Algorithm for predicting the most frequent causes of mortality by analyzing age and gender variables.

High density of populations in cities, complexity of risk factors that influence health and the impact of inequalities in sanitary outcomes, call for the adoption of decisive measures to improve health, and thus avoid injuries that trigger pathological events directly leading to the death of people....

Full description

Autores:
Cortés Méndez, Jairo Augusto
Abuchar Porras, Alexandra
Blanco Garrido, Fabián
Páez Páez, Jaime Alberto
Palacios Rozo, Jairo Jamith
Simanca Herrera, Fredys Alberto
Tipo de recurso:
Article of journal
Fecha de publicación:
2022
Institución:
Universidad Cooperativa de Colombia
Repositorio:
Repositorio UCC
Idioma:
OAI Identifier:
oai:repository.ucc.edu.co:20.500.12494/49069
Acceso en línea:
https://hdl.handle.net/20.500.12494/49069
Palabra clave:
Algoritmo
Variables
Mortalidad
Algorithm
Vriables
mortality
Rights
closedAccess
License
http://purl.org/coar/access_right/c_14cb
id COOPER2_14202242c0f11fb7b7448930bbe5ad4d
oai_identifier_str oai:repository.ucc.edu.co:20.500.12494/49069
network_acronym_str COOPER2
network_name_str Repositorio UCC
repository_id_str
dc.title.none.fl_str_mv Algorithm for predicting the most frequent causes of mortality by analyzing age and gender variables.
title Algorithm for predicting the most frequent causes of mortality by analyzing age and gender variables.
spellingShingle Algorithm for predicting the most frequent causes of mortality by analyzing age and gender variables.
Algoritmo
Variables
Mortalidad
Algorithm
Vriables
mortality
title_short Algorithm for predicting the most frequent causes of mortality by analyzing age and gender variables.
title_full Algorithm for predicting the most frequent causes of mortality by analyzing age and gender variables.
title_fullStr Algorithm for predicting the most frequent causes of mortality by analyzing age and gender variables.
title_full_unstemmed Algorithm for predicting the most frequent causes of mortality by analyzing age and gender variables.
title_sort Algorithm for predicting the most frequent causes of mortality by analyzing age and gender variables.
dc.creator.fl_str_mv Cortés Méndez, Jairo Augusto
Abuchar Porras, Alexandra
Blanco Garrido, Fabián
Páez Páez, Jaime Alberto
Palacios Rozo, Jairo Jamith
Simanca Herrera, Fredys Alberto
dc.contributor.author.none.fl_str_mv Cortés Méndez, Jairo Augusto
Abuchar Porras, Alexandra
Blanco Garrido, Fabián
Páez Páez, Jaime Alberto
Palacios Rozo, Jairo Jamith
Simanca Herrera, Fredys Alberto
dc.subject.none.fl_str_mv Algoritmo
Variables
Mortalidad
topic Algoritmo
Variables
Mortalidad
Algorithm
Vriables
mortality
dc.subject.other.none.fl_str_mv Algorithm
Vriables
mortality
description High density of populations in cities, complexity of risk factors that influence health and the impact of inequalities in sanitary outcomes, call for the adoption of decisive measures to improve health, and thus avoid injuries that trigger pathological events directly leading to the death of people. The above applies to Colombia and especially to Bogota D.C.; after the massive health crisis due to the pandemic. Consequently, it was proposed to implement a Prediction Algorithm based on a database directly taken from Salud Data and Salud Capital, which registered 31,720 deaths in Bogota in 2016, representing a rate of 397.5 deaths per 100,000 inhabitants, leading the list of the top ten causes: ischemic heart disease, with a rate of 65.8%, chronic respiratory tract diseases, with a rate of 26.4%, and cerebrovascular diseases with a rate of 25.7% per 100,000 inhabitants. The above data have shown the need to find a death prediction system, since it was difficult to predict the number of deaths that the pandemic was going to cause. It should be understood that the causes of mortality maintain a direct relationship with the medical study, as it evolves and develops according to the processing of the data obtained from the causes of mortality. Obtaining a good prediction system based on the data obtained greatly helps the medical area to centralize more efforts to counteract diseases with a higher rate, seeking to reduce the most significant causes of mortality. The algorithm designed analyzed two variables age and gender to predict the probability of death of a person with a percentage of 94.66% accuracy.
publishDate 2022
dc.date.issued.none.fl_str_mv 2022
dc.date.accessioned.none.fl_str_mv 2023-03-29T16:22:09Z
dc.date.available.none.fl_str_mv 2023-03-29T16:22:09Z
dc.type.none.fl_str_mv Artículo
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 2587-0130
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12494/49069
dc.identifier.bibliographicCitation.none.fl_str_mv Simanca, F. ; Criollo, J.; Paez, J. y Cortes, J.; Abuchar A. y Blanco, F. (2022). Algorithm for predicting the most frequent causes of mortality by analyzing age and gender variables. Journal of Positive Psychology and Wellbeing. Vol. 6 No. 1. https://journalppw.com/index.php/jppw/article/view/2562
identifier_str_mv 2587-0130
Simanca, F. ; Criollo, J.; Paez, J. y Cortes, J.; Abuchar A. y Blanco, F. (2022). Algorithm for predicting the most frequent causes of mortality by analyzing age and gender variables. Journal of Positive Psychology and Wellbeing. Vol. 6 No. 1. https://journalppw.com/index.php/jppw/article/view/2562
url https://hdl.handle.net/20.500.12494/49069
dc.relation.isversionof.none.fl_str_mv https://journalppw.com/index.php/jppw/article/view/2562
dc.relation.ispartofjournal.none.fl_str_mv Journal of Positive Psychology and Wellbeing
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/closedAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_14cb
eu_rights_str_mv closedAccess
rights_invalid_str_mv http://purl.org/coar/access_right/c_14cb
dc.coverage.temporal.none.fl_str_mv Vol. 6 No. 1
dc.publisher.none.fl_str_mv Universidad Cooperativa de Colombia, Facultad de Ingenierías, Ingeniería de Sistemas, Bogotá
dc.publisher.program.none.fl_str_mv Ingeniería de Sistemas
dc.publisher.place.none.fl_str_mv Bogotá
publisher.none.fl_str_mv Universidad Cooperativa de Colombia, Facultad de Ingenierías, Ingeniería de Sistemas, Bogotá
institution Universidad Cooperativa de Colombia
bitstream.url.fl_str_mv https://repository.ucc.edu.co/bitstreams/d9663c78-3caa-4ffb-8094-c6332bd6f41e/download
bitstream.checksum.fl_str_mv 3bce4f7ab09dfc588f126e1e36e98a45
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Cooperativa de Colombia
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1814247126072295424
spelling Cortés Méndez, Jairo AugustoAbuchar Porras, AlexandraBlanco Garrido, FabiánPáez Páez, Jaime AlbertoPalacios Rozo, Jairo JamithSimanca Herrera, Fredys AlbertoVol. 6 No. 12023-03-29T16:22:09Z2023-03-29T16:22:09Z20222587-0130https://hdl.handle.net/20.500.12494/49069Simanca, F. ; Criollo, J.; Paez, J. y Cortes, J.; Abuchar A. y Blanco, F. (2022). Algorithm for predicting the most frequent causes of mortality by analyzing age and gender variables. Journal of Positive Psychology and Wellbeing. Vol. 6 No. 1. https://journalppw.com/index.php/jppw/article/view/2562High density of populations in cities, complexity of risk factors that influence health and the impact of inequalities in sanitary outcomes, call for the adoption of decisive measures to improve health, and thus avoid injuries that trigger pathological events directly leading to the death of people. The above applies to Colombia and especially to Bogota D.C.; after the massive health crisis due to the pandemic. Consequently, it was proposed to implement a Prediction Algorithm based on a database directly taken from Salud Data and Salud Capital, which registered 31,720 deaths in Bogota in 2016, representing a rate of 397.5 deaths per 100,000 inhabitants, leading the list of the top ten causes: ischemic heart disease, with a rate of 65.8%, chronic respiratory tract diseases, with a rate of 26.4%, and cerebrovascular diseases with a rate of 25.7% per 100,000 inhabitants. The above data have shown the need to find a death prediction system, since it was difficult to predict the number of deaths that the pandemic was going to cause. It should be understood that the causes of mortality maintain a direct relationship with the medical study, as it evolves and develops according to the processing of the data obtained from the causes of mortality. Obtaining a good prediction system based on the data obtained greatly helps the medical area to centralize more efforts to counteract diseases with a higher rate, seeking to reduce the most significant causes of mortality. The algorithm designed analyzed two variables age and gender to predict the probability of death of a person with a percentage of 94.66% accuracy.High density of populations in cities, complexity of risk factors that influence health and the impact of inequalities in sanitary outcomes, call for the adoption of decisive measures to improve health, and thus avoid injuries that trigger pathological events directly leading to the death of people. The above applies to Colombia and especially to Bogota D.C.; after the massive health crisis due to the pandemic. Consequently, it was proposed to implement a Prediction Algorithm based on a database directly taken from Salud Data and Salud Capital, which registered 31,720 deaths in Bogota in 2016, representing a rate of 397.5 deaths per 100,000 inhabitants, leading the list of the top ten causes: ischemic heart disease, with a rate of 65.8%, chronic respiratory tract diseases, with a rate of 26.4%, and cerebrovascular diseases with a rate of 25.7% per 100,000 inhabitants. The above data have shown the need to find a death prediction system, since it was difficult to predict the number of deaths that the pandemic was going to cause. It should be understood that the causes of mortality maintain a direct relationship with the medical study, as it evolves and develops according to the processing of the data obtained from the causes of mortality. Obtaining a good prediction system based on the data obtained greatly helps the medical area to centralize more efforts to counteract diseases with a higher rate, seeking to reduce the most significant causes of mortality. The algorithm designed analyzed two variables age and gender to predict the probability of death of a person with a percentage of 94.66% accuracy.https://www.researchgate.net/profile/Jairo-Cortes-Mendezhttps://co.linkedin.com/in/jaime-alberto-paez-paez-49548823https://orcid.org/0000-0002-7312-0180https://orcid.org/0000-0002-7312-0180Jaime.paez@campusucc.edu.cohttps://scholar.google.com/citations?user=7SOhB48AAAAJ&hl=eshttps://scholar.google.es/citations?hl=es&user=dhHrDtQAAAAJ&view_op=list_works&sortby=pubdatehttps://scholar.google.com.co/citations?user=QnZg_mkAAAAJ&hl=enUniversidad Cooperativa de Colombia, Facultad de Ingenierías, Ingeniería de Sistemas, BogotáIngeniería de SistemasBogotáhttps://journalppw.com/index.php/jppw/article/view/2562Journal of Positive Psychology and WellbeingAlgoritmoVariablesMortalidadAlgorithmVriablesmortalityAlgorithm for predicting the most frequent causes of mortality by analyzing age and gender variables.Artículohttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/closedAccesshttp://purl.org/coar/access_right/c_14cbPublicationLICENSElicense.txtlicense.txttext/plain; charset=utf-84334https://repository.ucc.edu.co/bitstreams/d9663c78-3caa-4ffb-8094-c6332bd6f41e/download3bce4f7ab09dfc588f126e1e36e98a45MD5120.500.12494/49069oai:repository.ucc.edu.co:20.500.12494/490692024-08-10 20:59:14.016metadata.onlyhttps://repository.ucc.edu.coRepositorio Institucional Universidad Cooperativa de Colombiabdigital@metabiblioteca.comVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEKUkVQT1NJVE9SSU9TIElOU1RJVFVDSU9OQUxFUwpMSUNFTkNJQSBERSBVU08KClBvciBtZWRpbyBkZWwgcHJlc2VudGUgZG9jdW1lbnRvLCBlbCBBdXRvcihlcyksIG1heW9yIChlcykgZGUgZWRhZCwgcXVpZW4gZW4gYWRlbGFudGUgc2UgZGVub21pbmFyw6EgZWwgQVVUT1IsIGNvbmZpZXJlIGEgbGEgVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEsIGNvbiBOSVQuIDg2MC0wMjk5MjQtNywgdW5hIExJQ0VOQ0lBIERFIFVTTyBkZSBvYnJhLCBiYWpvIGxhcyBzaWd1aWVudGVzIGNvbmRpY2lvbmVzLgoKQ0zDgVVTVUxBUwoKUFJJTUVSQS4gT2JqZXRvLiBFTCBBVVRPUiBwb3IgZXN0ZSBhY3RvIGF1dG9yaXphIGxhIHV0aWxpemFjacOzbiBkZSBsYSBvYnJhLCBkZSBjb25mb3JtaWRhZCBjb24gbG8gZXN0aXB1bGFkbyBhIGNvbnRpbnVhY2nDs246IAoKKGEpIFBhcmEgZWZlY3RvcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSBzZSBhdXRvcml6YSBsYSByZXByb2R1Y2Npw7NuIGRlIGxhIG9icmEgYW50ZXJpb3JtZW50ZSBjaXRhZGEsIGxhIGN1YWwgc2UgYWxvamFyw6EgZW4gZm9ybWF0byBkaWdpdGFsIGVuIGxhcyBwbGF0YWZvcm1hcyBvIHJlcG9zaXRvcmlvcyBhZG1pbmlzdHJhZG9zIHBvciBsYSBVTklWRVJTSURBRCBvIGVuIG90cm8gdGlwbyBkZSByZXBvc2l0b3Jpb3MgZXh0ZXJub3MgbyBww6FnaW5hcyB3ZWIgZXNjb2dpZG9zIHBvciBsYSBVTklWRVJTSURBRCwgcGFyYSBmaW5lcyBkZSBkaWZ1c2nDs24geSBkaXZ1bGdhY2nDs24uIEFkaWNpb25hbG1lbnRlLCBzZSBhdXRvcml6YSBhIHF1ZSBsb3MgdXN1YXJpb3MgaW50ZXJub3MgeSBleHRlcm5vcyBkZSBkaWNoYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgcmVwcm9kdXpjYW4gbyBkZXNjYXJndWVuIGxhIG9icmEsIHNpbiDDoW5pbW8gZGUgbHVjcm8sIHBhcmEgZmluZXMgcHJpdmFkb3MsIGVkdWNhdGl2b3MgbyBhY2Fkw6ltaWNvczsgc2llbXByZSB5IGN1YW5kbyBubyBzZSB2aW9sZW4gYWN1ZXJkb3MgY29uIGVkaXRvcmVzLCBwZXJpb2RvcyBkZSBlbWJhcmdvIG8gYWN1ZXJkb3MgZGUgY29uZmlkZW5jaWFsaWRhZCBxdWUgYXBsaXF1ZW4uCgooYikgU2UgYXV0b3JpemEgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBkZSBsYSBvYnJhIG1lbmNpb25hZGEsIGVuIGFjY2VzbyBhYmllcnRvLCBwYXJhIHN1IHV0aWxpemFjacOzbiBlbiBsYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgYWRtaW5pc3RyYWRvcyBwb3IgbGEgVU5JVkVSU0lEQUQuCgooYykgTG8gYW50ZXJpb3IgZXN0YXLDoSBzdWpldG8gYSBsYXMgZGVmaW5pY2lvbmVzIGNvbnRlbmlkYXMgZW4gbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MyB5IGxhIExleSAyMyBkZSAxOTgyLgoKClNFR1VOREEuIE9yaWdpbmFsaWRhZCB5IHJlY2xhbWFjaW9uZXMuIEVsIEFVVE9SIGRlY2xhcmEgcXVlIGxhIE9CUkEgZXMgb3JpZ2luYWwgeSBxdWUgZXMgZGUgc3UgY3JlYWNpw7NuIGV4Y2x1c2l2YSwgbm8gZXhpc3RpZW5kbyBpbXBlZGltZW50byBkZSBjdWFscXVpZXIgbmF0dXJhbGV6YSAoZW1iYXJnb3MsIHVzbyBkZSBtYXRlcmlhbCBwcm90ZWdpZG8gcG9yIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGxhIGNvbmNlc2nDs24gZGUgbG9zIGRlcmVjaG9zIHByZXZpc3RvcyBlbiBlc3RlIGFjdWVyZG8uIEVsIEFVVE9SIHJlc3BvbmRlcsOhIHBvciBjdWFscXVpZXIgYWNjacOzbiBkZSByZWl2aW5kaWNhY2nDs24sIHBsYWdpbyB1IG90cmEgY2xhc2UgZGUgcmVjbGFtYWNpw7NuIHF1ZSBhbCByZXNwZWN0byBwdWRpZXJhIHNvYnJldmVuaXIuCgpURVJDRVJBLiBDb250cmFwcmVzdGFjacOzbi4gRWwgQVVUT1IgYXV0b3JpemEgYSBxdWUgc3Ugb2JyYSBzZWEgdXRpbGl6YWRhIGRlIGNvbmZvcm1pZGFkIGNvbiBsYSBjbMOhdXN1bGEgUFJJTUVSQSBkZSBmb3JtYSBncmF0dWl0YSwgZXMgZGVjaXIsIHF1ZSBsYSB1dGlsaXphY2nDs24gZGUgbGEgbWlzbWEgbm8gZ2VuZXJhIG5pbmfDum4gcGFnbyBvIHJlZ2Fsw61hcyBlbiBmYXZvciBkZSBlc3RlLgoKQ1VBUlRBLiBUaXR1bGFyaWRhZCBkZSBkZXJlY2hvcy4gRWwgcHJlc2VudGUgY29udHJhdG8gbm8gdHJhbnNmaWVyZSBsYSB0aXR1bGFyaWRhZCBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBzb2JyZSBsYXMgb2JyYXMgYW50ZXJpb3JtZW50ZSBtZW5jaW9uYWRhcyBhIGxhIFVOSVZFUlNJREFELiDDmm5pY2FtZW50ZSBoYWNlIHJlbGFjacOzbiBhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgZW4gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGFudGVyaW9ybWVudGUgcGFjdGFkb3MuCgpRVUlOVEEuIENyw6lkaXRvcy4gTGEgVU5JVkVSU0lEQUQgc2UgY29tcHJvbWV0ZSBhIGRhciBhbCBBVVRPUiwgZWwgcmVjb25vY2ltaWVudG8gZGVudHJvIGNhZGEgZm9ybWEgZGUgdXRpbGl6YWNpw7NuIGVuIGxhIG9icmEuIExvcyBjcsOpZGl0b3MgZGViZW4gZmlndXJhciBlbiBjYWRhIHVubyBkZSBsb3MgZm9ybWF0b3MgbyByZWdpc3Ryb3MgZGUgcHVibGljYWNpw7NuLiBObyBjb25zdGl0dWlyw6EgdW5hIHZpb2xhY2nDs24gYSBsb3MgZGVyZWNob3MgbW9yYWxlcyBkZWwgYXV0b3IgbGEgbm8gcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBvIGRlbcOhcyB1dGlsaXphY2lvbmVzIGRlIGxhIG9icmEuIExhIHV0aWxpemFjacOzbiBvIG5vIGRlIGxhIG9icmEsIGFzw60gY29tbyBzdSBmb3JtYSBkZSB1dGlsaXphY2nDs24gc2Vyw6EgZmFjdWx0YWQgZXhjbHVzaXZhIGRlIGxhIFVOSVZFUlNJREFELgogClNFWFRBLiBEdXJhY2nDs24geSB0ZXJyaXRvcmlvLiBMYSBwcmVzZW50ZSBsaWNlbmNpYSBkZSB1c28gcXVlIHNlIG90b3JnYSBhIGZhdm9yIGRlIGxhIFVOSVZFUlNJREFEIHRlbmRyw6EgdW5hIGR1cmFjacOzbiBlcXVpdmFsZW50ZSBhbCB0w6lybWlubyBkZSBwcm90ZWNjacOzbiBsZWdhbCBkZSBsYSBvYnJhIHkgcGFyYSB0b2RvcyBsb3MgcGHDrXNlcyBkZWwgbXVuZG8uCgpTw4lQVElNQS4gVXNvIGRlIENyZWF0aXZlIENvbW1vbnMuIEVsIEFVVE9SIGF1dG9yaXphcsOhIGxhIGRpZnVzacOzbiBkZSBzdSBjb250ZW5pZG8gYmFqbyB1bmEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBhdHJpYnVjacOzbiA0LjAgaW50ZXJuYWNpb25hbCwgcXVlIGRlYmVyw6EgaW5jbHVpcnNlIGVuIGVsIGNvbnRlbmlkby4gCgpPQ1RBVkEuIERlcmVjaG8gZGUgZXhjbHVzacOzbi4gQ2FkYSBhdXRvciBwdWVkZSBpbmRpY2FyIGVuIGVsIG1vbWVudG8gZGUgZGVww7NzaXRvIGRlbCBjb250ZW5pZG8gcXVlIGVsIHRleHRvIGNvbXBsZXRvIGRlIGxhIHByb2R1Y2Npw7NuIGFjYWTDqW1pY2EgbyBjaWVudMOtZmljYSBubyBlc3RlIGNvbiBhY2Nlc28gYWJpZXJ0byBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIHBvciBtb3Rpdm9zIGRlIGNvbmZpZGVuY2lhbGlkYWQsIHBvcnF1ZSBzZSBlbmN1ZW50cmUgZW4gdsOtYXMgZGUgb2J0ZW5lciB1biBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbmR1c3RyaWFsIG8gZXhpc3RpciBhY3VlcmRvcyBwcmV2aW9zIGNvbiB0ZXJjZXJvcyAoZWRpdG9yaWFsZXMsIHJldmlzdGFzIGNpZW50w61maWNhcywgb3RyYXMgaW5zdGl0dWNpb25lcykuIEVsIGF1dG9yIHNlIGNvbXByb21ldGUgYSBkZXBvc2l0YXIgbG9zIG1ldGFkYXRvcyBlIGluZm9ybWFyIGVsIHRpZW1wbyBkZSBlbWJhcmdvIGR1cmFudGUgZWwgY3VhbCBlbCB0ZXh0byBjb21wbGV0byB0ZW5kcsOhIGFjY2VzbyByZXN0cmluZ2lkby4gCgpOT1ZFTkEuIEVsIEFVVE9SIGFsIGFjZXB0YXIgZXN0YSBsaWNlbmNpYSBhZHVjZSBxdWUgZXN0YSBwcm9kdWNjacOzbiBzZSBkZXNhcnJvbGzDsyBlbiBlbCBwZXJpb2RvIGVuIHF1ZSBzZSBlbmN1ZW50cmEgY29uIHbDrW5jdWxvcyBjb24gTGEgVW5pdmVyc2lkYWQuCgpEw4lDSU1BLiBOb3JtYXMgYXBsaWNhYmxlcy4gUGFyYSBsYSBpbnRlcnByZXRhY2nDs24geSBjdW1wbGltaWVudG8gZGVsIHByZXNlbnRlIGFjdWVyZG8gbGFzIHBhcnRlcyBzZSBzb21ldGVuIGEgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgbGEgTGV5IDIzIGRlIDE5ODIgeSBkZW3DoXMgbm9ybWFzIGFwbGljYWJsZXMgZGUgQ29sb21iaWEuIEFkZW3DoXMsIGEgbGFzIG5vcm1hcyBJbnN0aXR1Y2lvbmFsZXMgcXVlIGFwbGlxdWVuLgoKTGEgcHJlc2VudGUgbGljZW5jaWEgc2UgYXV0b3JpemEgZW4gbGEgZmVjaGEgZGUgcHVibGljYWNpw7NuIGVuIGxvcyByZXBvc2l0b3Jpb3MgaW5zdGl0dWNpb25hbGVzLgo=