave:
Mundos virtuales 3D
Metaverso
Fábrica inteligente
Industria 4.0
Modelado 3D
Motor irreal 4
3D virtual worlds
Metaverse
Smart factory
Industry 4.0
3D modeling
Unreal Engine 4
Rights
openAccess
License
Atribución
id COOPER2_18c5d0ff23d88afeefcc582fa4ae6c1c
oai_identifier_str oai:repository.ucc.edu.co:20.500.12494/52988
network_acronym_str COOPER2
network_name_str Repositorio UCC
repository_id_str
dc.title.none.fl_str_mv Smart Factory Using Virtual Reality and Online Multi-User: Towards a Metaverse for Experimental Frameworks
title Smart Factory Using Virtual Reality and Online Multi-User: Towards a Metaverse for Experimental Frameworks
spellingShingle Smart Factory Using Virtual Reality and Online Multi-User: Towards a Metaverse for Experimental Frameworks
Mundos virtuales 3D
Metaverso
Fábrica inteligente
Industria 4.0
Modelado 3D
Motor irreal 4
3D virtual worlds
Metaverse
Smart factory
Industry 4.0
3D modeling
Unreal Engine 4
title_short Smart Factory Using Virtual Reality and Online Multi-User: Towards a Metaverse for Experimental Frameworks
title_full Smart Factory Using Virtual Reality and Online Multi-User: Towards a Metaverse for Experimental Frameworks
title_fullStr Smart Factory Using Virtual Reality and Online Multi-User: Towards a Metaverse for Experimental Frameworks
title_full_unstemmed Smart Factory Using Virtual Reality and Online Multi-User: Towards a Metaverse for Experimental Frameworks
title_sort Smart Factory Using Virtual Reality and Online Multi-User: Towards a Metaverse for Experimental Frameworks
dc.creator.fl_str_mv Alpala, Luis Omar
Quiroga Parra, Darío de Jesús
Torres, Juan Carlos
Peluffo Ordóñez, Diego H.
dc.contributor.author.none.fl_str_mv Alpala, Luis Omar
Quiroga Parra, Darío de Jesús
Torres, Juan Carlos
Peluffo Ordóñez, Diego H.
dc.subject.none.fl_str_mv Mundos virtuales 3D
Metaverso
Fábrica inteligente
Industria 4.0
Modelado 3D
Motor irreal 4
topic Mundos virtuales 3D
Metaverso
Fábrica inteligente
Industria 4.0
Modelado 3D
Motor irreal 4
3D virtual worlds
Metaverse
Smart factory
Industry 4.0
3D modeling
Unreal Engine 4
dc.subject.other.none.fl_str_mv 3D virtual worlds
Metaverse
Smart factory
Industry 4.0
3D modeling
Unreal Engine 4
description La realidad virtual (VR) se ha acercado al público en general durante la última década a medida que está cada vez más disponible para plataformas móviles y de escritorio. Como resultado, la realidad virtual para consumidores puede redefinir la forma en que las personas aprenden al crear una experiencia de capacitación “práctica” atractiva. Hoy en día, las aplicaciones de realidad virtual aprovechan la rica interactividad en un entorno virtual sin consecuencias en el mundo real para optimizar los programas de capacitación en empresas e instituciones educativas. Por lo tanto, el objetivo principal de este artículo fue mejorar las prácticas de colaboración y comunicación en mundos virtuales 3D con VR y metaverso enfocados al sector educativo y productivo en fábrica inteligente. Una premisa clave de nuestro trabajo es que las características del entorno real se pueden replicar en un mundo virtual a través de gemelos digitales, donde se pueden crear formas nuevas, configurables, innovadoras y valiosas de trabajar y aprender de forma colaborativa utilizando modelos de avatar. Para ello, presentamos una propuesta para el desarrollo de un marco experimental que constituye un primer paso crucial en el proceso de formalizar la colaboración en entornos virtuales a través de metaversos impulsados ​​por realidad virtual. El sistema de realidad virtual incluye componentes funcionales, configuraciones orientadas a objetos, núcleo avanzado, interfaces y un sistema multiusuario en línea. Presentamos el estudio del primer caso de aplicación del framework con VR en un metaverso, centrado en la fábrica inteligente, que muestra las tecnologías más relevantes de la Industria 4.0. Se realizaron pruebas de funcionalidad y se evaluaron con los usuarios a través de métricas de usabilidad que mostraron los resultados satisfactorios de su potencial uso educativo y comercial. Finalmente, los resultados experimentales muestran que un marco de software comercial para juegos de realidad virtual puede acelerar el desarrollo de experimentos en el metaverso para conectar a usuarios de diferentes partes del mundo en tiempo real.
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-10-13T19:52:54Z
dc.date.available.none.fl_str_mv 2023-10-13T19:52:54Z
dc.date.issued.none.fl_str_mv 2023-10
dc.type.none.fl_str_mv Artículos Científicos
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.uri.none.fl_str_mv https://doi.org/10.3390/app12126258
https://hdl.handle.net/20.500.12494/52988
dc.identifier.bibliographicCitation.none.fl_str_mv Alpala, L.O.; Quiroga-Parra, D.J.; Torres, J.C.; Peluffo-Ordóñez, D.H. Smart Factory Using Virtual Reality and Online Multi-User: Towards a Metaverse for Experimental Frameworks. Appl. Sci. 2022, 12, 6258. https://doi.org/ 10.3390/app12126258
url https://doi.org/10.3390/app12126258
https://hdl.handle.net/20.500.12494/52988
identifier_str_mv Alpala, L.O.; Quiroga-Parra, D.J.; Torres, J.C.; Peluffo-Ordóñez, D.H. Smart Factory Using Virtual Reality and Online Multi-User: Towards a Metaverse for Experimental Frameworks. Appl. Sci. 2022, 12, 6258. https://doi.org/ 10.3390/app12126258
dc.relation.isversionof.none.fl_str_mv https://www.mdpi.com/2076-3417/12/12/6258
dc.relation.ispartofjournal.none.fl_str_mv Applied Sciences
dc.relation.references.none.fl_str_mv Brookes, J.; Warburton, M.; Alghadier, M.; Mon-Williams, M.; Mushtaq, F. Studying human behavior with virtual reality: The Unity Experiment Framework. Behav. Res. 2020, 52, 455–463.
Park, S.M. and Kim, Y.G. A Metaverse: Taxonomy, Components, Applications, and Open Challenges. IEEE Access 2022, 10, 4209–4251
Fillatreau, P.; Fourquet, J.Y.; Le Bolloc’H, R.; Cailhol, S.; Datas, A.; Puel, B. Using virtual reality and 3D industrial numerical models for immersive interactive checklists. Comput. Ind. 2013, 64, 1253–1262
e, Z.; Rosenberg, K.T.; Perlin, K. Exploring configuration of mixed reality spaces for communication. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, Glasgow, UK, 4–9 May 2019; pp. 1–6.
eier, G.; Ullrich, A.; Niehoff, S.; Reißig, M.; Habich, M. Industry 4.0: How it is defined from a sociotechnical perspective and how much sustainability it includes—A literature review. J. Clean. Prod. 2020, 259, 120856
uřík, V.; Herman, L.; Kubíček, P.; Stachoň, Z.; Šašinka, Č. Cognitive aspects of collaboration in 3D virtual environments. In Proceedings of the International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, Prague, Czech Republic, 12–19 July 2016; Volume 41, pp. 663–670.
Connect 2021: Nuestra Visión del Metaverso. 2022. Available online: https://about.fb.com/ltam/news/2021/10/connect-2021-nuestra-vision-del-metaverso/ (accessed on 25 January 2022).
arruth, D.W. Virtual reality for education and workforce training. In Proceedings of the 2017 15th International Conference on Emerging eLearning Technologies and Applications (ICETA), Stary Smokovec, Slovakia, 26–27 October 2017; pp. 1–6
antos, K.; Loures, E.; Piechnicki, F.; Canciglieri, O. Opportunities assessment of product development process in Industry 4.0. Procedia Manuf. 2017, 11, 1358–1365
Landherr, M.; Schneider, U.; Bauernhansl, T. The Application Center Industrie 4.0—Industry-driven manufacturing, research and development. Procedia Cirp 2016, 57, 26–31
Rupp, M.; Schneckenburger, M.; Merkel, M.; Rainer Börret, R.; Harrison, D. Industry 4.0: A Technological-Oriented Definition Based on Bibliometric Analysis and Literature Review. J. Open Innov. Technol. Mark. Complex. 2021, 7, 68.
Quiroga-Parra, D.J.; Torrent-Sellens, J.; Murcia-Zorrilla, C.P. Las tecnologías de la información en América Latina, su incidencia en la productividad: Un análisis comparado con países desarrollados. Dyna 2017, 84, 281–290.
Xu, L.D.; Xu, E.L.; Li, L. Industry 4.0: State of the art and future trends. Int. J. Prod. Res. 2018, 56, 2941–2962
Zhong, R.Y.; Xu, X.; Klotz, E.; Newman, S.T. Intelligent Manufacturing in the Context of Industry 4.0: A Review. Engineering 2017, 3, 616–630.
Lu, Y. Industry 4.0: A survey on technologies, applications and open research issues. J. Ind. Inf. Integr. 2017, 6, 1–10
Zaimovic, T. Setting speed-limit on Industry 4.0—An outlook of power-mix and grid capacity challenge. Procedia Comput. Sci. 2019, 158, 107–115.
Roldán, J.J.; Crespo, E.; Martín-Barrio, A.; Peña-Tapia, E.; Barrientos, A. A training system for Industry 4.0 operators in complex assemblies based on virtual reality and process mining. Robot. Comput. Integr. Manuf. 2019, 59, 305–316.
Ottogalli, K.; Rosquete, D.; Amundarain, A.; Aguinaga, I.; Borro, D. Flexible framework to model Industry 4.0 processes for virtual simulators. Appl. Sci. 2019, 9, 4983.
Liagkou, V.; Salmas, D.; Stylios, C. Realizing virtual reality learning environment for industry 4.0. Procedia CIRP 2019, 79, 712–717
Büchi, G.; Cugno, M.; Castagnoli, R. Smart factory performance and Industry 4.0. Technol. Forecast. Soc. Chang. 2020, 150, 119790
Shi, Z.; Xie, Y.; Xue, W.; Chen, Y.; Fu, L.; Xu, X. Smart factory in Industry 4.0. Syst. Res. Behav. Sci. 2020, 37, 607–617
Jones, M.D.; Hutcheson, S.; Camba, J.D. Past, present, and future barriers to digital transformation in manufacturing: A review. J. Manuf. Syst. 2021, 60, 936–948
Żywicki, K.; Zawadzki, P.; Górski, F. Virtual reality production training system in the scope of intelligent factory. In Proceedings of the International Conference on Intelligent Systems in Production Engineering and Maintenance, Wroclaw, Poland, 17–18 September 2017; Springer: Cham, Switzerland, 2017; pp. 450–458
Wittenberg, C.; Bauer, B.; Stache, N. A smart factory in a laboratory size for developing and testing innovative human-machine interaction concepts. In Proceedings of the International Conference on Applied Human Factors and Ergonomics, Washington, DA, USA, 25–29 July 2019; Springer: Cham, Switzerland, 2019; pp. 160–166.
Damiani, L.; Demartini, M.; Guizzi, G.; Revetria, R.; Tonelli, F. Augmented and virtual reality applications in industrial systems: A qualitative review towards the industry 4.0 era. IFAC-PapersOnLine 2018, 51, 624–630.
Radhakrishnan, U.; Koumaditis, K.; Chinello, F. A systematic review of immersive virtual reality for industrial skills training. Behav. Inf. Technol. 2021, 40, 1310–1339.
Radianti, J.; Majchrzak, T.A.; Fromm, J.; Wohlgenannt, I. A systematic review of immersive virtual reality applications for higher education: Design elements, lessons learned, and research agenda. Comput. Educ. 2020, 147, 103778.
Jensen, L.; Konradsen, F. A review of the use of virtual reality head-mounted displays in education and training. Educ. Inf. Technol. 2018, 23, 1515–1529. [Google Scholar]
Ozcinar, C.; Smolic, A. Visual attention in omnidirectional video for virtual reality applications. In Proceedings of the 2018 Tenth International Conference on Quality of Multimedia Experience (QoMEX), Cagliari, Italy, 29 May–1 June 2018; pp. 1–6
Sutcliffe, A.G.; Poullis, C.; Gregoriades, A.; Katsouri, I.; Tzanavari, A.; Herakleous, K. Reflecting on the design process for virtual reality applications. Int. J. Hum. Comput. Interact. 2019, 35, 168–179
Scavarelli, A.; Arya, A.; Teather, R.J. Virtual reality and augmented reality in social learning spaces: A literature review. Virtual Real. 2021, 25, 257–277.
Guo, Z.; Zhou, D.; Chen, J.; Geng, J.; Lv, C.; Zeng, S. Using virtual reality to support the product’s maintainability design: Immersive maintainability verification and evaluation system. Comput. Ind. 2018, 101, 41–50.
Lee, L.H.; Braud, T.; Zhou, P.; Wang, L.; Xu, D.; Lin, Z.; Kumar, A.; Bermejo, C.; Hui, P. All one needs to know about metaverse: A complete survey on technological singularity, virtual ecosystem, and research agenda. arXiv 2021, arXiv:2110.05352
Ning, H.; Wang, H.; Lin, Y.; Wang, W.; Dhelim, S.; Farha, F.; Ding, J.; Daneshmand, M. A survey on metaverse: The state-of-the-art, technologies, applications, and challenges. arXiv 2021, arXiv:2111.09673
Seok, W.H. Analysis of Metaverse Business Model and Ecosystem. Electron. Telecommun. Trends 2021, 36, 81–91.
Song, S.W.; Chung, D.H. Explication and Rational Conceptualization of Metaverse. Informatiz. Policy 2021, 28, 3–22
Duan, H.; Li, J.; Fan, S.; Lin, Z.; Wu, X.; Cai, W. Metaverse for social good: A university campus prototype. In Proceedings of the 29th ACM International Conference on Multimedia, Virtual Event, 20–24 October 2021; pp. 153–161.
Anacona, J.D.; Millán, E.E.; Gómez, C.A. Application of metaverses and the virtual reality in teaching. Entre Cienc. Ing. 2019, 13, 59–67.
Suzuki, S.N.; Kanematsu, H.; Barry, D.M.; Ogawa, N.; Yajima, K.; Nakahira, K.T.; Yoshitake, M. Virtual Experiments in Metaverse and their Applications to Collaborative Projects: The framework and its significance. Procedia Comput. Sci. 2020, 176, 2125–2132.
Chen, C.J.; Toh, S.C.; Fauzy, W.M. The Theoretical Framework for Designing Desktop Virtual Reality-Based Learning Environments. J. Interact. Learn. Res. 2004, 15, 147–167.
Steffen, J.H.; Gaskin, J.E.; Meservy, T.O.; Jenkins, J.L.; Wolman, I. Framework of Affordances for Virtual Reality and Augmented Reality. J. Manag. Inf. Syst. 2019, 36, 683–729.
Kim, W.S. Edge Computing Server Deployment Technique for Cloud VR-based Multi-User Metaverse Content. J. Korea Multimed. Soc. 2021, 24, 1090–1100.
He, Z.; Du, R.; Perlin, K. CollaboVR: A Reconfigurable Framework for Creative Collaboration in Virtual Reality. In Proceedings of the 2020 IEEE International Symposium on Mixed and Augmented Reality (ISMAR), Porto de Galinhas, Brazil, 9–13 November 2020; pp. 542–554
Chen, X.; Wang, M.; Wu, Q. Research and development of virtual reality game based on unreal engine 4. In Proceedings of the 2017 4th International Conference on Systems and Informatics (ICSAI), Hangzhou, China, 11–13 November 2017; pp. 1388–1393
Unreal Engine: The Most Powerful Real-Time 3D Creation Tool. 2021. Available online: https://www.unrealengine.com/en-US/ (accessed on 25 January 2022).
Urrutia, G.A.M.; López, C.E.N.; Martínez, L.F.F.; Corral, M.A.R. Procesos de desarrollo para videojuegos. Cult. Cient. Tecnol. 2015, 37, 25–39. Available online: https://148.210.21.18/ojs/index.php/culcyt/article/view/299 (accessed on 25 January 2022).
Gómez Sánchez, M. Test de usabilidad en entornos de Realidad Virtual. No Solo Usabilidad 2018, 17. Available online: https://www.nosolousabilidad.com/articulos/test_usabilidad_realidad_virtual.htm (accessed on 25 January 2022).
Schmeil, A. Designing collaboration experiences for 3D virtual worlds. Comput. Sci. 2012, 226, 209. Available online: https://www.semanticscholar.org/paper/Designing-collaboration-experiences-for-3D-virtual-Schmeil/8f0c4910636c8cfc1a6033c1e23467aafa1e301d (accessed on 25 January 2022).
Lee, H.; Woo, D.; Yu, S. Virtual Reality Metaverse System Supplementing Remote Education Methods: Based on Aircraft Maintenance Simulation. Appl. Sci. 2022, 12, 2667.
Rebollo, C.; Gasch, C.; Remolar, I.; Delgado, D. Learning First Aid with a Video Game. Appl. Sci. 2021, 11, 11633
Kim, H.K.; Park, J.; Choi, Y.; Choe, M. Virtual reality sickness questionnaire (VRSQ): Motion sickness measurement index in a virtual reality environment. Appl. Ergon. 2018, 69, 66–73
Alpala, L.O.; Alemany, M.D.M.E.; Peluffo-Ordoñez, D.H.; Bolaños, F.; Rosero, A.M.; Torres, J.C. Methodology for the design and simulation of industrial facilities and production systems based on a modular approach in an “Industry 4.0” context. DYNA 2018, 85, 243–252.
dc.rights.license.none.fl_str_mv Atribución
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 23
dc.coverage.temporal.none.fl_str_mv 12
dc.publisher.none.fl_str_mv Universidad Cooperativa de Colombia, Facultad de Ciencias Económicas, Administrativas y Contables, Administración de Empresas, Cali
dc.publisher.program.none.fl_str_mv Administración de Empresas
dc.publisher.place.none.fl_str_mv Cali
publisher.none.fl_str_mv Universidad Cooperativa de Colombia, Facultad de Ciencias Económicas, Administrativas y Contables, Administración de Empresas, Cali
institution Universidad Cooperativa de Colombia
bitstream.url.fl_str_mv https://repository.ucc.edu.co/bitstreams/65be923f-0e18-4a72-ab4e-89c9ccdf881f/download
bitstream.checksum.fl_str_mv 3bce4f7ab09dfc588f126e1e36e98a45
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Cooperativa de Colombia
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1811565582696316928
spelling Alpala, Luis OmarQuiroga Parra, Darío de JesúsTorres, Juan CarlosPeluffo Ordóñez, Diego H.122023-10-13T19:52:54Z2023-10-13T19:52:54Z2023-10https://doi.org/10.3390/app12126258https://hdl.handle.net/20.500.12494/52988Alpala, L.O.; Quiroga-Parra, D.J.; Torres, J.C.; Peluffo-Ordóñez, D.H. Smart Factory Using Virtual Reality and Online Multi-User: Towards a Metaverse for Experimental Frameworks. Appl. Sci. 2022, 12, 6258. https://doi.org/ 10.3390/app12126258La realidad virtual (VR) se ha acercado al público en general durante la última década a medida que está cada vez más disponible para plataformas móviles y de escritorio. Como resultado, la realidad virtual para consumidores puede redefinir la forma en que las personas aprenden al crear una experiencia de capacitación “práctica” atractiva. Hoy en día, las aplicaciones de realidad virtual aprovechan la rica interactividad en un entorno virtual sin consecuencias en el mundo real para optimizar los programas de capacitación en empresas e instituciones educativas. Por lo tanto, el objetivo principal de este artículo fue mejorar las prácticas de colaboración y comunicación en mundos virtuales 3D con VR y metaverso enfocados al sector educativo y productivo en fábrica inteligente. Una premisa clave de nuestro trabajo es que las características del entorno real se pueden replicar en un mundo virtual a través de gemelos digitales, donde se pueden crear formas nuevas, configurables, innovadoras y valiosas de trabajar y aprender de forma colaborativa utilizando modelos de avatar. Para ello, presentamos una propuesta para el desarrollo de un marco experimental que constituye un primer paso crucial en el proceso de formalizar la colaboración en entornos virtuales a través de metaversos impulsados ​​por realidad virtual. El sistema de realidad virtual incluye componentes funcionales, configuraciones orientadas a objetos, núcleo avanzado, interfaces y un sistema multiusuario en línea. Presentamos el estudio del primer caso de aplicación del framework con VR en un metaverso, centrado en la fábrica inteligente, que muestra las tecnologías más relevantes de la Industria 4.0. Se realizaron pruebas de funcionalidad y se evaluaron con los usuarios a través de métricas de usabilidad que mostraron los resultados satisfactorios de su potencial uso educativo y comercial. Finalmente, los resultados experimentales muestran que un marco de software comercial para juegos de realidad virtual puede acelerar el desarrollo de experimentos en el metaverso para conectar a usuarios de diferentes partes del mundo en tiempo real.Virtual reality (VR) has been brought closer to the general public over the past decade as it has become increasingly available for desktop and mobile platforms. As a result, consumer-grade VR may redefine how people learn by creating an engaging “hands-on” training experience. Today, VR applications leverage rich interactivity in a virtual environment without real-world consequences to optimize training programs in companies and educational institutions. Therefore, the main objective of this article was to improve the collaboration and communication practices in 3D virtual worlds with VR and metaverse focused on the educational and productive sector in smart factory. A key premise of our work is that the characteristics of the real environment can be replicated in a virtual world through digital twins, wherein new, configurable, innovative, and valuable ways of working and learning collaboratively can be created using avatar models. To do so, we present a proposal for the development of an experimental framework that constitutes a crucial first step in the process of formalizing collaboration in virtual environments through VR-powered metaverses. The VR system includes functional components, object-oriented configurations, advanced core, interfaces, and an online multi-user system. We present the study of the first application case of the framework with VR in a metaverse, focused on the smart factory, that shows the most relevant technologies of Industry 4.0. Functionality tests were carried out and evaluated with users through usability metrics that showed the satisfactory results of its potential educational and commercial use. Finally, the experimental results show that a commercial software framework for VR games can accelerate the development of experiments in the metaverse to connect users from different parts of the world in real time.23Universidad Cooperativa de Colombia, Facultad de Ciencias Económicas, Administrativas y Contables, Administración de Empresas, CaliAdministración de EmpresasCalihttps://www.mdpi.com/2076-3417/12/12/6258Applied SciencesBrookes, J.; Warburton, M.; Alghadier, M.; Mon-Williams, M.; Mushtaq, F. Studying human behavior with virtual reality: The Unity Experiment Framework. Behav. Res. 2020, 52, 455–463.Park, S.M. and Kim, Y.G. A Metaverse: Taxonomy, Components, Applications, and Open Challenges. IEEE Access 2022, 10, 4209–4251Fillatreau, P.; Fourquet, J.Y.; Le Bolloc’H, R.; Cailhol, S.; Datas, A.; Puel, B. Using virtual reality and 3D industrial numerical models for immersive interactive checklists. Comput. Ind. 2013, 64, 1253–1262e, Z.; Rosenberg, K.T.; Perlin, K. Exploring configuration of mixed reality spaces for communication. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, Glasgow, UK, 4–9 May 2019; pp. 1–6.eier, G.; Ullrich, A.; Niehoff, S.; Reißig, M.; Habich, M. Industry 4.0: How it is defined from a sociotechnical perspective and how much sustainability it includes—A literature review. J. Clean. Prod. 2020, 259, 120856uřík, V.; Herman, L.; Kubíček, P.; Stachoň, Z.; Šašinka, Č. Cognitive aspects of collaboration in 3D virtual environments. In Proceedings of the International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, Prague, Czech Republic, 12–19 July 2016; Volume 41, pp. 663–670.Connect 2021: Nuestra Visión del Metaverso. 2022. Available online: https://about.fb.com/ltam/news/2021/10/connect-2021-nuestra-vision-del-metaverso/ (accessed on 25 January 2022).arruth, D.W. Virtual reality for education and workforce training. In Proceedings of the 2017 15th International Conference on Emerging eLearning Technologies and Applications (ICETA), Stary Smokovec, Slovakia, 26–27 October 2017; pp. 1–6antos, K.; Loures, E.; Piechnicki, F.; Canciglieri, O. Opportunities assessment of product development process in Industry 4.0. Procedia Manuf. 2017, 11, 1358–1365Landherr, M.; Schneider, U.; Bauernhansl, T. The Application Center Industrie 4.0—Industry-driven manufacturing, research and development. Procedia Cirp 2016, 57, 26–31Rupp, M.; Schneckenburger, M.; Merkel, M.; Rainer Börret, R.; Harrison, D. Industry 4.0: A Technological-Oriented Definition Based on Bibliometric Analysis and Literature Review. J. Open Innov. Technol. Mark. Complex. 2021, 7, 68.Quiroga-Parra, D.J.; Torrent-Sellens, J.; Murcia-Zorrilla, C.P. Las tecnologías de la información en América Latina, su incidencia en la productividad: Un análisis comparado con países desarrollados. Dyna 2017, 84, 281–290.Xu, L.D.; Xu, E.L.; Li, L. Industry 4.0: State of the art and future trends. Int. J. Prod. Res. 2018, 56, 2941–2962Zhong, R.Y.; Xu, X.; Klotz, E.; Newman, S.T. Intelligent Manufacturing in the Context of Industry 4.0: A Review. Engineering 2017, 3, 616–630.Lu, Y. Industry 4.0: A survey on technologies, applications and open research issues. J. Ind. Inf. Integr. 2017, 6, 1–10Zaimovic, T. Setting speed-limit on Industry 4.0—An outlook of power-mix and grid capacity challenge. Procedia Comput. Sci. 2019, 158, 107–115.Roldán, J.J.; Crespo, E.; Martín-Barrio, A.; Peña-Tapia, E.; Barrientos, A. A training system for Industry 4.0 operators in complex assemblies based on virtual reality and process mining. Robot. Comput. Integr. Manuf. 2019, 59, 305–316.Ottogalli, K.; Rosquete, D.; Amundarain, A.; Aguinaga, I.; Borro, D. Flexible framework to model Industry 4.0 processes for virtual simulators. Appl. Sci. 2019, 9, 4983.Liagkou, V.; Salmas, D.; Stylios, C. Realizing virtual reality learning environment for industry 4.0. Procedia CIRP 2019, 79, 712–717Büchi, G.; Cugno, M.; Castagnoli, R. Smart factory performance and Industry 4.0. Technol. Forecast. Soc. Chang. 2020, 150, 119790Shi, Z.; Xie, Y.; Xue, W.; Chen, Y.; Fu, L.; Xu, X. Smart factory in Industry 4.0. Syst. Res. Behav. Sci. 2020, 37, 607–617Jones, M.D.; Hutcheson, S.; Camba, J.D. Past, present, and future barriers to digital transformation in manufacturing: A review. J. Manuf. Syst. 2021, 60, 936–948Żywicki, K.; Zawadzki, P.; Górski, F. Virtual reality production training system in the scope of intelligent factory. In Proceedings of the International Conference on Intelligent Systems in Production Engineering and Maintenance, Wroclaw, Poland, 17–18 September 2017; Springer: Cham, Switzerland, 2017; pp. 450–458Wittenberg, C.; Bauer, B.; Stache, N. A smart factory in a laboratory size for developing and testing innovative human-machine interaction concepts. In Proceedings of the International Conference on Applied Human Factors and Ergonomics, Washington, DA, USA, 25–29 July 2019; Springer: Cham, Switzerland, 2019; pp. 160–166.Damiani, L.; Demartini, M.; Guizzi, G.; Revetria, R.; Tonelli, F. Augmented and virtual reality applications in industrial systems: A qualitative review towards the industry 4.0 era. IFAC-PapersOnLine 2018, 51, 624–630.Radhakrishnan, U.; Koumaditis, K.; Chinello, F. A systematic review of immersive virtual reality for industrial skills training. Behav. Inf. Technol. 2021, 40, 1310–1339.Radianti, J.; Majchrzak, T.A.; Fromm, J.; Wohlgenannt, I. A systematic review of immersive virtual reality applications for higher education: Design elements, lessons learned, and research agenda. Comput. Educ. 2020, 147, 103778.Jensen, L.; Konradsen, F. A review of the use of virtual reality head-mounted displays in education and training. Educ. Inf. Technol. 2018, 23, 1515–1529. [Google Scholar]Ozcinar, C.; Smolic, A. Visual attention in omnidirectional video for virtual reality applications. In Proceedings of the 2018 Tenth International Conference on Quality of Multimedia Experience (QoMEX), Cagliari, Italy, 29 May–1 June 2018; pp. 1–6Sutcliffe, A.G.; Poullis, C.; Gregoriades, A.; Katsouri, I.; Tzanavari, A.; Herakleous, K. Reflecting on the design process for virtual reality applications. Int. J. Hum. Comput. Interact. 2019, 35, 168–179Scavarelli, A.; Arya, A.; Teather, R.J. Virtual reality and augmented reality in social learning spaces: A literature review. Virtual Real. 2021, 25, 257–277.Guo, Z.; Zhou, D.; Chen, J.; Geng, J.; Lv, C.; Zeng, S. Using virtual reality to support the product’s maintainability design: Immersive maintainability verification and evaluation system. Comput. Ind. 2018, 101, 41–50.Lee, L.H.; Braud, T.; Zhou, P.; Wang, L.; Xu, D.; Lin, Z.; Kumar, A.; Bermejo, C.; Hui, P. All one needs to know about metaverse: A complete survey on technological singularity, virtual ecosystem, and research agenda. arXiv 2021, arXiv:2110.05352Ning, H.; Wang, H.; Lin, Y.; Wang, W.; Dhelim, S.; Farha, F.; Ding, J.; Daneshmand, M. A survey on metaverse: The state-of-the-art, technologies, applications, and challenges. arXiv 2021, arXiv:2111.09673Seok, W.H. Analysis of Metaverse Business Model and Ecosystem. Electron. Telecommun. Trends 2021, 36, 81–91.Song, S.W.; Chung, D.H. Explication and Rational Conceptualization of Metaverse. Informatiz. Policy 2021, 28, 3–22Duan, H.; Li, J.; Fan, S.; Lin, Z.; Wu, X.; Cai, W. Metaverse for social good: A university campus prototype. In Proceedings of the 29th ACM International Conference on Multimedia, Virtual Event, 20–24 October 2021; pp. 153–161.Anacona, J.D.; Millán, E.E.; Gómez, C.A. Application of metaverses and the virtual reality in teaching. Entre Cienc. Ing. 2019, 13, 59–67.Suzuki, S.N.; Kanematsu, H.; Barry, D.M.; Ogawa, N.; Yajima, K.; Nakahira, K.T.; Yoshitake, M. Virtual Experiments in Metaverse and their Applications to Collaborative Projects: The framework and its significance. Procedia Comput. Sci. 2020, 176, 2125–2132.Chen, C.J.; Toh, S.C.; Fauzy, W.M. The Theoretical Framework for Designing Desktop Virtual Reality-Based Learning Environments. J. Interact. Learn. Res. 2004, 15, 147–167.Steffen, J.H.; Gaskin, J.E.; Meservy, T.O.; Jenkins, J.L.; Wolman, I. Framework of Affordances for Virtual Reality and Augmented Reality. J. Manag. Inf. Syst. 2019, 36, 683–729.Kim, W.S. Edge Computing Server Deployment Technique for Cloud VR-based Multi-User Metaverse Content. J. Korea Multimed. Soc. 2021, 24, 1090–1100.He, Z.; Du, R.; Perlin, K. CollaboVR: A Reconfigurable Framework for Creative Collaboration in Virtual Reality. In Proceedings of the 2020 IEEE International Symposium on Mixed and Augmented Reality (ISMAR), Porto de Galinhas, Brazil, 9–13 November 2020; pp. 542–554Chen, X.; Wang, M.; Wu, Q. Research and development of virtual reality game based on unreal engine 4. In Proceedings of the 2017 4th International Conference on Systems and Informatics (ICSAI), Hangzhou, China, 11–13 November 2017; pp. 1388–1393Unreal Engine: The Most Powerful Real-Time 3D Creation Tool. 2021. Available online: https://www.unrealengine.com/en-US/ (accessed on 25 January 2022).Urrutia, G.A.M.; López, C.E.N.; Martínez, L.F.F.; Corral, M.A.R. Procesos de desarrollo para videojuegos. Cult. Cient. Tecnol. 2015, 37, 25–39. Available online: https://148.210.21.18/ojs/index.php/culcyt/article/view/299 (accessed on 25 January 2022).Gómez Sánchez, M. Test de usabilidad en entornos de Realidad Virtual. No Solo Usabilidad 2018, 17. Available online: https://www.nosolousabilidad.com/articulos/test_usabilidad_realidad_virtual.htm (accessed on 25 January 2022).Schmeil, A. Designing collaboration experiences for 3D virtual worlds. Comput. Sci. 2012, 226, 209. Available online: https://www.semanticscholar.org/paper/Designing-collaboration-experiences-for-3D-virtual-Schmeil/8f0c4910636c8cfc1a6033c1e23467aafa1e301d (accessed on 25 January 2022).Lee, H.; Woo, D.; Yu, S. Virtual Reality Metaverse System Supplementing Remote Education Methods: Based on Aircraft Maintenance Simulation. Appl. Sci. 2022, 12, 2667.Rebollo, C.; Gasch, C.; Remolar, I.; Delgado, D. Learning First Aid with a Video Game. Appl. Sci. 2021, 11, 11633Kim, H.K.; Park, J.; Choi, Y.; Choe, M. Virtual reality sickness questionnaire (VRSQ): Motion sickness measurement index in a virtual reality environment. Appl. Ergon. 2018, 69, 66–73Alpala, L.O.; Alemany, M.D.M.E.; Peluffo-Ordoñez, D.H.; Bolaños, F.; Rosero, A.M.; Torres, J.C. Methodology for the design and simulation of industrial facilities and production systems based on a modular approach in an “Industry 4.0” context. DYNA 2018, 85, 243–252.Mundos virtuales 3DMetaversoFábrica inteligenteIndustria 4.0Modelado 3DMotor irreal 43D virtual worldsMetaverseSmart factoryIndustry 4.03D modelingUnreal Engine 4Smart Factory Using Virtual Reality and Online Multi-User: Towards a Metaverse for Experimental FrameworksArtículos Científicoshttp://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionAtribucióninfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2PublicationLICENSElicense.txtlicense.txttext/plain; charset=utf-84334https://repository.ucc.edu.co/bitstreams/65be923f-0e18-4a72-ab4e-89c9ccdf881f/download3bce4f7ab09dfc588f126e1e36e98a45MD5120.500.12494/52988oai:repository.ucc.edu.co:20.500.12494/529882024-08-10 17:58:57.405metadata.onlyhttps://repository.ucc.edu.coRepositorio Institucional Universidad Cooperativa de Colombiabdigital@metabiblioteca.comVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEKUkVQT1NJVE9SSU9TIElOU1RJVFVDSU9OQUxFUwpMSUNFTkNJQSBERSBVU08KClBvciBtZWRpbyBkZWwgcHJlc2VudGUgZG9jdW1lbnRvLCBlbCBBdXRvcihlcyksIG1heW9yIChlcykgZGUgZWRhZCwgcXVpZW4gZW4gYWRlbGFudGUgc2UgZGVub21pbmFyw6EgZWwgQVVUT1IsIGNvbmZpZXJlIGEgbGEgVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEsIGNvbiBOSVQuIDg2MC0wMjk5MjQtNywgdW5hIExJQ0VOQ0lBIERFIFVTTyBkZSBvYnJhLCBiYWpvIGxhcyBzaWd1aWVudGVzIGNvbmRpY2lvbmVzLgoKQ0zDgVVTVUxBUwoKUFJJTUVSQS4gT2JqZXRvLiBFTCBBVVRPUiBwb3IgZXN0ZSBhY3RvIGF1dG9yaXphIGxhIHV0aWxpemFjacOzbiBkZSBsYSBvYnJhLCBkZSBjb25mb3JtaWRhZCBjb24gbG8gZXN0aXB1bGFkbyBhIGNvbnRpbnVhY2nDs246IAoKKGEpIFBhcmEgZWZlY3RvcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSBzZSBhdXRvcml6YSBsYSByZXByb2R1Y2Npw7NuIGRlIGxhIG9icmEgYW50ZXJpb3JtZW50ZSBjaXRhZGEsIGxhIGN1YWwgc2UgYWxvamFyw6EgZW4gZm9ybWF0byBkaWdpdGFsIGVuIGxhcyBwbGF0YWZvcm1hcyBvIHJlcG9zaXRvcmlvcyBhZG1pbmlzdHJhZG9zIHBvciBsYSBVTklWRVJTSURBRCBvIGVuIG90cm8gdGlwbyBkZSByZXBvc2l0b3Jpb3MgZXh0ZXJub3MgbyBww6FnaW5hcyB3ZWIgZXNjb2dpZG9zIHBvciBsYSBVTklWRVJTSURBRCwgcGFyYSBmaW5lcyBkZSBkaWZ1c2nDs24geSBkaXZ1bGdhY2nDs24uIEFkaWNpb25hbG1lbnRlLCBzZSBhdXRvcml6YSBhIHF1ZSBsb3MgdXN1YXJpb3MgaW50ZXJub3MgeSBleHRlcm5vcyBkZSBkaWNoYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgcmVwcm9kdXpjYW4gbyBkZXNjYXJndWVuIGxhIG9icmEsIHNpbiDDoW5pbW8gZGUgbHVjcm8sIHBhcmEgZmluZXMgcHJpdmFkb3MsIGVkdWNhdGl2b3MgbyBhY2Fkw6ltaWNvczsgc2llbXByZSB5IGN1YW5kbyBubyBzZSB2aW9sZW4gYWN1ZXJkb3MgY29uIGVkaXRvcmVzLCBwZXJpb2RvcyBkZSBlbWJhcmdvIG8gYWN1ZXJkb3MgZGUgY29uZmlkZW5jaWFsaWRhZCBxdWUgYXBsaXF1ZW4uCgooYikgU2UgYXV0b3JpemEgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBkZSBsYSBvYnJhIG1lbmNpb25hZGEsIGVuIGFjY2VzbyBhYmllcnRvLCBwYXJhIHN1IHV0aWxpemFjacOzbiBlbiBsYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgYWRtaW5pc3RyYWRvcyBwb3IgbGEgVU5JVkVSU0lEQUQuCgooYykgTG8gYW50ZXJpb3IgZXN0YXLDoSBzdWpldG8gYSBsYXMgZGVmaW5pY2lvbmVzIGNvbnRlbmlkYXMgZW4gbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MyB5IGxhIExleSAyMyBkZSAxOTgyLgoKClNFR1VOREEuIE9yaWdpbmFsaWRhZCB5IHJlY2xhbWFjaW9uZXMuIEVsIEFVVE9SIGRlY2xhcmEgcXVlIGxhIE9CUkEgZXMgb3JpZ2luYWwgeSBxdWUgZXMgZGUgc3UgY3JlYWNpw7NuIGV4Y2x1c2l2YSwgbm8gZXhpc3RpZW5kbyBpbXBlZGltZW50byBkZSBjdWFscXVpZXIgbmF0dXJhbGV6YSAoZW1iYXJnb3MsIHVzbyBkZSBtYXRlcmlhbCBwcm90ZWdpZG8gcG9yIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGxhIGNvbmNlc2nDs24gZGUgbG9zIGRlcmVjaG9zIHByZXZpc3RvcyBlbiBlc3RlIGFjdWVyZG8uIEVsIEFVVE9SIHJlc3BvbmRlcsOhIHBvciBjdWFscXVpZXIgYWNjacOzbiBkZSByZWl2aW5kaWNhY2nDs24sIHBsYWdpbyB1IG90cmEgY2xhc2UgZGUgcmVjbGFtYWNpw7NuIHF1ZSBhbCByZXNwZWN0byBwdWRpZXJhIHNvYnJldmVuaXIuCgpURVJDRVJBLiBDb250cmFwcmVzdGFjacOzbi4gRWwgQVVUT1IgYXV0b3JpemEgYSBxdWUgc3Ugb2JyYSBzZWEgdXRpbGl6YWRhIGRlIGNvbmZvcm1pZGFkIGNvbiBsYSBjbMOhdXN1bGEgUFJJTUVSQSBkZSBmb3JtYSBncmF0dWl0YSwgZXMgZGVjaXIsIHF1ZSBsYSB1dGlsaXphY2nDs24gZGUgbGEgbWlzbWEgbm8gZ2VuZXJhIG5pbmfDum4gcGFnbyBvIHJlZ2Fsw61hcyBlbiBmYXZvciBkZSBlc3RlLgoKQ1VBUlRBLiBUaXR1bGFyaWRhZCBkZSBkZXJlY2hvcy4gRWwgcHJlc2VudGUgY29udHJhdG8gbm8gdHJhbnNmaWVyZSBsYSB0aXR1bGFyaWRhZCBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBzb2JyZSBsYXMgb2JyYXMgYW50ZXJpb3JtZW50ZSBtZW5jaW9uYWRhcyBhIGxhIFVOSVZFUlNJREFELiDDmm5pY2FtZW50ZSBoYWNlIHJlbGFjacOzbiBhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgZW4gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGFudGVyaW9ybWVudGUgcGFjdGFkb3MuCgpRVUlOVEEuIENyw6lkaXRvcy4gTGEgVU5JVkVSU0lEQUQgc2UgY29tcHJvbWV0ZSBhIGRhciBhbCBBVVRPUiwgZWwgcmVjb25vY2ltaWVudG8gZGVudHJvIGNhZGEgZm9ybWEgZGUgdXRpbGl6YWNpw7NuIGVuIGxhIG9icmEuIExvcyBjcsOpZGl0b3MgZGViZW4gZmlndXJhciBlbiBjYWRhIHVubyBkZSBsb3MgZm9ybWF0b3MgbyByZWdpc3Ryb3MgZGUgcHVibGljYWNpw7NuLiBObyBjb25zdGl0dWlyw6EgdW5hIHZpb2xhY2nDs24gYSBsb3MgZGVyZWNob3MgbW9yYWxlcyBkZWwgYXV0b3IgbGEgbm8gcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBvIGRlbcOhcyB1dGlsaXphY2lvbmVzIGRlIGxhIG9icmEuIExhIHV0aWxpemFjacOzbiBvIG5vIGRlIGxhIG9icmEsIGFzw60gY29tbyBzdSBmb3JtYSBkZSB1dGlsaXphY2nDs24gc2Vyw6EgZmFjdWx0YWQgZXhjbHVzaXZhIGRlIGxhIFVOSVZFUlNJREFELgogClNFWFRBLiBEdXJhY2nDs24geSB0ZXJyaXRvcmlvLiBMYSBwcmVzZW50ZSBsaWNlbmNpYSBkZSB1c28gcXVlIHNlIG90b3JnYSBhIGZhdm9yIGRlIGxhIFVOSVZFUlNJREFEIHRlbmRyw6EgdW5hIGR1cmFjacOzbiBlcXVpdmFsZW50ZSBhbCB0w6lybWlubyBkZSBwcm90ZWNjacOzbiBsZWdhbCBkZSBsYSBvYnJhIHkgcGFyYSB0b2RvcyBsb3MgcGHDrXNlcyBkZWwgbXVuZG8uCgpTw4lQVElNQS4gVXNvIGRlIENyZWF0aXZlIENvbW1vbnMuIEVsIEFVVE9SIGF1dG9yaXphcsOhIGxhIGRpZnVzacOzbiBkZSBzdSBjb250ZW5pZG8gYmFqbyB1bmEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBhdHJpYnVjacOzbiA0LjAgaW50ZXJuYWNpb25hbCwgcXVlIGRlYmVyw6EgaW5jbHVpcnNlIGVuIGVsIGNvbnRlbmlkby4gCgpPQ1RBVkEuIERlcmVjaG8gZGUgZXhjbHVzacOzbi4gQ2FkYSBhdXRvciBwdWVkZSBpbmRpY2FyIGVuIGVsIG1vbWVudG8gZGUgZGVww7NzaXRvIGRlbCBjb250ZW5pZG8gcXVlIGVsIHRleHRvIGNvbXBsZXRvIGRlIGxhIHByb2R1Y2Npw7NuIGFjYWTDqW1pY2EgbyBjaWVudMOtZmljYSBubyBlc3RlIGNvbiBhY2Nlc28gYWJpZXJ0byBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIHBvciBtb3Rpdm9zIGRlIGNvbmZpZGVuY2lhbGlkYWQsIHBvcnF1ZSBzZSBlbmN1ZW50cmUgZW4gdsOtYXMgZGUgb2J0ZW5lciB1biBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbmR1c3RyaWFsIG8gZXhpc3RpciBhY3VlcmRvcyBwcmV2aW9zIGNvbiB0ZXJjZXJvcyAoZWRpdG9yaWFsZXMsIHJldmlzdGFzIGNpZW50w61maWNhcywgb3RyYXMgaW5zdGl0dWNpb25lcykuIEVsIGF1dG9yIHNlIGNvbXByb21ldGUgYSBkZXBvc2l0YXIgbG9zIG1ldGFkYXRvcyBlIGluZm9ybWFyIGVsIHRpZW1wbyBkZSBlbWJhcmdvIGR1cmFudGUgZWwgY3VhbCBlbCB0ZXh0byBjb21wbGV0byB0ZW5kcsOhIGFjY2VzbyByZXN0cmluZ2lkby4gCgpOT1ZFTkEuIEVsIEFVVE9SIGFsIGFjZXB0YXIgZXN0YSBsaWNlbmNpYSBhZHVjZSBxdWUgZXN0YSBwcm9kdWNjacOzbiBzZSBkZXNhcnJvbGzDsyBlbiBlbCBwZXJpb2RvIGVuIHF1ZSBzZSBlbmN1ZW50cmEgY29uIHbDrW5jdWxvcyBjb24gTGEgVW5pdmVyc2lkYWQuCgpEw4lDSU1BLiBOb3JtYXMgYXBsaWNhYmxlcy4gUGFyYSBsYSBpbnRlcnByZXRhY2nDs24geSBjdW1wbGltaWVudG8gZGVsIHByZXNlbnRlIGFjdWVyZG8gbGFzIHBhcnRlcyBzZSBzb21ldGVuIGEgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgbGEgTGV5IDIzIGRlIDE5ODIgeSBkZW3DoXMgbm9ybWFzIGFwbGljYWJsZXMgZGUgQ29sb21iaWEuIEFkZW3DoXMsIGEgbGFzIG5vcm1hcyBJbnN0aXR1Y2lvbmFsZXMgcXVlIGFwbGlxdWVuLgoKTGEgcHJlc2VudGUgbGljZW5jaWEgc2UgYXV0b3JpemEgZW4gbGEgZmVjaGEgZGUgcHVibGljYWNpw7NuIGVuIGxvcyByZXBvc2l0b3Jpb3MgaW5zdGl0dWNpb25hbGVzLgo=