Route planning in real time for short-range aircraft with a constant-volume-combustorgeared turbofan to minimize operating costs by particle swarm optimization

En la aviación convencional, la planificación de las rutas de vuelo tiene por objeto garantizar la seguridad y reducir los costos de explotación de los diferentes tipos de aeronaves disponibles en la actualidad. En el presente documento se presentan y analizan los resultados obtenidos de la planific...

Full description

Autores:
Colmenares Quintero, Ramón Fernando
Góez Sánchez, Germán David
Colmenares Quintero, Juan Carlos
Tipo de recurso:
Article of journal
Fecha de publicación:
2018
Institución:
Universidad Cooperativa de Colombia
Repositorio:
Repositorio UCC
Idioma:
OAI Identifier:
oai:repository.ucc.edu.co:20.500.12494/17440
Acceso en línea:
https://doi.org/10.1080/23311916.2018.1429984
https://hdl.handle.net/20.500.12494/17440
Palabra clave:
Aiación comercial
Turbofan innovador
Planificación en tiempo real
Heuristic goal
Particle swarm optimization
Commercial aviation
Innovative turbofan
Real-time planning
Rights
openAccess
License
Atribución
id COOPER2_0a0c295949b4ab44dbfefb8666175836
oai_identifier_str oai:repository.ucc.edu.co:20.500.12494/17440
network_acronym_str COOPER2
network_name_str Repositorio UCC
repository_id_str
dc.title.spa.fl_str_mv Route planning in real time for short-range aircraft with a constant-volume-combustorgeared turbofan to minimize operating costs by particle swarm optimization
title Route planning in real time for short-range aircraft with a constant-volume-combustorgeared turbofan to minimize operating costs by particle swarm optimization
spellingShingle Route planning in real time for short-range aircraft with a constant-volume-combustorgeared turbofan to minimize operating costs by particle swarm optimization
Aiación comercial
Turbofan innovador
Planificación en tiempo real
Heuristic goal
Particle swarm optimization
Commercial aviation
Innovative turbofan
Real-time planning
title_short Route planning in real time for short-range aircraft with a constant-volume-combustorgeared turbofan to minimize operating costs by particle swarm optimization
title_full Route planning in real time for short-range aircraft with a constant-volume-combustorgeared turbofan to minimize operating costs by particle swarm optimization
title_fullStr Route planning in real time for short-range aircraft with a constant-volume-combustorgeared turbofan to minimize operating costs by particle swarm optimization
title_full_unstemmed Route planning in real time for short-range aircraft with a constant-volume-combustorgeared turbofan to minimize operating costs by particle swarm optimization
title_sort Route planning in real time for short-range aircraft with a constant-volume-combustorgeared turbofan to minimize operating costs by particle swarm optimization
dc.creator.fl_str_mv Colmenares Quintero, Ramón Fernando
Góez Sánchez, Germán David
Colmenares Quintero, Juan Carlos
dc.contributor.author.none.fl_str_mv Colmenares Quintero, Ramón Fernando
Góez Sánchez, Germán David
Colmenares Quintero, Juan Carlos
dc.subject.spa.fl_str_mv Aiación comercial
Turbofan innovador
Planificación en tiempo real
topic Aiación comercial
Turbofan innovador
Planificación en tiempo real
Heuristic goal
Particle swarm optimization
Commercial aviation
Innovative turbofan
Real-time planning
dc.subject.other.spa.fl_str_mv Heuristic goal
Particle swarm optimization
Commercial aviation
Innovative turbofan
Real-time planning
description En la aviación convencional, la planificación de las rutas de vuelo tiene por objeto garantizar la seguridad y reducir los costos de explotación de los diferentes tipos de aeronaves disponibles en la actualidad. En el presente documento se presentan y analizan los resultados obtenidos de la planificación de una ruta de vuelo en tiempo real para aeronaves de corto alcance equipadas con turboventiladores de volumen constante para reducir los gastos de explotación mediante la optimización de la ruta en términos de menor distancia recorrida. En el análisis, una ruta fuera de línea obtenida a partir de un perfil de vuelo utilizando la herramienta del Marco de Diseño Multidisciplinario Preliminar se compara con la misma ruta que se recorre en tiempo real utilizando un planificador de rutas optimizado con un algoritmo de optimización de enjambre de partículas. Los resultados medios indican que la ruta propuesta por el algoritmo de optimización reduce los costos operativos directos e indirectos si se compara con la ruta alternativa (enfoque tradicional según el plan de vuelo). Esto se debe principalmente al menor consumo de combustible y a los menores costos de mantenimiento al seleccionar una ruta optimizada. En los casos en que las rutas directas y alternativas están completamente obstruidas, el planificador puede encontrar una ruta optimizada basándose en los costos más bajos. De esta manera, el piloto y el controlador de vuelo en tierra pueden tomar la decisión de arriesgar la aeronave con pasajeros en una ruta con condiciones meteorológicas adversas o de tener una optimizada y segura. El uso de este tipo de optimizador de rutas da lugar a importantes beneficios con respecto a los impuestos ambientales de las aeronaves para las emisiones y el ruido, y aumenta la seguridad de la aviación. Este hallazgo indica que el planificador de rutas es una opción de apoyo adecuada cuando el curso de una aeronave debe cambiarse para seguir una ruta diferente a la alternativa sugerida.
publishDate 2018
dc.date.issued.none.fl_str_mv 2018-01-20
dc.date.accessioned.none.fl_str_mv 2020-04-21T19:45:04Z
dc.date.available.none.fl_str_mv 2020-04-21T19:45:04Z
dc.type.none.fl_str_mv Artículo
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.spa.fl_str_mv 23311916
dc.identifier.uri.spa.fl_str_mv https://doi.org/10.1080/23311916.2018.1429984
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12494/17440
dc.identifier.bibliographicCitation.spa.fl_str_mv Ramón Fernando Colmenares-Quintero, Germán David Góez-Sánchez & Juan Carlos Colmenares-Quintero | Duc Pham (Reviewing Editor) (2018) Route planning in real time for short-range aircraft with a constant-volume-combustor-geared turbofan to minimize operating costs by particle swarm optimization, Cogent Engineering, 5:1, DOI: 10.1080/23311916.2018.1429984
identifier_str_mv 23311916
Ramón Fernando Colmenares-Quintero, Germán David Góez-Sánchez & Juan Carlos Colmenares-Quintero | Duc Pham (Reviewing Editor) (2018) Route planning in real time for short-range aircraft with a constant-volume-combustor-geared turbofan to minimize operating costs by particle swarm optimization, Cogent Engineering, 5:1, DOI: 10.1080/23311916.2018.1429984
url https://doi.org/10.1080/23311916.2018.1429984
https://hdl.handle.net/20.500.12494/17440
dc.relation.isversionof.spa.fl_str_mv https://www.tandfonline.com/doi/full/10.1080/23311916.2018.1429984?scroll=top&needAccess=true
dc.relation.ispartofjournal.spa.fl_str_mv Cogent Engineering
dc.relation.references.spa.fl_str_mv Aeronáutica Civil Colombiana. (2015). Autoridad Aeronáutica. Retrieved from http://www.aerocivil.gov.co/AAeronautica/ Paginas/Inicio.aspx
Anon. (2014). Reglas de vuelo visual, 4–5. AIP COLOMBIA ENR
Clerc, M. (2005). Particle swarm optimization. Hermes Science/ Lavoisier
Clerc, M. (2012). Standard particle swarm optimisation (Chapter 1, 1–19). Innovations and Developments of Swarm Intelligence Applications. Retrieved from https://pdfs. semanticscholar.org/c26f/ d373a085b72b9a83724ef44b0d3780f0b93e.pdf
Colmenares, R. F., Brink, R., Ogaji, S., Pilidis, P., Singh, R., Colmenares, J. C., & García, A. (2009). Application 2009 power for land, sea and air conference, Orlando, USA, June 8–12 2009, GT2009-59096.
Colmenares, R. F., Coutinho, A., Ogaji, S., Pilidis, P., Singh, R., Pincay, N. A., & Hernandez, J. C. (2009). Feasibility study of a conventional turbofan with a constant volume combustor. ASME Turbo Expo 2009 Power for Land, Air Conference, Orlando, USA, June 8–12 2009, GT2009-59097
Colmenares Quintero, R. F. (2009). Techno-economic and environmental risk assessment of innovative propulsion systems for short-range civil aircraft (PhD Thesis). Cranfield University, Cranfield, UK
Colmenares Quintero, R. F., Brink, R., Ogaji, S., Pilidis, P., Colmenares Quintero, J. C., & Quintero, A. G. (2010). Application of the geared turbofan with constant volume combustor on short-range aircraft: A feasibility study. Journal of Engineering for Gas Turbines and Power, 132(6), 061702. doi:10.1115/1.4000135
Góez, G. D. (2016). Planeamiento de Rutas en Vehículos Aéreos No Tripulados usando Algoritmos Bio-inspirados sobre Sistemas (MSc Thesis). Instituto Tecnologico Metropolitano, Medellin, Colombia
ICAO. (2009). Manual de diseño de procedimientos de performance de navegación requerida con autorización obligatoria (RNP AR) (O. de A. C. Internacional, Ed.). (2009th ed.).
International Civil Aviation Organization. (2006). Convention on International Civil Aviation. Retrieved from http://www. icao.int/publications/documents/7300_9ed.pdf
Jadoun, V. K., Gupta, N., Niazi, K. R., & Swarnkar, A. (2014). Nonconvex economic dispatch using particle swarm optimization with time varying operators. In The Advances in Electrical Engineering (Vol. 2014, 13 pages). Hindawi Publishing Corporation. Article ID 301615. doi:10.1155/2014/301615
Jadoun, V. K., Gupta, N., Niazi, K. R., Swarnkar, A., & Bansal, R. C. (2015a, May). Short-term non-convex economic hydrothermal scheduling using dynamically controlled particle swarm optimization. 3rd Southern African Solar Energy Conference, South Africa, 11–13 May, 2015, 199– 204. Retrieved from http://doi.org/http://hdl.handle. net/2263/49490
Jadoun, V. K., Gupta, N., Niazi, K. R., Swarnkar, A., & Bansal, R. C. (2015b). Improved particle swarm optimization for multiarea economic dispatch with reserve sharing scheme. IFAC-PapersOnLine, 48(30), 161–166. doi:10.1016/j.ifacol.2015.12.371
Jadoun, V. K., Gupta, N., Niazi, K. R., Swarnkar, A., & Bansal, R. C. (2015c). Multi-area economic dispatch using improved particle swarm optimization. Energy Procedia, 75, 1087– 1092. doi:10.1016/j.egypro.2015.07.493
Jardin, M. (2003, June). Real-time conflict-free trajectory optimization. 5th USA/Europe ATM 2003 R&D Seminar. Retrieved from http://www.atmseminar.org/ seminarContent/seminar5/presentations/pr_027_TFO.pdf
Jensen, L., Hansman, J. R., Venuti, J., & Reynolds, T. (2014). Commercial airline altitude optimization strategies for reduced cruise fuel consumption. 14th AIAA Aviation Technology, Integration, and Operations Conference (P. 3006). http://doi.org/10.2514
Lee, K.-B., & Kim, J.-H. (2013). Multiobjective particle swarm optimization with preference-based sort and its application to path following footstep optimization for humanoid robots. IEEE Transactions on Evolutionary Computation, 17(6), 755–766. doi:10.1109/TEVC.2013.2240688
Leonard, B. J., & Engelbrecht, A. P. (2013). On the optimality of particle swarm parameters in dynamic. Environments, 1564–1569. doi:10.1109/CEC.2013.6557748
Mason, K., & Miyoshi, C. (2009). Airline business models and their respective carbon footprint? Final Report Main Thematic Area? Economics
Meng, H., & Xin, G. (2010). UAV route planning based on the genetic simulated annealing algorithm. IEEE International Conference on Mechatronics and Automation, 2010, 788– 793. doi:10.1109/ICMA.2010.5589035
Munoz, D. M., Llanos, C. H., Coelho, L. D. S., & Ayala-Rincon, M. (2010). Hardware particle swarm optimization based on the attractive-repulsive scheme for embedded applications. In 2010 International Conference on Reconfigurable Computing and FPGAs, 55–60. doi:10.1109/ ReConFig. 2010.73
Murrieta-Mendoza, A., Botez, R. M., & Félix Patrón, R. S. (2015, September). Flight altitude optimization using genetic algorithms considering climb and descent costs in cruise with flight plan information (SAE Technical Papers). doi:10.4271/2015-01-254
Peng, Z., & Li, B. (2012). Online route planning for UAV based on model predictive control and particle swarm optimization algorithm, (60925011), 397–401. doi:10.1109/WCICA.2012.6357907
Roberge, V., Tarbouchi, M., & Labonté, G. (2013). Comparison of parallel genetic algorithm and particle swarm optimization for real-time UAV path planning. IEEE Transactions on Industrial Informatics, 9(1), 132–141.
Tewolde, G. S., Hanna, D. M., & Haskell, R. E. (2009). Accelerating the performance of particle swarm optimization for embedded applications. In 2009 IEEE Congress on Evolutionary Computation, 2294–2300. doi:10.1109/CEC.2009.4983226
Wang, Y., Yin, H., Zhang, S., & Yu, X. (2014). Multi-objective optimization of aircraft design for emission and cost reductions. Chinese Journal of Aeronautics, 27(1), 52–58. doi:10.1016/j.cja.2013.12.008.
Xu, J., Andrew Ning, S., Bower, G., & Kroo, I. (2014). Aircraft route optimization for formation flight. Journal of Aircraft, 51(2), 490–501. doi:10.2514/1.C032154
Xue, Q., Cheng, P., & Cheng, N. (2014). Offline path planning and online replanning of UAVs in complex terrain, 2287– 2292. doi:10.1109/CGNCC.2014.7007525
Yang, X., & Deb, S. (2014). Cuckoo search: Recent advances and applications. Neural Computing and Applications, 24, 169–174. doi:10.1109/CGNCC.2014.7007525
Yang, X., & Press, L. (2010). Nature-inspired metaheuristic algorithms (2nd ed.). Luniver Press Frome, BA11 6TT, United Kingdom. Retrieved from www.luniver.com
dc.rights.license.none.fl_str_mv Atribución
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 1-16 p.
dc.coverage.temporal.spa.fl_str_mv 5
dc.publisher.spa.fl_str_mv Universidad Cooperativa de Colombia, Facultad de Ingenierías, Ingeniería Civil, Medellín y Envigado
dc.publisher.program.spa.fl_str_mv Ingeniería Civil
dc.publisher.place.spa.fl_str_mv Medellín
institution Universidad Cooperativa de Colombia
bitstream.url.fl_str_mv https://repository.ucc.edu.co/bitstreams/9afbfcae-2ae0-4cdb-a175-bc0ce8b1e26a/download
https://repository.ucc.edu.co/bitstreams/82bfa82e-728b-41b0-8ba5-d1606bd4658f/download
https://repository.ucc.edu.co/bitstreams/c1c02c3d-c3db-4b55-9494-617b381cd04a/download
https://repository.ucc.edu.co/bitstreams/e3dea8a6-f0c0-438d-b89f-cbc2814d4ae3/download
https://repository.ucc.edu.co/bitstreams/f61d614c-b275-47ce-a69e-83712c92d0e8/download
https://repository.ucc.edu.co/bitstreams/01b35293-1d06-47f0-9ccf-c76beba74c4b/download
https://repository.ucc.edu.co/bitstreams/39e28d54-fd06-4b39-9cbb-d4b60c39f559/download
bitstream.checksum.fl_str_mv f2680202e522ba75cd1bd00b384c9655
21b622474bf7677ba6adab9f154f60c6
3bce4f7ab09dfc588f126e1e36e98a45
91bf9aa1675e4435427112af0efa3c4e
f278df7ec3464c518d49c6d559087a74
3ec98730f1f22197e8bd5723ef31e362
a4468dda5021583fa0c6042c3582e0b6
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Cooperativa de Colombia
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1814247267146661888
spelling Colmenares Quintero, Ramón FernandoGóez Sánchez, Germán DavidColmenares Quintero, Juan Carlos52020-04-21T19:45:04Z2020-04-21T19:45:04Z2018-01-2023311916https://doi.org/10.1080/23311916.2018.1429984https://hdl.handle.net/20.500.12494/17440Ramón Fernando Colmenares-Quintero, Germán David Góez-Sánchez & Juan Carlos Colmenares-Quintero | Duc Pham (Reviewing Editor) (2018) Route planning in real time for short-range aircraft with a constant-volume-combustor-geared turbofan to minimize operating costs by particle swarm optimization, Cogent Engineering, 5:1, DOI: 10.1080/23311916.2018.1429984En la aviación convencional, la planificación de las rutas de vuelo tiene por objeto garantizar la seguridad y reducir los costos de explotación de los diferentes tipos de aeronaves disponibles en la actualidad. En el presente documento se presentan y analizan los resultados obtenidos de la planificación de una ruta de vuelo en tiempo real para aeronaves de corto alcance equipadas con turboventiladores de volumen constante para reducir los gastos de explotación mediante la optimización de la ruta en términos de menor distancia recorrida. En el análisis, una ruta fuera de línea obtenida a partir de un perfil de vuelo utilizando la herramienta del Marco de Diseño Multidisciplinario Preliminar se compara con la misma ruta que se recorre en tiempo real utilizando un planificador de rutas optimizado con un algoritmo de optimización de enjambre de partículas. Los resultados medios indican que la ruta propuesta por el algoritmo de optimización reduce los costos operativos directos e indirectos si se compara con la ruta alternativa (enfoque tradicional según el plan de vuelo). Esto se debe principalmente al menor consumo de combustible y a los menores costos de mantenimiento al seleccionar una ruta optimizada. En los casos en que las rutas directas y alternativas están completamente obstruidas, el planificador puede encontrar una ruta optimizada basándose en los costos más bajos. De esta manera, el piloto y el controlador de vuelo en tierra pueden tomar la decisión de arriesgar la aeronave con pasajeros en una ruta con condiciones meteorológicas adversas o de tener una optimizada y segura. El uso de este tipo de optimizador de rutas da lugar a importantes beneficios con respecto a los impuestos ambientales de las aeronaves para las emisiones y el ruido, y aumenta la seguridad de la aviación. Este hallazgo indica que el planificador de rutas es una opción de apoyo adecuada cuando el curso de una aeronave debe cambiarse para seguir una ruta diferente a la alternativa sugerida.In conventional aviation, flight route planning aims to guarantee security and reduce the operating costs of the different types of aircraft that are currently available. This paper presents and analyses the results obtained from planning a flight route in real time for short-range aircraft fitted with geared turbofans with a constant volume combustor to reduce operating costs by optimizing the route in terms of less distance traveled. In the analysis, an off-line route obtained from a flight profile using the Preliminary Multidisciplinary Design Framework tool is compared with the same route that is run in real time using a route planner optimized with a particle swarm optimization algorithm. The average results indicate that the route proposed by the optimization algorithm reduces direct and indirect operating costs if compared to the alternative route (traditional approach according to flight plan). This is mainly due to the lower fuel consumption and maintenance costs when selecting an optimized route. In cases where direct and alternate routes are completely obstructed, the planner can find an optimized route based on the lower costs. In this way, the pilot and the flight controller on the ground can make the decision whether to risk the aircraft with passengers on a route with adverse weather conditions or to have an optimized and safe one. The use of this type of route optimizer leads to significant benefits with respect to aircraft environmental taxes for emissions and noise, and increases aviation safety. This finding indicates that the route planner is a suitable support option when the course of an aircraft must be changed to follow a different route than the suggested alternative.https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000192503https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001358296#articuloshttps://orcid.org/0000-0003-1166-1982https://sba.minciencias.gov.co/Buscador_Grupos/busqueda?q=TERMOMEC&pagenum=1&start=0&type=load&inmeta=COD_ID_GRUPO!COL0054239ramon.colmenaresq@campusucc.edu.cojcarloscolmenares@ichf.edu.plhttps://scholar.google.com/citations?user=9HLAZYUAAAAJ&hl=es1-16 p.Universidad Cooperativa de Colombia, Facultad de Ingenierías, Ingeniería Civil, Medellín y EnvigadoIngeniería CivilMedellínhttps://www.tandfonline.com/doi/full/10.1080/23311916.2018.1429984?scroll=top&needAccess=trueCogent EngineeringAeronáutica Civil Colombiana. (2015). Autoridad Aeronáutica. Retrieved from http://www.aerocivil.gov.co/AAeronautica/ Paginas/Inicio.aspxAnon. (2014). Reglas de vuelo visual, 4–5. AIP COLOMBIA ENRClerc, M. (2005). Particle swarm optimization. Hermes Science/ LavoisierClerc, M. (2012). Standard particle swarm optimisation (Chapter 1, 1–19). Innovations and Developments of Swarm Intelligence Applications. Retrieved from https://pdfs. semanticscholar.org/c26f/ d373a085b72b9a83724ef44b0d3780f0b93e.pdfColmenares, R. F., Brink, R., Ogaji, S., Pilidis, P., Singh, R., Colmenares, J. C., & García, A. (2009). Application 2009 power for land, sea and air conference, Orlando, USA, June 8–12 2009, GT2009-59096.Colmenares, R. F., Coutinho, A., Ogaji, S., Pilidis, P., Singh, R., Pincay, N. A., & Hernandez, J. C. (2009). Feasibility study of a conventional turbofan with a constant volume combustor. ASME Turbo Expo 2009 Power for Land, Air Conference, Orlando, USA, June 8–12 2009, GT2009-59097Colmenares Quintero, R. F. (2009). Techno-economic and environmental risk assessment of innovative propulsion systems for short-range civil aircraft (PhD Thesis). Cranfield University, Cranfield, UKColmenares Quintero, R. F., Brink, R., Ogaji, S., Pilidis, P., Colmenares Quintero, J. C., & Quintero, A. G. (2010). Application of the geared turbofan with constant volume combustor on short-range aircraft: A feasibility study. Journal of Engineering for Gas Turbines and Power, 132(6), 061702. doi:10.1115/1.4000135Góez, G. D. (2016). Planeamiento de Rutas en Vehículos Aéreos No Tripulados usando Algoritmos Bio-inspirados sobre Sistemas (MSc Thesis). Instituto Tecnologico Metropolitano, Medellin, ColombiaICAO. (2009). Manual de diseño de procedimientos de performance de navegación requerida con autorización obligatoria (RNP AR) (O. de A. C. Internacional, Ed.). (2009th ed.).International Civil Aviation Organization. (2006). Convention on International Civil Aviation. Retrieved from http://www. icao.int/publications/documents/7300_9ed.pdfJadoun, V. K., Gupta, N., Niazi, K. R., & Swarnkar, A. (2014). Nonconvex economic dispatch using particle swarm optimization with time varying operators. In The Advances in Electrical Engineering (Vol. 2014, 13 pages). Hindawi Publishing Corporation. Article ID 301615. doi:10.1155/2014/301615Jadoun, V. K., Gupta, N., Niazi, K. R., Swarnkar, A., & Bansal, R. C. (2015a, May). Short-term non-convex economic hydrothermal scheduling using dynamically controlled particle swarm optimization. 3rd Southern African Solar Energy Conference, South Africa, 11–13 May, 2015, 199– 204. Retrieved from http://doi.org/http://hdl.handle. net/2263/49490Jadoun, V. K., Gupta, N., Niazi, K. R., Swarnkar, A., & Bansal, R. C. (2015b). Improved particle swarm optimization for multiarea economic dispatch with reserve sharing scheme. IFAC-PapersOnLine, 48(30), 161–166. doi:10.1016/j.ifacol.2015.12.371Jadoun, V. K., Gupta, N., Niazi, K. R., Swarnkar, A., & Bansal, R. C. (2015c). Multi-area economic dispatch using improved particle swarm optimization. Energy Procedia, 75, 1087– 1092. doi:10.1016/j.egypro.2015.07.493Jardin, M. (2003, June). Real-time conflict-free trajectory optimization. 5th USA/Europe ATM 2003 R&D Seminar. Retrieved from http://www.atmseminar.org/ seminarContent/seminar5/presentations/pr_027_TFO.pdfJensen, L., Hansman, J. R., Venuti, J., & Reynolds, T. (2014). Commercial airline altitude optimization strategies for reduced cruise fuel consumption. 14th AIAA Aviation Technology, Integration, and Operations Conference (P. 3006). http://doi.org/10.2514Lee, K.-B., & Kim, J.-H. (2013). Multiobjective particle swarm optimization with preference-based sort and its application to path following footstep optimization for humanoid robots. IEEE Transactions on Evolutionary Computation, 17(6), 755–766. doi:10.1109/TEVC.2013.2240688Leonard, B. J., & Engelbrecht, A. P. (2013). On the optimality of particle swarm parameters in dynamic. Environments, 1564–1569. doi:10.1109/CEC.2013.6557748Mason, K., & Miyoshi, C. (2009). Airline business models and their respective carbon footprint? Final Report Main Thematic Area? EconomicsMeng, H., & Xin, G. (2010). UAV route planning based on the genetic simulated annealing algorithm. IEEE International Conference on Mechatronics and Automation, 2010, 788– 793. doi:10.1109/ICMA.2010.5589035Munoz, D. M., Llanos, C. H., Coelho, L. D. S., & Ayala-Rincon, M. (2010). Hardware particle swarm optimization based on the attractive-repulsive scheme for embedded applications. In 2010 International Conference on Reconfigurable Computing and FPGAs, 55–60. doi:10.1109/ ReConFig. 2010.73Murrieta-Mendoza, A., Botez, R. M., & Félix Patrón, R. S. (2015, September). Flight altitude optimization using genetic algorithms considering climb and descent costs in cruise with flight plan information (SAE Technical Papers). doi:10.4271/2015-01-254Peng, Z., & Li, B. (2012). Online route planning for UAV based on model predictive control and particle swarm optimization algorithm, (60925011), 397–401. doi:10.1109/WCICA.2012.6357907Roberge, V., Tarbouchi, M., & Labonté, G. (2013). Comparison of parallel genetic algorithm and particle swarm optimization for real-time UAV path planning. IEEE Transactions on Industrial Informatics, 9(1), 132–141.Tewolde, G. S., Hanna, D. M., & Haskell, R. E. (2009). Accelerating the performance of particle swarm optimization for embedded applications. In 2009 IEEE Congress on Evolutionary Computation, 2294–2300. doi:10.1109/CEC.2009.4983226Wang, Y., Yin, H., Zhang, S., & Yu, X. (2014). Multi-objective optimization of aircraft design for emission and cost reductions. Chinese Journal of Aeronautics, 27(1), 52–58. doi:10.1016/j.cja.2013.12.008.Xu, J., Andrew Ning, S., Bower, G., & Kroo, I. (2014). Aircraft route optimization for formation flight. Journal of Aircraft, 51(2), 490–501. doi:10.2514/1.C032154Xue, Q., Cheng, P., & Cheng, N. (2014). Offline path planning and online replanning of UAVs in complex terrain, 2287– 2292. doi:10.1109/CGNCC.2014.7007525Yang, X., & Deb, S. (2014). Cuckoo search: Recent advances and applications. Neural Computing and Applications, 24, 169–174. doi:10.1109/CGNCC.2014.7007525Yang, X., & Press, L. (2010). Nature-inspired metaheuristic algorithms (2nd ed.). Luniver Press Frome, BA11 6TT, United Kingdom. Retrieved from www.luniver.comAiación comercialTurbofan innovadorPlanificación en tiempo realHeuristic goalParticle swarm optimizationCommercial aviationInnovative turbofanReal-time planningRoute planning in real time for short-range aircraft with a constant-volume-combustorgeared turbofan to minimize operating costs by particle swarm optimizationArtículohttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionAtribucióninfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2PublicationORIGINALRoute_planning_aircraft_licenciadeuso.pdfRoute_planning_aircraft_licenciadeuso.pdfLicencia de Usoapplication/pdf170050https://repository.ucc.edu.co/bitstreams/9afbfcae-2ae0-4cdb-a175-bc0ce8b1e26a/downloadf2680202e522ba75cd1bd00b384c9655MD52Route_planning_aircraft.pdfRoute_planning_aircraft.pdfArticuloapplication/pdf1939251https://repository.ucc.edu.co/bitstreams/82bfa82e-728b-41b0-8ba5-d1606bd4658f/download21b622474bf7677ba6adab9f154f60c6MD53LICENSElicense.txtlicense.txttext/plain; charset=utf-84334https://repository.ucc.edu.co/bitstreams/c1c02c3d-c3db-4b55-9494-617b381cd04a/download3bce4f7ab09dfc588f126e1e36e98a45MD54THUMBNAILRoute_planning_aircraft_licenciadeuso.pdf.jpgRoute_planning_aircraft_licenciadeuso.pdf.jpgGenerated Thumbnailimage/jpeg5090https://repository.ucc.edu.co/bitstreams/e3dea8a6-f0c0-438d-b89f-cbc2814d4ae3/download91bf9aa1675e4435427112af0efa3c4eMD55Route_planning_aircraft.pdf.jpgRoute_planning_aircraft.pdf.jpgGenerated Thumbnailimage/jpeg4609https://repository.ucc.edu.co/bitstreams/f61d614c-b275-47ce-a69e-83712c92d0e8/downloadf278df7ec3464c518d49c6d559087a74MD56TEXTRoute_planning_aircraft_licenciadeuso.pdf.txtRoute_planning_aircraft_licenciadeuso.pdf.txtExtracted texttext/plain5640https://repository.ucc.edu.co/bitstreams/01b35293-1d06-47f0-9ccf-c76beba74c4b/download3ec98730f1f22197e8bd5723ef31e362MD57Route_planning_aircraft.pdf.txtRoute_planning_aircraft.pdf.txtExtracted texttext/plain49801https://repository.ucc.edu.co/bitstreams/39e28d54-fd06-4b39-9cbb-d4b60c39f559/downloada4468dda5021583fa0c6042c3582e0b6MD5820.500.12494/17440oai:repository.ucc.edu.co:20.500.12494/174402024-08-10 21:02:24.59restrictedhttps://repository.ucc.edu.coRepositorio Institucional Universidad Cooperativa de Colombiabdigital@metabiblioteca.comVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEKUkVQT1NJVE9SSU9TIElOU1RJVFVDSU9OQUxFUwpMSUNFTkNJQSBERSBVU08KClBvciBtZWRpbyBkZWwgcHJlc2VudGUgZG9jdW1lbnRvLCBlbCBBdXRvcihlcyksIG1heW9yIChlcykgZGUgZWRhZCwgcXVpZW4gZW4gYWRlbGFudGUgc2UgZGVub21pbmFyw6EgZWwgQVVUT1IsIGNvbmZpZXJlIGEgbGEgVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEsIGNvbiBOSVQuIDg2MC0wMjk5MjQtNywgdW5hIExJQ0VOQ0lBIERFIFVTTyBkZSBvYnJhLCBiYWpvIGxhcyBzaWd1aWVudGVzIGNvbmRpY2lvbmVzLgoKQ0zDgVVTVUxBUwoKUFJJTUVSQS4gT2JqZXRvLiBFTCBBVVRPUiBwb3IgZXN0ZSBhY3RvIGF1dG9yaXphIGxhIHV0aWxpemFjacOzbiBkZSBsYSBvYnJhLCBkZSBjb25mb3JtaWRhZCBjb24gbG8gZXN0aXB1bGFkbyBhIGNvbnRpbnVhY2nDs246IAoKKGEpIFBhcmEgZWZlY3RvcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSBzZSBhdXRvcml6YSBsYSByZXByb2R1Y2Npw7NuIGRlIGxhIG9icmEgYW50ZXJpb3JtZW50ZSBjaXRhZGEsIGxhIGN1YWwgc2UgYWxvamFyw6EgZW4gZm9ybWF0byBkaWdpdGFsIGVuIGxhcyBwbGF0YWZvcm1hcyBvIHJlcG9zaXRvcmlvcyBhZG1pbmlzdHJhZG9zIHBvciBsYSBVTklWRVJTSURBRCBvIGVuIG90cm8gdGlwbyBkZSByZXBvc2l0b3Jpb3MgZXh0ZXJub3MgbyBww6FnaW5hcyB3ZWIgZXNjb2dpZG9zIHBvciBsYSBVTklWRVJTSURBRCwgcGFyYSBmaW5lcyBkZSBkaWZ1c2nDs24geSBkaXZ1bGdhY2nDs24uIEFkaWNpb25hbG1lbnRlLCBzZSBhdXRvcml6YSBhIHF1ZSBsb3MgdXN1YXJpb3MgaW50ZXJub3MgeSBleHRlcm5vcyBkZSBkaWNoYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgcmVwcm9kdXpjYW4gbyBkZXNjYXJndWVuIGxhIG9icmEsIHNpbiDDoW5pbW8gZGUgbHVjcm8sIHBhcmEgZmluZXMgcHJpdmFkb3MsIGVkdWNhdGl2b3MgbyBhY2Fkw6ltaWNvczsgc2llbXByZSB5IGN1YW5kbyBubyBzZSB2aW9sZW4gYWN1ZXJkb3MgY29uIGVkaXRvcmVzLCBwZXJpb2RvcyBkZSBlbWJhcmdvIG8gYWN1ZXJkb3MgZGUgY29uZmlkZW5jaWFsaWRhZCBxdWUgYXBsaXF1ZW4uCgooYikgU2UgYXV0b3JpemEgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBkZSBsYSBvYnJhIG1lbmNpb25hZGEsIGVuIGFjY2VzbyBhYmllcnRvLCBwYXJhIHN1IHV0aWxpemFjacOzbiBlbiBsYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgYWRtaW5pc3RyYWRvcyBwb3IgbGEgVU5JVkVSU0lEQUQuCgooYykgTG8gYW50ZXJpb3IgZXN0YXLDoSBzdWpldG8gYSBsYXMgZGVmaW5pY2lvbmVzIGNvbnRlbmlkYXMgZW4gbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MyB5IGxhIExleSAyMyBkZSAxOTgyLgoKClNFR1VOREEuIE9yaWdpbmFsaWRhZCB5IHJlY2xhbWFjaW9uZXMuIEVsIEFVVE9SIGRlY2xhcmEgcXVlIGxhIE9CUkEgZXMgb3JpZ2luYWwgeSBxdWUgZXMgZGUgc3UgY3JlYWNpw7NuIGV4Y2x1c2l2YSwgbm8gZXhpc3RpZW5kbyBpbXBlZGltZW50byBkZSBjdWFscXVpZXIgbmF0dXJhbGV6YSAoZW1iYXJnb3MsIHVzbyBkZSBtYXRlcmlhbCBwcm90ZWdpZG8gcG9yIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGxhIGNvbmNlc2nDs24gZGUgbG9zIGRlcmVjaG9zIHByZXZpc3RvcyBlbiBlc3RlIGFjdWVyZG8uIEVsIEFVVE9SIHJlc3BvbmRlcsOhIHBvciBjdWFscXVpZXIgYWNjacOzbiBkZSByZWl2aW5kaWNhY2nDs24sIHBsYWdpbyB1IG90cmEgY2xhc2UgZGUgcmVjbGFtYWNpw7NuIHF1ZSBhbCByZXNwZWN0byBwdWRpZXJhIHNvYnJldmVuaXIuCgpURVJDRVJBLiBDb250cmFwcmVzdGFjacOzbi4gRWwgQVVUT1IgYXV0b3JpemEgYSBxdWUgc3Ugb2JyYSBzZWEgdXRpbGl6YWRhIGRlIGNvbmZvcm1pZGFkIGNvbiBsYSBjbMOhdXN1bGEgUFJJTUVSQSBkZSBmb3JtYSBncmF0dWl0YSwgZXMgZGVjaXIsIHF1ZSBsYSB1dGlsaXphY2nDs24gZGUgbGEgbWlzbWEgbm8gZ2VuZXJhIG5pbmfDum4gcGFnbyBvIHJlZ2Fsw61hcyBlbiBmYXZvciBkZSBlc3RlLgoKQ1VBUlRBLiBUaXR1bGFyaWRhZCBkZSBkZXJlY2hvcy4gRWwgcHJlc2VudGUgY29udHJhdG8gbm8gdHJhbnNmaWVyZSBsYSB0aXR1bGFyaWRhZCBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBzb2JyZSBsYXMgb2JyYXMgYW50ZXJpb3JtZW50ZSBtZW5jaW9uYWRhcyBhIGxhIFVOSVZFUlNJREFELiDDmm5pY2FtZW50ZSBoYWNlIHJlbGFjacOzbiBhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgZW4gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGFudGVyaW9ybWVudGUgcGFjdGFkb3MuCgpRVUlOVEEuIENyw6lkaXRvcy4gTGEgVU5JVkVSU0lEQUQgc2UgY29tcHJvbWV0ZSBhIGRhciBhbCBBVVRPUiwgZWwgcmVjb25vY2ltaWVudG8gZGVudHJvIGNhZGEgZm9ybWEgZGUgdXRpbGl6YWNpw7NuIGVuIGxhIG9icmEuIExvcyBjcsOpZGl0b3MgZGViZW4gZmlndXJhciBlbiBjYWRhIHVubyBkZSBsb3MgZm9ybWF0b3MgbyByZWdpc3Ryb3MgZGUgcHVibGljYWNpw7NuLiBObyBjb25zdGl0dWlyw6EgdW5hIHZpb2xhY2nDs24gYSBsb3MgZGVyZWNob3MgbW9yYWxlcyBkZWwgYXV0b3IgbGEgbm8gcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBvIGRlbcOhcyB1dGlsaXphY2lvbmVzIGRlIGxhIG9icmEuIExhIHV0aWxpemFjacOzbiBvIG5vIGRlIGxhIG9icmEsIGFzw60gY29tbyBzdSBmb3JtYSBkZSB1dGlsaXphY2nDs24gc2Vyw6EgZmFjdWx0YWQgZXhjbHVzaXZhIGRlIGxhIFVOSVZFUlNJREFELgogClNFWFRBLiBEdXJhY2nDs24geSB0ZXJyaXRvcmlvLiBMYSBwcmVzZW50ZSBsaWNlbmNpYSBkZSB1c28gcXVlIHNlIG90b3JnYSBhIGZhdm9yIGRlIGxhIFVOSVZFUlNJREFEIHRlbmRyw6EgdW5hIGR1cmFjacOzbiBlcXVpdmFsZW50ZSBhbCB0w6lybWlubyBkZSBwcm90ZWNjacOzbiBsZWdhbCBkZSBsYSBvYnJhIHkgcGFyYSB0b2RvcyBsb3MgcGHDrXNlcyBkZWwgbXVuZG8uCgpTw4lQVElNQS4gVXNvIGRlIENyZWF0aXZlIENvbW1vbnMuIEVsIEFVVE9SIGF1dG9yaXphcsOhIGxhIGRpZnVzacOzbiBkZSBzdSBjb250ZW5pZG8gYmFqbyB1bmEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBhdHJpYnVjacOzbiA0LjAgaW50ZXJuYWNpb25hbCwgcXVlIGRlYmVyw6EgaW5jbHVpcnNlIGVuIGVsIGNvbnRlbmlkby4gCgpPQ1RBVkEuIERlcmVjaG8gZGUgZXhjbHVzacOzbi4gQ2FkYSBhdXRvciBwdWVkZSBpbmRpY2FyIGVuIGVsIG1vbWVudG8gZGUgZGVww7NzaXRvIGRlbCBjb250ZW5pZG8gcXVlIGVsIHRleHRvIGNvbXBsZXRvIGRlIGxhIHByb2R1Y2Npw7NuIGFjYWTDqW1pY2EgbyBjaWVudMOtZmljYSBubyBlc3RlIGNvbiBhY2Nlc28gYWJpZXJ0byBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIHBvciBtb3Rpdm9zIGRlIGNvbmZpZGVuY2lhbGlkYWQsIHBvcnF1ZSBzZSBlbmN1ZW50cmUgZW4gdsOtYXMgZGUgb2J0ZW5lciB1biBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbmR1c3RyaWFsIG8gZXhpc3RpciBhY3VlcmRvcyBwcmV2aW9zIGNvbiB0ZXJjZXJvcyAoZWRpdG9yaWFsZXMsIHJldmlzdGFzIGNpZW50w61maWNhcywgb3RyYXMgaW5zdGl0dWNpb25lcykuIEVsIGF1dG9yIHNlIGNvbXByb21ldGUgYSBkZXBvc2l0YXIgbG9zIG1ldGFkYXRvcyBlIGluZm9ybWFyIGVsIHRpZW1wbyBkZSBlbWJhcmdvIGR1cmFudGUgZWwgY3VhbCBlbCB0ZXh0byBjb21wbGV0byB0ZW5kcsOhIGFjY2VzbyByZXN0cmluZ2lkby4gCgpOT1ZFTkEuIEVsIEFVVE9SIGFsIGFjZXB0YXIgZXN0YSBsaWNlbmNpYSBhZHVjZSBxdWUgZXN0YSBwcm9kdWNjacOzbiBzZSBkZXNhcnJvbGzDsyBlbiBlbCBwZXJpb2RvIGVuIHF1ZSBzZSBlbmN1ZW50cmEgY29uIHbDrW5jdWxvcyBjb24gTGEgVW5pdmVyc2lkYWQuCgpEw4lDSU1BLiBOb3JtYXMgYXBsaWNhYmxlcy4gUGFyYSBsYSBpbnRlcnByZXRhY2nDs24geSBjdW1wbGltaWVudG8gZGVsIHByZXNlbnRlIGFjdWVyZG8gbGFzIHBhcnRlcyBzZSBzb21ldGVuIGEgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgbGEgTGV5IDIzIGRlIDE5ODIgeSBkZW3DoXMgbm9ybWFzIGFwbGljYWJsZXMgZGUgQ29sb21iaWEuIEFkZW3DoXMsIGEgbGFzIG5vcm1hcyBJbnN0aXR1Y2lvbmFsZXMgcXVlIGFwbGlxdWVuLgoKTGEgcHJlc2VudGUgbGljZW5jaWEgc2UgYXV0b3JpemEgZW4gbGEgZmVjaGEgZGUgcHVibGljYWNpw7NuIGVuIGxvcyByZXBvc2l0b3Jpb3MgaW5zdGl0dWNpb25hbGVzLgo=