Emisiones de dióxido de carbono y ecoeficiencia del hormigón tradicional y modificado. Revisión de literatura

Los problemas del impacto ambiental negativo asociados con la elevada emisión de CO2 durante la preparación de hormigón, ha requerido la sustitución de los materiales tradicionales por diferentes residuos de naturaleza orgánica e inorgánica que permitan no solo mejorar las propiedades mecánicas, sin...

Full description

Autores:
Gómez Ospina, Jorge Hernán
Herrera Herrera, Santiago
Rodríguez Rojas, Cristian Ferney
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2023
Institución:
Universidad Cooperativa de Colombia
Repositorio:
Repositorio UCC
Idioma:
OAI Identifier:
oai:repository.ucc.edu.co:20.500.12494/53832
Acceso en línea:
https://hdl.handle.net/20.500.12494/53832
Palabra clave:
Concretos modificados
Residuos de vidrio
Emisión de CO2
TG 2023 ICI 53832
Modified concrete
Glass waste
CO2 emission
Rights
closedAccess
License
Atribución – No comercial – Sin Derivar
id COOPER2_0e45473d868d2d6cc19d5dc7db075968
oai_identifier_str oai:repository.ucc.edu.co:20.500.12494/53832
network_acronym_str COOPER2
network_name_str Repositorio UCC
repository_id_str
dc.title.none.fl_str_mv Emisiones de dióxido de carbono y ecoeficiencia del hormigón tradicional y modificado. Revisión de literatura
title Emisiones de dióxido de carbono y ecoeficiencia del hormigón tradicional y modificado. Revisión de literatura
spellingShingle Emisiones de dióxido de carbono y ecoeficiencia del hormigón tradicional y modificado. Revisión de literatura
Concretos modificados
Residuos de vidrio
Emisión de CO2
TG 2023 ICI 53832
Modified concrete
Glass waste
CO2 emission
title_short Emisiones de dióxido de carbono y ecoeficiencia del hormigón tradicional y modificado. Revisión de literatura
title_full Emisiones de dióxido de carbono y ecoeficiencia del hormigón tradicional y modificado. Revisión de literatura
title_fullStr Emisiones de dióxido de carbono y ecoeficiencia del hormigón tradicional y modificado. Revisión de literatura
title_full_unstemmed Emisiones de dióxido de carbono y ecoeficiencia del hormigón tradicional y modificado. Revisión de literatura
title_sort Emisiones de dióxido de carbono y ecoeficiencia del hormigón tradicional y modificado. Revisión de literatura
dc.creator.fl_str_mv Gómez Ospina, Jorge Hernán
Herrera Herrera, Santiago
Rodríguez Rojas, Cristian Ferney
dc.contributor.advisor.none.fl_str_mv Arbeláez Pérez, Oscar Felipe
Senior Arrieta, Vanessa
dc.contributor.author.none.fl_str_mv Gómez Ospina, Jorge Hernán
Herrera Herrera, Santiago
Rodríguez Rojas, Cristian Ferney
dc.subject.none.fl_str_mv Concretos modificados
Residuos de vidrio
Emisión de CO2
topic Concretos modificados
Residuos de vidrio
Emisión de CO2
TG 2023 ICI 53832
Modified concrete
Glass waste
CO2 emission
dc.subject.classification.none.fl_str_mv TG 2023 ICI 53832
dc.subject.other.none.fl_str_mv Modified concrete
Glass waste
CO2 emission
description Los problemas del impacto ambiental negativo asociados con la elevada emisión de CO2 durante la preparación de hormigón, ha requerido la sustitución de los materiales tradicionales por diferentes residuos de naturaleza orgánica e inorgánica que permitan no solo mejorar las propiedades mecánicas, sino también disminuir las emisiones de dióxido de carbono durante la preparación de hormigón tradicional y modificado. Esta revisión recopila la información de artículos reportados entre 2000 y 2021 que reportan las emisiones de dióxido de carbono en hormigón tradicional y modificado. Se realiza un análisis de las características de diseño de las mezclas de hormigón y los resultados encontrados tanto en las propiedades mecánicas como en las emisiones de dióxido de carbono de cada una de las mezclas reportadas. Asimismo, se calculó la ecoeficiencia de las mezclas de hormigón. Se encontró que las emisiones de dióxido de carbono dependen del tipo de sustituto y de su porcentaje de incorporación dentro de la mezcla, así como de las condiciones de diseño tales como la relación agua/cemento y la resistencia a compresión. Asimismo, se discuten las perspectivas futuras frente al tema y los desafíos que enfrenta la industria del hormigón. Se espera que esta revisión motive a los trabajos futuros incluir el cálculo de las emisiones y la ecoeficiencia de los hormigones modificados como parámetro de cuantificación del impacto ambiental dentro de la industria del hormigón.
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-12-14T20:02:49Z
dc.date.available.none.fl_str_mv 2023-12-14T20:02:49Z
dc.date.issued.none.fl_str_mv 2023-12-14
dc.type.none.fl_str_mv Trabajo de grado - Pregrado
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_7a1f
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12494/53832
dc.identifier.bibliographicCitation.none.fl_str_mv Gómez Ospina, J. H., Herrera Herrera, S. y Rodriguez Rojas, C. F. (2023). Emisiones de dióxido de carbono y ecoeficiencia del hormigón tradicional y modificado. Revisión de literatura. [Tesis de pregrado, Universidad Cooperativa de Colombia]. Repositorio Institucional Universidad Cooperativa de Colombia. https://repository.ucc.edu.co/handle/20.500.12494/53832
url https://hdl.handle.net/20.500.12494/53832
identifier_str_mv Gómez Ospina, J. H., Herrera Herrera, S. y Rodriguez Rojas, C. F. (2023). Emisiones de dióxido de carbono y ecoeficiencia del hormigón tradicional y modificado. Revisión de literatura. [Tesis de pregrado, Universidad Cooperativa de Colombia]. Repositorio Institucional Universidad Cooperativa de Colombia. https://repository.ucc.edu.co/handle/20.500.12494/53832
dc.relation.references.none.fl_str_mv A. Adesina, “Recent advances in the concrete industry to reduce its carbon dioxide emissions,” Environ. Challenges, vol. 1, no. November, p. 100004, 2020, doi: 10.1016/j.envc.2020.100004.
R. L. Marcea and K. K. Lau, “Carbon Dioxide Implications of Building Materials,” J. For. Eng., vol. 3, no. 2, pp. 37–43, 1992, doi: 10.1080/08435243.1992.10702637.
L. R. Caldas, A. B. Saraiva, A. F. P. Lucena, M. Y. Da Gloria, A. S. Santos, and R. D. T. Filho, “Building materials in a circular economy: The case of wood waste as CO2-sink in bio concrete,” Resour. Conserv. Recycl., vol. 166, no. August 2020, 2021, doi: 10.1016/j.resconrec.2020.105346.
M. K. Dixit, “Life cycle embodied energy analysis of residential buildings: A review of literature to investigate embodied energy parameters,” Renew. Sustain. Energy Rev., vol. 79, no. October 2016, pp. 390–413, 2017, doi: 10.1016/j.rser.2017.05.051.
F. Pomponi and A. Moncaster, “Embodied carbon mitigation and reduction in the built environment – What does the evidence say?,” J. Environ. Manage., vol. 181, pp. 687–700, 2016, doi: 10.1016/j.jenvman.2016.08.036.
T. M. Baynes et al., “The Australian industrial ecology virtual laboratory and multi-scale assessment of buildings and construction,” Energy Build., vol. 164, no. 2018, pp. 14–20, 2018, doi: 10.1016/j.enbuild.2017.12.056.
S. K. Rama Jyosyula, S. Surana, and S. Raju, “Role of lightweight materials of construction on carbon dioxide emission of a reinforced concrete building,” Mater. Today Proc., vol. 27, pp. 984–990, 2020, doi: 10.1016/j.matpr.2020.01.294.
V. Vishwakarma and D. Ramachandran, “Green Concrete mix using solid waste and nanoparticles as alternatives – A review,” Constr. Build. Mater., vol. 162, pp. 96–103, 2018, doi: 10.1016/j.conbuildmat.2017.11.174.
K. Robalo, H. Costa, R. do Carmo, and E. Júlio, “Experimental development of low cement content and recycled construction and demolition waste aggregates concrete,” Constr. Build. Mater., vol. 273, p. 121680, 2021, doi: 10.1016/j.conbuildmat.2020.121680.
E. Aprianti, P. Shafigh, S. Bahri, and J. N. Farahani, “Supplementary cementitious materials origin from agricultural wastes - A review,” Constr. Build. Mater., vol. 74, pp. 176–187, 2015, doi: 10.1016/j.conbuildmat.2014.10.010.
G. Habert and N. Roussel, “Study of two concrete mix-design strategies to reach carbon mitigation objectives,” Cem. Concr. Compos., vol. 31, no. 6, pp. 397–402, 2009, doi: 10.1016/j.cemconcomp.2009.04.001.
A. A. Raheem and B. D. Ikotun, “Incorporation of agricultural residues as partial substitution for cement in concrete and mortar – A review,” J. Build. Eng., vol. 31, no. April, p. 101428, 2020, doi: 10.1016/j.jobe.2020.101428.
H. Scharff, “Landfill reduction experience in The Netherlands,” Waste Manag., vol. 34, no. 11, pp. 2218–2224, 2014, doi: 10.1016/j.wasman.2014.05.019.
V. K. Kumar, A. K. Priya, G. Manikandan, A. S. Naveen, B. Nitishkumar, and P. Pradeep, “Review of materials used in light weight concrete,” Mater. Today Proc., vol. 37, no. Part 2, pp. 3538–3539, 2020, doi: 10.1016/j.matpr.2020.09.425.
J. Krithika and G. B. Ramesh Kumar, “Influence of fly ash on concrete - A systematic review,” Mater. Today Proc., vol. 33, pp. 906–911, 2020, doi: 10.1016/j.matpr.2020.06.425.
Q. Fu, W. Xu, X. Zhao, M. X. Bu, Q. Yuan, and D. Niu, “The microstructure and durability of fly ash-based geopolymer concrete: A review,” Ceram. Int., vol. 47, no. 21, pp. 29550–29566, 2021, doi: 10.1016/j.ceramint.2021.07.190.
W. Jiang, X. Li, Y. Lv, D. Jiang, Z. Liu, and C. He, “Mechanical and hydration properties of low clinker cement containing high volume superfine blast furnace slag and nano silica,” Constr. Build. Mater., vol. 238, p. 117683, 2020, doi: 10.1016/j.conbuildmat.2019.117683.
O. Gencel, O. Karadag, O. H. Oren, and T. Bilir, “Steel slag and its applications in cement and concrete technology: A review,” Constr. Build. Mater., vol. 283, p. 122783, 2021, doi: 10.1016/j.conbuildmat.2021.122783.
A. A. Raheem, R. Abdulwahab, and M. A. Kareem, “Incorporation of metakaolin and nanosilica in blended cement mortar and concrete- A review,” J. Clean. Prod., vol. 290, p. 125852, 2021, doi: 10.1016/j.jclepro.2021.125852.
Z. Syahida Adnan, N. F. Ariffin, S. M. Syed Mohsin, and N. H. Abdul Shukor Lim, “Review paper: Performance of rice husk ash as a material for partial cement replacement in concrete,” Mater. Today Proc., no. xxxx, 2021, doi: 10.1016/j.matpr.2021.02.400.
R. A. B. Depaa, V. Priyadarshini, A. Hemamalinie, J. Francis Xavier, and K. Surendrababu, “Assessment of strength properties of concrete made with rice husk ash,” Mater. Today Proc., vol. 45, pp. 6724–6727, 2020, doi: 10.1016/j.matpr.2020.12.605.
Y. Jani and W. Hogland, Waste glass in the production of cement and concrete - A review, vol. 2, no. 3. Elsevier, 2014.
J. Esmaeili and A. Oudah Al-Mwanes, “A review: Properties of eco-friendly ultra-high-performance concrete incorporated with waste glass as a partial replacement for cement,” Mater. Today Proc., vol. 42, pp. 1958–1965, 2021, doi: 10.1016/j.matpr.2020.12.242.
B. W. Chong, R. Othman, P. J. Ramadhansyah, S. I. Doh, and X. Li, “Properties of concrete with eggshell powder: A review,” Phys. Chem. Earth, vol. 120, no. December 2019, p. 102951, 2020, doi: 10.1016/j.pce.2020.102951.
H. M. Hamada, B. A. Tayeh, A. Al-Attar, F. M. Yahaya, K. Muthusamy, and A. M. Humada, “The present state of the use of eggshell powder in concrete: A review,” J. Build. Eng., vol. 32, no. April, p. 101583, 2020, doi: 10.1016/j.jobe.2020.101583.
N. Sathiparan, “Utilization prospects of eggshell powder in sustainable construction material – A review,” Constr. Build. Mater., vol. 293, p. 123465, 2021, doi: 10.1016/j.conbuildmat.2021.123465.
P. Jha, A. K. Sachan, and R. P. Singh, “Agro-waste sugarcane bagasse ash (ScBA) as partial replacement of binder material in concrete,” Mater. Today Proc., vol. 44, pp. 419–427, 2021, doi: 10.1016/j.matpr.2020.09.751.
P. Jagadesh, A. Ramachandramurthy, and R. Murugesan, “Evaluation of mechanical properties of Sugar Cane Bagasse Ash concrete,” Constr. Build. Mater., vol. 176, pp. 608–617, 2018, doi: 10.1016/j.conbuildmat.2018.05.037.
V. Torres et al., “Potential use of sugar cane bagasse ash as sand replacement for durable concrete,” J. Build. Eng., vol. 39, no. September 2020, p. 102277, 2021, doi: 10.1016/j.jobe.2021.102277.
H. M. Hamada, B. Skariah Thomas, B. Tayeh, F. M. Yahaya, K. Muthusamy, and J. Yang, “Use of oil palm shell as an aggregate in cement concrete: A review,” Constr. Build. Mater., vol. 265, p. 120357, 2020, doi: 10.1016/j.conbuildmat.2020.120357.
H. M. Hamada et al., “Sustainable use of palm oil fuel ash as a supplementary cementitious material: A comprehensive review,” J. Build. Eng., vol. 40, no. July 2020, p. 102286, 2021, doi: 10.1016/j.jobe.2021.102286.
B. S. Thomas, S. Kumar, and H. S. Arel, “Sustainable concrete containing palm oil fuel ash as a supplementary cementitious material – A review,” Renew. Sustain. Energy Rev., vol. 80, no. April, pp. 550–561, 2017, doi: 10.1016/j.rser.2017.05.128.
M. Manjunatha, S. Preethi, Malingaraya, H. G. Mounika, K. N. Niveditha, and Ravi, “Life cycle assessment (LCA) of concrete prepared with sustainable cement-based materials,” Mater. Today Proc., vol. 47, pp. 3637–3644, 2021, doi: 10.1016/j.matpr.2021.01.248.
J. E. Mejia-ballesteros, H. Savastano, J. Fiorelli, and M. Frias, “E ff ect of mineral additions on the microstructure and properties of blended cement matrices for fi bre-cement applications,” Cem. Concr. Compos., vol. 98, no. February, pp. 49–60, 2019, doi: 10.1016/j.cemconcomp.2019.02.001.
H. Huang, X., Gao, H. Wang, and H. Ye, "Influence of rice husk on strength and permeability of ultra-high performance concrete," Constr. Build. Mater. vol 149, pp 621-628, 2017, doi: 10.1016/j.conbuildmat.2017.05.155.
S. Lee, W. Park, and H. Lee, “Life cycle CO2 assessment method for concrete using CO 2 balance and suggestion to decrease LCCO2 of concrete in South-Korean apartment,” Energy Build., vol. 58, pp. 93–102, 2013, doi: 10.1016/j.enbuild.2012.11.034.
G. Asadollahfardi, A. Katebi, P. Taherian, and A. Panahandeh, “Environmental life cycle assessment of concrete with different mixed designs,” Int. J. Constr. Manag., vol. 21, no. 7, pp. 665–676, 2021, doi: 10.1080/15623599.2019.1579015.
W. Xing, V. W. Tam, K. N. Le, J. L. Hao, and J. Wang, “Life cycle assessment of recycled aggregate concrete on its environmental impacts: A critical review,” Constr. Build. Mater., vol. 317, 2022, doi: 10.1016/j.conbuildmat.2021.125950.
A. R. Sánchez, V. C. Ramos, M. S. Polo, M. V. L. Ramón, and J. Utrilla, “Life cycle assessment of cement production with marble waste sludges,” Int. J. Environ. Res. Public Health, vol. 18, no. 20, pp. 1–16, 2021, doi: 10.3390/ijerph182010968.
N. Kisku, H. Joshi, M. Ansari, S. K. Panda, S. Nayak, and S. C. Dutta, “A critical review and assessment for usage of recycled aggregate as sustainable construction material,” Constr. Build. Mater., vol. 131, pp. 721–740, 2017, doi: 10.1016/j.conbuildmat.2016.11.029.
J. Hong, G. Q. Shen, Y. Feng, W. S. T. Lau, and C. Mao, “Greenhouse gas emissions during the construction phase of a building: A case study in China,” J. Clean. Prod., vol. 103, pp. 249–259, 2015, doi: 10.1016/j.jclepro.2014.11.023.
B. Chiaia, A. P. Fantilli, A. Guerini, G. Volpatti, and D. Zampini, “Eco-mechanical index for structural concrete,” Constr. Build. Mater., vol. 67, no. PART C, pp. 386–392, 2014, doi: 10.1016/j.conbuildmat.2013.12.090.
A. R. Djamaluddin, M. A. Caronge, M. W. Tjaronge, A. T. Lando, and R. Irmawaty, “Evaluation of sustainable concrete paving blocks incorporating processed waste tea ash,” Case Stud. Constr. Mater., vol. 12, p. e00325, 2020, doi: 10.1016/j.cscm.2019.e00325.
H. Monteiro, B. Moura, and N. Soares, “Advancements in nano-enabled cement and concrete: Innovative properties and environmental implications,” J. Build. Eng., vol. 56, no. May, p. 104736, 2022, doi: 10.1016/j.jobe.2022.104736.
D. N. Huntzinger and T. D. Eatmon, “A life-cycle assessment of Portland cement manufacturing: comparing the traditional process with alternative technologies,” J. Clean. Prod., vol. 17, no. 7, pp. 668–675, 2009, doi: 10.1016/j.jclepro.2008.04.007.
S. A. Abdul-Wahab, G. A. Al-Rawas, S. Ali, and H. Al-Dhamri, “Impact of the addition of oil-based mud on carbon dioxide emissions in a cement plant,” J. Clean. Prod., vol. 112, pp. 4214–4225, 2016, doi: 10.1016/j.jclepro.2015.06.062.
L. Li, Y. Jiang, S. Y. Pan, and T. C. Ling, “Comparative life cycle assessment to maximize CO2 sequestration of steel slag products,” Constr. Build. Mater., vol. 298, p. 123876, 2021, doi: 10.1016/j.conbuildmat.2021.123876.
D. J. M. Flower and J. G. Sanjayan, “Green house gas emissions due to concrete manufacture,” Int. J. Life Cycle Assess., vol. 12, no. 5, pp. 282–288, 2007, doi: 10.1007/s11367-007-0327-3.
S. Ni et al., “Assessment of the engineering properties, carbon dioxide emission and economic of biomass recycled aggregate concrete: A novel approach for building green concretes,” J. Clean. Prod., vol. 365, no. November 2021, p. 132780, 2022, doi: 10.1016/j.jclepro.2022.132780.
F. Ma, A. Sha, P. Yang, and Y. Huang, “The greenhouse gas emission from portland cement concrete pavement construction in China,” Int. J. Environ. Res. Public Health, vol. 13, no. 7, 2016, doi: 10.3390/ijerph13070632.
T. H. Kim, C. U. Chae, G. H. Kim, and H. J. Jang, “Analysis of CO2 emission characteristics of concrete used at construction sites,” Sustain., vol. 8, no. 4, 2016, doi: 10.3390/su8040348.
T. Kim, S. Tae, and S. Roh, “Assessment of the CO2 emission and cost reduction performance of a low-carbon-emission concrete mix design using an optimal mix design system,” Renew. Sustain. Energy Rev., vol. 25, pp. 729–741, 2013, doi: 10.1016/j.rser.2013.05.013.
T. García-Segura, V. Yepes, and J. Alcalá, “Life cycle greenhouse gas emissions of blended cement concrete including carbonation and durability,” Int. J. Life Cycle Assess., vol. 19, no. 1, pp. 3–12, 2014, doi: 10.1007/s11367-013-0614-0.
K. Celik, C. Meral, A. Petek Gursel, P. K. Mehta, A. Horvath, and P. J. M. Monteiro, “Mechanical properties, durability, and life-cycle assessment of self-consolidating concrete mixtures made with blended portland cements containing fly ash and limestone powder,” Cem. Concr. Compos., vol. 56, pp. 59–72, 2015, doi: 10.1016/j.cemconcomp.2014.11.003.
J. Turk, Z. Cotič, A. Mladenovič, and A. Šajna, “Environmental evaluation of green concretes versus conventional concrete by means of LCA,” Waste Manag., vol. 45, no. 305, pp. 194–205, 2015, doi: 10.1016/j.wasman.2015.06.035.
A. P. Gursel, H. Maryman, and C. Ostertag, “A life-cycle approach to environmental, mechanical, and durability properties of ‘green’ concrete mixes with rice husk ash,” J. Clean. Prod., vol. 112, pp. 823–836, 2016, doi: 10.1016/j.jclepro.2015.06.029.
B.S. Thoma et al., "Sugarcane bagasse ash as supplementary cementitious material in concrete - a review," Mater. Today Sustain., vol. 15, p. 1000086, 2021,doi:10.1016/mtsust.2021.100086.
R. Zerbino, G Giaccio, and G.C Isaia,"concrete incorporating rice-husk ash without porcessing," Constr. Build Mater., vol 25, no 1, pp. 371-378, 2011, doi:10.1016/j.conbuildmat.2010.06.016.
R. F. W. Boarder, P. L. Owens, and J. M. Khatib, The sustainability of lightweight aggregates manufactured from clay wastes for reducing the carbon footprint of structural and foundation concrete, Second Edi., no. December. Elsevier Ltd., 2016.
N. Serres, S. Braymand, and F. Feugeas, “Environmental evaluation of concrete made from recycled concrete aggregate implementing life cycle assessment,” J. Build. Eng., vol. 5, pp. 24–33, 2016, doi: 10.1016/j.jobe.2015.11.004.
M. W. Tait and W. M. Cheung, “A comparative cradle-to-gate life cycle assessment of three concrete mix designs,” Int. J. Life Cycle Assess., vol. 21, no. 6, pp. 847–860, 2016, doi: 10.1007/s11367-016-1045-5.
A. Hanif, Y. Kim, Z. Lu, and C. Park, “Early-age behavior of recycled aggregate concrete under steam curing regime,” J. Clean. Prod., vol. 152, pp. 103–114, 2017, doi: 10.1016/j.jclepro.2017.03.107.
M. F. Alnahhal, U. J. Alengaram, M. Z. Jumaat, F. Abutaha, M. A. Alqedra, and R. R. Nayaka, “Assessment on engineering properties and CO2 emissions of recycled aggregate concrete incorporating waste products as supplements to Portland cement,” J. Clean. Prod., vol. 203, pp. 822–835, 2018, doi: 10.1016/j.jclepro.2018.08.292.
S. C. Bostanci, M. Limbachiya, and H. Kew, “Use of recycled aggregates for low carbon and cost effective concrete construction,” J. Clean. Prod., vol. 189, pp. 176–196, 2018, doi: 10.1016/j.jclepro.2018.04.090.
L. F. Jiménez, J. A. Domínguez, and R. E. Vega-Azamar, “Carbon footprint of recycled aggregate concrete,” Adv. Civ. Eng., vol. 2018, 2018, doi: 10.1155/2018/7949741.
K. Rashid, A. Yazdanbakhsh, and M. U. Rehman, “Sustainable selection of the concrete incorporating recycled tire aggregate to be used as medium to low strength material,” J. Clean. Prod., vol. 224, pp. 396–410, 2019, doi: 10.1016/j.jclepro.2019.03.197.
R. A. Berenguer, A. P. B. Capraro, M. H. Farias de Medeiros, A. M. P. Carneiro, and R. A. de Oliveira, “Sugar cane bagasse ash as a partial substitute of Portland cement: Effect on mechanical properties and emission of carbon dioxide,” J. Environ. Chem. Eng., vol. 8, no. 2, p. 103655, 2020, doi: 10.1016/j.jece.2020.103655.
J. W. Lee, Y. Il Jang, W. S. Park, H. Do Yun, and S. W. Kim, “The Effect of Fly Ash and Recycled Aggregate on the Strength and Carbon Emission Impact of FRCCs,” Int. J. Concr. Struct. Mater., vol. 14, no. 1, 2020, doi: 10.1186/s40069-020-0392-6.
M. Sabău, D. V. Bompa, and L. F. O. Silva, “Comparative carbon emission assessments of recycled and natural aggregate concrete: Environmental influence of cement content,” Geosci. Front., vol. 12, no. 6, 2021, doi: 10.1016/j.gsf.2021.101235.
P. Plaza, I. F. Sáez del Bosque, M. Frías, M. I. Sánchez de Rojas, and C. Medina, “Use of recycled coarse and fine aggregates in structural eco-concretes. Physical and mechanical properties and CO2 emissions,” Constr. Build. Mater., vol. 285, p. 122926, 2021, doi: 10.1016/j.conbuildmat.2021.122926.
L. Hu, Z. He, and S. Zhang, “Sustainable use of rice husk ash in cement-based materials: Environmental evaluation and performance improvement,” J. Clean. Prod., vol. 264, p. 121744, 2020, doi: 10.1016/j.jclepro.2020.121744.
Y. Han, R. Lin, and X.-Y. Wang, “Performance of sustainable concrete made from waste oyster shell powder and blast furnace slag,” J. Build. Eng., vol. 47, no. October 2021, p. 103918, 2021, doi: 10.1016/j.jobe.2021.103918.
L. K. Turner and F. G. Collins, “Carbon dioxide equivalent (CO2-e) emissions: A comparison between geopolymer and OPC cement concrete,” Constr. Build. Mater., vol. 43, pp. 125–130, 2013, doi: 10.1016/j.conbuildmat.2013.01.023.
A. Thomas, D. R. Lombardi, D. Hunt, and M. Gaterell, “Estimating carbon dioxide emissions for aggregate use,” Proc. Inst. Civ. Eng. Eng. Sustain., vol. 162, no. 3, pp. 135–144, 2009, doi: 10.1680/ensu.2009.162.3.135.
dc.rights.license.none.fl_str_mv Atribución – No comercial – Sin Derivar
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/closedAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_14cb
rights_invalid_str_mv Atribución – No comercial – Sin Derivar
http://purl.org/coar/access_right/c_14cb
eu_rights_str_mv closedAccess
dc.format.extent.none.fl_str_mv 24 p.
dc.publisher.none.fl_str_mv Universidad Cooperativa de Colombia, Facultad de Ingenierías, Ingeniería Civil, Medellín y Envigado
dc.publisher.program.none.fl_str_mv Ingeniería Civil
dc.publisher.place.none.fl_str_mv Medellín
publisher.none.fl_str_mv Universidad Cooperativa de Colombia, Facultad de Ingenierías, Ingeniería Civil, Medellín y Envigado
institution Universidad Cooperativa de Colombia
bitstream.url.fl_str_mv https://repository.ucc.edu.co/bitstreams/b1231dfa-0e13-4281-b37a-1f7eecc2f7e7/download
https://repository.ucc.edu.co/bitstreams/9825b7ee-3858-403b-be1b-a83c76e4b5b6/download
https://repository.ucc.edu.co/bitstreams/11c80b94-568d-4403-bab5-ea8088c10765/download
https://repository.ucc.edu.co/bitstreams/93eb7c5f-8d1a-4b51-8fad-135e081b9b65/download
https://repository.ucc.edu.co/bitstreams/ffb5e209-3574-4bfe-a31b-4c6f3b0806fe/download
https://repository.ucc.edu.co/bitstreams/4978b36f-4760-49b5-a5c8-f68e4e3951c5/download
https://repository.ucc.edu.co/bitstreams/50bc8c48-371b-4fbe-9ea5-adbb9878456c/download
https://repository.ucc.edu.co/bitstreams/9d50ce5e-5d9b-44be-8cb5-64dc4eb26370/download
https://repository.ucc.edu.co/bitstreams/04032a3d-4af4-4f60-bae3-1af842c03db5/download
https://repository.ucc.edu.co/bitstreams/929755ee-9859-4077-b48d-6175f4ac6751/download
bitstream.checksum.fl_str_mv 3bce4f7ab09dfc588f126e1e36e98a45
a28de7dd750f93e90e9f498d20313a00
a4b290eeeffe015ab165e9284dc6b6ce
63860f96f82ed7fd968bb3bddb40517d
00a63c16e6e97002a917139bd5f7956c
f6939669977e7f929e45f933736e6f67
0821d9cf017214d2be46132841ef890a
d5b449c9f9122fb0ae6cabf335e8b471
5a3b0f3848e7ac688ec15c2a2b77d240
a90ab86267b4d4dffcc9ce4307756ccf
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Cooperativa de Colombia
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1814247324987162624
spelling Arbeláez Pérez, Oscar FelipeSenior Arrieta, VanessaGómez Ospina, Jorge HernánHerrera Herrera, SantiagoRodríguez Rojas, Cristian Ferney2023-12-14T20:02:49Z2023-12-14T20:02:49Z2023-12-14https://hdl.handle.net/20.500.12494/53832Gómez Ospina, J. H., Herrera Herrera, S. y Rodriguez Rojas, C. F. (2023). Emisiones de dióxido de carbono y ecoeficiencia del hormigón tradicional y modificado. Revisión de literatura. [Tesis de pregrado, Universidad Cooperativa de Colombia]. Repositorio Institucional Universidad Cooperativa de Colombia. https://repository.ucc.edu.co/handle/20.500.12494/53832Los problemas del impacto ambiental negativo asociados con la elevada emisión de CO2 durante la preparación de hormigón, ha requerido la sustitución de los materiales tradicionales por diferentes residuos de naturaleza orgánica e inorgánica que permitan no solo mejorar las propiedades mecánicas, sino también disminuir las emisiones de dióxido de carbono durante la preparación de hormigón tradicional y modificado. Esta revisión recopila la información de artículos reportados entre 2000 y 2021 que reportan las emisiones de dióxido de carbono en hormigón tradicional y modificado. Se realiza un análisis de las características de diseño de las mezclas de hormigón y los resultados encontrados tanto en las propiedades mecánicas como en las emisiones de dióxido de carbono de cada una de las mezclas reportadas. Asimismo, se calculó la ecoeficiencia de las mezclas de hormigón. Se encontró que las emisiones de dióxido de carbono dependen del tipo de sustituto y de su porcentaje de incorporación dentro de la mezcla, así como de las condiciones de diseño tales como la relación agua/cemento y la resistencia a compresión. Asimismo, se discuten las perspectivas futuras frente al tema y los desafíos que enfrenta la industria del hormigón. Se espera que esta revisión motive a los trabajos futuros incluir el cálculo de las emisiones y la ecoeficiencia de los hormigones modificados como parámetro de cuantificación del impacto ambiental dentro de la industria del hormigón.The concrete industry is the among the largest contributors of carbon dioxide emissions. This industry causes a negative environmental impact, which calls for urgent ways to reduce the environmental effect of concrete production while continuing to provide the same or better performance. The search for alternative materials for concrete is a green method of disposal of large quantity of industrial wastes and agro-residues. Different reviews report the mechanical and thermal properties of modified concrete, however, there are no literature reviews addressing the effect of incorporating different residues on carbon dioxide emissions of modified concrete. This paper put forwards a comprehensive and detailed review of studies published between 2000 and 2021 conducted to evaluate the carbon dioxide emissions in traditional and modified concrete. The mechanical properties and carbon dioxide emissions of hardened concrete are presented. Eco-efficiency of modified mixtures was calculated. Moreover, future perspectives on this topic and the challenges of the concrete industry are addressed. This review is expected to motivate future studies to include calculations and analysis of CO2 emissions as a parameter for the environmental impact quantification in the concrete industry.jorge.gomezosp@campusucc.edu.cosantiago.herrerah@campusucc.edu.cocristianf.rodriguezr@campusucc.edu.co24 p.Universidad Cooperativa de Colombia, Facultad de Ingenierías, Ingeniería Civil, Medellín y EnvigadoIngeniería CivilMedellínConcretos modificadosResiduos de vidrioEmisión de CO2TG 2023 ICI 53832Modified concreteGlass wasteCO2 emissionEmisiones de dióxido de carbono y ecoeficiencia del hormigón tradicional y modificado. Revisión de literaturaTrabajo de grado - Pregradohttp://purl.org/coar/resource_type/c_7a1finfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionAtribución – No comercial – Sin Derivarinfo:eu-repo/semantics/closedAccesshttp://purl.org/coar/access_right/c_14cbA. Adesina, “Recent advances in the concrete industry to reduce its carbon dioxide emissions,” Environ. Challenges, vol. 1, no. November, p. 100004, 2020, doi: 10.1016/j.envc.2020.100004.R. L. Marcea and K. K. Lau, “Carbon Dioxide Implications of Building Materials,” J. For. Eng., vol. 3, no. 2, pp. 37–43, 1992, doi: 10.1080/08435243.1992.10702637.L. R. Caldas, A. B. Saraiva, A. F. P. Lucena, M. Y. Da Gloria, A. S. Santos, and R. D. T. Filho, “Building materials in a circular economy: The case of wood waste as CO2-sink in bio concrete,” Resour. Conserv. Recycl., vol. 166, no. August 2020, 2021, doi: 10.1016/j.resconrec.2020.105346.M. K. Dixit, “Life cycle embodied energy analysis of residential buildings: A review of literature to investigate embodied energy parameters,” Renew. Sustain. Energy Rev., vol. 79, no. October 2016, pp. 390–413, 2017, doi: 10.1016/j.rser.2017.05.051.F. Pomponi and A. Moncaster, “Embodied carbon mitigation and reduction in the built environment – What does the evidence say?,” J. Environ. Manage., vol. 181, pp. 687–700, 2016, doi: 10.1016/j.jenvman.2016.08.036.T. M. Baynes et al., “The Australian industrial ecology virtual laboratory and multi-scale assessment of buildings and construction,” Energy Build., vol. 164, no. 2018, pp. 14–20, 2018, doi: 10.1016/j.enbuild.2017.12.056.S. K. Rama Jyosyula, S. Surana, and S. Raju, “Role of lightweight materials of construction on carbon dioxide emission of a reinforced concrete building,” Mater. Today Proc., vol. 27, pp. 984–990, 2020, doi: 10.1016/j.matpr.2020.01.294.V. Vishwakarma and D. Ramachandran, “Green Concrete mix using solid waste and nanoparticles as alternatives – A review,” Constr. Build. Mater., vol. 162, pp. 96–103, 2018, doi: 10.1016/j.conbuildmat.2017.11.174.K. Robalo, H. Costa, R. do Carmo, and E. Júlio, “Experimental development of low cement content and recycled construction and demolition waste aggregates concrete,” Constr. Build. Mater., vol. 273, p. 121680, 2021, doi: 10.1016/j.conbuildmat.2020.121680.E. Aprianti, P. Shafigh, S. Bahri, and J. N. Farahani, “Supplementary cementitious materials origin from agricultural wastes - A review,” Constr. Build. Mater., vol. 74, pp. 176–187, 2015, doi: 10.1016/j.conbuildmat.2014.10.010.G. Habert and N. Roussel, “Study of two concrete mix-design strategies to reach carbon mitigation objectives,” Cem. Concr. Compos., vol. 31, no. 6, pp. 397–402, 2009, doi: 10.1016/j.cemconcomp.2009.04.001.A. A. Raheem and B. D. Ikotun, “Incorporation of agricultural residues as partial substitution for cement in concrete and mortar – A review,” J. Build. Eng., vol. 31, no. April, p. 101428, 2020, doi: 10.1016/j.jobe.2020.101428.H. Scharff, “Landfill reduction experience in The Netherlands,” Waste Manag., vol. 34, no. 11, pp. 2218–2224, 2014, doi: 10.1016/j.wasman.2014.05.019.V. K. Kumar, A. K. Priya, G. Manikandan, A. S. Naveen, B. Nitishkumar, and P. Pradeep, “Review of materials used in light weight concrete,” Mater. Today Proc., vol. 37, no. Part 2, pp. 3538–3539, 2020, doi: 10.1016/j.matpr.2020.09.425.J. Krithika and G. B. Ramesh Kumar, “Influence of fly ash on concrete - A systematic review,” Mater. Today Proc., vol. 33, pp. 906–911, 2020, doi: 10.1016/j.matpr.2020.06.425.Q. Fu, W. Xu, X. Zhao, M. X. Bu, Q. Yuan, and D. Niu, “The microstructure and durability of fly ash-based geopolymer concrete: A review,” Ceram. Int., vol. 47, no. 21, pp. 29550–29566, 2021, doi: 10.1016/j.ceramint.2021.07.190.W. Jiang, X. Li, Y. Lv, D. Jiang, Z. Liu, and C. He, “Mechanical and hydration properties of low clinker cement containing high volume superfine blast furnace slag and nano silica,” Constr. Build. Mater., vol. 238, p. 117683, 2020, doi: 10.1016/j.conbuildmat.2019.117683.O. Gencel, O. Karadag, O. H. Oren, and T. Bilir, “Steel slag and its applications in cement and concrete technology: A review,” Constr. Build. Mater., vol. 283, p. 122783, 2021, doi: 10.1016/j.conbuildmat.2021.122783.A. A. Raheem, R. Abdulwahab, and M. A. Kareem, “Incorporation of metakaolin and nanosilica in blended cement mortar and concrete- A review,” J. Clean. Prod., vol. 290, p. 125852, 2021, doi: 10.1016/j.jclepro.2021.125852.Z. Syahida Adnan, N. F. Ariffin, S. M. Syed Mohsin, and N. H. Abdul Shukor Lim, “Review paper: Performance of rice husk ash as a material for partial cement replacement in concrete,” Mater. Today Proc., no. xxxx, 2021, doi: 10.1016/j.matpr.2021.02.400.R. A. B. Depaa, V. Priyadarshini, A. Hemamalinie, J. Francis Xavier, and K. Surendrababu, “Assessment of strength properties of concrete made with rice husk ash,” Mater. Today Proc., vol. 45, pp. 6724–6727, 2020, doi: 10.1016/j.matpr.2020.12.605.Y. Jani and W. Hogland, Waste glass in the production of cement and concrete - A review, vol. 2, no. 3. Elsevier, 2014.J. Esmaeili and A. Oudah Al-Mwanes, “A review: Properties of eco-friendly ultra-high-performance concrete incorporated with waste glass as a partial replacement for cement,” Mater. Today Proc., vol. 42, pp. 1958–1965, 2021, doi: 10.1016/j.matpr.2020.12.242.B. W. Chong, R. Othman, P. J. Ramadhansyah, S. I. Doh, and X. Li, “Properties of concrete with eggshell powder: A review,” Phys. Chem. Earth, vol. 120, no. December 2019, p. 102951, 2020, doi: 10.1016/j.pce.2020.102951.H. M. Hamada, B. A. Tayeh, A. Al-Attar, F. M. Yahaya, K. Muthusamy, and A. M. Humada, “The present state of the use of eggshell powder in concrete: A review,” J. Build. Eng., vol. 32, no. April, p. 101583, 2020, doi: 10.1016/j.jobe.2020.101583.N. Sathiparan, “Utilization prospects of eggshell powder in sustainable construction material – A review,” Constr. Build. Mater., vol. 293, p. 123465, 2021, doi: 10.1016/j.conbuildmat.2021.123465.P. Jha, A. K. Sachan, and R. P. Singh, “Agro-waste sugarcane bagasse ash (ScBA) as partial replacement of binder material in concrete,” Mater. Today Proc., vol. 44, pp. 419–427, 2021, doi: 10.1016/j.matpr.2020.09.751.P. Jagadesh, A. Ramachandramurthy, and R. Murugesan, “Evaluation of mechanical properties of Sugar Cane Bagasse Ash concrete,” Constr. Build. Mater., vol. 176, pp. 608–617, 2018, doi: 10.1016/j.conbuildmat.2018.05.037.V. Torres et al., “Potential use of sugar cane bagasse ash as sand replacement for durable concrete,” J. Build. Eng., vol. 39, no. September 2020, p. 102277, 2021, doi: 10.1016/j.jobe.2021.102277.H. M. Hamada, B. Skariah Thomas, B. Tayeh, F. M. Yahaya, K. Muthusamy, and J. Yang, “Use of oil palm shell as an aggregate in cement concrete: A review,” Constr. Build. Mater., vol. 265, p. 120357, 2020, doi: 10.1016/j.conbuildmat.2020.120357.H. M. Hamada et al., “Sustainable use of palm oil fuel ash as a supplementary cementitious material: A comprehensive review,” J. Build. Eng., vol. 40, no. July 2020, p. 102286, 2021, doi: 10.1016/j.jobe.2021.102286.B. S. Thomas, S. Kumar, and H. S. Arel, “Sustainable concrete containing palm oil fuel ash as a supplementary cementitious material – A review,” Renew. Sustain. Energy Rev., vol. 80, no. April, pp. 550–561, 2017, doi: 10.1016/j.rser.2017.05.128.M. Manjunatha, S. Preethi, Malingaraya, H. G. Mounika, K. N. Niveditha, and Ravi, “Life cycle assessment (LCA) of concrete prepared with sustainable cement-based materials,” Mater. Today Proc., vol. 47, pp. 3637–3644, 2021, doi: 10.1016/j.matpr.2021.01.248.J. E. Mejia-ballesteros, H. Savastano, J. Fiorelli, and M. Frias, “E ff ect of mineral additions on the microstructure and properties of blended cement matrices for fi bre-cement applications,” Cem. Concr. Compos., vol. 98, no. February, pp. 49–60, 2019, doi: 10.1016/j.cemconcomp.2019.02.001.H. Huang, X., Gao, H. Wang, and H. Ye, "Influence of rice husk on strength and permeability of ultra-high performance concrete," Constr. Build. Mater. vol 149, pp 621-628, 2017, doi: 10.1016/j.conbuildmat.2017.05.155.S. Lee, W. Park, and H. Lee, “Life cycle CO2 assessment method for concrete using CO 2 balance and suggestion to decrease LCCO2 of concrete in South-Korean apartment,” Energy Build., vol. 58, pp. 93–102, 2013, doi: 10.1016/j.enbuild.2012.11.034.G. Asadollahfardi, A. Katebi, P. Taherian, and A. Panahandeh, “Environmental life cycle assessment of concrete with different mixed designs,” Int. J. Constr. Manag., vol. 21, no. 7, pp. 665–676, 2021, doi: 10.1080/15623599.2019.1579015.W. Xing, V. W. Tam, K. N. Le, J. L. Hao, and J. Wang, “Life cycle assessment of recycled aggregate concrete on its environmental impacts: A critical review,” Constr. Build. Mater., vol. 317, 2022, doi: 10.1016/j.conbuildmat.2021.125950.A. R. Sánchez, V. C. Ramos, M. S. Polo, M. V. L. Ramón, and J. Utrilla, “Life cycle assessment of cement production with marble waste sludges,” Int. J. Environ. Res. Public Health, vol. 18, no. 20, pp. 1–16, 2021, doi: 10.3390/ijerph182010968.N. Kisku, H. Joshi, M. Ansari, S. K. Panda, S. Nayak, and S. C. Dutta, “A critical review and assessment for usage of recycled aggregate as sustainable construction material,” Constr. Build. Mater., vol. 131, pp. 721–740, 2017, doi: 10.1016/j.conbuildmat.2016.11.029.J. Hong, G. Q. Shen, Y. Feng, W. S. T. Lau, and C. Mao, “Greenhouse gas emissions during the construction phase of a building: A case study in China,” J. Clean. Prod., vol. 103, pp. 249–259, 2015, doi: 10.1016/j.jclepro.2014.11.023.B. Chiaia, A. P. Fantilli, A. Guerini, G. Volpatti, and D. Zampini, “Eco-mechanical index for structural concrete,” Constr. Build. Mater., vol. 67, no. PART C, pp. 386–392, 2014, doi: 10.1016/j.conbuildmat.2013.12.090.A. R. Djamaluddin, M. A. Caronge, M. W. Tjaronge, A. T. Lando, and R. Irmawaty, “Evaluation of sustainable concrete paving blocks incorporating processed waste tea ash,” Case Stud. Constr. Mater., vol. 12, p. e00325, 2020, doi: 10.1016/j.cscm.2019.e00325.H. Monteiro, B. Moura, and N. Soares, “Advancements in nano-enabled cement and concrete: Innovative properties and environmental implications,” J. Build. Eng., vol. 56, no. May, p. 104736, 2022, doi: 10.1016/j.jobe.2022.104736.D. N. Huntzinger and T. D. Eatmon, “A life-cycle assessment of Portland cement manufacturing: comparing the traditional process with alternative technologies,” J. Clean. Prod., vol. 17, no. 7, pp. 668–675, 2009, doi: 10.1016/j.jclepro.2008.04.007.S. A. Abdul-Wahab, G. A. Al-Rawas, S. Ali, and H. Al-Dhamri, “Impact of the addition of oil-based mud on carbon dioxide emissions in a cement plant,” J. Clean. Prod., vol. 112, pp. 4214–4225, 2016, doi: 10.1016/j.jclepro.2015.06.062.L. Li, Y. Jiang, S. Y. Pan, and T. C. Ling, “Comparative life cycle assessment to maximize CO2 sequestration of steel slag products,” Constr. Build. Mater., vol. 298, p. 123876, 2021, doi: 10.1016/j.conbuildmat.2021.123876.D. J. M. Flower and J. G. Sanjayan, “Green house gas emissions due to concrete manufacture,” Int. J. Life Cycle Assess., vol. 12, no. 5, pp. 282–288, 2007, doi: 10.1007/s11367-007-0327-3.S. Ni et al., “Assessment of the engineering properties, carbon dioxide emission and economic of biomass recycled aggregate concrete: A novel approach for building green concretes,” J. Clean. Prod., vol. 365, no. November 2021, p. 132780, 2022, doi: 10.1016/j.jclepro.2022.132780.F. Ma, A. Sha, P. Yang, and Y. Huang, “The greenhouse gas emission from portland cement concrete pavement construction in China,” Int. J. Environ. Res. Public Health, vol. 13, no. 7, 2016, doi: 10.3390/ijerph13070632.T. H. Kim, C. U. Chae, G. H. Kim, and H. J. Jang, “Analysis of CO2 emission characteristics of concrete used at construction sites,” Sustain., vol. 8, no. 4, 2016, doi: 10.3390/su8040348.T. Kim, S. Tae, and S. Roh, “Assessment of the CO2 emission and cost reduction performance of a low-carbon-emission concrete mix design using an optimal mix design system,” Renew. Sustain. Energy Rev., vol. 25, pp. 729–741, 2013, doi: 10.1016/j.rser.2013.05.013.T. García-Segura, V. Yepes, and J. Alcalá, “Life cycle greenhouse gas emissions of blended cement concrete including carbonation and durability,” Int. J. Life Cycle Assess., vol. 19, no. 1, pp. 3–12, 2014, doi: 10.1007/s11367-013-0614-0.K. Celik, C. Meral, A. Petek Gursel, P. K. Mehta, A. Horvath, and P. J. M. Monteiro, “Mechanical properties, durability, and life-cycle assessment of self-consolidating concrete mixtures made with blended portland cements containing fly ash and limestone powder,” Cem. Concr. Compos., vol. 56, pp. 59–72, 2015, doi: 10.1016/j.cemconcomp.2014.11.003.J. Turk, Z. Cotič, A. Mladenovič, and A. Šajna, “Environmental evaluation of green concretes versus conventional concrete by means of LCA,” Waste Manag., vol. 45, no. 305, pp. 194–205, 2015, doi: 10.1016/j.wasman.2015.06.035.A. P. Gursel, H. Maryman, and C. Ostertag, “A life-cycle approach to environmental, mechanical, and durability properties of ‘green’ concrete mixes with rice husk ash,” J. Clean. Prod., vol. 112, pp. 823–836, 2016, doi: 10.1016/j.jclepro.2015.06.029.B.S. Thoma et al., "Sugarcane bagasse ash as supplementary cementitious material in concrete - a review," Mater. Today Sustain., vol. 15, p. 1000086, 2021,doi:10.1016/mtsust.2021.100086.R. Zerbino, G Giaccio, and G.C Isaia,"concrete incorporating rice-husk ash without porcessing," Constr. Build Mater., vol 25, no 1, pp. 371-378, 2011, doi:10.1016/j.conbuildmat.2010.06.016.R. F. W. Boarder, P. L. Owens, and J. M. Khatib, The sustainability of lightweight aggregates manufactured from clay wastes for reducing the carbon footprint of structural and foundation concrete, Second Edi., no. December. Elsevier Ltd., 2016.N. Serres, S. Braymand, and F. Feugeas, “Environmental evaluation of concrete made from recycled concrete aggregate implementing life cycle assessment,” J. Build. Eng., vol. 5, pp. 24–33, 2016, doi: 10.1016/j.jobe.2015.11.004.M. W. Tait and W. M. Cheung, “A comparative cradle-to-gate life cycle assessment of three concrete mix designs,” Int. J. Life Cycle Assess., vol. 21, no. 6, pp. 847–860, 2016, doi: 10.1007/s11367-016-1045-5.A. Hanif, Y. Kim, Z. Lu, and C. Park, “Early-age behavior of recycled aggregate concrete under steam curing regime,” J. Clean. Prod., vol. 152, pp. 103–114, 2017, doi: 10.1016/j.jclepro.2017.03.107.M. F. Alnahhal, U. J. Alengaram, M. Z. Jumaat, F. Abutaha, M. A. Alqedra, and R. R. Nayaka, “Assessment on engineering properties and CO2 emissions of recycled aggregate concrete incorporating waste products as supplements to Portland cement,” J. Clean. Prod., vol. 203, pp. 822–835, 2018, doi: 10.1016/j.jclepro.2018.08.292.S. C. Bostanci, M. Limbachiya, and H. Kew, “Use of recycled aggregates for low carbon and cost effective concrete construction,” J. Clean. Prod., vol. 189, pp. 176–196, 2018, doi: 10.1016/j.jclepro.2018.04.090.L. F. Jiménez, J. A. Domínguez, and R. E. Vega-Azamar, “Carbon footprint of recycled aggregate concrete,” Adv. Civ. Eng., vol. 2018, 2018, doi: 10.1155/2018/7949741.K. Rashid, A. Yazdanbakhsh, and M. U. Rehman, “Sustainable selection of the concrete incorporating recycled tire aggregate to be used as medium to low strength material,” J. Clean. Prod., vol. 224, pp. 396–410, 2019, doi: 10.1016/j.jclepro.2019.03.197.R. A. Berenguer, A. P. B. Capraro, M. H. Farias de Medeiros, A. M. P. Carneiro, and R. A. de Oliveira, “Sugar cane bagasse ash as a partial substitute of Portland cement: Effect on mechanical properties and emission of carbon dioxide,” J. Environ. Chem. Eng., vol. 8, no. 2, p. 103655, 2020, doi: 10.1016/j.jece.2020.103655.J. W. Lee, Y. Il Jang, W. S. Park, H. Do Yun, and S. W. Kim, “The Effect of Fly Ash and Recycled Aggregate on the Strength and Carbon Emission Impact of FRCCs,” Int. J. Concr. Struct. Mater., vol. 14, no. 1, 2020, doi: 10.1186/s40069-020-0392-6.M. Sabău, D. V. Bompa, and L. F. O. Silva, “Comparative carbon emission assessments of recycled and natural aggregate concrete: Environmental influence of cement content,” Geosci. Front., vol. 12, no. 6, 2021, doi: 10.1016/j.gsf.2021.101235.P. Plaza, I. F. Sáez del Bosque, M. Frías, M. I. Sánchez de Rojas, and C. Medina, “Use of recycled coarse and fine aggregates in structural eco-concretes. Physical and mechanical properties and CO2 emissions,” Constr. Build. Mater., vol. 285, p. 122926, 2021, doi: 10.1016/j.conbuildmat.2021.122926.L. Hu, Z. He, and S. Zhang, “Sustainable use of rice husk ash in cement-based materials: Environmental evaluation and performance improvement,” J. Clean. Prod., vol. 264, p. 121744, 2020, doi: 10.1016/j.jclepro.2020.121744.Y. Han, R. Lin, and X.-Y. Wang, “Performance of sustainable concrete made from waste oyster shell powder and blast furnace slag,” J. Build. Eng., vol. 47, no. October 2021, p. 103918, 2021, doi: 10.1016/j.jobe.2021.103918.L. K. Turner and F. G. Collins, “Carbon dioxide equivalent (CO2-e) emissions: A comparison between geopolymer and OPC cement concrete,” Constr. Build. Mater., vol. 43, pp. 125–130, 2013, doi: 10.1016/j.conbuildmat.2013.01.023.A. Thomas, D. R. Lombardi, D. Hunt, and M. Gaterell, “Estimating carbon dioxide emissions for aggregate use,” Proc. Inst. Civ. Eng. Eng. Sustain., vol. 162, no. 3, pp. 135–144, 2009, doi: 10.1680/ensu.2009.162.3.135.PublicationLICENSElicense.txtlicense.txttext/plain; charset=utf-84334https://repository.ucc.edu.co/bitstreams/b1231dfa-0e13-4281-b37a-1f7eecc2f7e7/download3bce4f7ab09dfc588f126e1e36e98a45MD51ORIGINAL2023_Emisiones_Dioxido_Carbono.pdf2023_Emisiones_Dioxido_Carbono.pdfapplication/pdf536513https://repository.ucc.edu.co/bitstreams/9825b7ee-3858-403b-be1b-a83c76e4b5b6/downloada28de7dd750f93e90e9f498d20313a00MD522023_Emisiones_Dioxido_Carbono-LicenciaUso.pdf2023_Emisiones_Dioxido_Carbono-LicenciaUso.pdfapplication/pdf200366https://repository.ucc.edu.co/bitstreams/11c80b94-568d-4403-bab5-ea8088c10765/downloada4b290eeeffe015ab165e9284dc6b6ceMD532023_Emisiones_Dioxido_Carbono-ActaSustentacion.pdf2023_Emisiones_Dioxido_Carbono-ActaSustentacion.pdfapplication/pdf99558https://repository.ucc.edu.co/bitstreams/93eb7c5f-8d1a-4b51-8fad-135e081b9b65/download63860f96f82ed7fd968bb3bddb40517dMD54TEXT2023_Emisiones_Dioxido_Carbono.pdf.txt2023_Emisiones_Dioxido_Carbono.pdf.txtExtracted texttext/plain69947https://repository.ucc.edu.co/bitstreams/ffb5e209-3574-4bfe-a31b-4c6f3b0806fe/download00a63c16e6e97002a917139bd5f7956cMD552023_Emisiones_Dioxido_Carbono-LicenciaUso.pdf.txt2023_Emisiones_Dioxido_Carbono-LicenciaUso.pdf.txtExtracted texttext/plain5922https://repository.ucc.edu.co/bitstreams/4978b36f-4760-49b5-a5c8-f68e4e3951c5/downloadf6939669977e7f929e45f933736e6f67MD572023_Emisiones_Dioxido_Carbono-ActaSustentacion.pdf.txt2023_Emisiones_Dioxido_Carbono-ActaSustentacion.pdf.txtExtracted texttext/plain1818https://repository.ucc.edu.co/bitstreams/50bc8c48-371b-4fbe-9ea5-adbb9878456c/download0821d9cf017214d2be46132841ef890aMD59THUMBNAIL2023_Emisiones_Dioxido_Carbono.pdf.jpg2023_Emisiones_Dioxido_Carbono.pdf.jpgGenerated Thumbnailimage/jpeg7662https://repository.ucc.edu.co/bitstreams/9d50ce5e-5d9b-44be-8cb5-64dc4eb26370/downloadd5b449c9f9122fb0ae6cabf335e8b471MD562023_Emisiones_Dioxido_Carbono-LicenciaUso.pdf.jpg2023_Emisiones_Dioxido_Carbono-LicenciaUso.pdf.jpgGenerated Thumbnailimage/jpeg12623https://repository.ucc.edu.co/bitstreams/04032a3d-4af4-4f60-bae3-1af842c03db5/download5a3b0f3848e7ac688ec15c2a2b77d240MD582023_Emisiones_Dioxido_Carbono-ActaSustentacion.pdf.jpg2023_Emisiones_Dioxido_Carbono-ActaSustentacion.pdf.jpgGenerated Thumbnailimage/jpeg12041https://repository.ucc.edu.co/bitstreams/929755ee-9859-4077-b48d-6175f4ac6751/downloada90ab86267b4d4dffcc9ce4307756ccfMD51020.500.12494/53832oai:repository.ucc.edu.co:20.500.12494/538322024-08-10 21:22:27.601open.accesshttps://repository.ucc.edu.coRepositorio Institucional Universidad Cooperativa de Colombiabdigital@metabiblioteca.comVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEKUkVQT1NJVE9SSU9TIElOU1RJVFVDSU9OQUxFUwpMSUNFTkNJQSBERSBVU08KClBvciBtZWRpbyBkZWwgcHJlc2VudGUgZG9jdW1lbnRvLCBlbCBBdXRvcihlcyksIG1heW9yIChlcykgZGUgZWRhZCwgcXVpZW4gZW4gYWRlbGFudGUgc2UgZGVub21pbmFyw6EgZWwgQVVUT1IsIGNvbmZpZXJlIGEgbGEgVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEsIGNvbiBOSVQuIDg2MC0wMjk5MjQtNywgdW5hIExJQ0VOQ0lBIERFIFVTTyBkZSBvYnJhLCBiYWpvIGxhcyBzaWd1aWVudGVzIGNvbmRpY2lvbmVzLgoKQ0zDgVVTVUxBUwoKUFJJTUVSQS4gT2JqZXRvLiBFTCBBVVRPUiBwb3IgZXN0ZSBhY3RvIGF1dG9yaXphIGxhIHV0aWxpemFjacOzbiBkZSBsYSBvYnJhLCBkZSBjb25mb3JtaWRhZCBjb24gbG8gZXN0aXB1bGFkbyBhIGNvbnRpbnVhY2nDs246IAoKKGEpIFBhcmEgZWZlY3RvcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSBzZSBhdXRvcml6YSBsYSByZXByb2R1Y2Npw7NuIGRlIGxhIG9icmEgYW50ZXJpb3JtZW50ZSBjaXRhZGEsIGxhIGN1YWwgc2UgYWxvamFyw6EgZW4gZm9ybWF0byBkaWdpdGFsIGVuIGxhcyBwbGF0YWZvcm1hcyBvIHJlcG9zaXRvcmlvcyBhZG1pbmlzdHJhZG9zIHBvciBsYSBVTklWRVJTSURBRCBvIGVuIG90cm8gdGlwbyBkZSByZXBvc2l0b3Jpb3MgZXh0ZXJub3MgbyBww6FnaW5hcyB3ZWIgZXNjb2dpZG9zIHBvciBsYSBVTklWRVJTSURBRCwgcGFyYSBmaW5lcyBkZSBkaWZ1c2nDs24geSBkaXZ1bGdhY2nDs24uIEFkaWNpb25hbG1lbnRlLCBzZSBhdXRvcml6YSBhIHF1ZSBsb3MgdXN1YXJpb3MgaW50ZXJub3MgeSBleHRlcm5vcyBkZSBkaWNoYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgcmVwcm9kdXpjYW4gbyBkZXNjYXJndWVuIGxhIG9icmEsIHNpbiDDoW5pbW8gZGUgbHVjcm8sIHBhcmEgZmluZXMgcHJpdmFkb3MsIGVkdWNhdGl2b3MgbyBhY2Fkw6ltaWNvczsgc2llbXByZSB5IGN1YW5kbyBubyBzZSB2aW9sZW4gYWN1ZXJkb3MgY29uIGVkaXRvcmVzLCBwZXJpb2RvcyBkZSBlbWJhcmdvIG8gYWN1ZXJkb3MgZGUgY29uZmlkZW5jaWFsaWRhZCBxdWUgYXBsaXF1ZW4uCgooYikgU2UgYXV0b3JpemEgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBkZSBsYSBvYnJhIG1lbmNpb25hZGEsIGVuIGFjY2VzbyBhYmllcnRvLCBwYXJhIHN1IHV0aWxpemFjacOzbiBlbiBsYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgYWRtaW5pc3RyYWRvcyBwb3IgbGEgVU5JVkVSU0lEQUQuCgooYykgTG8gYW50ZXJpb3IgZXN0YXLDoSBzdWpldG8gYSBsYXMgZGVmaW5pY2lvbmVzIGNvbnRlbmlkYXMgZW4gbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MyB5IGxhIExleSAyMyBkZSAxOTgyLgoKClNFR1VOREEuIE9yaWdpbmFsaWRhZCB5IHJlY2xhbWFjaW9uZXMuIEVsIEFVVE9SIGRlY2xhcmEgcXVlIGxhIE9CUkEgZXMgb3JpZ2luYWwgeSBxdWUgZXMgZGUgc3UgY3JlYWNpw7NuIGV4Y2x1c2l2YSwgbm8gZXhpc3RpZW5kbyBpbXBlZGltZW50byBkZSBjdWFscXVpZXIgbmF0dXJhbGV6YSAoZW1iYXJnb3MsIHVzbyBkZSBtYXRlcmlhbCBwcm90ZWdpZG8gcG9yIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGxhIGNvbmNlc2nDs24gZGUgbG9zIGRlcmVjaG9zIHByZXZpc3RvcyBlbiBlc3RlIGFjdWVyZG8uIEVsIEFVVE9SIHJlc3BvbmRlcsOhIHBvciBjdWFscXVpZXIgYWNjacOzbiBkZSByZWl2aW5kaWNhY2nDs24sIHBsYWdpbyB1IG90cmEgY2xhc2UgZGUgcmVjbGFtYWNpw7NuIHF1ZSBhbCByZXNwZWN0byBwdWRpZXJhIHNvYnJldmVuaXIuCgpURVJDRVJBLiBDb250cmFwcmVzdGFjacOzbi4gRWwgQVVUT1IgYXV0b3JpemEgYSBxdWUgc3Ugb2JyYSBzZWEgdXRpbGl6YWRhIGRlIGNvbmZvcm1pZGFkIGNvbiBsYSBjbMOhdXN1bGEgUFJJTUVSQSBkZSBmb3JtYSBncmF0dWl0YSwgZXMgZGVjaXIsIHF1ZSBsYSB1dGlsaXphY2nDs24gZGUgbGEgbWlzbWEgbm8gZ2VuZXJhIG5pbmfDum4gcGFnbyBvIHJlZ2Fsw61hcyBlbiBmYXZvciBkZSBlc3RlLgoKQ1VBUlRBLiBUaXR1bGFyaWRhZCBkZSBkZXJlY2hvcy4gRWwgcHJlc2VudGUgY29udHJhdG8gbm8gdHJhbnNmaWVyZSBsYSB0aXR1bGFyaWRhZCBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBzb2JyZSBsYXMgb2JyYXMgYW50ZXJpb3JtZW50ZSBtZW5jaW9uYWRhcyBhIGxhIFVOSVZFUlNJREFELiDDmm5pY2FtZW50ZSBoYWNlIHJlbGFjacOzbiBhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgZW4gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGFudGVyaW9ybWVudGUgcGFjdGFkb3MuCgpRVUlOVEEuIENyw6lkaXRvcy4gTGEgVU5JVkVSU0lEQUQgc2UgY29tcHJvbWV0ZSBhIGRhciBhbCBBVVRPUiwgZWwgcmVjb25vY2ltaWVudG8gZGVudHJvIGNhZGEgZm9ybWEgZGUgdXRpbGl6YWNpw7NuIGVuIGxhIG9icmEuIExvcyBjcsOpZGl0b3MgZGViZW4gZmlndXJhciBlbiBjYWRhIHVubyBkZSBsb3MgZm9ybWF0b3MgbyByZWdpc3Ryb3MgZGUgcHVibGljYWNpw7NuLiBObyBjb25zdGl0dWlyw6EgdW5hIHZpb2xhY2nDs24gYSBsb3MgZGVyZWNob3MgbW9yYWxlcyBkZWwgYXV0b3IgbGEgbm8gcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBvIGRlbcOhcyB1dGlsaXphY2lvbmVzIGRlIGxhIG9icmEuIExhIHV0aWxpemFjacOzbiBvIG5vIGRlIGxhIG9icmEsIGFzw60gY29tbyBzdSBmb3JtYSBkZSB1dGlsaXphY2nDs24gc2Vyw6EgZmFjdWx0YWQgZXhjbHVzaXZhIGRlIGxhIFVOSVZFUlNJREFELgogClNFWFRBLiBEdXJhY2nDs24geSB0ZXJyaXRvcmlvLiBMYSBwcmVzZW50ZSBsaWNlbmNpYSBkZSB1c28gcXVlIHNlIG90b3JnYSBhIGZhdm9yIGRlIGxhIFVOSVZFUlNJREFEIHRlbmRyw6EgdW5hIGR1cmFjacOzbiBlcXVpdmFsZW50ZSBhbCB0w6lybWlubyBkZSBwcm90ZWNjacOzbiBsZWdhbCBkZSBsYSBvYnJhIHkgcGFyYSB0b2RvcyBsb3MgcGHDrXNlcyBkZWwgbXVuZG8uCgpTw4lQVElNQS4gVXNvIGRlIENyZWF0aXZlIENvbW1vbnMuIEVsIEFVVE9SIGF1dG9yaXphcsOhIGxhIGRpZnVzacOzbiBkZSBzdSBjb250ZW5pZG8gYmFqbyB1bmEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBhdHJpYnVjacOzbiA0LjAgaW50ZXJuYWNpb25hbCwgcXVlIGRlYmVyw6EgaW5jbHVpcnNlIGVuIGVsIGNvbnRlbmlkby4gCgpPQ1RBVkEuIERlcmVjaG8gZGUgZXhjbHVzacOzbi4gQ2FkYSBhdXRvciBwdWVkZSBpbmRpY2FyIGVuIGVsIG1vbWVudG8gZGUgZGVww7NzaXRvIGRlbCBjb250ZW5pZG8gcXVlIGVsIHRleHRvIGNvbXBsZXRvIGRlIGxhIHByb2R1Y2Npw7NuIGFjYWTDqW1pY2EgbyBjaWVudMOtZmljYSBubyBlc3RlIGNvbiBhY2Nlc28gYWJpZXJ0byBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIHBvciBtb3Rpdm9zIGRlIGNvbmZpZGVuY2lhbGlkYWQsIHBvcnF1ZSBzZSBlbmN1ZW50cmUgZW4gdsOtYXMgZGUgb2J0ZW5lciB1biBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbmR1c3RyaWFsIG8gZXhpc3RpciBhY3VlcmRvcyBwcmV2aW9zIGNvbiB0ZXJjZXJvcyAoZWRpdG9yaWFsZXMsIHJldmlzdGFzIGNpZW50w61maWNhcywgb3RyYXMgaW5zdGl0dWNpb25lcykuIEVsIGF1dG9yIHNlIGNvbXByb21ldGUgYSBkZXBvc2l0YXIgbG9zIG1ldGFkYXRvcyBlIGluZm9ybWFyIGVsIHRpZW1wbyBkZSBlbWJhcmdvIGR1cmFudGUgZWwgY3VhbCBlbCB0ZXh0byBjb21wbGV0byB0ZW5kcsOhIGFjY2VzbyByZXN0cmluZ2lkby4gCgpOT1ZFTkEuIEVsIEFVVE9SIGFsIGFjZXB0YXIgZXN0YSBsaWNlbmNpYSBhZHVjZSBxdWUgZXN0YSBwcm9kdWNjacOzbiBzZSBkZXNhcnJvbGzDsyBlbiBlbCBwZXJpb2RvIGVuIHF1ZSBzZSBlbmN1ZW50cmEgY29uIHbDrW5jdWxvcyBjb24gTGEgVW5pdmVyc2lkYWQuCgpEw4lDSU1BLiBOb3JtYXMgYXBsaWNhYmxlcy4gUGFyYSBsYSBpbnRlcnByZXRhY2nDs24geSBjdW1wbGltaWVudG8gZGVsIHByZXNlbnRlIGFjdWVyZG8gbGFzIHBhcnRlcyBzZSBzb21ldGVuIGEgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgbGEgTGV5IDIzIGRlIDE5ODIgeSBkZW3DoXMgbm9ybWFzIGFwbGljYWJsZXMgZGUgQ29sb21iaWEuIEFkZW3DoXMsIGEgbGFzIG5vcm1hcyBJbnN0aXR1Y2lvbmFsZXMgcXVlIGFwbGlxdWVuLgoKTGEgcHJlc2VudGUgbGljZW5jaWEgc2UgYXV0b3JpemEgZW4gbGEgZmVjaGEgZGUgcHVibGljYWNpw7NuIGVuIGxvcyByZXBvc2l0b3Jpb3MgaW5zdGl0dWNpb25hbGVzLgo=