In vitro evaluation of the osteogenic and antimicrobial potential of porous wollastonite scaffolds impregnated with ethanolic extracts of propolis

Context: The development of porous devices using materials modified with various natural agents has become a priority for bone healing processes in the oral and maxillofacial field. There must be a balance between the proliferation of eukaryotic and the inhibition of prokaryotic cells to achieve pro...

Full description

Autores:
Moreno Florez, Ana Isabel
Malagon, Sarita
Ocampo, Sebastian
Leal Marín, Sara
Ossa, Edgar Alexander
Glasmacher, Birgit
García, Claudia
Peláez Vargas, Alejandro
Tipo de recurso:
Article of journal
Fecha de publicación:
2024
Institución:
Universidad Cooperativa de Colombia
Repositorio:
Repositorio UCC
Idioma:
eng
OAI Identifier:
oai:repository.ucc.edu.co:20.500.12494/55108
Acceso en línea:
https://hdl.handle.net/20.500.12494/55108
Palabra clave:
610 - Medicina y salud
Scaffolds
Bone tissue engineering
wollastonite
3D printing
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id COOPER2_08edeaeddc18ab6ff8d4846cc7a77a55
oai_identifier_str oai:repository.ucc.edu.co:20.500.12494/55108
network_acronym_str COOPER2
network_name_str Repositorio UCC
repository_id_str
dc.title.none.fl_str_mv In vitro evaluation of the osteogenic and antimicrobial potential of porous wollastonite scaffolds impregnated with ethanolic extracts of propolis
title In vitro evaluation of the osteogenic and antimicrobial potential of porous wollastonite scaffolds impregnated with ethanolic extracts of propolis
spellingShingle In vitro evaluation of the osteogenic and antimicrobial potential of porous wollastonite scaffolds impregnated with ethanolic extracts of propolis
610 - Medicina y salud
Scaffolds
Bone tissue engineering
wollastonite
3D printing
title_short In vitro evaluation of the osteogenic and antimicrobial potential of porous wollastonite scaffolds impregnated with ethanolic extracts of propolis
title_full In vitro evaluation of the osteogenic and antimicrobial potential of porous wollastonite scaffolds impregnated with ethanolic extracts of propolis
title_fullStr In vitro evaluation of the osteogenic and antimicrobial potential of porous wollastonite scaffolds impregnated with ethanolic extracts of propolis
title_full_unstemmed In vitro evaluation of the osteogenic and antimicrobial potential of porous wollastonite scaffolds impregnated with ethanolic extracts of propolis
title_sort In vitro evaluation of the osteogenic and antimicrobial potential of porous wollastonite scaffolds impregnated with ethanolic extracts of propolis
dc.creator.fl_str_mv Moreno Florez, Ana Isabel
Malagon, Sarita
Ocampo, Sebastian
Leal Marín, Sara
Ossa, Edgar Alexander
Glasmacher, Birgit
García, Claudia
Peláez Vargas, Alejandro
dc.contributor.author.none.fl_str_mv Moreno Florez, Ana Isabel
Malagon, Sarita
Ocampo, Sebastian
Leal Marín, Sara
Ossa, Edgar Alexander
Glasmacher, Birgit
García, Claudia
Peláez Vargas, Alejandro
dc.contributor.researchgroup.none.fl_str_mv GIOM
dc.subject.ddc.none.fl_str_mv 610 - Medicina y salud
topic 610 - Medicina y salud
Scaffolds
Bone tissue engineering
wollastonite
3D printing
dc.subject.proposal.none.fl_str_mv Scaffolds
Bone tissue engineering
wollastonite
3D printing
description Context: The development of porous devices using materials modified with various natural agents has become a priority for bone healing processes in the oral and maxillofacial field. There must be a balance between the proliferation of eukaryotic and the inhibition of prokaryotic cells to achieve proper bone health. Infections might inhibit the formation of new alveolar bone during bone graft augmentation. Objective: This study aimed to evaluate the in vitro osteogenic behavior of human bone marrow stem cells and assess the antimicrobial response to 3Dprinted porous scaffolds using propolis-modified wollastonite. Methodology: A fractional factorial design of experiments was used to obtain a 3D printing paste for developing scaffolds with a triply periodic minimal surface (TPMS) gyroid geometry based on wollastonite and modified with an ethanolic propolis extract. The antioxidant activity of the extracts was characterized using free radical scavenging methods (DPPH and ABTS). Cell proliferation and osteogenic potential using Human Bone Marrow Stem Cells (bmMSCs) were assessed at different culture time points up to 28 days. MIC and inhibition zones were studied from single strain cultures, and biofilm formation was evaluated on the scaffolds under co-culture conditions. The mechanical strength of the scaffolds was evaluated. Results: Through statistical design of experiments, a paste suitable for printing scaffolds with the desired geometry was obtained. Propolis extracts modifying the TPMS gyroid scaffolds showed favorable cell proliferation and metabolic activity with osteogenic potential after 21 days. Additionally, propolis exhibited antioxidant activity, which may be related to the antimicrobial effectiveness of the scaffolds against S. aureus and S. epidermidis cultures. The mechanical properties of the scaffolds were not affected by propolis impregnation. Conclusion: These results demonstrate that propolis-impregnated porous wollastonite scaffolds might have the potential to stimulate bone repair in maxillofacial tissue engineering applications.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-03-01T19:17:24Z
dc.date.available.none.fl_str_mv 2024-03-01T19:17:24Z
dc.date.issued.none.fl_str_mv 2024-02-01
dc.type.none.fl_str_mv Artículo
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv Florez AI, Malagon S, Ocampo S, Leal-Marin S, Ossa EA, Glasmacher B, Garcia C, Pelaez-Vargas A. (2024)In vitro evaluation of the osteogenic and antimicrobial potential of porous wollastonite scaffolds impregnated with ethanolic extracts of propolis. Frontiers in Bioengineering and Biotechnology. 2024;12.https://hdl.handle.net/20.500.12494/55108
dc.identifier.issn.none.fl_str_mv 2296-4185
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12494/55108
dc.identifier.doi.none.fl_str_mv 10.3389/fbioe.2024.1321466
identifier_str_mv Florez AI, Malagon S, Ocampo S, Leal-Marin S, Ossa EA, Glasmacher B, Garcia C, Pelaez-Vargas A. (2024)In vitro evaluation of the osteogenic and antimicrobial potential of porous wollastonite scaffolds impregnated with ethanolic extracts of propolis. Frontiers in Bioengineering and Biotechnology. 2024;12.https://hdl.handle.net/20.500.12494/55108
2296-4185
10.3389/fbioe.2024.1321466
url https://hdl.handle.net/20.500.12494/55108
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.citationendpage.none.fl_str_mv 12 p.
dc.relation.citationstartpage.none.fl_str_mv 1
dc.relation.ispartofjournal.none.fl_str_mv Frontiers in Bioengineering and Biotechnology
dc.relation.references.none.fl_str_mv Abueidda, D., Elhebeary, M., Shiang, C., Pang, S., Al-Rub, R. K. A., and Jasiuk, I. M. (2019). Mechanical properties of 3D printed polymeric Gyroid cellular structures: experimental
Abbasi, N., Ivanovski, S., Gulati, K., Love, R. M., and Hamlet, S. (2020). Role of offset and gradient architectures of 3-D melt electrowritten scaffold on differentiation and mineralization of osteoblasts. Biomater. Res. 24, 2–16. doi:10.1186/s40824-019-0180-z
Albrektsson, T., Tengvall, P., Amengual, L., Coli, P., Kotsakis, G. A., and Cochran, D. (2023). Osteoimmune regulation underlies oral implant osseointegration and its perturbation. Front. Immunol. 13, 1056914. doi:10.3389/fimmu.2022.1056914
Almuhayawi,M. S. (2020). Propolis as a novel antibacterial agent. Saudi J. Biol. Sci. 27, 3079–3086. doi:10.1016/j.sjbs.2020.09.016
Altan, B. A., Kara, I. M., Nalcaci, R., Ozan, F., Erdogan, S. M., Ozkut, M. M., et al. (2013). Systemic propolis stimulates new bone formation at the expanded suture. Angle Orthod. 83, 286–291. doi:10.2319/032612-253.1
Anusavice, K., Shen, C., and Rawls, H. (2013). “Emerging technologies,” in Philip’s science of dental materials. Editors K. J. Anusavice, C. Shen, and H. R. Rawls (St. Louis, Mo: Elsevier/Saunders), 519–537.
Bahraminasab, M., Janmohammadi, M., Arab, S., Talebi, A., Nooshabadi, V. T., Koohsarian, P., et al. (2021). Bone scaffolds: an incorporation of biomaterials, cells, and biofactors. ACS Biomater. Sci. Eng. 7, 5397–5431. doi:10.1021/acsbiomaterials.1c00920
Bontá, H., Bugiolachi, J., Perrote, C. A., Sánchez, L. M., Pulitano Manisagian, G. E., Galli, F. G., et al. (2023). Alveolar ridge reconstruction with a digitally customized bone block allograft. Clin. Adv. Periodontics 2023, 10270. doi:10.1002/cap.10270
Brandao-Burch, A., Utting, J. C., Orriss, I. R., and Arnett, T. R. (2005). Acidosis inhibits bone formation by osteoblasts in vitro by preventing mineralization. Calcif. Tissue Int. 77, 167–174. doi:10.1007/s00223-004-0285-8
Bufalo, M. C., Candeias, J. M., and Sforcin, J. M. (2009). In vitro cytotoxic effect of Brazilian green propolis on human laryngeal epidermoid carcinoma (HEp-2) cells. Evid. Based Complement. Altern. Med. 6, 483–487. doi:10.1093/ecam/nem147
Carvalho, M. S., Cabral, J. M. S., Da Silva, C. L., and Vashishth, D. (2021). Bonematrix non-collagenous proteins in tissue engineering: creating new bone by mimicking the extracellular matrix. Polymers 13, 1095–1133. doi:10.3390/polym13071095
Chew Shi Fung, H. M., Hashim, S. N. M., Htun, A. T., and Ahmad, A. (2015). Proliferative effect of Malaysian propolis on stem cells from human exfoliated deciduous teeth: an in vitro study. Br. J. Pharm. Res. 8, 1–8. doi:10.9734/bjpr/2015/19918
Eladli, M. G., Alharbi, N. S., Khaled, J. M., Kadaikunnan, S., Alobaidi, A. S., and Alyahya, S. A. (2019). Antibiotic-resistant Staphylococcus epidermidis isolated from patients and healthy students comparing with antibiotic-resistant bacteria isolated from pasteurized milk. Saudi J. Biol. Sci. 26, 1285–1290. doi:10.1016/j.sjbs.2018.05.008
El-Gendy, R., Junaid, S., Lam, S. K. L., Elson, K. M., Tipper, J. L., Hall, R. M., et al. (2021). Developing a tooth in situ organ culture model for dental and periodontal regeneration research. Front. Bioeng. Biotechnol. 8, 581413. doi:10.3389/fbioe.2020.581413
Elkhenany, H., El-Badri, N., and Dhar, M. (2019). Green propolis extract promotes in vitro proliferation, differentiation, and migration of bone marrow stromal cells. Biomed. Pharmacother. 115, 108861. doi:10.1016/j.biopha.2019.108861
Galow, A.-M., Rebl, A., Koczan, D., Bonk, S. M., Baumann, W., and Gimsa, J. (2017). Increased osteoblast viability at alkaline pH in vitro provides a new perspective on bone regeneration. Biochem. Biophys. Rep. 10, 17–25. doi:10.1016/j.bbrep.2017.02.001
Gao, S., Li, J., Lei, Q., Chen, Y., Huang, H., Yan, F., et al. (2023). Calcium sulfate-Cu2+ delivery system improves 3D-Printed calcium silicate artificial bone to repair large bone defects. Front. Bioeng. Biotechnol. 11, 1224557. doi:10.3389/fbioe.2023.1224557
Gerhardt, L.-C., and Boccaccini, A. R. (2010). Bioactive glass and glass-ceramic scaffolds for bone tissue engineering. Materials 3, 3867–3910. doi:10.3390/ma3073867
Gutiérrez-Prieto, S. J., Perdomo-Lara, S. J., Diaz-Peraza, J. M., and Sequeda-Castañeda, L. G. (2019). Analysis of in vitro osteoblast culture on scaffolds for future bone regeneration purposes in dentistry. Adv. Pharmacol. Pharm. Sci. 2019, 1–9. doi:10.1155/2019/5420752
Higuita-Castro, N., Gallego-Perez, D., Pelaez-Vargas, A., García Quiroz, F., Posada, O. M., López, L. E., et al. (2012). Reinforced Portland cement porous scaffolds for loadbearing bone tissue engineering applications. J. Biomed. Mat. Res. B Appl. Biomater. 100B, 501–507. doi:10.1002/jbm.b.31976
Hotta, S., Uchiyama, S., and Ichihara, K. (2020). Brazilian red propolis extract enhances expression of antioxidant enzyme genes in vitro and in vivo. Biosci. Biotechnol. Biochem. 84, 1820–1830. doi:10.1080/09168451.2020.1773756
Huang, S., Zhang, C.-P., Wang, K., Li, G. Q., and Hu, F.-L. (2014). Recent advances in the chemical composition of propolis.Molecules 19, 19610–19632. doi:10.3390/molecules191219610
Iyer, V., Raut, J., and Dasgupta, A. (2021). Impact of pH on growth of Staphylococcus epidermidis and Staphylococcus aureus in vitro. J. Med. Microbiol. 70, 001421. doi:10. 1099/jmm.0.001421
Jahan, K., and Tabrizian, M. (2016). Composite biopolymers for bone regeneration enhancement in bony defects. Biomater. Sci. 4, 25–39. doi:10.1039/C5BM00163C
Kaur, G., Kumar, V., Baino, F., Mauro, J. C., Pickrell, G., Evans, I., et al. (2019). Mechanical properties of bioactive glasses, ceramics, glass-ceramics and composites: state-of-the-art review and future challenges. Mat. Sci. Eng. C 104, 109895. doi:10.1016/j.msec.2019.109895
Khorasani, H. R., Sanchouli, M., Mehrani, J., and Sabour, D. (2021). Potential of bonemarrow-derived mesenchymal stem cells for maxillofacial and periodontal regeneration: a narrative review. Int. J. Dent. 2021, 1–13. doi:10.1155/2021/4759492
Kresnoadi, U., Rahayu, R. P., Ariani, M. D., and Soesanto, S. (2020). The potential of natural propolis extract combined with bovine bone graft in increasing heat shock protein 70 and osteocalcin on socket preservation. Eur. J. Dent. 14, 031–037. doi:10. 1055/s-0040-1701921
Kumazawa, S., Hamasaka, T., and Nakayama, T. (2004). Antioxidant activity of propolis of various geographic origins. Food Chem. 84, 329–339. doi:10.1016/S0308- 8146(03)00216-4
Leal-Marin, S., Gallaway, G., Höltje, K., Lopera-Sepulveda, A., Glasmacher, B., and Gryshkov, O. (2021). Scaffolds with magnetic nanoparticles for tissue stimulation. Curr. Dir. Biomed. Eng. 7, 460–463. doi:10.1515/cdbme-2021-2117
Machado, E., Fernandes, M. H., and Gomes, P. D. S. (2012). Dental stem cells for craniofacial tissue engineering. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 113, 728–733. doi:10.1016/j.tripleo.2011.05.039
Martin, V., Ribeiro, I. A., Alves, M. M., Gonçalves, L., Claudio, R. A., Grenho, L., et al. (2019). Engineering a multifunctional 3D-printed PLA-collagen-minocyclinenanoHydroxyapatite scaffold with combined antimicrobial and osteogenic effects for bone regeneration. Mat. Sci. Eng. C 101, 15–26. doi:10.1016/j.msec.2019.03.056
Mayer, Y., Zigdon-Giladi, H., and Machtei, E. E. (2016). Ridge preservation using composite alloplastic materials: a randomized control clinical and histological study in humans. Clin. Implant Dent. Relat. Res. 18, 1163–1170. doi:10.1111/cid.12415
Mirzoeva, O. K., Grishanin, R. N., and Calder, P. C. (1997). Antimicrobial action of propolis and some of its components: the effects on growth, membrane potential and motility of bacteria. Microbiol. Res. 152, 239–246. doi:10.1016/S0944-5013(97)80034-1
Moreno, A. I., Orozco, Y., Ocampo, S., Malagón, S., Ossa, A., Peláez-Vargas, A., et al. (2023). Effects of propolis impregnation on polylactic acid (PLA) scaffolds loaded with wollastonite particles against Staphylococcus aureus, Staphylococcus epidermidis, and their coculture for potential medical devices. Polymers 15, 2629. doi:10.3390/ polym15122629
Nakashima, M., and Akamine, A. (2005). The application of tissue engineering to regeneration of pulp and dentin in endodontics. J. Endod. 31, 711–718. doi:10.1097/01. don.0000164138.49923.e5
Nikolova, M. P., and Chavali, M. S. (2019). Recent advances in biomaterials for 3D scaffolds: a review. Bioact. Mat. 4, 271–292. doi:10.1016/j.bioactmat.2019.10.005
Pelaez-Vargas, A., Gallego-Perez, D., Gomez, D. F., Fernandes, M. H., Hansford, D. J., and Monteiro, F. J. (2012). Propagation of human bone marrow stem cells for craniofacial applications. Stem Cells Cancer Stem Cells 7, 107–122. doi:10.1007/978- 94-007-4285-7_10
Periasamy, S., Chatterjee, S. S., Cheung, G. Y. C., and Otto, M. (2012). Phenol-soluble modulins in staphylococci: what are they originally for? Commun. Integr. Biol. 5, 275–277. doi:10.4161/cib.19420
Pittenger, M. F., Mackay, A. M., Beck, S. C., Jaiswal, R. K., Douglas, R., Mosca, J. D., et al. (1999). Multilineage potential of adult human mesenchymal stem cells. Science 284, 143–147. doi:10.1126/science.284.5411.143
Porter, J. R., Ruckh, T. T., and Popat, K. C. (2009). Bone tissue engineering: a review in bone biomimetics and drug delivery strategies. Biotechnol. Prog. 25, 1539–1560. doi:10. 1002/btpr.246
Przybyłek, I., and Karpiński, T. M. (2019). Antibacterial properties of propolis. Molecules 24, 2047. doi:10.3390/molecules24112047
Qiu, Y., Chen, X., Hou, Y., Hou, Y., Tian, S., Chen, Y., et al. (2019). Characterization of different biodegradable scaffolds in tissue engineering. Mol. Med. Rep. 19, 4043–4056. doi:10.3892/mmr.2019.10066
Ramírez, J. A., Ospina, V., Rozo, A. A., Viana, M. I., Ocampo, S., Restrepo, S., et al. (2019). Influence of geometry on cell proliferation of PLA and alumina scaffolds constructed by additive manufacturing. J. Mat. Res. 34, 3757–3765. doi:10.1557/jmr.2019.323
Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., and Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 26, 1231–1237. doi:10.1016/s0891-5849(98)00315-3
Renteria, A., Fontes, H., Diaz, J. A., Regis, J. E., Chavez, L. A., Tseng, T.-L. B., et al. (2019). Optimization of 3D printing parameters for BaTiO3 piezoelectric ceramics through design of experiments. Mat. Res. Express 6, 085706. doi:10.1088/2053-1591/ab200e
Rincón-Kohli, L., and Zysset, P. K. (2009). Multi-axial mechanical properties of human trabecular bone. Biomech. Model. Mechanobiol. 8, 195–208. doi:10.1007/s10237- 008-0128-z
Seidel, V., Peyfoon, E., Watson, D. G., and Fearnley, J. (2008). Comparative study of the antibacterial activity of propolis from different geographical and climatic zones: antibacterial activity of propolis from different zones. Phytother. Res. 22, 1256–1263. doi:10.1002/ptr.2480
Shanbhag, S., Rana, N., Suliman, S., Idris, S. B., Mustafa, K., and Stavropoulos, A. (2022). Influence of bone substitutes on mesenchymal stromal cells in an inflammatory microenvironment. Int. J. Mol. Sci. 24, 438. doi:10.3390/ijms24010438
Shao, H., Liu, A., Ke, X., Sun, M., He, Y., Yang, X., et al. (2017). 3D robocasting magnesium-doped wollastonite/TCP bioceramic scaffolds with improved bone regeneration capacity in critical sized calvarial defects. J. Mat. Chem. B 5, 2941–2951. doi:10.1039/C7TB00217C
Soleymani, S., and Naghib, S. M. (2023). 3D and 4D printing hydroxyapatite-based scaffolds for bone tissue engineering and regeneration. Heliyon 9, e19363. doi:10.1016/j. heliyon.2023.e19363
Sundaram, B., and Milton, M. J. (2017). Porous polycaprolactone scaffold engineered with naringin loaded bovine serum albumin nanoparticles for bone tissue engineering. Biosci. Biotechnol. Res. Asia 14, 1355–1362. doi:10.13005/bbra/2580
Teixeira, S., Rodriguez, M. A., Pena, P., De Aza, A. H., De Aza, S., Ferraz, M. P., et al. (2009). Physical characterization of hydroxyapatite porous scaffolds for tissue engineering. Mat. Sci. Eng. C 29, 1510–1514. doi:10.1016/j.msec.2008.09.052
Velasquez-Plata, D. (2022). Osseous topography in biologically driven flap design in minimally invasive regenerative therapy: a classification proposal. Clin. Adv. Periodontics 12, 251–255. doi:10.1002/cap.10209
Wan, L., Mao, Z., Liu, H., Xie, Y., Lyu, F., Cao, Z., et al. (2023). Direct 4D printing of gradient structure of ceramics. Chem. Eng. J. 465, 142804. doi:10.1016/j.cej.2023.142804
Yang, T., and Van Olmen, R. (2004). Robust design for a multilayer ceramic capacitor screen-printing process case study. J. Eng. Des. 15, 447–457. doi:10.1080/ 09544820410001697136
Yoon, D.-H., and Lee, B. I. (2004). Processing of barium titanate tapes with different binders for MLCC applications—Part I: optimization using design of experiments. J. Eur. Ceram. Soc. 24, 739–752. doi:10.1016/s0955-2219(03)00333-9
Yue, X., Zhao, L., Yang, J., Jiao, X., Wu, F., Zhang, Y., et al. (2023). Comparison of osteogenic capability of 3D-printed bioceramic scaffolds and granules with different porosities for clinical translation. Front. Bioeng. Biotechnol. 11, 1260639. doi:10.3389/ fbioe.2023.1260639
Zenebe, C. G. (2022). A review on the role of wollastonite biomaterial in bone tissue engineering. Biomed. Res. Int. 2022, 1–15. doi:10.1155/2022/4996530
Zhang, Y., and Chen, Y. (2014). Bioengineering of a human whole tooth: progress and challenge. Cell Regen. 3, 8. doi:10.1186/2045-9769-3-8
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.creativecommons.none.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Attribution-NonCommercial-NoDerivatives 4.0 International
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 12 p.
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Switzerland
Universidad Cooperativa de Colombia, Facultad de Ciencias de la Salud, Odontología, Medellín y Envigado
publisher.none.fl_str_mv Switzerland
Universidad Cooperativa de Colombia, Facultad de Ciencias de la Salud, Odontología, Medellín y Envigado
institution Universidad Cooperativa de Colombia
bitstream.url.fl_str_mv https://repository.ucc.edu.co/bitstreams/de17a6e6-7d26-4c62-b6be-91df0bbc4a93/download
https://repository.ucc.edu.co/bitstreams/71b04a0d-5446-4c94-9ff3-50237a36f774/download
https://repository.ucc.edu.co/bitstreams/d2e0771f-443f-451d-99ad-82ecf2e39dae/download
https://repository.ucc.edu.co/bitstreams/a8d78876-1c19-449d-a06f-1e0d68471657/download
https://repository.ucc.edu.co/bitstreams/8b07afba-fdaf-4847-aca7-46788ee1cfac/download
https://repository.ucc.edu.co/bitstreams/8f5f0d12-2462-49f2-954a-e99d694ee70b/download
https://repository.ucc.edu.co/bitstreams/f748e309-7b9d-408a-a22c-37e03a610a9b/download
https://repository.ucc.edu.co/bitstreams/7ff865cf-0793-4b95-97b4-4eed7772c057/download
bitstream.checksum.fl_str_mv 3bce4f7ab09dfc588f126e1e36e98a45
f5a816f5b77942baf552b9afebcc431f
3139881f870e014fd4c4d37ad6717fbe
4460e5956bc1d1639be9ae6146a50347
47416ce51fc695ad3c0950c195ab5007
ec7e67f317110f310c0a32305bc227a8
f8093e43ca4c41481fb3115b8b3610fa
1d2b281a09b8c8adbfa1949ea3980584
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Cooperativa de Colombia
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1814247236463230976
spelling Moreno Florez, Ana IsabelMalagon, SaritaOcampo, SebastianLeal Marín, SaraOssa, Edgar AlexanderGlasmacher, BirgitGarcía, ClaudiaPeláez Vargas, AlejandroGIOM2024-03-01T19:17:24Z2024-03-01T19:17:24Z2024-02-01Florez AI, Malagon S, Ocampo S, Leal-Marin S, Ossa EA, Glasmacher B, Garcia C, Pelaez-Vargas A. (2024)In vitro evaluation of the osteogenic and antimicrobial potential of porous wollastonite scaffolds impregnated with ethanolic extracts of propolis. Frontiers in Bioengineering and Biotechnology. 2024;12.https://hdl.handle.net/20.500.12494/551082296-4185https://hdl.handle.net/20.500.12494/5510810.3389/fbioe.2024.1321466Context: The development of porous devices using materials modified with various natural agents has become a priority for bone healing processes in the oral and maxillofacial field. There must be a balance between the proliferation of eukaryotic and the inhibition of prokaryotic cells to achieve proper bone health. Infections might inhibit the formation of new alveolar bone during bone graft augmentation. Objective: This study aimed to evaluate the in vitro osteogenic behavior of human bone marrow stem cells and assess the antimicrobial response to 3Dprinted porous scaffolds using propolis-modified wollastonite. Methodology: A fractional factorial design of experiments was used to obtain a 3D printing paste for developing scaffolds with a triply periodic minimal surface (TPMS) gyroid geometry based on wollastonite and modified with an ethanolic propolis extract. The antioxidant activity of the extracts was characterized using free radical scavenging methods (DPPH and ABTS). Cell proliferation and osteogenic potential using Human Bone Marrow Stem Cells (bmMSCs) were assessed at different culture time points up to 28 days. MIC and inhibition zones were studied from single strain cultures, and biofilm formation was evaluated on the scaffolds under co-culture conditions. The mechanical strength of the scaffolds was evaluated. Results: Through statistical design of experiments, a paste suitable for printing scaffolds with the desired geometry was obtained. Propolis extracts modifying the TPMS gyroid scaffolds showed favorable cell proliferation and metabolic activity with osteogenic potential after 21 days. Additionally, propolis exhibited antioxidant activity, which may be related to the antimicrobial effectiveness of the scaffolds against S. aureus and S. epidermidis cultures. The mechanical properties of the scaffolds were not affected by propolis impregnation. Conclusion: These results demonstrate that propolis-impregnated porous wollastonite scaffolds might have the potential to stimulate bone repair in maxillofacial tissue engineering applications.Biomaterials12 p.application/pdfengSwitzerlandUniversidad Cooperativa de Colombia, Facultad de Ciencias de la Salud, Odontología, Medellín y Envigadohttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://purl.org/coar/access_right/c_abf2610 - Medicina y saludScaffoldsBone tissue engineeringwollastonite3D printingIn vitro evaluation of the osteogenic and antimicrobial potential of porous wollastonite scaffolds impregnated with ethanolic extracts of propolisArtículohttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersion12 p.1Frontiers in Bioengineering and BiotechnologyAbueidda, D., Elhebeary, M., Shiang, C., Pang, S., Al-Rub, R. K. A., and Jasiuk, I. M. (2019). Mechanical properties of 3D printed polymeric Gyroid cellular structures: experimentalAbbasi, N., Ivanovski, S., Gulati, K., Love, R. M., and Hamlet, S. (2020). Role of offset and gradient architectures of 3-D melt electrowritten scaffold on differentiation and mineralization of osteoblasts. Biomater. Res. 24, 2–16. doi:10.1186/s40824-019-0180-zAlbrektsson, T., Tengvall, P., Amengual, L., Coli, P., Kotsakis, G. A., and Cochran, D. (2023). Osteoimmune regulation underlies oral implant osseointegration and its perturbation. Front. Immunol. 13, 1056914. doi:10.3389/fimmu.2022.1056914Almuhayawi,M. S. (2020). Propolis as a novel antibacterial agent. Saudi J. Biol. Sci. 27, 3079–3086. doi:10.1016/j.sjbs.2020.09.016Altan, B. A., Kara, I. M., Nalcaci, R., Ozan, F., Erdogan, S. M., Ozkut, M. M., et al. (2013). Systemic propolis stimulates new bone formation at the expanded suture. Angle Orthod. 83, 286–291. doi:10.2319/032612-253.1Anusavice, K., Shen, C., and Rawls, H. (2013). “Emerging technologies,” in Philip’s science of dental materials. Editors K. J. Anusavice, C. Shen, and H. R. Rawls (St. Louis, Mo: Elsevier/Saunders), 519–537.Bahraminasab, M., Janmohammadi, M., Arab, S., Talebi, A., Nooshabadi, V. T., Koohsarian, P., et al. (2021). Bone scaffolds: an incorporation of biomaterials, cells, and biofactors. ACS Biomater. Sci. Eng. 7, 5397–5431. doi:10.1021/acsbiomaterials.1c00920Bontá, H., Bugiolachi, J., Perrote, C. A., Sánchez, L. M., Pulitano Manisagian, G. E., Galli, F. G., et al. (2023). Alveolar ridge reconstruction with a digitally customized bone block allograft. Clin. Adv. Periodontics 2023, 10270. doi:10.1002/cap.10270Brandao-Burch, A., Utting, J. C., Orriss, I. R., and Arnett, T. R. (2005). Acidosis inhibits bone formation by osteoblasts in vitro by preventing mineralization. Calcif. Tissue Int. 77, 167–174. doi:10.1007/s00223-004-0285-8Bufalo, M. C., Candeias, J. M., and Sforcin, J. M. (2009). In vitro cytotoxic effect of Brazilian green propolis on human laryngeal epidermoid carcinoma (HEp-2) cells. Evid. Based Complement. Altern. Med. 6, 483–487. doi:10.1093/ecam/nem147Carvalho, M. S., Cabral, J. M. S., Da Silva, C. L., and Vashishth, D. (2021). Bonematrix non-collagenous proteins in tissue engineering: creating new bone by mimicking the extracellular matrix. Polymers 13, 1095–1133. doi:10.3390/polym13071095Chew Shi Fung, H. M., Hashim, S. N. M., Htun, A. T., and Ahmad, A. (2015). Proliferative effect of Malaysian propolis on stem cells from human exfoliated deciduous teeth: an in vitro study. Br. J. Pharm. Res. 8, 1–8. doi:10.9734/bjpr/2015/19918Eladli, M. G., Alharbi, N. S., Khaled, J. M., Kadaikunnan, S., Alobaidi, A. S., and Alyahya, S. A. (2019). Antibiotic-resistant Staphylococcus epidermidis isolated from patients and healthy students comparing with antibiotic-resistant bacteria isolated from pasteurized milk. Saudi J. Biol. Sci. 26, 1285–1290. doi:10.1016/j.sjbs.2018.05.008El-Gendy, R., Junaid, S., Lam, S. K. L., Elson, K. M., Tipper, J. L., Hall, R. M., et al. (2021). Developing a tooth in situ organ culture model for dental and periodontal regeneration research. Front. Bioeng. Biotechnol. 8, 581413. doi:10.3389/fbioe.2020.581413Elkhenany, H., El-Badri, N., and Dhar, M. (2019). Green propolis extract promotes in vitro proliferation, differentiation, and migration of bone marrow stromal cells. Biomed. Pharmacother. 115, 108861. doi:10.1016/j.biopha.2019.108861Galow, A.-M., Rebl, A., Koczan, D., Bonk, S. M., Baumann, W., and Gimsa, J. (2017). Increased osteoblast viability at alkaline pH in vitro provides a new perspective on bone regeneration. Biochem. Biophys. Rep. 10, 17–25. doi:10.1016/j.bbrep.2017.02.001Gao, S., Li, J., Lei, Q., Chen, Y., Huang, H., Yan, F., et al. (2023). Calcium sulfate-Cu2+ delivery system improves 3D-Printed calcium silicate artificial bone to repair large bone defects. Front. Bioeng. Biotechnol. 11, 1224557. doi:10.3389/fbioe.2023.1224557Gerhardt, L.-C., and Boccaccini, A. R. (2010). Bioactive glass and glass-ceramic scaffolds for bone tissue engineering. Materials 3, 3867–3910. doi:10.3390/ma3073867Gutiérrez-Prieto, S. J., Perdomo-Lara, S. J., Diaz-Peraza, J. M., and Sequeda-Castañeda, L. G. (2019). Analysis of in vitro osteoblast culture on scaffolds for future bone regeneration purposes in dentistry. Adv. Pharmacol. Pharm. Sci. 2019, 1–9. doi:10.1155/2019/5420752Higuita-Castro, N., Gallego-Perez, D., Pelaez-Vargas, A., García Quiroz, F., Posada, O. M., López, L. E., et al. (2012). Reinforced Portland cement porous scaffolds for loadbearing bone tissue engineering applications. J. Biomed. Mat. Res. B Appl. Biomater. 100B, 501–507. doi:10.1002/jbm.b.31976Hotta, S., Uchiyama, S., and Ichihara, K. (2020). Brazilian red propolis extract enhances expression of antioxidant enzyme genes in vitro and in vivo. Biosci. Biotechnol. Biochem. 84, 1820–1830. doi:10.1080/09168451.2020.1773756Huang, S., Zhang, C.-P., Wang, K., Li, G. Q., and Hu, F.-L. (2014). Recent advances in the chemical composition of propolis.Molecules 19, 19610–19632. doi:10.3390/molecules191219610Iyer, V., Raut, J., and Dasgupta, A. (2021). Impact of pH on growth of Staphylococcus epidermidis and Staphylococcus aureus in vitro. J. Med. Microbiol. 70, 001421. doi:10. 1099/jmm.0.001421Jahan, K., and Tabrizian, M. (2016). Composite biopolymers for bone regeneration enhancement in bony defects. Biomater. Sci. 4, 25–39. doi:10.1039/C5BM00163CKaur, G., Kumar, V., Baino, F., Mauro, J. C., Pickrell, G., Evans, I., et al. (2019). Mechanical properties of bioactive glasses, ceramics, glass-ceramics and composites: state-of-the-art review and future challenges. Mat. Sci. Eng. C 104, 109895. doi:10.1016/j.msec.2019.109895Khorasani, H. R., Sanchouli, M., Mehrani, J., and Sabour, D. (2021). Potential of bonemarrow-derived mesenchymal stem cells for maxillofacial and periodontal regeneration: a narrative review. Int. J. Dent. 2021, 1–13. doi:10.1155/2021/4759492Kresnoadi, U., Rahayu, R. P., Ariani, M. D., and Soesanto, S. (2020). The potential of natural propolis extract combined with bovine bone graft in increasing heat shock protein 70 and osteocalcin on socket preservation. Eur. J. Dent. 14, 031–037. doi:10. 1055/s-0040-1701921Kumazawa, S., Hamasaka, T., and Nakayama, T. (2004). Antioxidant activity of propolis of various geographic origins. Food Chem. 84, 329–339. doi:10.1016/S0308- 8146(03)00216-4Leal-Marin, S., Gallaway, G., Höltje, K., Lopera-Sepulveda, A., Glasmacher, B., and Gryshkov, O. (2021). Scaffolds with magnetic nanoparticles for tissue stimulation. Curr. Dir. Biomed. Eng. 7, 460–463. doi:10.1515/cdbme-2021-2117Machado, E., Fernandes, M. H., and Gomes, P. D. S. (2012). Dental stem cells for craniofacial tissue engineering. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 113, 728–733. doi:10.1016/j.tripleo.2011.05.039Martin, V., Ribeiro, I. A., Alves, M. M., Gonçalves, L., Claudio, R. A., Grenho, L., et al. (2019). Engineering a multifunctional 3D-printed PLA-collagen-minocyclinenanoHydroxyapatite scaffold with combined antimicrobial and osteogenic effects for bone regeneration. Mat. Sci. Eng. C 101, 15–26. doi:10.1016/j.msec.2019.03.056Mayer, Y., Zigdon-Giladi, H., and Machtei, E. E. (2016). Ridge preservation using composite alloplastic materials: a randomized control clinical and histological study in humans. Clin. Implant Dent. Relat. Res. 18, 1163–1170. doi:10.1111/cid.12415Mirzoeva, O. K., Grishanin, R. N., and Calder, P. C. (1997). Antimicrobial action of propolis and some of its components: the effects on growth, membrane potential and motility of bacteria. Microbiol. Res. 152, 239–246. doi:10.1016/S0944-5013(97)80034-1Moreno, A. I., Orozco, Y., Ocampo, S., Malagón, S., Ossa, A., Peláez-Vargas, A., et al. (2023). Effects of propolis impregnation on polylactic acid (PLA) scaffolds loaded with wollastonite particles against Staphylococcus aureus, Staphylococcus epidermidis, and their coculture for potential medical devices. Polymers 15, 2629. doi:10.3390/ polym15122629Nakashima, M., and Akamine, A. (2005). The application of tissue engineering to regeneration of pulp and dentin in endodontics. J. Endod. 31, 711–718. doi:10.1097/01. don.0000164138.49923.e5Nikolova, M. P., and Chavali, M. S. (2019). Recent advances in biomaterials for 3D scaffolds: a review. Bioact. Mat. 4, 271–292. doi:10.1016/j.bioactmat.2019.10.005Pelaez-Vargas, A., Gallego-Perez, D., Gomez, D. F., Fernandes, M. H., Hansford, D. J., and Monteiro, F. J. (2012). Propagation of human bone marrow stem cells for craniofacial applications. Stem Cells Cancer Stem Cells 7, 107–122. doi:10.1007/978- 94-007-4285-7_10Periasamy, S., Chatterjee, S. S., Cheung, G. Y. C., and Otto, M. (2012). Phenol-soluble modulins in staphylococci: what are they originally for? Commun. Integr. Biol. 5, 275–277. doi:10.4161/cib.19420Pittenger, M. F., Mackay, A. M., Beck, S. C., Jaiswal, R. K., Douglas, R., Mosca, J. D., et al. (1999). Multilineage potential of adult human mesenchymal stem cells. Science 284, 143–147. doi:10.1126/science.284.5411.143Porter, J. R., Ruckh, T. T., and Popat, K. C. (2009). Bone tissue engineering: a review in bone biomimetics and drug delivery strategies. Biotechnol. Prog. 25, 1539–1560. doi:10. 1002/btpr.246Przybyłek, I., and Karpiński, T. M. (2019). Antibacterial properties of propolis. Molecules 24, 2047. doi:10.3390/molecules24112047Qiu, Y., Chen, X., Hou, Y., Hou, Y., Tian, S., Chen, Y., et al. (2019). Characterization of different biodegradable scaffolds in tissue engineering. Mol. Med. Rep. 19, 4043–4056. doi:10.3892/mmr.2019.10066Ramírez, J. A., Ospina, V., Rozo, A. A., Viana, M. I., Ocampo, S., Restrepo, S., et al. (2019). Influence of geometry on cell proliferation of PLA and alumina scaffolds constructed by additive manufacturing. J. Mat. Res. 34, 3757–3765. doi:10.1557/jmr.2019.323Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., and Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 26, 1231–1237. doi:10.1016/s0891-5849(98)00315-3Renteria, A., Fontes, H., Diaz, J. A., Regis, J. E., Chavez, L. A., Tseng, T.-L. B., et al. (2019). Optimization of 3D printing parameters for BaTiO3 piezoelectric ceramics through design of experiments. Mat. Res. Express 6, 085706. doi:10.1088/2053-1591/ab200eRincón-Kohli, L., and Zysset, P. K. (2009). Multi-axial mechanical properties of human trabecular bone. Biomech. Model. Mechanobiol. 8, 195–208. doi:10.1007/s10237- 008-0128-zSeidel, V., Peyfoon, E., Watson, D. G., and Fearnley, J. (2008). Comparative study of the antibacterial activity of propolis from different geographical and climatic zones: antibacterial activity of propolis from different zones. Phytother. Res. 22, 1256–1263. doi:10.1002/ptr.2480Shanbhag, S., Rana, N., Suliman, S., Idris, S. B., Mustafa, K., and Stavropoulos, A. (2022). Influence of bone substitutes on mesenchymal stromal cells in an inflammatory microenvironment. Int. J. Mol. Sci. 24, 438. doi:10.3390/ijms24010438Shao, H., Liu, A., Ke, X., Sun, M., He, Y., Yang, X., et al. (2017). 3D robocasting magnesium-doped wollastonite/TCP bioceramic scaffolds with improved bone regeneration capacity in critical sized calvarial defects. J. Mat. Chem. B 5, 2941–2951. doi:10.1039/C7TB00217CSoleymani, S., and Naghib, S. M. (2023). 3D and 4D printing hydroxyapatite-based scaffolds for bone tissue engineering and regeneration. Heliyon 9, e19363. doi:10.1016/j. heliyon.2023.e19363Sundaram, B., and Milton, M. J. (2017). Porous polycaprolactone scaffold engineered with naringin loaded bovine serum albumin nanoparticles for bone tissue engineering. Biosci. Biotechnol. Res. Asia 14, 1355–1362. doi:10.13005/bbra/2580Teixeira, S., Rodriguez, M. A., Pena, P., De Aza, A. H., De Aza, S., Ferraz, M. P., et al. (2009). Physical characterization of hydroxyapatite porous scaffolds for tissue engineering. Mat. Sci. Eng. C 29, 1510–1514. doi:10.1016/j.msec.2008.09.052Velasquez-Plata, D. (2022). Osseous topography in biologically driven flap design in minimally invasive regenerative therapy: a classification proposal. Clin. Adv. Periodontics 12, 251–255. doi:10.1002/cap.10209Wan, L., Mao, Z., Liu, H., Xie, Y., Lyu, F., Cao, Z., et al. (2023). Direct 4D printing of gradient structure of ceramics. Chem. Eng. J. 465, 142804. doi:10.1016/j.cej.2023.142804Yang, T., and Van Olmen, R. (2004). Robust design for a multilayer ceramic capacitor screen-printing process case study. J. Eng. Des. 15, 447–457. doi:10.1080/ 09544820410001697136Yoon, D.-H., and Lee, B. I. (2004). Processing of barium titanate tapes with different binders for MLCC applications—Part I: optimization using design of experiments. J. Eur. Ceram. Soc. 24, 739–752. doi:10.1016/s0955-2219(03)00333-9Yue, X., Zhao, L., Yang, J., Jiao, X., Wu, F., Zhang, Y., et al. (2023). Comparison of osteogenic capability of 3D-printed bioceramic scaffolds and granules with different porosities for clinical translation. Front. Bioeng. Biotechnol. 11, 1260639. doi:10.3389/ fbioe.2023.1260639Zenebe, C. G. (2022). A review on the role of wollastonite biomaterial in bone tissue engineering. Biomed. Res. Int. 2022, 1–15. doi:10.1155/2022/4996530Zhang, Y., and Chen, Y. (2014). Bioengineering of a human whole tooth: progress and challenge. Cell Regen. 3, 8. doi:10.1186/2045-9769-3-8PublicationLICENSElicense.txtlicense.txttext/plain; charset=utf-84334https://repository.ucc.edu.co/bitstreams/de17a6e6-7d26-4c62-b6be-91df0bbc4a93/download3bce4f7ab09dfc588f126e1e36e98a45MD54ORIGINAL2024_OthersandPelaez-Vargas_Invitro_osteogenic_wollastonite_scaffolds_Frontiers.pdf2024_OthersandPelaez-Vargas_Invitro_osteogenic_wollastonite_scaffolds_Frontiers.pdfapplication/pdf3158192https://repository.ucc.edu.co/bitstreams/71b04a0d-5446-4c94-9ff3-50237a36f774/downloadf5a816f5b77942baf552b9afebcc431fMD512024_OthersandPelaez-Vargas_Invitro_osteogenic_wollastonite_scaffolds_Frontiers_Licence.pdf2024_OthersandPelaez-Vargas_Invitro_osteogenic_wollastonite_scaffolds_Frontiers_Licence.pdfapplication/pdf190549https://repository.ucc.edu.co/bitstreams/d2e0771f-443f-451d-99ad-82ecf2e39dae/download3139881f870e014fd4c4d37ad6717fbeMD52CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repository.ucc.edu.co/bitstreams/a8d78876-1c19-449d-a06f-1e0d68471657/download4460e5956bc1d1639be9ae6146a50347MD53TEXT2024_OthersandPelaez-Vargas_Invitro_osteogenic_wollastonite_scaffolds_Frontiers.pdf.txt2024_OthersandPelaez-Vargas_Invitro_osteogenic_wollastonite_scaffolds_Frontiers.pdf.txtExtracted texttext/plain69056https://repository.ucc.edu.co/bitstreams/8b07afba-fdaf-4847-aca7-46788ee1cfac/download47416ce51fc695ad3c0950c195ab5007MD552024_OthersandPelaez-Vargas_Invitro_osteogenic_wollastonite_scaffolds_Frontiers_Licence.pdf.txt2024_OthersandPelaez-Vargas_Invitro_osteogenic_wollastonite_scaffolds_Frontiers_Licence.pdf.txtExtracted texttext/plain5771https://repository.ucc.edu.co/bitstreams/8f5f0d12-2462-49f2-954a-e99d694ee70b/downloadec7e67f317110f310c0a32305bc227a8MD57THUMBNAIL2024_OthersandPelaez-Vargas_Invitro_osteogenic_wollastonite_scaffolds_Frontiers.pdf.jpg2024_OthersandPelaez-Vargas_Invitro_osteogenic_wollastonite_scaffolds_Frontiers.pdf.jpgGenerated Thumbnailimage/jpeg12126https://repository.ucc.edu.co/bitstreams/f748e309-7b9d-408a-a22c-37e03a610a9b/downloadf8093e43ca4c41481fb3115b8b3610faMD562024_OthersandPelaez-Vargas_Invitro_osteogenic_wollastonite_scaffolds_Frontiers_Licence.pdf.jpg2024_OthersandPelaez-Vargas_Invitro_osteogenic_wollastonite_scaffolds_Frontiers_Licence.pdf.jpgGenerated Thumbnailimage/jpeg12841https://repository.ucc.edu.co/bitstreams/7ff865cf-0793-4b95-97b4-4eed7772c057/download1d2b281a09b8c8adbfa1949ea3980584MD5820.500.12494/55108oai:repository.ucc.edu.co:20.500.12494/551082024-08-10 22:46:58.827http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalrestrictedhttps://repository.ucc.edu.coRepositorio Institucional Universidad Cooperativa de Colombiabdigital@metabiblioteca.comVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEKUkVQT1NJVE9SSU9TIElOU1RJVFVDSU9OQUxFUwpMSUNFTkNJQSBERSBVU08KClBvciBtZWRpbyBkZWwgcHJlc2VudGUgZG9jdW1lbnRvLCBlbCBBdXRvcihlcyksIG1heW9yIChlcykgZGUgZWRhZCwgcXVpZW4gZW4gYWRlbGFudGUgc2UgZGVub21pbmFyw6EgZWwgQVVUT1IsIGNvbmZpZXJlIGEgbGEgVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEsIGNvbiBOSVQuIDg2MC0wMjk5MjQtNywgdW5hIExJQ0VOQ0lBIERFIFVTTyBkZSBvYnJhLCBiYWpvIGxhcyBzaWd1aWVudGVzIGNvbmRpY2lvbmVzLgoKQ0zDgVVTVUxBUwoKUFJJTUVSQS4gT2JqZXRvLiBFTCBBVVRPUiBwb3IgZXN0ZSBhY3RvIGF1dG9yaXphIGxhIHV0aWxpemFjacOzbiBkZSBsYSBvYnJhLCBkZSBjb25mb3JtaWRhZCBjb24gbG8gZXN0aXB1bGFkbyBhIGNvbnRpbnVhY2nDs246IAoKKGEpIFBhcmEgZWZlY3RvcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSBzZSBhdXRvcml6YSBsYSByZXByb2R1Y2Npw7NuIGRlIGxhIG9icmEgYW50ZXJpb3JtZW50ZSBjaXRhZGEsIGxhIGN1YWwgc2UgYWxvamFyw6EgZW4gZm9ybWF0byBkaWdpdGFsIGVuIGxhcyBwbGF0YWZvcm1hcyBvIHJlcG9zaXRvcmlvcyBhZG1pbmlzdHJhZG9zIHBvciBsYSBVTklWRVJTSURBRCBvIGVuIG90cm8gdGlwbyBkZSByZXBvc2l0b3Jpb3MgZXh0ZXJub3MgbyBww6FnaW5hcyB3ZWIgZXNjb2dpZG9zIHBvciBsYSBVTklWRVJTSURBRCwgcGFyYSBmaW5lcyBkZSBkaWZ1c2nDs24geSBkaXZ1bGdhY2nDs24uIEFkaWNpb25hbG1lbnRlLCBzZSBhdXRvcml6YSBhIHF1ZSBsb3MgdXN1YXJpb3MgaW50ZXJub3MgeSBleHRlcm5vcyBkZSBkaWNoYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgcmVwcm9kdXpjYW4gbyBkZXNjYXJndWVuIGxhIG9icmEsIHNpbiDDoW5pbW8gZGUgbHVjcm8sIHBhcmEgZmluZXMgcHJpdmFkb3MsIGVkdWNhdGl2b3MgbyBhY2Fkw6ltaWNvczsgc2llbXByZSB5IGN1YW5kbyBubyBzZSB2aW9sZW4gYWN1ZXJkb3MgY29uIGVkaXRvcmVzLCBwZXJpb2RvcyBkZSBlbWJhcmdvIG8gYWN1ZXJkb3MgZGUgY29uZmlkZW5jaWFsaWRhZCBxdWUgYXBsaXF1ZW4uCgooYikgU2UgYXV0b3JpemEgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBkZSBsYSBvYnJhIG1lbmNpb25hZGEsIGVuIGFjY2VzbyBhYmllcnRvLCBwYXJhIHN1IHV0aWxpemFjacOzbiBlbiBsYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgYWRtaW5pc3RyYWRvcyBwb3IgbGEgVU5JVkVSU0lEQUQuCgooYykgTG8gYW50ZXJpb3IgZXN0YXLDoSBzdWpldG8gYSBsYXMgZGVmaW5pY2lvbmVzIGNvbnRlbmlkYXMgZW4gbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MyB5IGxhIExleSAyMyBkZSAxOTgyLgoKClNFR1VOREEuIE9yaWdpbmFsaWRhZCB5IHJlY2xhbWFjaW9uZXMuIEVsIEFVVE9SIGRlY2xhcmEgcXVlIGxhIE9CUkEgZXMgb3JpZ2luYWwgeSBxdWUgZXMgZGUgc3UgY3JlYWNpw7NuIGV4Y2x1c2l2YSwgbm8gZXhpc3RpZW5kbyBpbXBlZGltZW50byBkZSBjdWFscXVpZXIgbmF0dXJhbGV6YSAoZW1iYXJnb3MsIHVzbyBkZSBtYXRlcmlhbCBwcm90ZWdpZG8gcG9yIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGxhIGNvbmNlc2nDs24gZGUgbG9zIGRlcmVjaG9zIHByZXZpc3RvcyBlbiBlc3RlIGFjdWVyZG8uIEVsIEFVVE9SIHJlc3BvbmRlcsOhIHBvciBjdWFscXVpZXIgYWNjacOzbiBkZSByZWl2aW5kaWNhY2nDs24sIHBsYWdpbyB1IG90cmEgY2xhc2UgZGUgcmVjbGFtYWNpw7NuIHF1ZSBhbCByZXNwZWN0byBwdWRpZXJhIHNvYnJldmVuaXIuCgpURVJDRVJBLiBDb250cmFwcmVzdGFjacOzbi4gRWwgQVVUT1IgYXV0b3JpemEgYSBxdWUgc3Ugb2JyYSBzZWEgdXRpbGl6YWRhIGRlIGNvbmZvcm1pZGFkIGNvbiBsYSBjbMOhdXN1bGEgUFJJTUVSQSBkZSBmb3JtYSBncmF0dWl0YSwgZXMgZGVjaXIsIHF1ZSBsYSB1dGlsaXphY2nDs24gZGUgbGEgbWlzbWEgbm8gZ2VuZXJhIG5pbmfDum4gcGFnbyBvIHJlZ2Fsw61hcyBlbiBmYXZvciBkZSBlc3RlLgoKQ1VBUlRBLiBUaXR1bGFyaWRhZCBkZSBkZXJlY2hvcy4gRWwgcHJlc2VudGUgY29udHJhdG8gbm8gdHJhbnNmaWVyZSBsYSB0aXR1bGFyaWRhZCBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBzb2JyZSBsYXMgb2JyYXMgYW50ZXJpb3JtZW50ZSBtZW5jaW9uYWRhcyBhIGxhIFVOSVZFUlNJREFELiDDmm5pY2FtZW50ZSBoYWNlIHJlbGFjacOzbiBhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgZW4gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGFudGVyaW9ybWVudGUgcGFjdGFkb3MuCgpRVUlOVEEuIENyw6lkaXRvcy4gTGEgVU5JVkVSU0lEQUQgc2UgY29tcHJvbWV0ZSBhIGRhciBhbCBBVVRPUiwgZWwgcmVjb25vY2ltaWVudG8gZGVudHJvIGNhZGEgZm9ybWEgZGUgdXRpbGl6YWNpw7NuIGVuIGxhIG9icmEuIExvcyBjcsOpZGl0b3MgZGViZW4gZmlndXJhciBlbiBjYWRhIHVubyBkZSBsb3MgZm9ybWF0b3MgbyByZWdpc3Ryb3MgZGUgcHVibGljYWNpw7NuLiBObyBjb25zdGl0dWlyw6EgdW5hIHZpb2xhY2nDs24gYSBsb3MgZGVyZWNob3MgbW9yYWxlcyBkZWwgYXV0b3IgbGEgbm8gcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBvIGRlbcOhcyB1dGlsaXphY2lvbmVzIGRlIGxhIG9icmEuIExhIHV0aWxpemFjacOzbiBvIG5vIGRlIGxhIG9icmEsIGFzw60gY29tbyBzdSBmb3JtYSBkZSB1dGlsaXphY2nDs24gc2Vyw6EgZmFjdWx0YWQgZXhjbHVzaXZhIGRlIGxhIFVOSVZFUlNJREFELgogClNFWFRBLiBEdXJhY2nDs24geSB0ZXJyaXRvcmlvLiBMYSBwcmVzZW50ZSBsaWNlbmNpYSBkZSB1c28gcXVlIHNlIG90b3JnYSBhIGZhdm9yIGRlIGxhIFVOSVZFUlNJREFEIHRlbmRyw6EgdW5hIGR1cmFjacOzbiBlcXVpdmFsZW50ZSBhbCB0w6lybWlubyBkZSBwcm90ZWNjacOzbiBsZWdhbCBkZSBsYSBvYnJhIHkgcGFyYSB0b2RvcyBsb3MgcGHDrXNlcyBkZWwgbXVuZG8uCgpTw4lQVElNQS4gVXNvIGRlIENyZWF0aXZlIENvbW1vbnMuIEVsIEFVVE9SIGF1dG9yaXphcsOhIGxhIGRpZnVzacOzbiBkZSBzdSBjb250ZW5pZG8gYmFqbyB1bmEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBhdHJpYnVjacOzbiA0LjAgaW50ZXJuYWNpb25hbCwgcXVlIGRlYmVyw6EgaW5jbHVpcnNlIGVuIGVsIGNvbnRlbmlkby4gCgpPQ1RBVkEuIERlcmVjaG8gZGUgZXhjbHVzacOzbi4gQ2FkYSBhdXRvciBwdWVkZSBpbmRpY2FyIGVuIGVsIG1vbWVudG8gZGUgZGVww7NzaXRvIGRlbCBjb250ZW5pZG8gcXVlIGVsIHRleHRvIGNvbXBsZXRvIGRlIGxhIHByb2R1Y2Npw7NuIGFjYWTDqW1pY2EgbyBjaWVudMOtZmljYSBubyBlc3RlIGNvbiBhY2Nlc28gYWJpZXJ0byBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIHBvciBtb3Rpdm9zIGRlIGNvbmZpZGVuY2lhbGlkYWQsIHBvcnF1ZSBzZSBlbmN1ZW50cmUgZW4gdsOtYXMgZGUgb2J0ZW5lciB1biBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbmR1c3RyaWFsIG8gZXhpc3RpciBhY3VlcmRvcyBwcmV2aW9zIGNvbiB0ZXJjZXJvcyAoZWRpdG9yaWFsZXMsIHJldmlzdGFzIGNpZW50w61maWNhcywgb3RyYXMgaW5zdGl0dWNpb25lcykuIEVsIGF1dG9yIHNlIGNvbXByb21ldGUgYSBkZXBvc2l0YXIgbG9zIG1ldGFkYXRvcyBlIGluZm9ybWFyIGVsIHRpZW1wbyBkZSBlbWJhcmdvIGR1cmFudGUgZWwgY3VhbCBlbCB0ZXh0byBjb21wbGV0byB0ZW5kcsOhIGFjY2VzbyByZXN0cmluZ2lkby4gCgpOT1ZFTkEuIEVsIEFVVE9SIGFsIGFjZXB0YXIgZXN0YSBsaWNlbmNpYSBhZHVjZSBxdWUgZXN0YSBwcm9kdWNjacOzbiBzZSBkZXNhcnJvbGzDsyBlbiBlbCBwZXJpb2RvIGVuIHF1ZSBzZSBlbmN1ZW50cmEgY29uIHbDrW5jdWxvcyBjb24gTGEgVW5pdmVyc2lkYWQuCgpEw4lDSU1BLiBOb3JtYXMgYXBsaWNhYmxlcy4gUGFyYSBsYSBpbnRlcnByZXRhY2nDs24geSBjdW1wbGltaWVudG8gZGVsIHByZXNlbnRlIGFjdWVyZG8gbGFzIHBhcnRlcyBzZSBzb21ldGVuIGEgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgbGEgTGV5IDIzIGRlIDE5ODIgeSBkZW3DoXMgbm9ybWFzIGFwbGljYWJsZXMgZGUgQ29sb21iaWEuIEFkZW3DoXMsIGEgbGFzIG5vcm1hcyBJbnN0aXR1Y2lvbmFsZXMgcXVlIGFwbGlxdWVuLgoKTGEgcHJlc2VudGUgbGljZW5jaWEgc2UgYXV0b3JpemEgZW4gbGEgZmVjaGEgZGUgcHVibGljYWNpw7NuIGVuIGxvcyByZXBvc2l0b3Jpb3MgaW5zdGl0dWNpb25hbGVzLgo=