Thermodynamic analysis of the solubility of triclocarban in ethylene glycol + water mixtures

La solubilidad del triclocarbán (TCC) se determinó en mezclas de codisolvente de {etilenglicol (EG) + agua} a 7 temperaturas (288,15–318,15 K). La solubilidad de TCC aumenta al aumentar la temperatura y la polaridad del sistema de codisolvente disminuye al aumentar la concentración de EG. En ese cas...

Full description

Autores:
Cruz González, Ana María
Vargas Santana, Martha Sofía
Ortiz, Claudia Patricia
Cerquera, Néstor Enrique
Delgado, Daniel Ricardo
Fleming, Martínez
Jouyban, Abolghasem
Acree Jr, William Eugene
Tipo de recurso:
Article of journal
Fecha de publicación:
2021
Institución:
Universidad Cooperativa de Colombia
Repositorio:
Repositorio UCC
Idioma:
OAI Identifier:
oai:repository.ucc.edu.co:20.500.12494/32736
Acceso en línea:
https://doi.org/10.1016/j.molliq.2020.115222
https://hdl.handle.net/20.500.12494/32736
Palabra clave:
Triclocarban
Solubilidad
Van Hoff
Cosolvencia
IKBI
Solvatación preferencial
Triclocarban
Preferential solvation
IKBI
Cosolvency
Van Hoff
Solubility
Rights
embargoedAccess
License
Atribución – Sin Derivar
id COOPER2_1608da01bf792bf4352c824131f2b3d1
oai_identifier_str oai:repository.ucc.edu.co:20.500.12494/32736
network_acronym_str COOPER2
network_name_str Repositorio UCC
repository_id_str
dc.title.spa.fl_str_mv Thermodynamic analysis of the solubility of triclocarban in ethylene glycol + water mixtures
title Thermodynamic analysis of the solubility of triclocarban in ethylene glycol + water mixtures
spellingShingle Thermodynamic analysis of the solubility of triclocarban in ethylene glycol + water mixtures
Triclocarban
Solubilidad
Van Hoff
Cosolvencia
IKBI
Solvatación preferencial
Triclocarban
Preferential solvation
IKBI
Cosolvency
Van Hoff
Solubility
title_short Thermodynamic analysis of the solubility of triclocarban in ethylene glycol + water mixtures
title_full Thermodynamic analysis of the solubility of triclocarban in ethylene glycol + water mixtures
title_fullStr Thermodynamic analysis of the solubility of triclocarban in ethylene glycol + water mixtures
title_full_unstemmed Thermodynamic analysis of the solubility of triclocarban in ethylene glycol + water mixtures
title_sort Thermodynamic analysis of the solubility of triclocarban in ethylene glycol + water mixtures
dc.creator.fl_str_mv Cruz González, Ana María
Vargas Santana, Martha Sofía
Ortiz, Claudia Patricia
Cerquera, Néstor Enrique
Delgado, Daniel Ricardo
Fleming, Martínez
Jouyban, Abolghasem
Acree Jr, William Eugene
dc.contributor.author.none.fl_str_mv Cruz González, Ana María
Vargas Santana, Martha Sofía
Ortiz, Claudia Patricia
Cerquera, Néstor Enrique
Delgado, Daniel Ricardo
Fleming, Martínez
Jouyban, Abolghasem
Acree Jr, William Eugene
dc.subject.spa.fl_str_mv Triclocarban
Solubilidad
Van Hoff
Cosolvencia
IKBI
Solvatación preferencial
topic Triclocarban
Solubilidad
Van Hoff
Cosolvencia
IKBI
Solvatación preferencial
Triclocarban
Preferential solvation
IKBI
Cosolvency
Van Hoff
Solubility
dc.subject.other.spa.fl_str_mv Triclocarban
Preferential solvation
IKBI
Cosolvency
Van Hoff
Solubility
description La solubilidad del triclocarbán (TCC) se determinó en mezclas de codisolvente de {etilenglicol (EG) + agua} a 7 temperaturas (288,15–318,15 K). La solubilidad de TCC aumenta al aumentar la temperatura y la polaridad del sistema de codisolvente disminuye al aumentar la concentración de EG. En ese caso, el TCC alcanza su mínima solubilidad en agua pura a 288.15 K y su máxima solubilidad en EG a 318 K. Las funciones termodinámicas se calcularon mediante la ecuación de van Hoff, y se determinó que el proceso es endotérmico y, según la entropía entalpía El análisis de compensación está impulsado por la entropía en mezclas ricas en agua y por la entalpía en mezclas intermedias y ricas en EG. De acuerdo con las funciones de transferencia, TCC tiende a transferir de medios polares a menos polares. En cuanto al análisis de solvatación preferencial, realizado mediante el modelo IKBI,
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-01-21T16:45:56Z
dc.date.available.none.fl_str_mv 2021-01-21T16:45:56Z
2022-12-30
dc.date.issued.none.fl_str_mv 2021-03-01
dc.type.none.fl_str_mv Artículo
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.spa.fl_str_mv 01677322
dc.identifier.uri.spa.fl_str_mv https://doi.org/10.1016/j.molliq.2020.115222
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12494/32736
dc.identifier.bibliographicCitation.spa.fl_str_mv Cruz González, A. M., Vargas Santana, M.S., Polania-Orozco, S. J., Ortiz, C. P., Enrique Cerquera, N., Martínez, F., Delgado. R. D., Jouybangh, A., AcreeJri, W. (2021). Thermodynamic analysis of the solubility of triclocarban in ethylene glycol + water mixtures. Journal of Molecular Liquids Volume 325, 1 March 2021, 115222
identifier_str_mv 01677322
Cruz González, A. M., Vargas Santana, M.S., Polania-Orozco, S. J., Ortiz, C. P., Enrique Cerquera, N., Martínez, F., Delgado. R. D., Jouybangh, A., AcreeJri, W. (2021). Thermodynamic analysis of the solubility of triclocarban in ethylene glycol + water mixtures. Journal of Molecular Liquids Volume 325, 1 March 2021, 115222
url https://doi.org/10.1016/j.molliq.2020.115222
https://hdl.handle.net/20.500.12494/32736
dc.relation.isversionof.spa.fl_str_mv https://bbibliograficas.ucc.edu.co:2152/science/article/pii/S016773222037464X#!
dc.relation.ispartofjournal.spa.fl_str_mv Journal of Molecular Liquids
dc.relation.references.spa.fl_str_mv R. Khan, A. Zeb, N. Roy, R.T. Magar, H.J. Kim, K.W. Lee, S.W. Lee Biochemical and structural basis of triclosan resistance in a novel enoyl-acyl carrier protein reductase Antimicrob. Agents Chemother., 62 (2018) (e00648-18)
L. Zhu, H. Bi, J. Ma, Z. Hu, W. Zhang, J.E. Cronan, H. Wang The two functional enoyl-acyl carrier protein reductases of enterococcus faecalis do not mediate triclosan resistance MBio, 4 (2013) (e00613-13)
T.E.A. Chalew, R.U. Halden Environmental exposure of aquatic and terrestrial biota to triclosan and triclocarban J. Am. Water Resour. Assoc., 45 (2009), pp. 4-13
D.R. Delgado, E.M. Mogollon-Waltero, C.P. Ortiz, M. Peña, O.A. Almanza, F. Martínez, A. Jouyban Enthalpy-entropy compensation analysis of the triclocarban dissolution process in some {1,4-dioxane (1) + water (2)} mixtures J. Mol. Liq., 271 (2018), pp. 522-529
T.M. Tran, H.T. Trinh, H.Q. Anh, T. Van Le, S.N. Le, T.B. Minh Characterization of triclosan and triclocarban in indoor dust from home micro-environments in Vietnam and relevance of non-dietary exposure Sci. Total Environ., 732 (2020), p. 139326
Z.F. Chen, H.B. Wen, X. Dai, S.C. Yan, H. Zhang, Y.Y. Chen, Z. Du, G. Liu, Z. Cai Contamination and risk profiles of triclosan and triclocarban in sediments from a less urbanized region in China J. Hazard. Mater., 357 (2018), pp. 376-383
Z.F. Chen, G.G. Ying, Y.S. Liu, Q.Q. Zhang, J.L. Zhao, S.S. Liu, J. Chen, F.J. Peng, H.J. Lai, C.G. Pan Triclosan as a surrogate for household biocides: an investigation into biocides in aquatic environments of a highly urbanized region Water Res., 58 (2014), pp. 269-279
C.M. Marques, S. Moniz, J.P. de Sousa, A.P. Barbosa-Povoa, G. Reklaitis Decision-support challenges in the chemical-pharmaceutical industry: Findings and future research directions Comput. Chem. Eng., 134 (2020), p. 106672
E. Strade, D. Kalnina, J. Kulczycka Water efficiency and safe re-use of different grades of water - Topical issues for the pharmaceutical industry Water Resour. Ind., 24 (2020), p. 100132
A. Fàbregas-Fernández, E. García-Montoya, P. Pérez-Lozano, J.M. Suñé-Negre, J.R. Ticó, M. Miñarro Quality assurance in research: incorporating ISO9001:2000 into a GMP quality management system in a pharmaceutical R+D+I center Accred. Qual. Assur., 15 (2010), pp. 297-304
H.C. Poynton, W.E. Robinson Contaminants of emerging concern, with an emphasis on nanomaterials and pharmaceuticals Green Chemistry: An Inclusion Approach, Elsevier Inc. (2018), pp. 291-315
A.M. Romero-Nieto, N.E. Cerquera, F. Martínez, D.R. Delgado Thermodynamic study of the solubility of ethylparaben in acetonitrile + water cosolvent mixtures at different temperatures J. Mol. Liq., 287 (2019), p. 110894
J.M. Brausch, G.M. Rand A review of personal care products in the aquatic environment: environmental concentrations and toxicity Chemosphere, 82 (2011), pp. 1518-1532
Q. Bu, B. Wang, J. Huang, S. Deng, G. Yu Pharmaceuticals and personal care products in the aquatic environment in China: a review J. Hazard. Mater., 262 (2013), pp. 189-211
H. Montaseri, P.B.C. Forbes A review of monitoring methods for triclosan and its occurrence in aquatic environments, TrAC—Trends Anal. Chem., 85 (2016), pp. 221-231
M. Kajta, J. Rzemieniec, A. Wnuk, W. Lasoń Triclocarban impairs autophagy in neuronal cells and disrupts estrogen receptor signaling via hypermethylation of specific genes Sci. Total Environ., 701 (2020), p. 134818
dc.rights.license.none.fl_str_mv Atribución – Sin Derivar
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/embargoedAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_f1cf
rights_invalid_str_mv Atribución – Sin Derivar
http://purl.org/coar/access_right/c_f1cf
eu_rights_str_mv embargoedAccess
dc.format.extent.spa.fl_str_mv 10
dc.coverage.temporal.spa.fl_str_mv 325
dc.publisher.spa.fl_str_mv Universidad Cooperativa de Colombia, Facultad de Ingenierías, Ingeniería Industrial, Neiva
Elsevier B.V.
dc.publisher.program.spa.fl_str_mv Ingeniería Industrial
dc.publisher.place.spa.fl_str_mv Neiva
institution Universidad Cooperativa de Colombia
bitstream.url.fl_str_mv https://repository.ucc.edu.co/bitstreams/3f00316d-e22b-452a-8933-6e60d88174bc/download
bitstream.checksum.fl_str_mv 3bce4f7ab09dfc588f126e1e36e98a45
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Cooperativa de Colombia
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1808789223761772544
spelling Cruz González, Ana MaríaVargas Santana, Martha SofíaOrtiz, Claudia PatriciaCerquera, Néstor EnriqueDelgado, Daniel RicardoFleming, MartínezJouyban, AbolghasemAcree Jr, William Eugene3252021-01-21T16:45:56Z2022-12-302021-01-21T16:45:56Z2021-03-0101677322https://doi.org/10.1016/j.molliq.2020.115222https://hdl.handle.net/20.500.12494/32736Cruz González, A. M., Vargas Santana, M.S., Polania-Orozco, S. J., Ortiz, C. P., Enrique Cerquera, N., Martínez, F., Delgado. R. D., Jouybangh, A., AcreeJri, W. (2021). Thermodynamic analysis of the solubility of triclocarban in ethylene glycol + water mixtures. Journal of Molecular Liquids Volume 325, 1 March 2021, 115222La solubilidad del triclocarbán (TCC) se determinó en mezclas de codisolvente de {etilenglicol (EG) + agua} a 7 temperaturas (288,15–318,15 K). La solubilidad de TCC aumenta al aumentar la temperatura y la polaridad del sistema de codisolvente disminuye al aumentar la concentración de EG. En ese caso, el TCC alcanza su mínima solubilidad en agua pura a 288.15 K y su máxima solubilidad en EG a 318 K. Las funciones termodinámicas se calcularon mediante la ecuación de van Hoff, y se determinó que el proceso es endotérmico y, según la entropía entalpía El análisis de compensación está impulsado por la entropía en mezclas ricas en agua y por la entalpía en mezclas intermedias y ricas en EG. De acuerdo con las funciones de transferencia, TCC tiende a transferir de medios polares a menos polares. En cuanto al análisis de solvatación preferencial, realizado mediante el modelo IKBI,The solubility of triclocarban (TCC) was determined in {ethylene glycol (EG) + water} cosolvent mixtures at 7 temperatures (288.15–318.15 K). The solubility of TCC increases with increasing temperature and the polarity of the cosolvent system decreases with increasing EG concentration. In that case, TCC reaches its minimum solubility in pure water at 288.15 K and maximum solubility in EG at 318 K. The thermodynamic functions were calculated using the van Hoff equation, and it was determined that the process is endothermic and, according to entropy enthalpy compensation analysis, is driven by entropy in water-rich mixtures, and by enthalpy in intermediate and EG-rich mixtures. According to transfer functions, TCC tends to transfer from polar to less polar media. Regarding preferential solvation analysis, carried out using the IKBI model, TCC is preferentially solvated by water in water-rich mixtures and by EG in intermediate and EG-rich mixtures.Highlights. -- Abstract. -- Graphical abstract. -- Keywords. -- 1. Introduction. -- 2. Experimental methods. -- 3. Results and discussion. -- 4. Conclusions. -- Declaration of Competing Interest. -- Acknowledgments. -- References.http://scienti.colciencias.gov.co:8081/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001402116https://orcid.org/0000-0002-4835-9739https://scienti.minciencias.gov.co/gruplac/jsp/visualiza/visualizagr.jsp?nro=00000000004151danielr.delgado@campusucc.edu.cohttps://scholar.google.es/citations?user=OW0mejcAAAAJ&hl=es10Universidad Cooperativa de Colombia, Facultad de Ingenierías, Ingeniería Industrial, NeivaElsevier B.V.Ingeniería IndustrialNeivahttps://bbibliograficas.ucc.edu.co:2152/science/article/pii/S016773222037464X#!Journal of Molecular LiquidsR. Khan, A. Zeb, N. Roy, R.T. Magar, H.J. Kim, K.W. Lee, S.W. Lee Biochemical and structural basis of triclosan resistance in a novel enoyl-acyl carrier protein reductase Antimicrob. Agents Chemother., 62 (2018) (e00648-18)L. Zhu, H. Bi, J. Ma, Z. Hu, W. Zhang, J.E. Cronan, H. Wang The two functional enoyl-acyl carrier protein reductases of enterococcus faecalis do not mediate triclosan resistance MBio, 4 (2013) (e00613-13)T.E.A. Chalew, R.U. Halden Environmental exposure of aquatic and terrestrial biota to triclosan and triclocarban J. Am. Water Resour. Assoc., 45 (2009), pp. 4-13D.R. Delgado, E.M. Mogollon-Waltero, C.P. Ortiz, M. Peña, O.A. Almanza, F. Martínez, A. Jouyban Enthalpy-entropy compensation analysis of the triclocarban dissolution process in some {1,4-dioxane (1) + water (2)} mixtures J. Mol. Liq., 271 (2018), pp. 522-529T.M. Tran, H.T. Trinh, H.Q. Anh, T. Van Le, S.N. Le, T.B. Minh Characterization of triclosan and triclocarban in indoor dust from home micro-environments in Vietnam and relevance of non-dietary exposure Sci. Total Environ., 732 (2020), p. 139326Z.F. Chen, H.B. Wen, X. Dai, S.C. Yan, H. Zhang, Y.Y. Chen, Z. Du, G. Liu, Z. Cai Contamination and risk profiles of triclosan and triclocarban in sediments from a less urbanized region in China J. Hazard. Mater., 357 (2018), pp. 376-383Z.F. Chen, G.G. Ying, Y.S. Liu, Q.Q. Zhang, J.L. Zhao, S.S. Liu, J. Chen, F.J. Peng, H.J. Lai, C.G. Pan Triclosan as a surrogate for household biocides: an investigation into biocides in aquatic environments of a highly urbanized region Water Res., 58 (2014), pp. 269-279C.M. Marques, S. Moniz, J.P. de Sousa, A.P. Barbosa-Povoa, G. Reklaitis Decision-support challenges in the chemical-pharmaceutical industry: Findings and future research directions Comput. Chem. Eng., 134 (2020), p. 106672E. Strade, D. Kalnina, J. Kulczycka Water efficiency and safe re-use of different grades of water - Topical issues for the pharmaceutical industry Water Resour. Ind., 24 (2020), p. 100132A. Fàbregas-Fernández, E. García-Montoya, P. Pérez-Lozano, J.M. Suñé-Negre, J.R. Ticó, M. Miñarro Quality assurance in research: incorporating ISO9001:2000 into a GMP quality management system in a pharmaceutical R+D+I center Accred. Qual. Assur., 15 (2010), pp. 297-304H.C. Poynton, W.E. Robinson Contaminants of emerging concern, with an emphasis on nanomaterials and pharmaceuticals Green Chemistry: An Inclusion Approach, Elsevier Inc. (2018), pp. 291-315A.M. Romero-Nieto, N.E. Cerquera, F. Martínez, D.R. Delgado Thermodynamic study of the solubility of ethylparaben in acetonitrile + water cosolvent mixtures at different temperatures J. Mol. Liq., 287 (2019), p. 110894J.M. Brausch, G.M. Rand A review of personal care products in the aquatic environment: environmental concentrations and toxicity Chemosphere, 82 (2011), pp. 1518-1532Q. Bu, B. Wang, J. Huang, S. Deng, G. Yu Pharmaceuticals and personal care products in the aquatic environment in China: a review J. Hazard. Mater., 262 (2013), pp. 189-211H. Montaseri, P.B.C. Forbes A review of monitoring methods for triclosan and its occurrence in aquatic environments, TrAC—Trends Anal. Chem., 85 (2016), pp. 221-231M. Kajta, J. Rzemieniec, A. Wnuk, W. Lasoń Triclocarban impairs autophagy in neuronal cells and disrupts estrogen receptor signaling via hypermethylation of specific genes Sci. Total Environ., 701 (2020), p. 134818TriclocarbanSolubilidadVan HoffCosolvenciaIKBISolvatación preferencialTriclocarbanPreferential solvationIKBICosolvencyVan HoffSolubilityThermodynamic analysis of the solubility of triclocarban in ethylene glycol + water mixturesArtículohttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionAtribución – Sin Derivarinfo:eu-repo/semantics/embargoedAccesshttp://purl.org/coar/access_right/c_f1cfPublicationLICENSElicense.txtlicense.txttext/plain; charset=utf-84334https://repository.ucc.edu.co/bitstreams/3f00316d-e22b-452a-8933-6e60d88174bc/download3bce4f7ab09dfc588f126e1e36e98a45MD5220.500.12494/32736oai:repository.ucc.edu.co:20.500.12494/327362024-08-10 20:59:45.108metadata.onlyhttps://repository.ucc.edu.coRepositorio Institucional Universidad Cooperativa de Colombiabdigital@metabiblioteca.comVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEKUkVQT1NJVE9SSU9TIElOU1RJVFVDSU9OQUxFUwpMSUNFTkNJQSBERSBVU08KClBvciBtZWRpbyBkZWwgcHJlc2VudGUgZG9jdW1lbnRvLCBlbCBBdXRvcihlcyksIG1heW9yIChlcykgZGUgZWRhZCwgcXVpZW4gZW4gYWRlbGFudGUgc2UgZGVub21pbmFyw6EgZWwgQVVUT1IsIGNvbmZpZXJlIGEgbGEgVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEsIGNvbiBOSVQuIDg2MC0wMjk5MjQtNywgdW5hIExJQ0VOQ0lBIERFIFVTTyBkZSBvYnJhLCBiYWpvIGxhcyBzaWd1aWVudGVzIGNvbmRpY2lvbmVzLgoKQ0zDgVVTVUxBUwoKUFJJTUVSQS4gT2JqZXRvLiBFTCBBVVRPUiBwb3IgZXN0ZSBhY3RvIGF1dG9yaXphIGxhIHV0aWxpemFjacOzbiBkZSBsYSBvYnJhLCBkZSBjb25mb3JtaWRhZCBjb24gbG8gZXN0aXB1bGFkbyBhIGNvbnRpbnVhY2nDs246IAoKKGEpIFBhcmEgZWZlY3RvcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSBzZSBhdXRvcml6YSBsYSByZXByb2R1Y2Npw7NuIGRlIGxhIG9icmEgYW50ZXJpb3JtZW50ZSBjaXRhZGEsIGxhIGN1YWwgc2UgYWxvamFyw6EgZW4gZm9ybWF0byBkaWdpdGFsIGVuIGxhcyBwbGF0YWZvcm1hcyBvIHJlcG9zaXRvcmlvcyBhZG1pbmlzdHJhZG9zIHBvciBsYSBVTklWRVJTSURBRCBvIGVuIG90cm8gdGlwbyBkZSByZXBvc2l0b3Jpb3MgZXh0ZXJub3MgbyBww6FnaW5hcyB3ZWIgZXNjb2dpZG9zIHBvciBsYSBVTklWRVJTSURBRCwgcGFyYSBmaW5lcyBkZSBkaWZ1c2nDs24geSBkaXZ1bGdhY2nDs24uIEFkaWNpb25hbG1lbnRlLCBzZSBhdXRvcml6YSBhIHF1ZSBsb3MgdXN1YXJpb3MgaW50ZXJub3MgeSBleHRlcm5vcyBkZSBkaWNoYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgcmVwcm9kdXpjYW4gbyBkZXNjYXJndWVuIGxhIG9icmEsIHNpbiDDoW5pbW8gZGUgbHVjcm8sIHBhcmEgZmluZXMgcHJpdmFkb3MsIGVkdWNhdGl2b3MgbyBhY2Fkw6ltaWNvczsgc2llbXByZSB5IGN1YW5kbyBubyBzZSB2aW9sZW4gYWN1ZXJkb3MgY29uIGVkaXRvcmVzLCBwZXJpb2RvcyBkZSBlbWJhcmdvIG8gYWN1ZXJkb3MgZGUgY29uZmlkZW5jaWFsaWRhZCBxdWUgYXBsaXF1ZW4uCgooYikgU2UgYXV0b3JpemEgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBkZSBsYSBvYnJhIG1lbmNpb25hZGEsIGVuIGFjY2VzbyBhYmllcnRvLCBwYXJhIHN1IHV0aWxpemFjacOzbiBlbiBsYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgYWRtaW5pc3RyYWRvcyBwb3IgbGEgVU5JVkVSU0lEQUQuCgooYykgTG8gYW50ZXJpb3IgZXN0YXLDoSBzdWpldG8gYSBsYXMgZGVmaW5pY2lvbmVzIGNvbnRlbmlkYXMgZW4gbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MyB5IGxhIExleSAyMyBkZSAxOTgyLgoKClNFR1VOREEuIE9yaWdpbmFsaWRhZCB5IHJlY2xhbWFjaW9uZXMuIEVsIEFVVE9SIGRlY2xhcmEgcXVlIGxhIE9CUkEgZXMgb3JpZ2luYWwgeSBxdWUgZXMgZGUgc3UgY3JlYWNpw7NuIGV4Y2x1c2l2YSwgbm8gZXhpc3RpZW5kbyBpbXBlZGltZW50byBkZSBjdWFscXVpZXIgbmF0dXJhbGV6YSAoZW1iYXJnb3MsIHVzbyBkZSBtYXRlcmlhbCBwcm90ZWdpZG8gcG9yIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGxhIGNvbmNlc2nDs24gZGUgbG9zIGRlcmVjaG9zIHByZXZpc3RvcyBlbiBlc3RlIGFjdWVyZG8uIEVsIEFVVE9SIHJlc3BvbmRlcsOhIHBvciBjdWFscXVpZXIgYWNjacOzbiBkZSByZWl2aW5kaWNhY2nDs24sIHBsYWdpbyB1IG90cmEgY2xhc2UgZGUgcmVjbGFtYWNpw7NuIHF1ZSBhbCByZXNwZWN0byBwdWRpZXJhIHNvYnJldmVuaXIuCgpURVJDRVJBLiBDb250cmFwcmVzdGFjacOzbi4gRWwgQVVUT1IgYXV0b3JpemEgYSBxdWUgc3Ugb2JyYSBzZWEgdXRpbGl6YWRhIGRlIGNvbmZvcm1pZGFkIGNvbiBsYSBjbMOhdXN1bGEgUFJJTUVSQSBkZSBmb3JtYSBncmF0dWl0YSwgZXMgZGVjaXIsIHF1ZSBsYSB1dGlsaXphY2nDs24gZGUgbGEgbWlzbWEgbm8gZ2VuZXJhIG5pbmfDum4gcGFnbyBvIHJlZ2Fsw61hcyBlbiBmYXZvciBkZSBlc3RlLgoKQ1VBUlRBLiBUaXR1bGFyaWRhZCBkZSBkZXJlY2hvcy4gRWwgcHJlc2VudGUgY29udHJhdG8gbm8gdHJhbnNmaWVyZSBsYSB0aXR1bGFyaWRhZCBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBzb2JyZSBsYXMgb2JyYXMgYW50ZXJpb3JtZW50ZSBtZW5jaW9uYWRhcyBhIGxhIFVOSVZFUlNJREFELiDDmm5pY2FtZW50ZSBoYWNlIHJlbGFjacOzbiBhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgZW4gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGFudGVyaW9ybWVudGUgcGFjdGFkb3MuCgpRVUlOVEEuIENyw6lkaXRvcy4gTGEgVU5JVkVSU0lEQUQgc2UgY29tcHJvbWV0ZSBhIGRhciBhbCBBVVRPUiwgZWwgcmVjb25vY2ltaWVudG8gZGVudHJvIGNhZGEgZm9ybWEgZGUgdXRpbGl6YWNpw7NuIGVuIGxhIG9icmEuIExvcyBjcsOpZGl0b3MgZGViZW4gZmlndXJhciBlbiBjYWRhIHVubyBkZSBsb3MgZm9ybWF0b3MgbyByZWdpc3Ryb3MgZGUgcHVibGljYWNpw7NuLiBObyBjb25zdGl0dWlyw6EgdW5hIHZpb2xhY2nDs24gYSBsb3MgZGVyZWNob3MgbW9yYWxlcyBkZWwgYXV0b3IgbGEgbm8gcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBvIGRlbcOhcyB1dGlsaXphY2lvbmVzIGRlIGxhIG9icmEuIExhIHV0aWxpemFjacOzbiBvIG5vIGRlIGxhIG9icmEsIGFzw60gY29tbyBzdSBmb3JtYSBkZSB1dGlsaXphY2nDs24gc2Vyw6EgZmFjdWx0YWQgZXhjbHVzaXZhIGRlIGxhIFVOSVZFUlNJREFELgogClNFWFRBLiBEdXJhY2nDs24geSB0ZXJyaXRvcmlvLiBMYSBwcmVzZW50ZSBsaWNlbmNpYSBkZSB1c28gcXVlIHNlIG90b3JnYSBhIGZhdm9yIGRlIGxhIFVOSVZFUlNJREFEIHRlbmRyw6EgdW5hIGR1cmFjacOzbiBlcXVpdmFsZW50ZSBhbCB0w6lybWlubyBkZSBwcm90ZWNjacOzbiBsZWdhbCBkZSBsYSBvYnJhIHkgcGFyYSB0b2RvcyBsb3MgcGHDrXNlcyBkZWwgbXVuZG8uCgpTw4lQVElNQS4gVXNvIGRlIENyZWF0aXZlIENvbW1vbnMuIEVsIEFVVE9SIGF1dG9yaXphcsOhIGxhIGRpZnVzacOzbiBkZSBzdSBjb250ZW5pZG8gYmFqbyB1bmEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBhdHJpYnVjacOzbiA0LjAgaW50ZXJuYWNpb25hbCwgcXVlIGRlYmVyw6EgaW5jbHVpcnNlIGVuIGVsIGNvbnRlbmlkby4gCgpPQ1RBVkEuIERlcmVjaG8gZGUgZXhjbHVzacOzbi4gQ2FkYSBhdXRvciBwdWVkZSBpbmRpY2FyIGVuIGVsIG1vbWVudG8gZGUgZGVww7NzaXRvIGRlbCBjb250ZW5pZG8gcXVlIGVsIHRleHRvIGNvbXBsZXRvIGRlIGxhIHByb2R1Y2Npw7NuIGFjYWTDqW1pY2EgbyBjaWVudMOtZmljYSBubyBlc3RlIGNvbiBhY2Nlc28gYWJpZXJ0byBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIHBvciBtb3Rpdm9zIGRlIGNvbmZpZGVuY2lhbGlkYWQsIHBvcnF1ZSBzZSBlbmN1ZW50cmUgZW4gdsOtYXMgZGUgb2J0ZW5lciB1biBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbmR1c3RyaWFsIG8gZXhpc3RpciBhY3VlcmRvcyBwcmV2aW9zIGNvbiB0ZXJjZXJvcyAoZWRpdG9yaWFsZXMsIHJldmlzdGFzIGNpZW50w61maWNhcywgb3RyYXMgaW5zdGl0dWNpb25lcykuIEVsIGF1dG9yIHNlIGNvbXByb21ldGUgYSBkZXBvc2l0YXIgbG9zIG1ldGFkYXRvcyBlIGluZm9ybWFyIGVsIHRpZW1wbyBkZSBlbWJhcmdvIGR1cmFudGUgZWwgY3VhbCBlbCB0ZXh0byBjb21wbGV0byB0ZW5kcsOhIGFjY2VzbyByZXN0cmluZ2lkby4gCgpOT1ZFTkEuIEVsIEFVVE9SIGFsIGFjZXB0YXIgZXN0YSBsaWNlbmNpYSBhZHVjZSBxdWUgZXN0YSBwcm9kdWNjacOzbiBzZSBkZXNhcnJvbGzDsyBlbiBlbCBwZXJpb2RvIGVuIHF1ZSBzZSBlbmN1ZW50cmEgY29uIHbDrW5jdWxvcyBjb24gTGEgVW5pdmVyc2lkYWQuCgpEw4lDSU1BLiBOb3JtYXMgYXBsaWNhYmxlcy4gUGFyYSBsYSBpbnRlcnByZXRhY2nDs24geSBjdW1wbGltaWVudG8gZGVsIHByZXNlbnRlIGFjdWVyZG8gbGFzIHBhcnRlcyBzZSBzb21ldGVuIGEgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgbGEgTGV5IDIzIGRlIDE5ODIgeSBkZW3DoXMgbm9ybWFzIGFwbGljYWJsZXMgZGUgQ29sb21iaWEuIEFkZW3DoXMsIGEgbGFzIG5vcm1hcyBJbnN0aXR1Y2lvbmFsZXMgcXVlIGFwbGlxdWVuLgoKTGEgcHJlc2VudGUgbGljZW5jaWEgc2UgYXV0b3JpemEgZW4gbGEgZmVjaGEgZGUgcHVibGljYWNpw7NuIGVuIGxvcyByZXBvc2l0b3Jpb3MgaW5zdGl0dWNpb25hbGVzLgo=