Temperature measurement by means of fiber specklegram sensors (FSS)

En este trabajo, una técnica para la medición de temperatura mediante specklegramas de fibra óptica no-holográficos es demostrada experimentalmente. En el esquema experimental, una fuente láser de 632 nm es acoplada a un arreglo de fibras mono-multi-mono modo, lo cual produce un efecto de filtrado q...

Full description

Autores:
Vélez Hoyos, Francisco Javier
Aristizábal Tique, Víctor Hugo
Gómez López, Jorge Alberto
Quijano Pérez, Jairo Camilo
Herrera Ramírez, Jorge Alexis
Da Silva Nunes, Luiz Carlos
Hoyos Sánchez, Alejandro
Gutiérrez Gutiérrez, Luis Carlos
Castaño Escobar, Luis Fernando
Tipo de recurso:
Investigation report
Fecha de publicación:
2018
Institución:
Universidad Cooperativa de Colombia
Repositorio:
Repositorio UCC
Idioma:
OAI Identifier:
oai:repository.ucc.edu.co:20.500.12494/15418
Acceso en línea:
https://doi.org/10.7149/opa.51.3.50306
https://hdl.handle.net/20.500.12494/15418
Palabra clave:
Specklegramas de Fibra Óptica
Perturbaciones Térmicas
Sensores de Fibra Óptica
Fiber Specklegram Sensors
Thermal Perturbations
Optical Fiber sensors
Rights
openAccess
License
Atribución – No comercial – Sin Derivar
id COOPER2_0bf87ea2e29370f789655a54cca8ba0b
oai_identifier_str oai:repository.ucc.edu.co:20.500.12494/15418
network_acronym_str COOPER2
network_name_str Repositorio UCC
repository_id_str
dc.title.spa.fl_str_mv Temperature measurement by means of fiber specklegram sensors (FSS)
title Temperature measurement by means of fiber specklegram sensors (FSS)
spellingShingle Temperature measurement by means of fiber specklegram sensors (FSS)
Specklegramas de Fibra Óptica
Perturbaciones Térmicas
Sensores de Fibra Óptica
Fiber Specklegram Sensors
Thermal Perturbations
Optical Fiber sensors
title_short Temperature measurement by means of fiber specklegram sensors (FSS)
title_full Temperature measurement by means of fiber specklegram sensors (FSS)
title_fullStr Temperature measurement by means of fiber specklegram sensors (FSS)
title_full_unstemmed Temperature measurement by means of fiber specklegram sensors (FSS)
title_sort Temperature measurement by means of fiber specklegram sensors (FSS)
dc.creator.fl_str_mv Vélez Hoyos, Francisco Javier
Aristizábal Tique, Víctor Hugo
Gómez López, Jorge Alberto
Quijano Pérez, Jairo Camilo
Herrera Ramírez, Jorge Alexis
Da Silva Nunes, Luiz Carlos
Hoyos Sánchez, Alejandro
Gutiérrez Gutiérrez, Luis Carlos
Castaño Escobar, Luis Fernando
dc.contributor.author.none.fl_str_mv Vélez Hoyos, Francisco Javier
Aristizábal Tique, Víctor Hugo
Gómez López, Jorge Alberto
Quijano Pérez, Jairo Camilo
Herrera Ramírez, Jorge Alexis
Da Silva Nunes, Luiz Carlos
Hoyos Sánchez, Alejandro
Gutiérrez Gutiérrez, Luis Carlos
Castaño Escobar, Luis Fernando
dc.subject.spa.fl_str_mv Specklegramas de Fibra Óptica
Perturbaciones Térmicas
Sensores de Fibra Óptica
topic Specklegramas de Fibra Óptica
Perturbaciones Térmicas
Sensores de Fibra Óptica
Fiber Specklegram Sensors
Thermal Perturbations
Optical Fiber sensors
dc.subject.other.spa.fl_str_mv Fiber Specklegram Sensors
Thermal Perturbations
Optical Fiber sensors
description En este trabajo, una técnica para la medición de temperatura mediante specklegramas de fibra óptica no-holográficos es demostrada experimentalmente. En el esquema experimental, una fuente láser de 632 nm es acoplada a un arreglo de fibras mono-multi-mono modo, lo cual produce un efecto de filtrado que es usado como mecanismo de transducción óptica. Perturbaciones térmicas entre los 250C y los 600C fueron aplicadas al arreglo de fibras, encontrando una respuesta lineal del sistema y una sensibilidad superior a las reportadas anteriormente para estudios basados en sistemas similares. Debido al bajo costo y simplicidad de la técnica, estos resultados son de gran interés para la implementación de este tipo de sensores de fibra óptica en una gran cantidad de aplicaciones de ingeniería.
publishDate 2018
dc.date.issued.none.fl_str_mv 2018-10
dc.date.accessioned.none.fl_str_mv 2019-12-05T17:06:50Z
dc.date.available.none.fl_str_mv 2019-12-05T17:06:50Z
dc.type.none.fl_str_mv Avance de investigación financiada
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_93fc
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_18ws
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/report
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_18ws
status_str acceptedVersion
dc.identifier.issn.spa.fl_str_mv 21718814
dc.identifier.uri.spa.fl_str_mv https://doi.org/10.7149/opa.51.3.50306
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12494/15418
dc.identifier.bibliographicCitation.spa.fl_str_mv Castaño, L. F., Gutiérrez, L. C., Quijano, J. C., Herrera-Ramírez, J. A., Hoyos, A., Vélez, F. J., … Gómez, J. A. (2018). Temperature measurement by means of fiber specklegram sensors (FSS). Optica Pura y Aplicada, 51(3), 1–7. https://doi.org/10.7149/OPA.51.3.50306
identifier_str_mv 21718814
Castaño, L. F., Gutiérrez, L. C., Quijano, J. C., Herrera-Ramírez, J. A., Hoyos, A., Vélez, F. J., … Gómez, J. A. (2018). Temperature measurement by means of fiber specklegram sensors (FSS). Optica Pura y Aplicada, 51(3), 1–7. https://doi.org/10.7149/OPA.51.3.50306
url https://doi.org/10.7149/opa.51.3.50306
https://hdl.handle.net/20.500.12494/15418
dc.relation.isversionof.spa.fl_str_mv https://www.sedoptica.es/Menu_Volumenes/opavols.php?volumen=51&numero=3
https://www.sedoptica.es/Menu_Volumenes/Pdfs/OPA_51_3_50306.pdf
dc.relation.ispartofjournal.spa.fl_str_mv OPTICA PURA Y APLICADA
dc.relation.references.spa.fl_str_mv K. J. Gasvik, Optical Metrology, 3rd ed. Chichester, England: John Wiley & Sons Ltd, (2002).
Y. Y. Hung, “Displacement and strain measurement,” in Speckle metrology, R. K. Erf, Ed. New York: Academic Press, Inc., pp. 51–71 (1978).
R. Jones and C. Wykes, Holographic and Speckle Interferometry. Cambridge University Press, (1989).
B. E. a Saleh and M. C. Teich, Fundamentals of Photonics, vol. 5. New York, USA: John Wiley & Sons, Inc., (1991).
F. T. S. Yu and S. Yin, Fiber Optic Sensors. New York: Marcel Dekker, Inc., (2002).
B. Wang, C. Huang, R. Guo, and F. T. S. Yu, “A novel fiber chemical sensor using inner-product multimode fiber speckle fields,” in Proceedings of SPIE - The International Society for Optical Engineering, p. 299 (2003).
Y. Liu and L. Wei, “Low-cost high-sensitivity strain and temperature sensing using graded-index multimode fibers,” Appl. Opt., 46, pp. 2516–2519 (2007).
I. P. Johnson, D. J. Webb, K. Kalli, M. C. J. Large, and A. Argyros, “Multiplexed FBG sensor recorded in multimode microstructured polymer optical fibre,”, 7714, p. 77140D (2010).
D. Monzon-Hernandez, V. P. Minkovich, and J. Villatoro, “High-temperature sensing with tapers made of microstructured optical fiber,” IEEE Photonics Technol. Lett., 18, pp. 511–513, (2006).
Y. Peng, J. Hou, Z. Huang, and Q. Lu, “Temperature sensor based on surface plasmon resonance within selectively coated photonic crystal fiber,” Appl. Opt., 51, p. 6361, (2012).
S. Wu, S. Yin, and F. T. S. Yu, “Sensing with fiber specklegrams,” Appl. Opt., 30, p. 4468, (1991).
F. T. S. Yu, J. Zhang, S. Yin, and P. B. Ruffin, “Analysis of a fiber specklegram sensor by using coupled-mode theory,” Appl. Opt., 34, p. 3018, (1995).
F. T. S. Yu, S. Yin, J. Zhang, and R. Guo, “Application of a fiber-speckle hologram to fiber sensing,” Appl. Opt., vol. 33, p. 5202, (1994).
J.A. Gomez, H. Lorduy G., and Á. Salazar, “Improvement of the dynamic range of a fiber specklegram sensor based on volume speckle recording in photorefractive materials,” Opt. Lasers Eng., vol. 49, no. 3, pp. 473–480 (2011).
J. A. Gómez, H. Lorduy G., and Á. Salazar, “Influence of the volume speckle on fiber specklegram sensors based on four-wave mixing in photorefractive materials,” Opt. Commun., 284, pp. 1008–1014, (2011).
J. A. Gómez and Á. Salazar, “Self-correlation fiber specklegram sensor using volume characteristics of speckle patterns,” Opt. Lasers Eng., 50, pp. 812–815, (2012)
A. Malki, R. Gafsi, L. Michel, M. Labarrère, and P. Lecoy, “Impact and vibration detection in composite materials by using intermodal interference in multimode optical fibers,” Appl. Opt., 35, p. 5198, (1996).
B. Wang, R. Guo, S. Yin, and F. T. S. Yu, “Chemical Sensing with Hetero-Core Fiber Specklegram,” J. Hologr. Speckle, 1, pp. 53–57, (2004).
F. T. S. Yu, M. Wen, S. Yin, and C.-M. Uang, “Submicrometer displacement sensing using inner-product multimode fiber speckle fields,” Appl. Opt., 32, p. 4685, (1993).
E. Fujiwara, Y. T. Wu, and C. K. Suzuki, “Vibration-based specklegram fiber sensor for measurement of properties of liquids,” Opt. Lasers Eng., 50, pp. 1726–1730, (2012).
J. Li, H. Cai, J. Geng, R. Qu, and Z. Fang, “Specklegram in a multiple-mode fiber and its dependence on longitudinal modes of the laser source,” Appl. Opt., 46, p. 3572, (2007).
Y. Wang, H. Cai, R. Qu, Z. Fang, E. Marin, and J.-P. Meunier, “Specklegram in a grapefruit fiber and its response to external mechanical disturbance in a single-multiple-single mode fiber structure,” Appl. Opt., 47, p. 3543, (2008).
A. Kumar, R. K. Varshney, S. Antony C, and P. Sharma, “Transmission characteristics of SMS fiber optic sensor structures,” Opt. Commun., 219, pp. 215–219, (2003).
E. Fujiwara, Y. T. Wu, M. F. M. dos Santos, E. A. Schenkel, and C. K. Suzuki, “Development of a tactile sensor based on optical fiber specklegram analysis and sensor data fusion technique,” Sensors Actuators A Phys., 263, pp. 677–686, (2017).
L. Rodriguez-Cobo, M. Lomer, and J.-M. Lopez-Higuera, “Fiber Specklegram-Multiplexed Sensor,” J. Light. Technol., 33, , pp. 2591–2597, (2015).
E. Fujiwara, M. F. Marques dos Santos, and C. K. Suzuki, “Optical fiber specklegram sensor analysis by speckle pattern division,” Appl. Opt., 56, no. 6, p. 1585, (2017).
N. Darío Gómez and J. A. Gómez, “Effects of the speckle size on non-holographic fiber specklegram sensors,” Opt. Lasers Eng., 51, pp. 1291–1295, (2013).
V. H. Aristizabal, A. Hoyos, E. Rueda, N. D. Gomez, and J. A. Gomez, “Effect of wavelength on metrological characteristics of non-holographic fiber specklegram sensor,” Photonic Sensors, 5, (2015).
V. H. Arístizabal, F. J. Vélez, E. Rueda, N. D. Gómez, and J. A. Gómez, “Numerical modeling of fiber specklegram sensors by using finite element method (FEM),” Opt. Express, 24, pp. 27225–27238, (2016).
Z. Zhang and F. Ansari, “Fiber-optic laser speckle-intensity crack sensor for embedment in concrete,” Sensors Actuators A Phys., 126, , pp. 107–111, (2006).
L. Rodriguez-Cobo, M. Lomer, and J. M. Lopez-Higuera, “Fiber specklegram sensors sensitivities at high temperatures,” in Proceedings of SPIE - The International Society for Optical Engineering, p. 96347, (2015).
G. T. Mase and G. E. Mase, Continuum for Engineers, 2 Ed. Boca Raton: CRC Press, (1999).
M. Bass, E. W. Van-Stryland, D. R. Williams, and W. L. Wolfe, Handbook of Optics, Vol. II: Devices, Measurements and Properties, 2nd ed. The United States of America: McGraw-Hill, Inc., (1995).
V. H. Aristizabal, F. J. Velez, and P. Torres, “Numerical model and analysis of optical fibers with internal electrodes,” Rev. Colomb. Física, 38, , pp. 173–176, (2006).
K. Masuda, A. Tate, M. Ishida, T. Suzuki, and H. Tsuda, “Beam steering type of 1 : 4 optical switch using thermo-optic effect,” Opt. Rev., 13, pp. 184–188, (2006).
dc.rights.license.none.fl_str_mv Atribución – No comercial – Sin Derivar
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución – No comercial – Sin Derivar
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 50306:1-7
dc.coverage.temporal.spa.fl_str_mv Vol.51 - No.3
dc.publisher.spa.fl_str_mv Sociedad Española de óptica
https://www.ucc.edu.co/programas-academicos/medellin/Paginas/pregrado-ingenieria-civil.aspx
dc.publisher.program.spa.fl_str_mv Ingeniería Civil
dc.publisher.place.spa.fl_str_mv Medellín
institution Universidad Cooperativa de Colombia
bitstream.url.fl_str_mv https://repository.ucc.edu.co/bitstreams/d7cf43d7-a4e4-4eb0-a497-32a1eae67f6a/download
https://repository.ucc.edu.co/bitstreams/390e7537-830b-4f47-8d61-b1439288647c/download
https://repository.ucc.edu.co/bitstreams/fd3edcd7-73e4-49b8-bc71-889b037106f4/download
https://repository.ucc.edu.co/bitstreams/1e697969-387c-405e-bd21-91deaf4dcdf5/download
bitstream.checksum.fl_str_mv 3bce4f7ab09dfc588f126e1e36e98a45
10c431c42b2fa8e8c75b10b2bb8db895
0a02eaf34bef928aa565e51f0b7835ac
303be9cefddeffc096ccb8b5d5dc5898
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Cooperativa de Colombia
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1814246941046865920
spelling Vélez Hoyos, Francisco JavierAristizábal Tique, Víctor HugoGómez López, Jorge AlbertoQuijano Pérez, Jairo CamiloHerrera Ramírez, Jorge AlexisDa Silva Nunes, Luiz CarlosHoyos Sánchez, AlejandroGutiérrez Gutiérrez, Luis CarlosCastaño Escobar, Luis FernandoVol.51 - No.32019-12-05T17:06:50Z2019-12-05T17:06:50Z2018-1021718814https://doi.org/10.7149/opa.51.3.50306https://hdl.handle.net/20.500.12494/15418Castaño, L. F., Gutiérrez, L. C., Quijano, J. C., Herrera-Ramírez, J. A., Hoyos, A., Vélez, F. J., … Gómez, J. A. (2018). Temperature measurement by means of fiber specklegram sensors (FSS). Optica Pura y Aplicada, 51(3), 1–7. https://doi.org/10.7149/OPA.51.3.50306En este trabajo, una técnica para la medición de temperatura mediante specklegramas de fibra óptica no-holográficos es demostrada experimentalmente. En el esquema experimental, una fuente láser de 632 nm es acoplada a un arreglo de fibras mono-multi-mono modo, lo cual produce un efecto de filtrado que es usado como mecanismo de transducción óptica. Perturbaciones térmicas entre los 250C y los 600C fueron aplicadas al arreglo de fibras, encontrando una respuesta lineal del sistema y una sensibilidad superior a las reportadas anteriormente para estudios basados en sistemas similares. Debido al bajo costo y simplicidad de la técnica, estos resultados son de gran interés para la implementación de este tipo de sensores de fibra óptica en una gran cantidad de aplicaciones de ingeniería.In this work, a technique for temperature measurement using non-holographic fiber optic specklegrams is demonstrated experimentally. In the experimental scheme, a 632 nm laser source is coupled to a mono-multi-mono mode fiber arrangement, which produces a filtering effect that is used as an optical transduction mechanism. Thermal perturbations between 250C and 600C were applied to the fiber array, finding a linear response of the system and a sensitivity superior to the previously reported for studies in similar systems. Due to the low cost and simplicity of the technique, these results are of great interest for the implementation of this type of optical fiber sensors in a large number of engineering applications.https://scienti.colciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=00004482220000-0002-4267-042Xhttps://scienti.colciencias.gov.co/gruplac/jsp/visualiza/visualizagr.jsp?nro=00000000005961francisco.velezh@campusucc.edu.covictor.aristizabalt@campusucc.edu.cojagomez@elpoli.edu.cojcquijano@elpoli.edu.cojorgeherrerar@itm.edu.coluizcsn@id.uff.bralejandro_hoyos91103@elpoli.edu.coluis_gutierrez91131@elpoli.edu.coluisfernandoharry@hotmail.comhttps://scholar.google.com/citations?user=CLkAM5AAAAAJ&hl=es&oi=ao50306:1-7Sociedad Española de ópticahttps://www.ucc.edu.co/programas-academicos/medellin/Paginas/pregrado-ingenieria-civil.aspxIngeniería CivilMedellínhttps://www.sedoptica.es/Menu_Volumenes/opavols.php?volumen=51&numero=3https://www.sedoptica.es/Menu_Volumenes/Pdfs/OPA_51_3_50306.pdfOPTICA PURA Y APLICADAK. J. Gasvik, Optical Metrology, 3rd ed. Chichester, England: John Wiley & Sons Ltd, (2002).Y. Y. Hung, “Displacement and strain measurement,” in Speckle metrology, R. K. Erf, Ed. New York: Academic Press, Inc., pp. 51–71 (1978).R. Jones and C. Wykes, Holographic and Speckle Interferometry. Cambridge University Press, (1989).B. E. a Saleh and M. C. Teich, Fundamentals of Photonics, vol. 5. New York, USA: John Wiley & Sons, Inc., (1991).F. T. S. Yu and S. Yin, Fiber Optic Sensors. New York: Marcel Dekker, Inc., (2002).B. Wang, C. Huang, R. Guo, and F. T. S. Yu, “A novel fiber chemical sensor using inner-product multimode fiber speckle fields,” in Proceedings of SPIE - The International Society for Optical Engineering, p. 299 (2003).Y. Liu and L. Wei, “Low-cost high-sensitivity strain and temperature sensing using graded-index multimode fibers,” Appl. Opt., 46, pp. 2516–2519 (2007).I. P. Johnson, D. J. Webb, K. Kalli, M. C. J. Large, and A. Argyros, “Multiplexed FBG sensor recorded in multimode microstructured polymer optical fibre,”, 7714, p. 77140D (2010).D. Monzon-Hernandez, V. P. Minkovich, and J. Villatoro, “High-temperature sensing with tapers made of microstructured optical fiber,” IEEE Photonics Technol. Lett., 18, pp. 511–513, (2006).Y. Peng, J. Hou, Z. Huang, and Q. Lu, “Temperature sensor based on surface plasmon resonance within selectively coated photonic crystal fiber,” Appl. Opt., 51, p. 6361, (2012).S. Wu, S. Yin, and F. T. S. Yu, “Sensing with fiber specklegrams,” Appl. Opt., 30, p. 4468, (1991).F. T. S. Yu, J. Zhang, S. Yin, and P. B. Ruffin, “Analysis of a fiber specklegram sensor by using coupled-mode theory,” Appl. Opt., 34, p. 3018, (1995).F. T. S. Yu, S. Yin, J. Zhang, and R. Guo, “Application of a fiber-speckle hologram to fiber sensing,” Appl. Opt., vol. 33, p. 5202, (1994).J.A. Gomez, H. Lorduy G., and Á. Salazar, “Improvement of the dynamic range of a fiber specklegram sensor based on volume speckle recording in photorefractive materials,” Opt. Lasers Eng., vol. 49, no. 3, pp. 473–480 (2011).J. A. Gómez, H. Lorduy G., and Á. Salazar, “Influence of the volume speckle on fiber specklegram sensors based on four-wave mixing in photorefractive materials,” Opt. Commun., 284, pp. 1008–1014, (2011).J. A. Gómez and Á. Salazar, “Self-correlation fiber specklegram sensor using volume characteristics of speckle patterns,” Opt. Lasers Eng., 50, pp. 812–815, (2012)A. Malki, R. Gafsi, L. Michel, M. Labarrère, and P. Lecoy, “Impact and vibration detection in composite materials by using intermodal interference in multimode optical fibers,” Appl. Opt., 35, p. 5198, (1996).B. Wang, R. Guo, S. Yin, and F. T. S. Yu, “Chemical Sensing with Hetero-Core Fiber Specklegram,” J. Hologr. Speckle, 1, pp. 53–57, (2004).F. T. S. Yu, M. Wen, S. Yin, and C.-M. Uang, “Submicrometer displacement sensing using inner-product multimode fiber speckle fields,” Appl. Opt., 32, p. 4685, (1993).E. Fujiwara, Y. T. Wu, and C. K. Suzuki, “Vibration-based specklegram fiber sensor for measurement of properties of liquids,” Opt. Lasers Eng., 50, pp. 1726–1730, (2012).J. Li, H. Cai, J. Geng, R. Qu, and Z. Fang, “Specklegram in a multiple-mode fiber and its dependence on longitudinal modes of the laser source,” Appl. Opt., 46, p. 3572, (2007).Y. Wang, H. Cai, R. Qu, Z. Fang, E. Marin, and J.-P. Meunier, “Specklegram in a grapefruit fiber and its response to external mechanical disturbance in a single-multiple-single mode fiber structure,” Appl. Opt., 47, p. 3543, (2008).A. Kumar, R. K. Varshney, S. Antony C, and P. Sharma, “Transmission characteristics of SMS fiber optic sensor structures,” Opt. Commun., 219, pp. 215–219, (2003).E. Fujiwara, Y. T. Wu, M. F. M. dos Santos, E. A. Schenkel, and C. K. Suzuki, “Development of a tactile sensor based on optical fiber specklegram analysis and sensor data fusion technique,” Sensors Actuators A Phys., 263, pp. 677–686, (2017).L. Rodriguez-Cobo, M. Lomer, and J.-M. Lopez-Higuera, “Fiber Specklegram-Multiplexed Sensor,” J. Light. Technol., 33, , pp. 2591–2597, (2015).E. Fujiwara, M. F. Marques dos Santos, and C. K. Suzuki, “Optical fiber specklegram sensor analysis by speckle pattern division,” Appl. Opt., 56, no. 6, p. 1585, (2017).N. Darío Gómez and J. A. Gómez, “Effects of the speckle size on non-holographic fiber specklegram sensors,” Opt. Lasers Eng., 51, pp. 1291–1295, (2013).V. H. Aristizabal, A. Hoyos, E. Rueda, N. D. Gomez, and J. A. Gomez, “Effect of wavelength on metrological characteristics of non-holographic fiber specklegram sensor,” Photonic Sensors, 5, (2015).V. H. Arístizabal, F. J. Vélez, E. Rueda, N. D. Gómez, and J. A. Gómez, “Numerical modeling of fiber specklegram sensors by using finite element method (FEM),” Opt. Express, 24, pp. 27225–27238, (2016).Z. Zhang and F. Ansari, “Fiber-optic laser speckle-intensity crack sensor for embedment in concrete,” Sensors Actuators A Phys., 126, , pp. 107–111, (2006).L. Rodriguez-Cobo, M. Lomer, and J. M. Lopez-Higuera, “Fiber specklegram sensors sensitivities at high temperatures,” in Proceedings of SPIE - The International Society for Optical Engineering, p. 96347, (2015).G. T. Mase and G. E. Mase, Continuum for Engineers, 2 Ed. Boca Raton: CRC Press, (1999).M. Bass, E. W. Van-Stryland, D. R. Williams, and W. L. Wolfe, Handbook of Optics, Vol. II: Devices, Measurements and Properties, 2nd ed. The United States of America: McGraw-Hill, Inc., (1995).V. H. Aristizabal, F. J. Velez, and P. Torres, “Numerical model and analysis of optical fibers with internal electrodes,” Rev. Colomb. Física, 38, , pp. 173–176, (2006).K. Masuda, A. Tate, M. Ishida, T. Suzuki, and H. Tsuda, “Beam steering type of 1 : 4 optical switch using thermo-optic effect,” Opt. Rev., 13, pp. 184–188, (2006).Specklegramas de Fibra ÓpticaPerturbaciones TérmicasSensores de Fibra ÓpticaFiber Specklegram SensorsThermal PerturbationsOptical Fiber sensorsTemperature measurement by means of fiber specklegram sensors (FSS)Avance de investigación financiadahttp://purl.org/coar/resource_type/c_18wshttp://purl.org/coar/resource_type/c_93fcinfo:eu-repo/semantics/reportinfo:eu-repo/semantics/acceptedVersionAtribución – No comercial – Sin Derivarinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2PublicationLICENSElicense.txtlicense.txttext/plain; charset=utf-84334https://repository.ucc.edu.co/bitstreams/d7cf43d7-a4e4-4eb0-a497-32a1eae67f6a/download3bce4f7ab09dfc588f126e1e36e98a45MD53ORIGINAL2018-Castano_et_all-temperature_measurement_ fiber_specklegram_sensors.pdf2018-Castano_et_all-temperature_measurement_ fiber_specklegram_sensors.pdfArticuloapplication/pdf603767https://repository.ucc.edu.co/bitstreams/390e7537-830b-4f47-8d61-b1439288647c/download10c431c42b2fa8e8c75b10b2bb8db895MD52TEXT2018-Castano_et_all-temperature_measurement_ fiber_specklegram_sensors.pdf.txt2018-Castano_et_all-temperature_measurement_ fiber_specklegram_sensors.pdf.txtExtracted texttext/plain24985https://repository.ucc.edu.co/bitstreams/fd3edcd7-73e4-49b8-bc71-889b037106f4/download0a02eaf34bef928aa565e51f0b7835acMD54THUMBNAIL2018-Castano_et_all-temperature_measurement_ fiber_specklegram_sensors.pdf.jpg2018-Castano_et_all-temperature_measurement_ fiber_specklegram_sensors.pdf.jpgGenerated Thumbnailimage/jpeg5621https://repository.ucc.edu.co/bitstreams/1e697969-387c-405e-bd21-91deaf4dcdf5/download303be9cefddeffc096ccb8b5d5dc5898MD5520.500.12494/15418oai:repository.ucc.edu.co:20.500.12494/154182024-08-10 21:03:20.669restrictedhttps://repository.ucc.edu.coRepositorio Institucional Universidad Cooperativa de Colombiabdigital@metabiblioteca.comVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEKUkVQT1NJVE9SSU9TIElOU1RJVFVDSU9OQUxFUwpMSUNFTkNJQSBERSBVU08KClBvciBtZWRpbyBkZWwgcHJlc2VudGUgZG9jdW1lbnRvLCBlbCBBdXRvcihlcyksIG1heW9yIChlcykgZGUgZWRhZCwgcXVpZW4gZW4gYWRlbGFudGUgc2UgZGVub21pbmFyw6EgZWwgQVVUT1IsIGNvbmZpZXJlIGEgbGEgVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEsIGNvbiBOSVQuIDg2MC0wMjk5MjQtNywgdW5hIExJQ0VOQ0lBIERFIFVTTyBkZSBvYnJhLCBiYWpvIGxhcyBzaWd1aWVudGVzIGNvbmRpY2lvbmVzLgoKQ0zDgVVTVUxBUwoKUFJJTUVSQS4gT2JqZXRvLiBFTCBBVVRPUiBwb3IgZXN0ZSBhY3RvIGF1dG9yaXphIGxhIHV0aWxpemFjacOzbiBkZSBsYSBvYnJhLCBkZSBjb25mb3JtaWRhZCBjb24gbG8gZXN0aXB1bGFkbyBhIGNvbnRpbnVhY2nDs246IAoKKGEpIFBhcmEgZWZlY3RvcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSBzZSBhdXRvcml6YSBsYSByZXByb2R1Y2Npw7NuIGRlIGxhIG9icmEgYW50ZXJpb3JtZW50ZSBjaXRhZGEsIGxhIGN1YWwgc2UgYWxvamFyw6EgZW4gZm9ybWF0byBkaWdpdGFsIGVuIGxhcyBwbGF0YWZvcm1hcyBvIHJlcG9zaXRvcmlvcyBhZG1pbmlzdHJhZG9zIHBvciBsYSBVTklWRVJTSURBRCBvIGVuIG90cm8gdGlwbyBkZSByZXBvc2l0b3Jpb3MgZXh0ZXJub3MgbyBww6FnaW5hcyB3ZWIgZXNjb2dpZG9zIHBvciBsYSBVTklWRVJTSURBRCwgcGFyYSBmaW5lcyBkZSBkaWZ1c2nDs24geSBkaXZ1bGdhY2nDs24uIEFkaWNpb25hbG1lbnRlLCBzZSBhdXRvcml6YSBhIHF1ZSBsb3MgdXN1YXJpb3MgaW50ZXJub3MgeSBleHRlcm5vcyBkZSBkaWNoYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgcmVwcm9kdXpjYW4gbyBkZXNjYXJndWVuIGxhIG9icmEsIHNpbiDDoW5pbW8gZGUgbHVjcm8sIHBhcmEgZmluZXMgcHJpdmFkb3MsIGVkdWNhdGl2b3MgbyBhY2Fkw6ltaWNvczsgc2llbXByZSB5IGN1YW5kbyBubyBzZSB2aW9sZW4gYWN1ZXJkb3MgY29uIGVkaXRvcmVzLCBwZXJpb2RvcyBkZSBlbWJhcmdvIG8gYWN1ZXJkb3MgZGUgY29uZmlkZW5jaWFsaWRhZCBxdWUgYXBsaXF1ZW4uCgooYikgU2UgYXV0b3JpemEgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBkZSBsYSBvYnJhIG1lbmNpb25hZGEsIGVuIGFjY2VzbyBhYmllcnRvLCBwYXJhIHN1IHV0aWxpemFjacOzbiBlbiBsYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgYWRtaW5pc3RyYWRvcyBwb3IgbGEgVU5JVkVSU0lEQUQuCgooYykgTG8gYW50ZXJpb3IgZXN0YXLDoSBzdWpldG8gYSBsYXMgZGVmaW5pY2lvbmVzIGNvbnRlbmlkYXMgZW4gbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MyB5IGxhIExleSAyMyBkZSAxOTgyLgoKClNFR1VOREEuIE9yaWdpbmFsaWRhZCB5IHJlY2xhbWFjaW9uZXMuIEVsIEFVVE9SIGRlY2xhcmEgcXVlIGxhIE9CUkEgZXMgb3JpZ2luYWwgeSBxdWUgZXMgZGUgc3UgY3JlYWNpw7NuIGV4Y2x1c2l2YSwgbm8gZXhpc3RpZW5kbyBpbXBlZGltZW50byBkZSBjdWFscXVpZXIgbmF0dXJhbGV6YSAoZW1iYXJnb3MsIHVzbyBkZSBtYXRlcmlhbCBwcm90ZWdpZG8gcG9yIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGxhIGNvbmNlc2nDs24gZGUgbG9zIGRlcmVjaG9zIHByZXZpc3RvcyBlbiBlc3RlIGFjdWVyZG8uIEVsIEFVVE9SIHJlc3BvbmRlcsOhIHBvciBjdWFscXVpZXIgYWNjacOzbiBkZSByZWl2aW5kaWNhY2nDs24sIHBsYWdpbyB1IG90cmEgY2xhc2UgZGUgcmVjbGFtYWNpw7NuIHF1ZSBhbCByZXNwZWN0byBwdWRpZXJhIHNvYnJldmVuaXIuCgpURVJDRVJBLiBDb250cmFwcmVzdGFjacOzbi4gRWwgQVVUT1IgYXV0b3JpemEgYSBxdWUgc3Ugb2JyYSBzZWEgdXRpbGl6YWRhIGRlIGNvbmZvcm1pZGFkIGNvbiBsYSBjbMOhdXN1bGEgUFJJTUVSQSBkZSBmb3JtYSBncmF0dWl0YSwgZXMgZGVjaXIsIHF1ZSBsYSB1dGlsaXphY2nDs24gZGUgbGEgbWlzbWEgbm8gZ2VuZXJhIG5pbmfDum4gcGFnbyBvIHJlZ2Fsw61hcyBlbiBmYXZvciBkZSBlc3RlLgoKQ1VBUlRBLiBUaXR1bGFyaWRhZCBkZSBkZXJlY2hvcy4gRWwgcHJlc2VudGUgY29udHJhdG8gbm8gdHJhbnNmaWVyZSBsYSB0aXR1bGFyaWRhZCBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBzb2JyZSBsYXMgb2JyYXMgYW50ZXJpb3JtZW50ZSBtZW5jaW9uYWRhcyBhIGxhIFVOSVZFUlNJREFELiDDmm5pY2FtZW50ZSBoYWNlIHJlbGFjacOzbiBhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgZW4gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGFudGVyaW9ybWVudGUgcGFjdGFkb3MuCgpRVUlOVEEuIENyw6lkaXRvcy4gTGEgVU5JVkVSU0lEQUQgc2UgY29tcHJvbWV0ZSBhIGRhciBhbCBBVVRPUiwgZWwgcmVjb25vY2ltaWVudG8gZGVudHJvIGNhZGEgZm9ybWEgZGUgdXRpbGl6YWNpw7NuIGVuIGxhIG9icmEuIExvcyBjcsOpZGl0b3MgZGViZW4gZmlndXJhciBlbiBjYWRhIHVubyBkZSBsb3MgZm9ybWF0b3MgbyByZWdpc3Ryb3MgZGUgcHVibGljYWNpw7NuLiBObyBjb25zdGl0dWlyw6EgdW5hIHZpb2xhY2nDs24gYSBsb3MgZGVyZWNob3MgbW9yYWxlcyBkZWwgYXV0b3IgbGEgbm8gcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBvIGRlbcOhcyB1dGlsaXphY2lvbmVzIGRlIGxhIG9icmEuIExhIHV0aWxpemFjacOzbiBvIG5vIGRlIGxhIG9icmEsIGFzw60gY29tbyBzdSBmb3JtYSBkZSB1dGlsaXphY2nDs24gc2Vyw6EgZmFjdWx0YWQgZXhjbHVzaXZhIGRlIGxhIFVOSVZFUlNJREFELgogClNFWFRBLiBEdXJhY2nDs24geSB0ZXJyaXRvcmlvLiBMYSBwcmVzZW50ZSBsaWNlbmNpYSBkZSB1c28gcXVlIHNlIG90b3JnYSBhIGZhdm9yIGRlIGxhIFVOSVZFUlNJREFEIHRlbmRyw6EgdW5hIGR1cmFjacOzbiBlcXVpdmFsZW50ZSBhbCB0w6lybWlubyBkZSBwcm90ZWNjacOzbiBsZWdhbCBkZSBsYSBvYnJhIHkgcGFyYSB0b2RvcyBsb3MgcGHDrXNlcyBkZWwgbXVuZG8uCgpTw4lQVElNQS4gVXNvIGRlIENyZWF0aXZlIENvbW1vbnMuIEVsIEFVVE9SIGF1dG9yaXphcsOhIGxhIGRpZnVzacOzbiBkZSBzdSBjb250ZW5pZG8gYmFqbyB1bmEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBhdHJpYnVjacOzbiA0LjAgaW50ZXJuYWNpb25hbCwgcXVlIGRlYmVyw6EgaW5jbHVpcnNlIGVuIGVsIGNvbnRlbmlkby4gCgpPQ1RBVkEuIERlcmVjaG8gZGUgZXhjbHVzacOzbi4gQ2FkYSBhdXRvciBwdWVkZSBpbmRpY2FyIGVuIGVsIG1vbWVudG8gZGUgZGVww7NzaXRvIGRlbCBjb250ZW5pZG8gcXVlIGVsIHRleHRvIGNvbXBsZXRvIGRlIGxhIHByb2R1Y2Npw7NuIGFjYWTDqW1pY2EgbyBjaWVudMOtZmljYSBubyBlc3RlIGNvbiBhY2Nlc28gYWJpZXJ0byBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIHBvciBtb3Rpdm9zIGRlIGNvbmZpZGVuY2lhbGlkYWQsIHBvcnF1ZSBzZSBlbmN1ZW50cmUgZW4gdsOtYXMgZGUgb2J0ZW5lciB1biBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbmR1c3RyaWFsIG8gZXhpc3RpciBhY3VlcmRvcyBwcmV2aW9zIGNvbiB0ZXJjZXJvcyAoZWRpdG9yaWFsZXMsIHJldmlzdGFzIGNpZW50w61maWNhcywgb3RyYXMgaW5zdGl0dWNpb25lcykuIEVsIGF1dG9yIHNlIGNvbXByb21ldGUgYSBkZXBvc2l0YXIgbG9zIG1ldGFkYXRvcyBlIGluZm9ybWFyIGVsIHRpZW1wbyBkZSBlbWJhcmdvIGR1cmFudGUgZWwgY3VhbCBlbCB0ZXh0byBjb21wbGV0byB0ZW5kcsOhIGFjY2VzbyByZXN0cmluZ2lkby4gCgpOT1ZFTkEuIEVsIEFVVE9SIGFsIGFjZXB0YXIgZXN0YSBsaWNlbmNpYSBhZHVjZSBxdWUgZXN0YSBwcm9kdWNjacOzbiBzZSBkZXNhcnJvbGzDsyBlbiBlbCBwZXJpb2RvIGVuIHF1ZSBzZSBlbmN1ZW50cmEgY29uIHbDrW5jdWxvcyBjb24gTGEgVW5pdmVyc2lkYWQuCgpEw4lDSU1BLiBOb3JtYXMgYXBsaWNhYmxlcy4gUGFyYSBsYSBpbnRlcnByZXRhY2nDs24geSBjdW1wbGltaWVudG8gZGVsIHByZXNlbnRlIGFjdWVyZG8gbGFzIHBhcnRlcyBzZSBzb21ldGVuIGEgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgbGEgTGV5IDIzIGRlIDE5ODIgeSBkZW3DoXMgbm9ybWFzIGFwbGljYWJsZXMgZGUgQ29sb21iaWEuIEFkZW3DoXMsIGEgbGFzIG5vcm1hcyBJbnN0aXR1Y2lvbmFsZXMgcXVlIGFwbGlxdWVuLgoKTGEgcHJlc2VudGUgbGljZW5jaWEgc2UgYXV0b3JpemEgZW4gbGEgZmVjaGEgZGUgcHVibGljYWNpw7NuIGVuIGxvcyByZXBvc2l0b3Jpb3MgaW5zdGl0dWNpb25hbGVzLgo=