Solubility of sulphadiazine in (acetonitrile+ water) mixtures: measurement, correlation, thermodynamics and preferential solvation
Se informa la solubilidad en equilibrio a temperaturas de (293.15 a 313.15) K, termodinámica de disolución y solvatación preferencial de sulfadiazina (SD) en mezclas de {acetonitrilo (ACN) (1) + agua (2)}. La solubilidad de la fracción molar de SD ( x 3 ) aumenta cuando surge la temperatura y tambié...
- Autores:
-
Delgado, Daniel Ricardo
Caviedes Rubio, Diego Iván
Ortiz, Claudia Patricia
Parra-Pava, Yarly Lizeth
Peña, María Ángeles
Jouyban, Abolghasem
Mirheydari, Seyyedeh Narjes
Martínez, Fleming
Acree Jr, William Eugene
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2019
- Institución:
- Universidad Cooperativa de Colombia
- Repositorio:
- Repositorio UCC
- Idioma:
- OAI Identifier:
- oai:repository.ucc.edu.co:20.500.12494/15763
- Acceso en línea:
- https://doi.org/10.1080/00319104.2019.1594227
https://hdl.handle.net/20.500.12494/15763
- Palabra clave:
- Sulfadiazina
mezclas de {acetonitrilo (1) + agua (2)}
solubilidad
modelo Jouyban-Acree
solvatación preferencial
integrales Kirkwood-Buff inversas (IKBI)
Sulphadiazine
{acetonitrile (1) + water (2)} mixtures
solubility, Jouyban-Acree model
preferential solvation
Inverse Kirkwood-Buff integrals (IKBI)
- Rights
- closedAccess
- License
- Atribución – No comercial – Sin Derivar
id |
COOPER2_16fa760c474d73651fce6576b143da7b |
---|---|
oai_identifier_str |
oai:repository.ucc.edu.co:20.500.12494/15763 |
network_acronym_str |
COOPER2 |
network_name_str |
Repositorio UCC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Solubility of sulphadiazine in (acetonitrile+ water) mixtures: measurement, correlation, thermodynamics and preferential solvation |
title |
Solubility of sulphadiazine in (acetonitrile+ water) mixtures: measurement, correlation, thermodynamics and preferential solvation |
spellingShingle |
Solubility of sulphadiazine in (acetonitrile+ water) mixtures: measurement, correlation, thermodynamics and preferential solvation Sulfadiazina mezclas de {acetonitrilo (1) + agua (2)} solubilidad modelo Jouyban-Acree solvatación preferencial integrales Kirkwood-Buff inversas (IKBI) Sulphadiazine {acetonitrile (1) + water (2)} mixtures solubility, Jouyban-Acree model preferential solvation Inverse Kirkwood-Buff integrals (IKBI) |
title_short |
Solubility of sulphadiazine in (acetonitrile+ water) mixtures: measurement, correlation, thermodynamics and preferential solvation |
title_full |
Solubility of sulphadiazine in (acetonitrile+ water) mixtures: measurement, correlation, thermodynamics and preferential solvation |
title_fullStr |
Solubility of sulphadiazine in (acetonitrile+ water) mixtures: measurement, correlation, thermodynamics and preferential solvation |
title_full_unstemmed |
Solubility of sulphadiazine in (acetonitrile+ water) mixtures: measurement, correlation, thermodynamics and preferential solvation |
title_sort |
Solubility of sulphadiazine in (acetonitrile+ water) mixtures: measurement, correlation, thermodynamics and preferential solvation |
dc.creator.fl_str_mv |
Delgado, Daniel Ricardo Caviedes Rubio, Diego Iván Ortiz, Claudia Patricia Parra-Pava, Yarly Lizeth Peña, María Ángeles Jouyban, Abolghasem Mirheydari, Seyyedeh Narjes Martínez, Fleming Acree Jr, William Eugene |
dc.contributor.author.none.fl_str_mv |
Delgado, Daniel Ricardo Caviedes Rubio, Diego Iván Ortiz, Claudia Patricia Parra-Pava, Yarly Lizeth Peña, María Ángeles Jouyban, Abolghasem Mirheydari, Seyyedeh Narjes Martínez, Fleming Acree Jr, William Eugene |
dc.subject.spa.fl_str_mv |
Sulfadiazina mezclas de {acetonitrilo (1) + agua (2)} solubilidad modelo Jouyban-Acree solvatación preferencial integrales Kirkwood-Buff inversas (IKBI) |
topic |
Sulfadiazina mezclas de {acetonitrilo (1) + agua (2)} solubilidad modelo Jouyban-Acree solvatación preferencial integrales Kirkwood-Buff inversas (IKBI) Sulphadiazine {acetonitrile (1) + water (2)} mixtures solubility, Jouyban-Acree model preferential solvation Inverse Kirkwood-Buff integrals (IKBI) |
dc.subject.other.spa.fl_str_mv |
Sulphadiazine {acetonitrile (1) + water (2)} mixtures solubility, Jouyban-Acree model preferential solvation Inverse Kirkwood-Buff integrals (IKBI) |
description |
Se informa la solubilidad en equilibrio a temperaturas de (293.15 a 313.15) K, termodinámica de disolución y solvatación preferencial de sulfadiazina (SD) en mezclas de {acetonitrilo (ACN) (1) + agua (2)}. La solubilidad de la fracción molar de SD ( x 3 ) aumenta cuando surge la temperatura y también aumenta con el aumento de la proporción de ACN. Varía de 4.81 × 10 –6 en agua limpia a 6.02 × 10 –4 en ACN puro a 298.15 K. El comportamiento de solubilidad fue correlacionado adecuadamente por Jouyban-Acree, Wilson modificado y no lineal (propuesto por Machatha et al..) los modelos y las desviaciones porcentuales medias obtenidas (MPD) son 4.1%, 2.3% y 2.3%, respectivamente. La comparación del MPD muestra que la predicción usando el modelo Jouyban-Acree es más precisa que la ecuación Jouyban-Acree-Abraham para la predicción de solubilidad de SD en {ACN (1) + agua (2)}. A partir de la variación de la solubilidad con la temperatura, se realizó el análisis termodinámico aparente de disolución en todas las mezclas y disolventes puros. Sobre la base de la inversa de Kirkwood-Buff integrales se calcularon los parámetros de solvatación preferenciales. SD está preferentemente solvatado por agua en mezclas ricas en agua (0.00 < x 1 <0.26) pero preferentemente solvatado por ACN en el intervalo (0.26 < x 1 <0.65). En mezclas ricas en ACN, el comportamiento no está bien definido. |
publishDate |
2019 |
dc.date.accessioned.none.fl_str_mv |
2019-12-16T22:50:58Z |
dc.date.available.none.fl_str_mv |
2019-12-16T22:50:58Z |
dc.date.issued.none.fl_str_mv |
2019-03-19 |
dc.type.none.fl_str_mv |
Artículo |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.coarversion.none.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.issn.spa.fl_str_mv |
00319104 |
dc.identifier.uri.spa.fl_str_mv |
https://doi.org/10.1080/00319104.2019.1594227 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12494/15763 |
dc.identifier.bibliographicCitation.spa.fl_str_mv |
Daniel Ricardo Delgado, Diego Iván Caviedes-Rubio, Claudia Patricia Ortiz, Yarly Lizeth Parra-Pava, María Ángeles Peña, Abolghasem Jouyban, Seyyedeh Narjes Mirheydari, Fleming Martínez & William E. Acree Jr (2019) Solubility of sulphadiazine in (acetonitrile + water) mixtures: measurement, correlation, thermodynamics and preferential solvation, Physics and Chemistry of Liquids, DOI: 10.1080/00319104.2019.1594227 |
identifier_str_mv |
00319104 Daniel Ricardo Delgado, Diego Iván Caviedes-Rubio, Claudia Patricia Ortiz, Yarly Lizeth Parra-Pava, María Ángeles Peña, Abolghasem Jouyban, Seyyedeh Narjes Mirheydari, Fleming Martínez & William E. Acree Jr (2019) Solubility of sulphadiazine in (acetonitrile + water) mixtures: measurement, correlation, thermodynamics and preferential solvation, Physics and Chemistry of Liquids, DOI: 10.1080/00319104.2019.1594227 |
url |
https://doi.org/10.1080/00319104.2019.1594227 https://hdl.handle.net/20.500.12494/15763 |
dc.relation.isversionof.spa.fl_str_mv |
https://www.tandfonline.com/doi/abs/10.1080/00319104.2019.1594227 |
dc.relation.ispartofjournal.spa.fl_str_mv |
Physics and Chemistry of Liquids |
dc.relation.references.spa.fl_str_mv |
Marcus Y. Preferential solvation of drugs in binary solvent mixtures. Pharm Anal Acta. 2017;8:1000537. [Google Scholar] Marcus Y. On the preferential solvation of drugs and PAHs in binary solvent mixtures. J Mol Liq. 2008;140:61–67. [Crossref], [Web of Science ®] , [Google Scholar] Jouyban A. Handbook of solubility data for pharmaceuticals. Boca Raton, FL: CRC Press; 2010. [Google Scholar] Martinez F, Jouyban A, Acree WE Jr. Pharmaceuticals solubility is still nowadays widely studied everywhere (Editorial). Pharm Sci (Tabriz). 2017;23:1–2. [Crossref] , [Google Scholar] Avdeef A. Absorption and drug development, solubility, permeability and charge state. Hoboken, NJ: Wiley-Interscience; 2003. [Google Scholar] Marcus Y. Solvent mixtures: properties and selective solvation. New York: Marcel Dekker, Inc.; 2002. [Google Scholar] Marcus Y. Preferential solvation of drugs in binary solvent mixtures. Pharm Anal Acta. 2017;8:1000537. [Google Scholar] Budavari S, O’Neil MJ, Smith A, et al. The Merck index, an encyclopedia of chemicals, drugs, and biologicals. 13th ed. Whitehouse Station (NJ): Merck & Co., Inc.; 2001. [Google Scholar] Gelone S, O’Donell JA. Anti-infectives. In: editor, Gennaro AR. Remington: the science and practice of pharmacy. 21st ed. Philadelphia: Lippincott Williams & Wilkins; 2005;1630–1633. [Google Scholar] Martínez F, Gómez A. Thermodynamic study of the solubility of some sulfonamides in octanol, water, and the mutually saturated solvents. J Solution Chem. 2001;30:909–923. [Crossref], [Web of Science ®] , [Google Scholar] Bustamante P, Escalera B, Martin A, et al. A modification of the extended Hildebrand approach to predict the solubility of structurally related drugs in solvent mixtures. J Pharm Pharmacol. 1993;45:253–257. [Crossref], [PubMed], [Web of Science ®] , [Google Scholar] Reillo A, Escalera B, Selles E. Prediction of sulfanilamide solubility in dioxane–water mixtures. Pharmazie. 1993;48:904–907. [Web of Science ®] , [Google Scholar] Reillo A, Bustamante P, Escalera B, et al. Solubility parameter-based methods for predicting the solubility of sulfapyridine in solvent mixtures. Drug Dev Ind Pharm. 1995;21:2073–2084. [Taylor & Francis Online], [Web of Science ®] , [Google Scholar] Reillo A, Cordoba M, Escalera B, et al. Prediction of sulfamethizole solubility in dioxane–water mixtures. Pharmazie. 1995;50:472–475. [Web of Science ®] , [Google Scholar] Delgado DR, Romdhani A, Martínez F. Thermodynamics of sulfanilamide solubility in propylene glycol + water mixtures. Lat Am J Pharm. 2011;30:2024–2030. [Web of Science ®] , [Google Scholar] Delgado DR, Romdhani A, Martínez F. Solubility of sulfamethizole in some propylene glycol+ water mixtures at several temperatures. Fluid Phase Equilib. 2012;322:113–119. [Crossref], [Web of Science ®] , [Google Scholar] Delgado DR, Rodríguez GA, Martínez F. Thermodynamic study of the solubility of sulfapyridine in some ethanol + water mixtures. J Mol Liq. 2013;177:156–161. [Crossref], [Web of Science ®] , [Google Scholar] Delgado DR, Martínez F. Solution thermodynamics of sulfadiazine in ethanol + water mixtures. J Mol Liq. 2013;187:99–105. [Crossref], [Web of Science ®] , [Google Scholar] Delgado DR, Martínez F. Solubility and solution thermodynamics of sulfamerazine and sulfamethazine in some ethanol + water mixtures. Fluid Phase Equilib. 2013;360:88–96. [Crossref], [Web of Science ®] , [Google Scholar] Delgado DR, Martínez F. Solubility and preferential solvation of sulfadiazine in methanol + water mixtures at several temperatures. Fluid Phase Equilib. 2014;379:128–138. [Crossref], [Web of Science ®] , [Google Scholar] Delgado DR, Martínez F. Solubility and solution thermodynamics of some sulfonamides in 1-propanol + water mixtures. J Solution Chem. 2014;43:836–852. [Crossref], [Web of Science ®] , [Google Scholar] Jiménez DM, Cárdenas ZJ, Delgado DR, et al. Solubility temperature dependence and preferential solvation of sulfadiazine in 1,4-dioxane + water co-solvent mixtures. Fluid Phase Equilib. 2015;397:26–36. [Crossref], [Web of Science ®] , [Google Scholar] Muñoz MM, Delgado DR, Peña MA, et al. Solubility and preferential solvation of sulfadiazine, sulfamerazine and sulfamethazine in propylene glycol + water mixtures at 298.15 K. J Mol Liq. 2015;204:132–136. [Crossref], [Web of Science ®] , [Google Scholar] Delgado DR, Martínez F. Solution thermodynamics and preferential solvation of sulfamerazine in some methanol + water mixtures. J Solution Chem. 2015;44:360–377. [Crossref], [Web of Science ®] , [Google Scholar] Jiménez DM, Cárdenas ZJ, Martínez F. Solubility and solution thermodynamics of sulfadiazine in polyethylene glycol 400 + water mixtures. J Mol Liq. 2016;216:239–245. [Crossref], [Web of Science ®] , [Google Scholar] Delgado DR, Almanza OA, Martínez F, et al. Solution thermodynamics and preferential solvation of sulfamethazine in (methanol + water) mixtures. J Chem Thermodyn. 2016;97:264–276. [Crossref], [Web of Science ®] , [Google Scholar] Cárdenas ZJ, Jiménez DM, Almanza OA, et al. Solubility and preferential solvation of sulfanilamide, sulfamethizole and sulfapyridine in methanol + water mixtures at 298.15 K. J Solution Chem. 2016;45:1479–1503. [Crossref], [Web of Science ®] , [Google Scholar] Cox BG, Natarajan R, Waghorne WE. Thermodynamic properties for transfer of electrolytes from water to acetonitrile and to acetonitrile + water mixtures. J Chem Soc Faraday Trans 1. 1979;75:86–95. [Crossref] , [Google Scholar] Barbosa J, Barrón D, Bergés R, et al. Preferential solvation in acetonitrile–water mixtures: relationship between solvatochromic parameters and pK values of carboxylic acids. J Chem Soc Faraday Trans. 1997;93:1915–1920. [Crossref] , [Google Scholar] Gekko K, Ohmae E, Kameyama K, et al. Acetonitrile-protein interactions: amino acid solubility and preferential solvation. Biochim Biophys Acta. 1998;1387:195–205. [Crossref], [PubMed] , [Google Scholar] Shin DN, Wijnen JW, Engberts JBFN, et al. On the origin of microheterogeneity: mass spectrometric studies of acetonitrile-water and dimethyl sulfoxide-water binary mixtures (Part 2). J Phys Chem B. 2002;106:6014–6020. [Crossref], [Web of Science ®] , [Google Scholar] Wang G, Wang Y, Ma Y, et al. Determination and correlation of cefuroxime acid solubility in (acetonitrile + water) mixtures. J Chem Thermodyn. 2014;77:144–150. [Crossref], [Web of Science ®] , [Google Scholar] Polatoğlu İ, Yürekli Y, Baştürk SB. Estimating solubility of parathion in organic solvents. AKU J Sci Eng. 2015;15(037101):1–5. [Crossref] , [Google Scholar] Yang Y, Yang P, Du S, et al. Solubility determination and thermodynamic modelling of allisartan isoproxil in different binary solvent mixtures from T = (278.15 to 313.15) K and mixing properties of solutions. J Chem Thermodyn. 2016;103:432–445. [Crossref], [Web of Science ®] , [Google Scholar] Dali I, Aydi A, Alberto CC, et al. Correlation and semi-empirical modeling of solubility of gallic acid in different pure solvents and in binary solvent mixtures of propan-1-ol + water, propan-2-ol + water and acetonitrile + water from (293.2 to 318.2) K. J Mol Liq. 2016;222:503–519. [Crossref], [Web of Science ®] , [Google Scholar] Li X, Cong Y, Li W, et al. Thermodynamic modelling of solubility and preferential solvation for ribavirin (II) in co-solvent mixtures of (methanol, n-propanol, acetonitrile or 1,4-dioxane) + water. J Chem Thermodyn. 2017;115:74–83. [Crossref], [Web of Science ®] , [Google Scholar] Marcus Y. The properties of solvents. Chichester: John Wiley & Sons; 1998. [Google Scholar] Marcus Y. The structure of and interactions in binary acetonitrile + water mixtures. J Phys Org Chem. 2012;25:1072–1085. [Crossref], [Web of Science ®] , [Google Scholar] Delgado DR, Martínez F. Preferential solvation of sulfadiazine, sulfamerazine and sulfamethazine in ethanol + water solvent mixtures according to the IKBI method. J Mol Liq. 2014;193:152–159. [Crossref], [Web of Science ®] , [Google Scholar] Delgado DR, Martínez F. Preferential solvation of some structurally related sulfonamides in 1-propanol + water co-solvent mixtures. Phys Chem Liq. 2015;53:293–306. [Taylor & Francis Online], [Web of Science ®] , [Google Scholar] Delgado DR, Peña MA, Martínez F, et al. Further numerical analyses on the solubility of sulfapyridine in ethanol + water mixtures. Pharm Sci (Tabriz). 2016;22:143–152. [Crossref] , [Google Scholar] Cárdenas ZJ, Jiménez DM, Delgado DR, et al. Extended Hildebrand solubility approach applied to some sulphonamides in propylene glycol + water mixtures. Phys Chem Liq. 2015;53:763–775. [Taylor & Francis Online], [Web of Science ®] , [Google Scholar] Delgado DR, Peña MA, Martínez F. Extended Hildebrand solubility approach applied to some structurally related sulfonamides in ethanol + water mixtures. Rev Colomb Quím. 2016;45:34–43. [Crossref] , [Google Scholar] Delgado DR, Peña MA, Martínez F. Extended Hildebrand solubility approach applied to some sulphapyrimidines in some {methanol (1) + water (2)} mixtures. Phys Chem Liq. 2018;56:176–188. [Taylor & Francis Online], [Web of Science ®] , [Google Scholar] Delgado DR, Peña MA, Martínez F. Extended Hildebrand solubility approach applied to sulphadiazine, sulphamerazine and sulphamethazine in some {1-propanol (1) + water (2)} mixtures at 298.15 K. Phys Chem Liq. 2019;57:388-400. [Google Scholar] Martin A, Bustamante P, Chun AHC. Physical chemical principles in the pharmaceutical sciences. 4th ed. Philadelphia, PA: Lea & Febiger; 1993. [Google Scholar] Barton AFM. Handbook of solubility parameters and other cohesion parameters. 2nd ed. New York: CRC Press; 1991. [Google Scholar] Connors KA. Thermodynamics of pharmaceutical systems: an introduction for students of pharmacy. Hoboken, NJ: Wiley-Interscience; 2002. [Crossref] , [Google Scholar] Kristl A, Vesnaver G. Thermodynamic investigation of the effect of 1-octanol-water mutual miscibility on the partitioning and solubility of some guanine derivatives. J Chem Soc Faraday Trans. 1995;91:995–998. [Crossref] , [Google Scholar] Jouyban A. Review of the cosolvency models for predicting solubility of drugs in water-cosolvent mixtures. J Pharm Pharmaceut Sci. 2008;11:32–58. [Crossref], [PubMed], [Web of Science ®] , [Google Scholar] Machatha SG, Bustamante P, Yalkowsky SH. Deviation from linearity of drug solubility in ethanol/water mixtures. Int J Pharm. 2004;283:83–88. [Crossref], [PubMed] , [Google Scholar] Jouyban-Gharamaleki A, Valaee L, Barzegar-Jalali M, et al. Comparison of various cosolvency models for calculating solute solubility in water-cosolvent mixtures. Int J Pharm. 1999;177:93–101. [Crossref], [PubMed], [Web of Science ®] , [Google Scholar] Jouyban-Gharamaleki A. The modified Wilson model and predicting drug solubility in water-cosolvent mixtures. Chem Pharm Bull (Tokyo). 1998;46:1058–1061. [Crossref], [Web of Science ®] , [Google Scholar] Jouyban-Gharamaleki A, Acree WE Jr. Comparison of models for describing multiple peaks in solubility profiles. Int J Pharm. 1998;167:177–182. [Crossref], [Web of Science ®] , [Google Scholar] Jouyban A, Khoubnasabjafari M, Chan HK, et al. Mathematical representation of solubility of amino acids in binary aqueous-organic solvent mixtures at various temperatures using the Jouyban-Acree model. Pharmazie. 2006;61:789–792. [PubMed], [Web of Science ®] , [Google Scholar] Jouyban A, Chew NYK, Chan HK, et al. Solubility predicton of salicylic acid in water-ethanol-propylene glycol mixtures using the Jouyban-Acree model. Pharmazie. 2006;61:417–419. [PubMed], [Web of Science ®] , [Google Scholar] Jouyban-Gharamaleki A, Dastmalchi S, Chan HK, et al. Solubility prediction for furosemide in watercosolvent mixtures using the minimum number of experiments. Drug Dev Ind Pharm. 2001;27:577–583. [Taylor & Francis Online], [Web of Science ®] , [Google Scholar] Jouyban A, Chan HK, Chew NYK, et al. Solubility prediction of paracetamol in binary and ternary solvent mixtures using Jouyban-Acree model. Chem Pharm Bull (Tokyo). 2006;54:428–431. [Crossref], [PubMed], [Web of Science ®] , [Google Scholar] Jouyban A, Soltanpour S, Soltani S, et al. Prediction of drug solubility in mixed solvents using computed Abraham parameters. J Mol Liq. 2009;146:82–88. [Crossref], [Web of Science ®] , [Google Scholar] Krug RR, Hunter WG, Grieger RA. Enthalpy-entropy compensation. 1. Some fundamental statistical problems associated with the analysis of van’t Hoff and Arrhenius data. J Phys Chem. 1976;80:2335–2341. [Crossref], [Web of Science ®] , [Google Scholar] Krug RR, Hunter WG, Grieger RA. Enthalpy-entropy compensation. 2. Separation of the chemical from the statistical effect. J Phys Chem. 1976;80:2341–2351. [Crossref], [Web of Science ®] , [Google Scholar] Perlovich GL, Kurkov SV, Kinchin AN, et al. Thermodynamics of solutions III: comparison of the solvation of (+)-naproxen with other NSAIDs. Eur J Pharm Biopharm. 2004;57:411–420. [Crossref], [PubMed], [Web of Science ®] , [Google Scholar] Romero S, Reillo A, Escalera B, et al. The behaviour of paracetamol in mixtures of aprotic and amphiprotic-aprotic solvents. Relationship of solubility curves to specific and nonspecific interactions. Chem Pharm Bull (Tokyo). 1996;44:1061–1066. [Crossref], [Web of Science ®] , [Google Scholar] Mora CP, Martínez F. Thermodynamic quantities relative to solution processes of naproxen in aqueous media at pH 1.2 and7.4. Phys Chem Liq. 2006;44:585–596. [Taylor & Francis Online], [Web of Science ®] , [Google Scholar] Bustamante P, Romero S, Peña A, et al. Nonlinear enthalpy-entropy compensation for the solubility of drugs in solvent mixtures: paracetamol, acetanilide and nalidixic acid in dioxane-water. J Pharm Sci. 1998;87:1590–1596. [Crossref], [PubMed], [Web of Science ®] , [Google Scholar] Martínez F, Peña MA, Bustamante P. Thermodynamic analysis and enthalpy-entropy compensation for the solubility of indomethacin in aqueous and non-aqueous mixtures. Fluid Phase Equilib. 2011;308:98–106. [Crossref], [Web of Science ®] , [Google Scholar] Ruidiaz MA, Delgado DR, Martínez F, et al. Solubility and preferential solvation of indomethacin in 1,4-dioxane + water solvent mixtures. Fluid Phase Equilib. 2010;299:259–265. [Crossref], [Web of Science ®] , [Google Scholar] Jouyban A, Acree WE Jr, Martínez F. Modelling the solubility and preferential solvation of gallic acid in cosolvent + water mixtures. J Mol Liq. 2016;224:502–506. [Crossref], [Web of Science ®] , [Google Scholar] Jiménez DM, Cárdenas ZJ, Delgado DR, et al. Solubility and solution thermodynamics of meloxicam in 1,4-dioxane and water mixtures. Ind Eng Chem Res. 2014;53:16550–16558. [Crossref], [Web of Science ®] , [Google Scholar] Martínez F, Gómez A. Thermodynamics of partitioning of some sulfonamides in 1-octanol/buffer and liposome systems. J Phys Org Chem. 2002;15:874–880. [Crossref], [Web of Science ®] , [Google Scholar] Marcus Y. On the preferential solvation of drugs and PAHs in binary solvent mixtures. J Mol Liq. 2008;140:61–67. Jouyban A. Handbook of solubility data for pharmaceuticals. Boca Raton, FL: CRC Press; 2010. Martinez F, Jouyban A, Acree WE Jr. Pharmaceuticals solubility is still nowadays widely studied everywhere (Editorial). Pharm Sci (Tabriz). 2017;23:1–2. Avdeef A. Absorption and drug development, solubility, permeability and charge state. Hoboken, NJ: WileyInterscience; 2003. Marcus Y. Solvent mixtures: properties and selective solvation. New York: Marcel Dekker, Inc.; 2002. Marcus Y. Preferential solvation of drugs in binary solvent mixtures. Pharm Anal Acta. 2017;8:1000537. Budavari S, O’Neil MJ, Smith A, et al. The Merck index, an encyclopedia of chemicals, drugs, and biologicals. 13th ed. Whitehouse Station (NJ): Merck & Co., Inc.; 2001. ] Gelone S, O’Donell JA. Anti-infectives. In: editor, Gennaro AR. Remington: the science and practice of pharmacy. 21st ed. Philadelphia: Lippincott Williams & Wilkins; 2005;1630–1633. Martínez F, Gómez A. Thermodynamic study of the solubility of some sulfonamides in octanol, water, and the mutually saturated solvents. J Solution Chem. 2001;30:909–923 Bustamante P, Escalera B, Martin A, et al. A modification of the extended Hildebrand approach to predict the solubility of structurally related drugs in solvent mixtures. J Pharm Pharmacol. 1993;45:253–257. Reillo A, Escalera B, Selles E. Prediction of sulfanilamide solubility in dioxane–water mixtures. Pharmazie. 1993;48:904–907. Reillo A, Bustamante P, Escalera B, et al. Solubility parameter-based methods for predicting the solubility of sulfapyridine in solvent mixtures. Drug Dev Ind Pharm. 1995;21:2073–2084 Reillo A, Cordoba M, Escalera B, et al. Prediction of sulfamethizole solubility in dioxane–water mixtures. Pharmazie. 1995;50:472–475 Delgado DR, Romdhani A, Martínez F. Thermodynamics of sulfanilamide solubility in propylene glycol + water mixtures. Lat Am J Pharm. 2011;30:2024–2030. Delgado DR, Romdhani A, Martínez F. Solubility of sulfamethizole in some propylene glycol+ water mixtures at several temperatures. Fluid Phase Equilib. 2012;322:113–119. Delgado DR, Rodríguez GA, Martínez F. Thermodynamic study of the solubility of sulfapyridine in some ethanol + water mixtures. J Mol Liq. 2013;177:156–161 Delgado DR, Martínez F. Solution thermodynamics of sulfadiazine in ethanol + water mixtures. J Mol Liq. 2013;187:99–105 Delgado DR, Martínez F. Solubility and solution thermodynamics of sulfamerazine and sulfamethazine in some ethanol + water mixtures. Fluid Phase Equilib. 2013;360:88–96. Delgado DR, Martínez F. Solubility and preferential solvation of sulfadiazine in methanol + water mixtures at several temperatures. Fluid Phase Equilib. 2014;379:128–138 Delgado DR, Martínez F. Solubility and solution thermodynamics of some sulfonamides in 1-propanol + water mixtures. J Solution Chem. 2014;43:836–852 Jiménez DM, Cárdenas ZJ, Delgado DR, et al. Solubility temperature dependence and preferential solvation of sulfadiazine in 1,4-dioxane + water co-solvent mixtures. Fluid Phase Equilib. 2015;397:26–36. Muñoz MM, Delgado DR, Peña MA, et al. Solubility and preferential solvation of sulfadiazine, sulfamerazine and sulfamethazine in propylene glycol + water mixtures at 298.15 K. J Mol Liq. 2015;204:132–136. Delgado DR, Martínez F. Solution thermodynamics and preferential solvation of sulfamerazine in some methanol + water mixtures. J Solution Chem. 2015;44:360–377. Jiménez DM, Cárdenas ZJ, Martínez F. Solubility and solution thermodynamics of sulfadiazine in polyethylene glycol 400 + water mixtures. J Mol Liq. 2016;216:239–245. Delgado DR, Almanza OA, Martínez F, et al. Solution thermodynamics and preferential solvation of sulfamethazine in (methanol + water) mixtures. J Chem Thermodyn. 2016;97:264–276. Cárdenas ZJ, Jiménez DM, Almanza OA, et al. Solubility and preferential solvation of sulfanilamide, sulfamethizole and sulfapyridine in methanol + water mixtures at 298.15 K. J Solution Chem. 2016;45:1479–1503. Cox BG, Natarajan R, Waghorne WE. Thermodynamic properties for transfer of electrolytes from water to acetonitrile and to acetonitrile + water mixtures. J Chem Soc Faraday Trans 1. 1979;75:86–95. Barbosa J, Barrón D, Bergés R, et al. Preferential solvation in acetonitrile–water mixtures: relationship between solvatochromic parameters and pK values of carboxylic acids. J Chem Soc Faraday Trans. 1997;93:1915–1920 Gekko K, Ohmae E, Kameyama K, et al. Acetonitrile-protein interactions: amino acid solubility and preferential solvation. Biochim Biophys Acta. 1998;1387:195–205. |
dc.rights.license.none.fl_str_mv |
Atribución – No comercial – Sin Derivar |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/closedAccess |
dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_14cb |
rights_invalid_str_mv |
Atribución – No comercial – Sin Derivar http://purl.org/coar/access_right/c_14cb |
eu_rights_str_mv |
closedAccess |
dc.format.extent.spa.fl_str_mv |
14 |
dc.publisher.spa.fl_str_mv |
Taylor and Francis Universidad Cooperativa de Colombia, Facultad de Ingenierías, Ingeniería Industrial, Neiva |
dc.publisher.program.spa.fl_str_mv |
Ingeniería Industrial |
dc.publisher.place.spa.fl_str_mv |
Neiva |
institution |
Universidad Cooperativa de Colombia |
bitstream.url.fl_str_mv |
https://repository.ucc.edu.co/bitstreams/e12c677e-c15a-428f-88bf-4a4e191e6ccc/download https://repository.ucc.edu.co/bitstreams/e4fe8d32-f2ae-4a8e-bd18-8829d4535798/download https://repository.ucc.edu.co/bitstreams/c94f8608-1ca3-49dd-821c-dd9d1bea8e82/download https://repository.ucc.edu.co/bitstreams/5c8d906b-333c-482d-9b18-099cb2fc26c0/download |
bitstream.checksum.fl_str_mv |
3bce4f7ab09dfc588f126e1e36e98a45 f10050c947c8ecd56df40b5e128a8d91 172d7ae8c6d4899bce6dd4fafb621c49 205640491d0e942f0b559eb233caf86a |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Cooperativa de Colombia |
repository.mail.fl_str_mv |
bdigital@metabiblioteca.com |
_version_ |
1814246776644829184 |
spelling |
Delgado, Daniel RicardoCaviedes Rubio, Diego IvánOrtiz, Claudia PatriciaParra-Pava, Yarly LizethPeña, María ÁngelesJouyban, AbolghasemMirheydari, Seyyedeh NarjesMartínez, FlemingAcree Jr, William Eugene2019-12-16T22:50:58Z2019-12-16T22:50:58Z2019-03-1900319104https://doi.org/10.1080/00319104.2019.1594227https://hdl.handle.net/20.500.12494/15763Daniel Ricardo Delgado, Diego Iván Caviedes-Rubio, Claudia Patricia Ortiz, Yarly Lizeth Parra-Pava, María Ángeles Peña, Abolghasem Jouyban, Seyyedeh Narjes Mirheydari, Fleming Martínez & William E. Acree Jr (2019) Solubility of sulphadiazine in (acetonitrile + water) mixtures: measurement, correlation, thermodynamics and preferential solvation, Physics and Chemistry of Liquids, DOI: 10.1080/00319104.2019.1594227Se informa la solubilidad en equilibrio a temperaturas de (293.15 a 313.15) K, termodinámica de disolución y solvatación preferencial de sulfadiazina (SD) en mezclas de {acetonitrilo (ACN) (1) + agua (2)}. La solubilidad de la fracción molar de SD ( x 3 ) aumenta cuando surge la temperatura y también aumenta con el aumento de la proporción de ACN. Varía de 4.81 × 10 –6 en agua limpia a 6.02 × 10 –4 en ACN puro a 298.15 K. El comportamiento de solubilidad fue correlacionado adecuadamente por Jouyban-Acree, Wilson modificado y no lineal (propuesto por Machatha et al..) los modelos y las desviaciones porcentuales medias obtenidas (MPD) son 4.1%, 2.3% y 2.3%, respectivamente. La comparación del MPD muestra que la predicción usando el modelo Jouyban-Acree es más precisa que la ecuación Jouyban-Acree-Abraham para la predicción de solubilidad de SD en {ACN (1) + agua (2)}. A partir de la variación de la solubilidad con la temperatura, se realizó el análisis termodinámico aparente de disolución en todas las mezclas y disolventes puros. Sobre la base de la inversa de Kirkwood-Buff integrales se calcularon los parámetros de solvatación preferenciales. SD está preferentemente solvatado por agua en mezclas ricas en agua (0.00 < x 1 <0.26) pero preferentemente solvatado por ACN en el intervalo (0.26 < x 1 <0.65). En mezclas ricas en ACN, el comportamiento no está bien definido.The equilibrium solubility at temperatures from (293.15 to 313.15) K, dissolution thermodynamics and preferential solvation of sulphadiazine (SD) in {acetonitrile (ACN) (1) + water (2)} mixtures is reported. Mole fraction solubility of SD (x3) increases when temperature arises and also increases with the ACN proportion increasing. It varies from 4.81 × 10–6 in neat water to 6.02 × 10–4 in neat ACN at 298.15 K. Solubility behaviour was adequately correlated by Jouyban-Acree, modified Wilson and non-linear (proposed by Machatha et al.) models and the obtained mean percentage deviations (MPD) are 4.1%, 2.3% and 2.3%, respectively. The comparison of the MPD shows that the prediction using Jouyban-Acree model is more accurate than Jouyban-Acree-Abraham equation for solubility prediction of SD in {ACN (1) + water (2)}. From the variation of solubility with temperature the apparent thermodynamic analysis of dissolution was performed in all the mixtures and neat solvents. Based on the inverse Kirkwood-Buff integrals preferential solvation parameters were calculated. SD is preferentially solvated by water in water-rich mixtures (0.00 < x1 < 0.26) but preferentially solvated by ACN in the interval (0.26 < x1 < 0.65). In ACN-rich mixtures the behaviour is not well defined.http://scienti.colciencias.gov.co:8081/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001402116https://orcid.org/0000-0002-4835-9739https://scienti.colciencias.gov.co/gruplac/jsp/visualiza/visualizagr.jsp?nro=00000000004151danielr.delgado@campusucc.edu.cohttps://scholar.google.com/citations?hl=es&user=OW0mejcAAAAJ&view_op=list_works14Taylor and FrancisUniversidad Cooperativa de Colombia, Facultad de Ingenierías, Ingeniería Industrial, NeivaIngeniería IndustrialNeivahttps://www.tandfonline.com/doi/abs/10.1080/00319104.2019.1594227Physics and Chemistry of LiquidsMarcus Y. Preferential solvation of drugs in binary solvent mixtures. Pharm Anal Acta. 2017;8:1000537. [Google Scholar] Marcus Y. On the preferential solvation of drugs and PAHs in binary solvent mixtures. J Mol Liq. 2008;140:61–67. [Crossref], [Web of Science ®] , [Google Scholar] Jouyban A. Handbook of solubility data for pharmaceuticals. Boca Raton, FL: CRC Press; 2010. [Google Scholar] Martinez F, Jouyban A, Acree WE Jr. Pharmaceuticals solubility is still nowadays widely studied everywhere (Editorial). Pharm Sci (Tabriz). 2017;23:1–2. [Crossref] , [Google Scholar] Avdeef A. Absorption and drug development, solubility, permeability and charge state. Hoboken, NJ: Wiley-Interscience; 2003. [Google Scholar] Marcus Y. Solvent mixtures: properties and selective solvation. New York: Marcel Dekker, Inc.; 2002. [Google Scholar] Marcus Y. Preferential solvation of drugs in binary solvent mixtures. Pharm Anal Acta. 2017;8:1000537. [Google Scholar] Budavari S, O’Neil MJ, Smith A, et al. The Merck index, an encyclopedia of chemicals, drugs, and biologicals. 13th ed. Whitehouse Station (NJ): Merck & Co., Inc.; 2001. [Google Scholar] Gelone S, O’Donell JA. Anti-infectives. In: editor, Gennaro AR. Remington: the science and practice of pharmacy. 21st ed. Philadelphia: Lippincott Williams & Wilkins; 2005;1630–1633. [Google Scholar] Martínez F, Gómez A. Thermodynamic study of the solubility of some sulfonamides in octanol, water, and the mutually saturated solvents. J Solution Chem. 2001;30:909–923. [Crossref], [Web of Science ®] , [Google Scholar] Bustamante P, Escalera B, Martin A, et al. A modification of the extended Hildebrand approach to predict the solubility of structurally related drugs in solvent mixtures. J Pharm Pharmacol. 1993;45:253–257. [Crossref], [PubMed], [Web of Science ®] , [Google Scholar] Reillo A, Escalera B, Selles E. Prediction of sulfanilamide solubility in dioxane–water mixtures. Pharmazie. 1993;48:904–907. [Web of Science ®] , [Google Scholar] Reillo A, Bustamante P, Escalera B, et al. Solubility parameter-based methods for predicting the solubility of sulfapyridine in solvent mixtures. Drug Dev Ind Pharm. 1995;21:2073–2084. [Taylor & Francis Online], [Web of Science ®] , [Google Scholar] Reillo A, Cordoba M, Escalera B, et al. Prediction of sulfamethizole solubility in dioxane–water mixtures. Pharmazie. 1995;50:472–475. [Web of Science ®] , [Google Scholar] Delgado DR, Romdhani A, Martínez F. Thermodynamics of sulfanilamide solubility in propylene glycol + water mixtures. Lat Am J Pharm. 2011;30:2024–2030. [Web of Science ®] , [Google Scholar] Delgado DR, Romdhani A, Martínez F. Solubility of sulfamethizole in some propylene glycol+ water mixtures at several temperatures. Fluid Phase Equilib. 2012;322:113–119. [Crossref], [Web of Science ®] , [Google Scholar] Delgado DR, Rodríguez GA, Martínez F. Thermodynamic study of the solubility of sulfapyridine in some ethanol + water mixtures. J Mol Liq. 2013;177:156–161. [Crossref], [Web of Science ®] , [Google Scholar] Delgado DR, Martínez F. Solution thermodynamics of sulfadiazine in ethanol + water mixtures. J Mol Liq. 2013;187:99–105. [Crossref], [Web of Science ®] , [Google Scholar] Delgado DR, Martínez F. Solubility and solution thermodynamics of sulfamerazine and sulfamethazine in some ethanol + water mixtures. Fluid Phase Equilib. 2013;360:88–96. [Crossref], [Web of Science ®] , [Google Scholar] Delgado DR, Martínez F. Solubility and preferential solvation of sulfadiazine in methanol + water mixtures at several temperatures. Fluid Phase Equilib. 2014;379:128–138. [Crossref], [Web of Science ®] , [Google Scholar] Delgado DR, Martínez F. Solubility and solution thermodynamics of some sulfonamides in 1-propanol + water mixtures. J Solution Chem. 2014;43:836–852. [Crossref], [Web of Science ®] , [Google Scholar] Jiménez DM, Cárdenas ZJ, Delgado DR, et al. Solubility temperature dependence and preferential solvation of sulfadiazine in 1,4-dioxane + water co-solvent mixtures. Fluid Phase Equilib. 2015;397:26–36. [Crossref], [Web of Science ®] , [Google Scholar] Muñoz MM, Delgado DR, Peña MA, et al. Solubility and preferential solvation of sulfadiazine, sulfamerazine and sulfamethazine in propylene glycol + water mixtures at 298.15 K. J Mol Liq. 2015;204:132–136. [Crossref], [Web of Science ®] , [Google Scholar] Delgado DR, Martínez F. Solution thermodynamics and preferential solvation of sulfamerazine in some methanol + water mixtures. J Solution Chem. 2015;44:360–377. [Crossref], [Web of Science ®] , [Google Scholar] Jiménez DM, Cárdenas ZJ, Martínez F. Solubility and solution thermodynamics of sulfadiazine in polyethylene glycol 400 + water mixtures. J Mol Liq. 2016;216:239–245. [Crossref], [Web of Science ®] , [Google Scholar] Delgado DR, Almanza OA, Martínez F, et al. Solution thermodynamics and preferential solvation of sulfamethazine in (methanol + water) mixtures. J Chem Thermodyn. 2016;97:264–276. [Crossref], [Web of Science ®] , [Google Scholar] Cárdenas ZJ, Jiménez DM, Almanza OA, et al. Solubility and preferential solvation of sulfanilamide, sulfamethizole and sulfapyridine in methanol + water mixtures at 298.15 K. J Solution Chem. 2016;45:1479–1503. [Crossref], [Web of Science ®] , [Google Scholar] Cox BG, Natarajan R, Waghorne WE. Thermodynamic properties for transfer of electrolytes from water to acetonitrile and to acetonitrile + water mixtures. J Chem Soc Faraday Trans 1. 1979;75:86–95. [Crossref] , [Google Scholar] Barbosa J, Barrón D, Bergés R, et al. Preferential solvation in acetonitrile–water mixtures: relationship between solvatochromic parameters and pK values of carboxylic acids. J Chem Soc Faraday Trans. 1997;93:1915–1920. [Crossref] , [Google Scholar] Gekko K, Ohmae E, Kameyama K, et al. Acetonitrile-protein interactions: amino acid solubility and preferential solvation. Biochim Biophys Acta. 1998;1387:195–205. [Crossref], [PubMed] , [Google Scholar] Shin DN, Wijnen JW, Engberts JBFN, et al. On the origin of microheterogeneity: mass spectrometric studies of acetonitrile-water and dimethyl sulfoxide-water binary mixtures (Part 2). J Phys Chem B. 2002;106:6014–6020. [Crossref], [Web of Science ®] , [Google Scholar] Wang G, Wang Y, Ma Y, et al. Determination and correlation of cefuroxime acid solubility in (acetonitrile + water) mixtures. J Chem Thermodyn. 2014;77:144–150. [Crossref], [Web of Science ®] , [Google Scholar] Polatoğlu İ, Yürekli Y, Baştürk SB. Estimating solubility of parathion in organic solvents. AKU J Sci Eng. 2015;15(037101):1–5. [Crossref] , [Google Scholar] Yang Y, Yang P, Du S, et al. Solubility determination and thermodynamic modelling of allisartan isoproxil in different binary solvent mixtures from T = (278.15 to 313.15) K and mixing properties of solutions. J Chem Thermodyn. 2016;103:432–445. [Crossref], [Web of Science ®] , [Google Scholar] Dali I, Aydi A, Alberto CC, et al. Correlation and semi-empirical modeling of solubility of gallic acid in different pure solvents and in binary solvent mixtures of propan-1-ol + water, propan-2-ol + water and acetonitrile + water from (293.2 to 318.2) K. J Mol Liq. 2016;222:503–519. [Crossref], [Web of Science ®] , [Google Scholar] Li X, Cong Y, Li W, et al. Thermodynamic modelling of solubility and preferential solvation for ribavirin (II) in co-solvent mixtures of (methanol, n-propanol, acetonitrile or 1,4-dioxane) + water. J Chem Thermodyn. 2017;115:74–83. [Crossref], [Web of Science ®] , [Google Scholar] Marcus Y. The properties of solvents. Chichester: John Wiley & Sons; 1998. [Google Scholar] Marcus Y. The structure of and interactions in binary acetonitrile + water mixtures. J Phys Org Chem. 2012;25:1072–1085. [Crossref], [Web of Science ®] , [Google Scholar] Delgado DR, Martínez F. Preferential solvation of sulfadiazine, sulfamerazine and sulfamethazine in ethanol + water solvent mixtures according to the IKBI method. J Mol Liq. 2014;193:152–159. [Crossref], [Web of Science ®] , [Google Scholar] Delgado DR, Martínez F. Preferential solvation of some structurally related sulfonamides in 1-propanol + water co-solvent mixtures. Phys Chem Liq. 2015;53:293–306. [Taylor & Francis Online], [Web of Science ®] , [Google Scholar] Delgado DR, Peña MA, Martínez F, et al. Further numerical analyses on the solubility of sulfapyridine in ethanol + water mixtures. Pharm Sci (Tabriz). 2016;22:143–152. [Crossref] , [Google Scholar] Cárdenas ZJ, Jiménez DM, Delgado DR, et al. Extended Hildebrand solubility approach applied to some sulphonamides in propylene glycol + water mixtures. Phys Chem Liq. 2015;53:763–775. [Taylor & Francis Online], [Web of Science ®] , [Google Scholar] Delgado DR, Peña MA, Martínez F. Extended Hildebrand solubility approach applied to some structurally related sulfonamides in ethanol + water mixtures. Rev Colomb Quím. 2016;45:34–43. [Crossref] , [Google Scholar] Delgado DR, Peña MA, Martínez F. Extended Hildebrand solubility approach applied to some sulphapyrimidines in some {methanol (1) + water (2)} mixtures. Phys Chem Liq. 2018;56:176–188. [Taylor & Francis Online], [Web of Science ®] , [Google Scholar] Delgado DR, Peña MA, Martínez F. Extended Hildebrand solubility approach applied to sulphadiazine, sulphamerazine and sulphamethazine in some {1-propanol (1) + water (2)} mixtures at 298.15 K. Phys Chem Liq. 2019;57:388-400. [Google Scholar] Martin A, Bustamante P, Chun AHC. Physical chemical principles in the pharmaceutical sciences. 4th ed. Philadelphia, PA: Lea & Febiger; 1993. [Google Scholar] Barton AFM. Handbook of solubility parameters and other cohesion parameters. 2nd ed. New York: CRC Press; 1991. [Google Scholar] Connors KA. Thermodynamics of pharmaceutical systems: an introduction for students of pharmacy. Hoboken, NJ: Wiley-Interscience; 2002. [Crossref] , [Google Scholar] Kristl A, Vesnaver G. Thermodynamic investigation of the effect of 1-octanol-water mutual miscibility on the partitioning and solubility of some guanine derivatives. J Chem Soc Faraday Trans. 1995;91:995–998. [Crossref] , [Google Scholar] Jouyban A. Review of the cosolvency models for predicting solubility of drugs in water-cosolvent mixtures. J Pharm Pharmaceut Sci. 2008;11:32–58. [Crossref], [PubMed], [Web of Science ®] , [Google Scholar] Machatha SG, Bustamante P, Yalkowsky SH. Deviation from linearity of drug solubility in ethanol/water mixtures. Int J Pharm. 2004;283:83–88. [Crossref], [PubMed] , [Google Scholar] Jouyban-Gharamaleki A, Valaee L, Barzegar-Jalali M, et al. Comparison of various cosolvency models for calculating solute solubility in water-cosolvent mixtures. Int J Pharm. 1999;177:93–101. [Crossref], [PubMed], [Web of Science ®] , [Google Scholar] Jouyban-Gharamaleki A. The modified Wilson model and predicting drug solubility in water-cosolvent mixtures. Chem Pharm Bull (Tokyo). 1998;46:1058–1061. [Crossref], [Web of Science ®] , [Google Scholar] Jouyban-Gharamaleki A, Acree WE Jr. Comparison of models for describing multiple peaks in solubility profiles. Int J Pharm. 1998;167:177–182. [Crossref], [Web of Science ®] , [Google Scholar] Jouyban A, Khoubnasabjafari M, Chan HK, et al. Mathematical representation of solubility of amino acids in binary aqueous-organic solvent mixtures at various temperatures using the Jouyban-Acree model. Pharmazie. 2006;61:789–792. [PubMed], [Web of Science ®] , [Google Scholar] Jouyban A, Chew NYK, Chan HK, et al. Solubility predicton of salicylic acid in water-ethanol-propylene glycol mixtures using the Jouyban-Acree model. Pharmazie. 2006;61:417–419. [PubMed], [Web of Science ®] , [Google Scholar] Jouyban-Gharamaleki A, Dastmalchi S, Chan HK, et al. Solubility prediction for furosemide in watercosolvent mixtures using the minimum number of experiments. Drug Dev Ind Pharm. 2001;27:577–583. [Taylor & Francis Online], [Web of Science ®] , [Google Scholar] Jouyban A, Chan HK, Chew NYK, et al. Solubility prediction of paracetamol in binary and ternary solvent mixtures using Jouyban-Acree model. Chem Pharm Bull (Tokyo). 2006;54:428–431. [Crossref], [PubMed], [Web of Science ®] , [Google Scholar] Jouyban A, Soltanpour S, Soltani S, et al. Prediction of drug solubility in mixed solvents using computed Abraham parameters. J Mol Liq. 2009;146:82–88. [Crossref], [Web of Science ®] , [Google Scholar] Krug RR, Hunter WG, Grieger RA. Enthalpy-entropy compensation. 1. Some fundamental statistical problems associated with the analysis of van’t Hoff and Arrhenius data. J Phys Chem. 1976;80:2335–2341. [Crossref], [Web of Science ®] , [Google Scholar] Krug RR, Hunter WG, Grieger RA. Enthalpy-entropy compensation. 2. Separation of the chemical from the statistical effect. J Phys Chem. 1976;80:2341–2351. [Crossref], [Web of Science ®] , [Google Scholar] Perlovich GL, Kurkov SV, Kinchin AN, et al. Thermodynamics of solutions III: comparison of the solvation of (+)-naproxen with other NSAIDs. Eur J Pharm Biopharm. 2004;57:411–420. [Crossref], [PubMed], [Web of Science ®] , [Google Scholar] Romero S, Reillo A, Escalera B, et al. The behaviour of paracetamol in mixtures of aprotic and amphiprotic-aprotic solvents. Relationship of solubility curves to specific and nonspecific interactions. Chem Pharm Bull (Tokyo). 1996;44:1061–1066. [Crossref], [Web of Science ®] , [Google Scholar] Mora CP, Martínez F. Thermodynamic quantities relative to solution processes of naproxen in aqueous media at pH 1.2 and7.4. Phys Chem Liq. 2006;44:585–596. [Taylor & Francis Online], [Web of Science ®] , [Google Scholar] Bustamante P, Romero S, Peña A, et al. Nonlinear enthalpy-entropy compensation for the solubility of drugs in solvent mixtures: paracetamol, acetanilide and nalidixic acid in dioxane-water. J Pharm Sci. 1998;87:1590–1596. [Crossref], [PubMed], [Web of Science ®] , [Google Scholar] Martínez F, Peña MA, Bustamante P. Thermodynamic analysis and enthalpy-entropy compensation for the solubility of indomethacin in aqueous and non-aqueous mixtures. Fluid Phase Equilib. 2011;308:98–106. [Crossref], [Web of Science ®] , [Google Scholar] Ruidiaz MA, Delgado DR, Martínez F, et al. Solubility and preferential solvation of indomethacin in 1,4-dioxane + water solvent mixtures. Fluid Phase Equilib. 2010;299:259–265. [Crossref], [Web of Science ®] , [Google Scholar] Jouyban A, Acree WE Jr, Martínez F. Modelling the solubility and preferential solvation of gallic acid in cosolvent + water mixtures. J Mol Liq. 2016;224:502–506. [Crossref], [Web of Science ®] , [Google Scholar] Jiménez DM, Cárdenas ZJ, Delgado DR, et al. Solubility and solution thermodynamics of meloxicam in 1,4-dioxane and water mixtures. Ind Eng Chem Res. 2014;53:16550–16558. [Crossref], [Web of Science ®] , [Google Scholar] Martínez F, Gómez A. Thermodynamics of partitioning of some sulfonamides in 1-octanol/buffer and liposome systems. J Phys Org Chem. 2002;15:874–880. [Crossref], [Web of Science ®] , [Google Scholar]Marcus Y. On the preferential solvation of drugs and PAHs in binary solvent mixtures. J Mol Liq. 2008;140:61–67.Jouyban A. Handbook of solubility data for pharmaceuticals. Boca Raton, FL: CRC Press; 2010.Martinez F, Jouyban A, Acree WE Jr. Pharmaceuticals solubility is still nowadays widely studied everywhere (Editorial). Pharm Sci (Tabriz). 2017;23:1–2.Avdeef A. Absorption and drug development, solubility, permeability and charge state. Hoboken, NJ: WileyInterscience; 2003.Marcus Y. Solvent mixtures: properties and selective solvation. New York: Marcel Dekker, Inc.; 2002.Marcus Y. Preferential solvation of drugs in binary solvent mixtures. Pharm Anal Acta. 2017;8:1000537.Budavari S, O’Neil MJ, Smith A, et al. The Merck index, an encyclopedia of chemicals, drugs, and biologicals. 13th ed. Whitehouse Station (NJ): Merck & Co., Inc.; 2001.] Gelone S, O’Donell JA. Anti-infectives. In: editor, Gennaro AR. Remington: the science and practice of pharmacy. 21st ed. Philadelphia: Lippincott Williams & Wilkins; 2005;1630–1633.Martínez F, Gómez A. Thermodynamic study of the solubility of some sulfonamides in octanol, water, and the mutually saturated solvents. J Solution Chem. 2001;30:909–923Bustamante P, Escalera B, Martin A, et al. A modification of the extended Hildebrand approach to predict the solubility of structurally related drugs in solvent mixtures. J Pharm Pharmacol. 1993;45:253–257.Reillo A, Escalera B, Selles E. Prediction of sulfanilamide solubility in dioxane–water mixtures. Pharmazie. 1993;48:904–907.Reillo A, Bustamante P, Escalera B, et al. Solubility parameter-based methods for predicting the solubility of sulfapyridine in solvent mixtures. Drug Dev Ind Pharm. 1995;21:2073–2084Reillo A, Cordoba M, Escalera B, et al. Prediction of sulfamethizole solubility in dioxane–water mixtures. Pharmazie. 1995;50:472–475Delgado DR, Romdhani A, Martínez F. Thermodynamics of sulfanilamide solubility in propylene glycol + water mixtures. Lat Am J Pharm. 2011;30:2024–2030.Delgado DR, Romdhani A, Martínez F. Solubility of sulfamethizole in some propylene glycol+ water mixtures at several temperatures. Fluid Phase Equilib. 2012;322:113–119.Delgado DR, Rodríguez GA, Martínez F. Thermodynamic study of the solubility of sulfapyridine in some ethanol + water mixtures. J Mol Liq. 2013;177:156–161Delgado DR, Martínez F. Solution thermodynamics of sulfadiazine in ethanol + water mixtures. J Mol Liq. 2013;187:99–105Delgado DR, Martínez F. Solubility and solution thermodynamics of sulfamerazine and sulfamethazine in some ethanol + water mixtures. Fluid Phase Equilib. 2013;360:88–96.Delgado DR, Martínez F. Solubility and preferential solvation of sulfadiazine in methanol + water mixtures at several temperatures. Fluid Phase Equilib. 2014;379:128–138Delgado DR, Martínez F. Solubility and solution thermodynamics of some sulfonamides in 1-propanol + water mixtures. J Solution Chem. 2014;43:836–852Jiménez DM, Cárdenas ZJ, Delgado DR, et al. Solubility temperature dependence and preferential solvation of sulfadiazine in 1,4-dioxane + water co-solvent mixtures. Fluid Phase Equilib. 2015;397:26–36.Muñoz MM, Delgado DR, Peña MA, et al. Solubility and preferential solvation of sulfadiazine, sulfamerazine and sulfamethazine in propylene glycol + water mixtures at 298.15 K. J Mol Liq. 2015;204:132–136.Delgado DR, Martínez F. Solution thermodynamics and preferential solvation of sulfamerazine in some methanol + water mixtures. J Solution Chem. 2015;44:360–377.Jiménez DM, Cárdenas ZJ, Martínez F. Solubility and solution thermodynamics of sulfadiazine in polyethylene glycol 400 + water mixtures. J Mol Liq. 2016;216:239–245.Delgado DR, Almanza OA, Martínez F, et al. Solution thermodynamics and preferential solvation of sulfamethazine in (methanol + water) mixtures. J Chem Thermodyn. 2016;97:264–276.Cárdenas ZJ, Jiménez DM, Almanza OA, et al. Solubility and preferential solvation of sulfanilamide, sulfamethizole and sulfapyridine in methanol + water mixtures at 298.15 K. J Solution Chem. 2016;45:1479–1503.Cox BG, Natarajan R, Waghorne WE. Thermodynamic properties for transfer of electrolytes from water to acetonitrile and to acetonitrile + water mixtures. J Chem Soc Faraday Trans 1. 1979;75:86–95.Barbosa J, Barrón D, Bergés R, et al. Preferential solvation in acetonitrile–water mixtures: relationship between solvatochromic parameters and pK values of carboxylic acids. J Chem Soc Faraday Trans. 1997;93:1915–1920Gekko K, Ohmae E, Kameyama K, et al. Acetonitrile-protein interactions: amino acid solubility and preferential solvation. Biochim Biophys Acta. 1998;1387:195–205.Sulfadiazinamezclas de {acetonitrilo (1) + agua (2)}solubilidadmodelo Jouyban-Acreesolvatación preferencialintegrales Kirkwood-Buff inversas (IKBI)Sulphadiazine{acetonitrile (1) + water (2)} mixturessolubility, Jouyban-Acree modelpreferential solvationInverse Kirkwood-Buff integrals (IKBI)Solubility of sulphadiazine in (acetonitrile+ water) mixtures: measurement, correlation, thermodynamics and preferential solvationArtículohttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionAtribución – No comercial – Sin Derivarinfo:eu-repo/semantics/closedAccesshttp://purl.org/coar/access_right/c_14cbPublicationLICENSElicense.txtlicense.txttext/plain; charset=utf-84334https://repository.ucc.edu.co/bitstreams/e12c677e-c15a-428f-88bf-4a4e191e6ccc/download3bce4f7ab09dfc588f126e1e36e98a45MD52ORIGINALSolubility of sulphadiazine in acetonitrile water mixtures measurement correlation thermodynamics and preferential solvation.pdfSolubility of sulphadiazine in acetonitrile water mixtures measurement correlation thermodynamics and preferential solvation.pdfArtículo Científicoapplication/pdf2358032https://repository.ucc.edu.co/bitstreams/e4fe8d32-f2ae-4a8e-bd18-8829d4535798/downloadf10050c947c8ecd56df40b5e128a8d91MD51TEXTSolubility of sulphadiazine in acetonitrile water mixtures measurement correlation thermodynamics and preferential solvation.pdf.txtSolubility of sulphadiazine in acetonitrile water mixtures measurement correlation thermodynamics and preferential solvation.pdf.txtExtracted texttext/plain53156https://repository.ucc.edu.co/bitstreams/c94f8608-1ca3-49dd-821c-dd9d1bea8e82/download172d7ae8c6d4899bce6dd4fafb621c49MD53THUMBNAILSolubility of sulphadiazine in acetonitrile water mixtures measurement correlation thermodynamics and preferential solvation.pdf.jpgSolubility of sulphadiazine in acetonitrile water mixtures measurement correlation thermodynamics and preferential solvation.pdf.jpgGenerated Thumbnailimage/jpeg4434https://repository.ucc.edu.co/bitstreams/5c8d906b-333c-482d-9b18-099cb2fc26c0/download205640491d0e942f0b559eb233caf86aMD5420.500.12494/15763oai:repository.ucc.edu.co:20.500.12494/157632024-08-10 20:59:32.408restrictedhttps://repository.ucc.edu.coRepositorio Institucional Universidad Cooperativa de Colombiabdigital@metabiblioteca.comVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEKUkVQT1NJVE9SSU9TIElOU1RJVFVDSU9OQUxFUwpMSUNFTkNJQSBERSBVU08KClBvciBtZWRpbyBkZWwgcHJlc2VudGUgZG9jdW1lbnRvLCBlbCBBdXRvcihlcyksIG1heW9yIChlcykgZGUgZWRhZCwgcXVpZW4gZW4gYWRlbGFudGUgc2UgZGVub21pbmFyw6EgZWwgQVVUT1IsIGNvbmZpZXJlIGEgbGEgVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEsIGNvbiBOSVQuIDg2MC0wMjk5MjQtNywgdW5hIExJQ0VOQ0lBIERFIFVTTyBkZSBvYnJhLCBiYWpvIGxhcyBzaWd1aWVudGVzIGNvbmRpY2lvbmVzLgoKQ0zDgVVTVUxBUwoKUFJJTUVSQS4gT2JqZXRvLiBFTCBBVVRPUiBwb3IgZXN0ZSBhY3RvIGF1dG9yaXphIGxhIHV0aWxpemFjacOzbiBkZSBsYSBvYnJhLCBkZSBjb25mb3JtaWRhZCBjb24gbG8gZXN0aXB1bGFkbyBhIGNvbnRpbnVhY2nDs246IAoKKGEpIFBhcmEgZWZlY3RvcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSBzZSBhdXRvcml6YSBsYSByZXByb2R1Y2Npw7NuIGRlIGxhIG9icmEgYW50ZXJpb3JtZW50ZSBjaXRhZGEsIGxhIGN1YWwgc2UgYWxvamFyw6EgZW4gZm9ybWF0byBkaWdpdGFsIGVuIGxhcyBwbGF0YWZvcm1hcyBvIHJlcG9zaXRvcmlvcyBhZG1pbmlzdHJhZG9zIHBvciBsYSBVTklWRVJTSURBRCBvIGVuIG90cm8gdGlwbyBkZSByZXBvc2l0b3Jpb3MgZXh0ZXJub3MgbyBww6FnaW5hcyB3ZWIgZXNjb2dpZG9zIHBvciBsYSBVTklWRVJTSURBRCwgcGFyYSBmaW5lcyBkZSBkaWZ1c2nDs24geSBkaXZ1bGdhY2nDs24uIEFkaWNpb25hbG1lbnRlLCBzZSBhdXRvcml6YSBhIHF1ZSBsb3MgdXN1YXJpb3MgaW50ZXJub3MgeSBleHRlcm5vcyBkZSBkaWNoYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgcmVwcm9kdXpjYW4gbyBkZXNjYXJndWVuIGxhIG9icmEsIHNpbiDDoW5pbW8gZGUgbHVjcm8sIHBhcmEgZmluZXMgcHJpdmFkb3MsIGVkdWNhdGl2b3MgbyBhY2Fkw6ltaWNvczsgc2llbXByZSB5IGN1YW5kbyBubyBzZSB2aW9sZW4gYWN1ZXJkb3MgY29uIGVkaXRvcmVzLCBwZXJpb2RvcyBkZSBlbWJhcmdvIG8gYWN1ZXJkb3MgZGUgY29uZmlkZW5jaWFsaWRhZCBxdWUgYXBsaXF1ZW4uCgooYikgU2UgYXV0b3JpemEgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBkZSBsYSBvYnJhIG1lbmNpb25hZGEsIGVuIGFjY2VzbyBhYmllcnRvLCBwYXJhIHN1IHV0aWxpemFjacOzbiBlbiBsYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgYWRtaW5pc3RyYWRvcyBwb3IgbGEgVU5JVkVSU0lEQUQuCgooYykgTG8gYW50ZXJpb3IgZXN0YXLDoSBzdWpldG8gYSBsYXMgZGVmaW5pY2lvbmVzIGNvbnRlbmlkYXMgZW4gbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MyB5IGxhIExleSAyMyBkZSAxOTgyLgoKClNFR1VOREEuIE9yaWdpbmFsaWRhZCB5IHJlY2xhbWFjaW9uZXMuIEVsIEFVVE9SIGRlY2xhcmEgcXVlIGxhIE9CUkEgZXMgb3JpZ2luYWwgeSBxdWUgZXMgZGUgc3UgY3JlYWNpw7NuIGV4Y2x1c2l2YSwgbm8gZXhpc3RpZW5kbyBpbXBlZGltZW50byBkZSBjdWFscXVpZXIgbmF0dXJhbGV6YSAoZW1iYXJnb3MsIHVzbyBkZSBtYXRlcmlhbCBwcm90ZWdpZG8gcG9yIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGxhIGNvbmNlc2nDs24gZGUgbG9zIGRlcmVjaG9zIHByZXZpc3RvcyBlbiBlc3RlIGFjdWVyZG8uIEVsIEFVVE9SIHJlc3BvbmRlcsOhIHBvciBjdWFscXVpZXIgYWNjacOzbiBkZSByZWl2aW5kaWNhY2nDs24sIHBsYWdpbyB1IG90cmEgY2xhc2UgZGUgcmVjbGFtYWNpw7NuIHF1ZSBhbCByZXNwZWN0byBwdWRpZXJhIHNvYnJldmVuaXIuCgpURVJDRVJBLiBDb250cmFwcmVzdGFjacOzbi4gRWwgQVVUT1IgYXV0b3JpemEgYSBxdWUgc3Ugb2JyYSBzZWEgdXRpbGl6YWRhIGRlIGNvbmZvcm1pZGFkIGNvbiBsYSBjbMOhdXN1bGEgUFJJTUVSQSBkZSBmb3JtYSBncmF0dWl0YSwgZXMgZGVjaXIsIHF1ZSBsYSB1dGlsaXphY2nDs24gZGUgbGEgbWlzbWEgbm8gZ2VuZXJhIG5pbmfDum4gcGFnbyBvIHJlZ2Fsw61hcyBlbiBmYXZvciBkZSBlc3RlLgoKQ1VBUlRBLiBUaXR1bGFyaWRhZCBkZSBkZXJlY2hvcy4gRWwgcHJlc2VudGUgY29udHJhdG8gbm8gdHJhbnNmaWVyZSBsYSB0aXR1bGFyaWRhZCBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBzb2JyZSBsYXMgb2JyYXMgYW50ZXJpb3JtZW50ZSBtZW5jaW9uYWRhcyBhIGxhIFVOSVZFUlNJREFELiDDmm5pY2FtZW50ZSBoYWNlIHJlbGFjacOzbiBhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgZW4gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGFudGVyaW9ybWVudGUgcGFjdGFkb3MuCgpRVUlOVEEuIENyw6lkaXRvcy4gTGEgVU5JVkVSU0lEQUQgc2UgY29tcHJvbWV0ZSBhIGRhciBhbCBBVVRPUiwgZWwgcmVjb25vY2ltaWVudG8gZGVudHJvIGNhZGEgZm9ybWEgZGUgdXRpbGl6YWNpw7NuIGVuIGxhIG9icmEuIExvcyBjcsOpZGl0b3MgZGViZW4gZmlndXJhciBlbiBjYWRhIHVubyBkZSBsb3MgZm9ybWF0b3MgbyByZWdpc3Ryb3MgZGUgcHVibGljYWNpw7NuLiBObyBjb25zdGl0dWlyw6EgdW5hIHZpb2xhY2nDs24gYSBsb3MgZGVyZWNob3MgbW9yYWxlcyBkZWwgYXV0b3IgbGEgbm8gcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBvIGRlbcOhcyB1dGlsaXphY2lvbmVzIGRlIGxhIG9icmEuIExhIHV0aWxpemFjacOzbiBvIG5vIGRlIGxhIG9icmEsIGFzw60gY29tbyBzdSBmb3JtYSBkZSB1dGlsaXphY2nDs24gc2Vyw6EgZmFjdWx0YWQgZXhjbHVzaXZhIGRlIGxhIFVOSVZFUlNJREFELgogClNFWFRBLiBEdXJhY2nDs24geSB0ZXJyaXRvcmlvLiBMYSBwcmVzZW50ZSBsaWNlbmNpYSBkZSB1c28gcXVlIHNlIG90b3JnYSBhIGZhdm9yIGRlIGxhIFVOSVZFUlNJREFEIHRlbmRyw6EgdW5hIGR1cmFjacOzbiBlcXVpdmFsZW50ZSBhbCB0w6lybWlubyBkZSBwcm90ZWNjacOzbiBsZWdhbCBkZSBsYSBvYnJhIHkgcGFyYSB0b2RvcyBsb3MgcGHDrXNlcyBkZWwgbXVuZG8uCgpTw4lQVElNQS4gVXNvIGRlIENyZWF0aXZlIENvbW1vbnMuIEVsIEFVVE9SIGF1dG9yaXphcsOhIGxhIGRpZnVzacOzbiBkZSBzdSBjb250ZW5pZG8gYmFqbyB1bmEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBhdHJpYnVjacOzbiA0LjAgaW50ZXJuYWNpb25hbCwgcXVlIGRlYmVyw6EgaW5jbHVpcnNlIGVuIGVsIGNvbnRlbmlkby4gCgpPQ1RBVkEuIERlcmVjaG8gZGUgZXhjbHVzacOzbi4gQ2FkYSBhdXRvciBwdWVkZSBpbmRpY2FyIGVuIGVsIG1vbWVudG8gZGUgZGVww7NzaXRvIGRlbCBjb250ZW5pZG8gcXVlIGVsIHRleHRvIGNvbXBsZXRvIGRlIGxhIHByb2R1Y2Npw7NuIGFjYWTDqW1pY2EgbyBjaWVudMOtZmljYSBubyBlc3RlIGNvbiBhY2Nlc28gYWJpZXJ0byBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIHBvciBtb3Rpdm9zIGRlIGNvbmZpZGVuY2lhbGlkYWQsIHBvcnF1ZSBzZSBlbmN1ZW50cmUgZW4gdsOtYXMgZGUgb2J0ZW5lciB1biBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbmR1c3RyaWFsIG8gZXhpc3RpciBhY3VlcmRvcyBwcmV2aW9zIGNvbiB0ZXJjZXJvcyAoZWRpdG9yaWFsZXMsIHJldmlzdGFzIGNpZW50w61maWNhcywgb3RyYXMgaW5zdGl0dWNpb25lcykuIEVsIGF1dG9yIHNlIGNvbXByb21ldGUgYSBkZXBvc2l0YXIgbG9zIG1ldGFkYXRvcyBlIGluZm9ybWFyIGVsIHRpZW1wbyBkZSBlbWJhcmdvIGR1cmFudGUgZWwgY3VhbCBlbCB0ZXh0byBjb21wbGV0byB0ZW5kcsOhIGFjY2VzbyByZXN0cmluZ2lkby4gCgpOT1ZFTkEuIEVsIEFVVE9SIGFsIGFjZXB0YXIgZXN0YSBsaWNlbmNpYSBhZHVjZSBxdWUgZXN0YSBwcm9kdWNjacOzbiBzZSBkZXNhcnJvbGzDsyBlbiBlbCBwZXJpb2RvIGVuIHF1ZSBzZSBlbmN1ZW50cmEgY29uIHbDrW5jdWxvcyBjb24gTGEgVW5pdmVyc2lkYWQuCgpEw4lDSU1BLiBOb3JtYXMgYXBsaWNhYmxlcy4gUGFyYSBsYSBpbnRlcnByZXRhY2nDs24geSBjdW1wbGltaWVudG8gZGVsIHByZXNlbnRlIGFjdWVyZG8gbGFzIHBhcnRlcyBzZSBzb21ldGVuIGEgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgbGEgTGV5IDIzIGRlIDE5ODIgeSBkZW3DoXMgbm9ybWFzIGFwbGljYWJsZXMgZGUgQ29sb21iaWEuIEFkZW3DoXMsIGEgbGFzIG5vcm1hcyBJbnN0aXR1Y2lvbmFsZXMgcXVlIGFwbGlxdWVuLgoKTGEgcHJlc2VudGUgbGljZW5jaWEgc2UgYXV0b3JpemEgZW4gbGEgZmVjaGEgZGUgcHVibGljYWNpw7NuIGVuIGxvcyByZXBvc2l0b3Jpb3MgaW5zdGl0dWNpb25hbGVzLgo= |