Algorithm for predicting the most frequent causes of mortality by analyzing age and gender variables.
High density of populations in cities, complexity of risk factors that influence health and the impact of inequalities in sanitary outcomes, call for the adoption of decisive measures to improve health, and thus avoid injuries that trigger pathological events directly leading to the death of people....
- Autores:
-
Cortés Méndez, Jairo Augusto
Abuchar Porras, Alexandra
Blanco Garrido, Fabián
Páez Páez, Jaime Alberto
Palacios Rozo, Jairo Jamith
Simanca Herrera, Fredys Alberto
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2022
- Institución:
- Universidad Cooperativa de Colombia
- Repositorio:
- Repositorio UCC
- Idioma:
- OAI Identifier:
- oai:repository.ucc.edu.co:20.500.12494/49069
- Acceso en línea:
- https://hdl.handle.net/20.500.12494/49069
- Palabra clave:
- Algoritmo
Variables
Mortalidad
Algorithm
Vriables
mortality
- Rights
- closedAccess
- License
- http://purl.org/coar/access_right/c_14cb
id |
COOPER2_14202242c0f11fb7b7448930bbe5ad4d |
---|---|
oai_identifier_str |
oai:repository.ucc.edu.co:20.500.12494/49069 |
network_acronym_str |
COOPER2 |
network_name_str |
Repositorio UCC |
repository_id_str |
|
dc.title.none.fl_str_mv |
Algorithm for predicting the most frequent causes of mortality by analyzing age and gender variables. |
title |
Algorithm for predicting the most frequent causes of mortality by analyzing age and gender variables. |
spellingShingle |
Algorithm for predicting the most frequent causes of mortality by analyzing age and gender variables. Algoritmo Variables Mortalidad Algorithm Vriables mortality |
title_short |
Algorithm for predicting the most frequent causes of mortality by analyzing age and gender variables. |
title_full |
Algorithm for predicting the most frequent causes of mortality by analyzing age and gender variables. |
title_fullStr |
Algorithm for predicting the most frequent causes of mortality by analyzing age and gender variables. |
title_full_unstemmed |
Algorithm for predicting the most frequent causes of mortality by analyzing age and gender variables. |
title_sort |
Algorithm for predicting the most frequent causes of mortality by analyzing age and gender variables. |
dc.creator.fl_str_mv |
Cortés Méndez, Jairo Augusto Abuchar Porras, Alexandra Blanco Garrido, Fabián Páez Páez, Jaime Alberto Palacios Rozo, Jairo Jamith Simanca Herrera, Fredys Alberto |
dc.contributor.author.none.fl_str_mv |
Cortés Méndez, Jairo Augusto Abuchar Porras, Alexandra Blanco Garrido, Fabián Páez Páez, Jaime Alberto Palacios Rozo, Jairo Jamith Simanca Herrera, Fredys Alberto |
dc.subject.none.fl_str_mv |
Algoritmo Variables Mortalidad |
topic |
Algoritmo Variables Mortalidad Algorithm Vriables mortality |
dc.subject.other.none.fl_str_mv |
Algorithm Vriables mortality |
description |
High density of populations in cities, complexity of risk factors that influence health and the impact of inequalities in sanitary outcomes, call for the adoption of decisive measures to improve health, and thus avoid injuries that trigger pathological events directly leading to the death of people. The above applies to Colombia and especially to Bogota D.C.; after the massive health crisis due to the pandemic. Consequently, it was proposed to implement a Prediction Algorithm based on a database directly taken from Salud Data and Salud Capital, which registered 31,720 deaths in Bogota in 2016, representing a rate of 397.5 deaths per 100,000 inhabitants, leading the list of the top ten causes: ischemic heart disease, with a rate of 65.8%, chronic respiratory tract diseases, with a rate of 26.4%, and cerebrovascular diseases with a rate of 25.7% per 100,000 inhabitants. The above data have shown the need to find a death prediction system, since it was difficult to predict the number of deaths that the pandemic was going to cause. It should be understood that the causes of mortality maintain a direct relationship with the medical study, as it evolves and develops according to the processing of the data obtained from the causes of mortality. Obtaining a good prediction system based on the data obtained greatly helps the medical area to centralize more efforts to counteract diseases with a higher rate, seeking to reduce the most significant causes of mortality. The algorithm designed analyzed two variables age and gender to predict the probability of death of a person with a percentage of 94.66% accuracy. |
publishDate |
2022 |
dc.date.issued.none.fl_str_mv |
2022 |
dc.date.accessioned.none.fl_str_mv |
2023-03-29T16:22:09Z |
dc.date.available.none.fl_str_mv |
2023-03-29T16:22:09Z |
dc.type.none.fl_str_mv |
Artículo |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.coarversion.none.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.issn.none.fl_str_mv |
2587-0130 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12494/49069 |
dc.identifier.bibliographicCitation.none.fl_str_mv |
Simanca, F. ; Criollo, J.; Paez, J. y Cortes, J.; Abuchar A. y Blanco, F. (2022). Algorithm for predicting the most frequent causes of mortality by analyzing age and gender variables. Journal of Positive Psychology and Wellbeing. Vol. 6 No. 1. https://journalppw.com/index.php/jppw/article/view/2562 |
identifier_str_mv |
2587-0130 Simanca, F. ; Criollo, J.; Paez, J. y Cortes, J.; Abuchar A. y Blanco, F. (2022). Algorithm for predicting the most frequent causes of mortality by analyzing age and gender variables. Journal of Positive Psychology and Wellbeing. Vol. 6 No. 1. https://journalppw.com/index.php/jppw/article/view/2562 |
url |
https://hdl.handle.net/20.500.12494/49069 |
dc.relation.isversionof.none.fl_str_mv |
https://journalppw.com/index.php/jppw/article/view/2562 |
dc.relation.ispartofjournal.none.fl_str_mv |
Journal of Positive Psychology and Wellbeing |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/closedAccess |
dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_14cb |
eu_rights_str_mv |
closedAccess |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_14cb |
dc.coverage.temporal.none.fl_str_mv |
Vol. 6 No. 1 |
dc.publisher.none.fl_str_mv |
Universidad Cooperativa de Colombia, Facultad de Ingenierías, Ingeniería de Sistemas, Bogotá |
dc.publisher.program.none.fl_str_mv |
Ingeniería de Sistemas |
dc.publisher.place.none.fl_str_mv |
Bogotá |
publisher.none.fl_str_mv |
Universidad Cooperativa de Colombia, Facultad de Ingenierías, Ingeniería de Sistemas, Bogotá |
institution |
Universidad Cooperativa de Colombia |
bitstream.url.fl_str_mv |
https://repository.ucc.edu.co/bitstreams/d9663c78-3caa-4ffb-8094-c6332bd6f41e/download |
bitstream.checksum.fl_str_mv |
3bce4f7ab09dfc588f126e1e36e98a45 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Cooperativa de Colombia |
repository.mail.fl_str_mv |
bdigital@metabiblioteca.com |
_version_ |
1814247126072295424 |
spelling |
Cortés Méndez, Jairo AugustoAbuchar Porras, AlexandraBlanco Garrido, FabiánPáez Páez, Jaime AlbertoPalacios Rozo, Jairo JamithSimanca Herrera, Fredys AlbertoVol. 6 No. 12023-03-29T16:22:09Z2023-03-29T16:22:09Z20222587-0130https://hdl.handle.net/20.500.12494/49069Simanca, F. ; Criollo, J.; Paez, J. y Cortes, J.; Abuchar A. y Blanco, F. (2022). Algorithm for predicting the most frequent causes of mortality by analyzing age and gender variables. Journal of Positive Psychology and Wellbeing. Vol. 6 No. 1. https://journalppw.com/index.php/jppw/article/view/2562High density of populations in cities, complexity of risk factors that influence health and the impact of inequalities in sanitary outcomes, call for the adoption of decisive measures to improve health, and thus avoid injuries that trigger pathological events directly leading to the death of people. The above applies to Colombia and especially to Bogota D.C.; after the massive health crisis due to the pandemic. Consequently, it was proposed to implement a Prediction Algorithm based on a database directly taken from Salud Data and Salud Capital, which registered 31,720 deaths in Bogota in 2016, representing a rate of 397.5 deaths per 100,000 inhabitants, leading the list of the top ten causes: ischemic heart disease, with a rate of 65.8%, chronic respiratory tract diseases, with a rate of 26.4%, and cerebrovascular diseases with a rate of 25.7% per 100,000 inhabitants. The above data have shown the need to find a death prediction system, since it was difficult to predict the number of deaths that the pandemic was going to cause. It should be understood that the causes of mortality maintain a direct relationship with the medical study, as it evolves and develops according to the processing of the data obtained from the causes of mortality. Obtaining a good prediction system based on the data obtained greatly helps the medical area to centralize more efforts to counteract diseases with a higher rate, seeking to reduce the most significant causes of mortality. The algorithm designed analyzed two variables age and gender to predict the probability of death of a person with a percentage of 94.66% accuracy.High density of populations in cities, complexity of risk factors that influence health and the impact of inequalities in sanitary outcomes, call for the adoption of decisive measures to improve health, and thus avoid injuries that trigger pathological events directly leading to the death of people. The above applies to Colombia and especially to Bogota D.C.; after the massive health crisis due to the pandemic. Consequently, it was proposed to implement a Prediction Algorithm based on a database directly taken from Salud Data and Salud Capital, which registered 31,720 deaths in Bogota in 2016, representing a rate of 397.5 deaths per 100,000 inhabitants, leading the list of the top ten causes: ischemic heart disease, with a rate of 65.8%, chronic respiratory tract diseases, with a rate of 26.4%, and cerebrovascular diseases with a rate of 25.7% per 100,000 inhabitants. The above data have shown the need to find a death prediction system, since it was difficult to predict the number of deaths that the pandemic was going to cause. It should be understood that the causes of mortality maintain a direct relationship with the medical study, as it evolves and develops according to the processing of the data obtained from the causes of mortality. Obtaining a good prediction system based on the data obtained greatly helps the medical area to centralize more efforts to counteract diseases with a higher rate, seeking to reduce the most significant causes of mortality. The algorithm designed analyzed two variables age and gender to predict the probability of death of a person with a percentage of 94.66% accuracy.https://www.researchgate.net/profile/Jairo-Cortes-Mendezhttps://co.linkedin.com/in/jaime-alberto-paez-paez-49548823https://orcid.org/0000-0002-7312-0180https://orcid.org/0000-0002-7312-0180Jaime.paez@campusucc.edu.cohttps://scholar.google.com/citations?user=7SOhB48AAAAJ&hl=eshttps://scholar.google.es/citations?hl=es&user=dhHrDtQAAAAJ&view_op=list_works&sortby=pubdatehttps://scholar.google.com.co/citations?user=QnZg_mkAAAAJ&hl=enUniversidad Cooperativa de Colombia, Facultad de Ingenierías, Ingeniería de Sistemas, BogotáIngeniería de SistemasBogotáhttps://journalppw.com/index.php/jppw/article/view/2562Journal of Positive Psychology and WellbeingAlgoritmoVariablesMortalidadAlgorithmVriablesmortalityAlgorithm for predicting the most frequent causes of mortality by analyzing age and gender variables.Artículohttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/closedAccesshttp://purl.org/coar/access_right/c_14cbPublicationLICENSElicense.txtlicense.txttext/plain; charset=utf-84334https://repository.ucc.edu.co/bitstreams/d9663c78-3caa-4ffb-8094-c6332bd6f41e/download3bce4f7ab09dfc588f126e1e36e98a45MD5120.500.12494/49069oai:repository.ucc.edu.co:20.500.12494/490692024-08-10 20:59:14.016metadata.onlyhttps://repository.ucc.edu.coRepositorio Institucional Universidad Cooperativa de Colombiabdigital@metabiblioteca.comVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEKUkVQT1NJVE9SSU9TIElOU1RJVFVDSU9OQUxFUwpMSUNFTkNJQSBERSBVU08KClBvciBtZWRpbyBkZWwgcHJlc2VudGUgZG9jdW1lbnRvLCBlbCBBdXRvcihlcyksIG1heW9yIChlcykgZGUgZWRhZCwgcXVpZW4gZW4gYWRlbGFudGUgc2UgZGVub21pbmFyw6EgZWwgQVVUT1IsIGNvbmZpZXJlIGEgbGEgVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEsIGNvbiBOSVQuIDg2MC0wMjk5MjQtNywgdW5hIExJQ0VOQ0lBIERFIFVTTyBkZSBvYnJhLCBiYWpvIGxhcyBzaWd1aWVudGVzIGNvbmRpY2lvbmVzLgoKQ0zDgVVTVUxBUwoKUFJJTUVSQS4gT2JqZXRvLiBFTCBBVVRPUiBwb3IgZXN0ZSBhY3RvIGF1dG9yaXphIGxhIHV0aWxpemFjacOzbiBkZSBsYSBvYnJhLCBkZSBjb25mb3JtaWRhZCBjb24gbG8gZXN0aXB1bGFkbyBhIGNvbnRpbnVhY2nDs246IAoKKGEpIFBhcmEgZWZlY3RvcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSBzZSBhdXRvcml6YSBsYSByZXByb2R1Y2Npw7NuIGRlIGxhIG9icmEgYW50ZXJpb3JtZW50ZSBjaXRhZGEsIGxhIGN1YWwgc2UgYWxvamFyw6EgZW4gZm9ybWF0byBkaWdpdGFsIGVuIGxhcyBwbGF0YWZvcm1hcyBvIHJlcG9zaXRvcmlvcyBhZG1pbmlzdHJhZG9zIHBvciBsYSBVTklWRVJTSURBRCBvIGVuIG90cm8gdGlwbyBkZSByZXBvc2l0b3Jpb3MgZXh0ZXJub3MgbyBww6FnaW5hcyB3ZWIgZXNjb2dpZG9zIHBvciBsYSBVTklWRVJTSURBRCwgcGFyYSBmaW5lcyBkZSBkaWZ1c2nDs24geSBkaXZ1bGdhY2nDs24uIEFkaWNpb25hbG1lbnRlLCBzZSBhdXRvcml6YSBhIHF1ZSBsb3MgdXN1YXJpb3MgaW50ZXJub3MgeSBleHRlcm5vcyBkZSBkaWNoYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgcmVwcm9kdXpjYW4gbyBkZXNjYXJndWVuIGxhIG9icmEsIHNpbiDDoW5pbW8gZGUgbHVjcm8sIHBhcmEgZmluZXMgcHJpdmFkb3MsIGVkdWNhdGl2b3MgbyBhY2Fkw6ltaWNvczsgc2llbXByZSB5IGN1YW5kbyBubyBzZSB2aW9sZW4gYWN1ZXJkb3MgY29uIGVkaXRvcmVzLCBwZXJpb2RvcyBkZSBlbWJhcmdvIG8gYWN1ZXJkb3MgZGUgY29uZmlkZW5jaWFsaWRhZCBxdWUgYXBsaXF1ZW4uCgooYikgU2UgYXV0b3JpemEgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBkZSBsYSBvYnJhIG1lbmNpb25hZGEsIGVuIGFjY2VzbyBhYmllcnRvLCBwYXJhIHN1IHV0aWxpemFjacOzbiBlbiBsYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgYWRtaW5pc3RyYWRvcyBwb3IgbGEgVU5JVkVSU0lEQUQuCgooYykgTG8gYW50ZXJpb3IgZXN0YXLDoSBzdWpldG8gYSBsYXMgZGVmaW5pY2lvbmVzIGNvbnRlbmlkYXMgZW4gbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MyB5IGxhIExleSAyMyBkZSAxOTgyLgoKClNFR1VOREEuIE9yaWdpbmFsaWRhZCB5IHJlY2xhbWFjaW9uZXMuIEVsIEFVVE9SIGRlY2xhcmEgcXVlIGxhIE9CUkEgZXMgb3JpZ2luYWwgeSBxdWUgZXMgZGUgc3UgY3JlYWNpw7NuIGV4Y2x1c2l2YSwgbm8gZXhpc3RpZW5kbyBpbXBlZGltZW50byBkZSBjdWFscXVpZXIgbmF0dXJhbGV6YSAoZW1iYXJnb3MsIHVzbyBkZSBtYXRlcmlhbCBwcm90ZWdpZG8gcG9yIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGxhIGNvbmNlc2nDs24gZGUgbG9zIGRlcmVjaG9zIHByZXZpc3RvcyBlbiBlc3RlIGFjdWVyZG8uIEVsIEFVVE9SIHJlc3BvbmRlcsOhIHBvciBjdWFscXVpZXIgYWNjacOzbiBkZSByZWl2aW5kaWNhY2nDs24sIHBsYWdpbyB1IG90cmEgY2xhc2UgZGUgcmVjbGFtYWNpw7NuIHF1ZSBhbCByZXNwZWN0byBwdWRpZXJhIHNvYnJldmVuaXIuCgpURVJDRVJBLiBDb250cmFwcmVzdGFjacOzbi4gRWwgQVVUT1IgYXV0b3JpemEgYSBxdWUgc3Ugb2JyYSBzZWEgdXRpbGl6YWRhIGRlIGNvbmZvcm1pZGFkIGNvbiBsYSBjbMOhdXN1bGEgUFJJTUVSQSBkZSBmb3JtYSBncmF0dWl0YSwgZXMgZGVjaXIsIHF1ZSBsYSB1dGlsaXphY2nDs24gZGUgbGEgbWlzbWEgbm8gZ2VuZXJhIG5pbmfDum4gcGFnbyBvIHJlZ2Fsw61hcyBlbiBmYXZvciBkZSBlc3RlLgoKQ1VBUlRBLiBUaXR1bGFyaWRhZCBkZSBkZXJlY2hvcy4gRWwgcHJlc2VudGUgY29udHJhdG8gbm8gdHJhbnNmaWVyZSBsYSB0aXR1bGFyaWRhZCBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBzb2JyZSBsYXMgb2JyYXMgYW50ZXJpb3JtZW50ZSBtZW5jaW9uYWRhcyBhIGxhIFVOSVZFUlNJREFELiDDmm5pY2FtZW50ZSBoYWNlIHJlbGFjacOzbiBhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgZW4gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGFudGVyaW9ybWVudGUgcGFjdGFkb3MuCgpRVUlOVEEuIENyw6lkaXRvcy4gTGEgVU5JVkVSU0lEQUQgc2UgY29tcHJvbWV0ZSBhIGRhciBhbCBBVVRPUiwgZWwgcmVjb25vY2ltaWVudG8gZGVudHJvIGNhZGEgZm9ybWEgZGUgdXRpbGl6YWNpw7NuIGVuIGxhIG9icmEuIExvcyBjcsOpZGl0b3MgZGViZW4gZmlndXJhciBlbiBjYWRhIHVubyBkZSBsb3MgZm9ybWF0b3MgbyByZWdpc3Ryb3MgZGUgcHVibGljYWNpw7NuLiBObyBjb25zdGl0dWlyw6EgdW5hIHZpb2xhY2nDs24gYSBsb3MgZGVyZWNob3MgbW9yYWxlcyBkZWwgYXV0b3IgbGEgbm8gcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBvIGRlbcOhcyB1dGlsaXphY2lvbmVzIGRlIGxhIG9icmEuIExhIHV0aWxpemFjacOzbiBvIG5vIGRlIGxhIG9icmEsIGFzw60gY29tbyBzdSBmb3JtYSBkZSB1dGlsaXphY2nDs24gc2Vyw6EgZmFjdWx0YWQgZXhjbHVzaXZhIGRlIGxhIFVOSVZFUlNJREFELgogClNFWFRBLiBEdXJhY2nDs24geSB0ZXJyaXRvcmlvLiBMYSBwcmVzZW50ZSBsaWNlbmNpYSBkZSB1c28gcXVlIHNlIG90b3JnYSBhIGZhdm9yIGRlIGxhIFVOSVZFUlNJREFEIHRlbmRyw6EgdW5hIGR1cmFjacOzbiBlcXVpdmFsZW50ZSBhbCB0w6lybWlubyBkZSBwcm90ZWNjacOzbiBsZWdhbCBkZSBsYSBvYnJhIHkgcGFyYSB0b2RvcyBsb3MgcGHDrXNlcyBkZWwgbXVuZG8uCgpTw4lQVElNQS4gVXNvIGRlIENyZWF0aXZlIENvbW1vbnMuIEVsIEFVVE9SIGF1dG9yaXphcsOhIGxhIGRpZnVzacOzbiBkZSBzdSBjb250ZW5pZG8gYmFqbyB1bmEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBhdHJpYnVjacOzbiA0LjAgaW50ZXJuYWNpb25hbCwgcXVlIGRlYmVyw6EgaW5jbHVpcnNlIGVuIGVsIGNvbnRlbmlkby4gCgpPQ1RBVkEuIERlcmVjaG8gZGUgZXhjbHVzacOzbi4gQ2FkYSBhdXRvciBwdWVkZSBpbmRpY2FyIGVuIGVsIG1vbWVudG8gZGUgZGVww7NzaXRvIGRlbCBjb250ZW5pZG8gcXVlIGVsIHRleHRvIGNvbXBsZXRvIGRlIGxhIHByb2R1Y2Npw7NuIGFjYWTDqW1pY2EgbyBjaWVudMOtZmljYSBubyBlc3RlIGNvbiBhY2Nlc28gYWJpZXJ0byBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIHBvciBtb3Rpdm9zIGRlIGNvbmZpZGVuY2lhbGlkYWQsIHBvcnF1ZSBzZSBlbmN1ZW50cmUgZW4gdsOtYXMgZGUgb2J0ZW5lciB1biBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbmR1c3RyaWFsIG8gZXhpc3RpciBhY3VlcmRvcyBwcmV2aW9zIGNvbiB0ZXJjZXJvcyAoZWRpdG9yaWFsZXMsIHJldmlzdGFzIGNpZW50w61maWNhcywgb3RyYXMgaW5zdGl0dWNpb25lcykuIEVsIGF1dG9yIHNlIGNvbXByb21ldGUgYSBkZXBvc2l0YXIgbG9zIG1ldGFkYXRvcyBlIGluZm9ybWFyIGVsIHRpZW1wbyBkZSBlbWJhcmdvIGR1cmFudGUgZWwgY3VhbCBlbCB0ZXh0byBjb21wbGV0byB0ZW5kcsOhIGFjY2VzbyByZXN0cmluZ2lkby4gCgpOT1ZFTkEuIEVsIEFVVE9SIGFsIGFjZXB0YXIgZXN0YSBsaWNlbmNpYSBhZHVjZSBxdWUgZXN0YSBwcm9kdWNjacOzbiBzZSBkZXNhcnJvbGzDsyBlbiBlbCBwZXJpb2RvIGVuIHF1ZSBzZSBlbmN1ZW50cmEgY29uIHbDrW5jdWxvcyBjb24gTGEgVW5pdmVyc2lkYWQuCgpEw4lDSU1BLiBOb3JtYXMgYXBsaWNhYmxlcy4gUGFyYSBsYSBpbnRlcnByZXRhY2nDs24geSBjdW1wbGltaWVudG8gZGVsIHByZXNlbnRlIGFjdWVyZG8gbGFzIHBhcnRlcyBzZSBzb21ldGVuIGEgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgbGEgTGV5IDIzIGRlIDE5ODIgeSBkZW3DoXMgbm9ybWFzIGFwbGljYWJsZXMgZGUgQ29sb21iaWEuIEFkZW3DoXMsIGEgbGFzIG5vcm1hcyBJbnN0aXR1Y2lvbmFsZXMgcXVlIGFwbGlxdWVuLgoKTGEgcHJlc2VudGUgbGljZW5jaWEgc2UgYXV0b3JpemEgZW4gbGEgZmVjaGEgZGUgcHVibGljYWNpw7NuIGVuIGxvcyByZXBvc2l0b3Jpb3MgaW5zdGl0dWNpb25hbGVzLgo= |