Concretos modificados con poliestireno: efecto de la incorporación de residuos de vidrio

El concreto de poliestireno expandido es un material respetuoso con el medio ambiente, sin embargo, su resistencia a la compresión se ve disminuida, requiriendo la incorporación de materiales que mejoren sus propiedades mecánicas. En este trabajo se evaluó el efecto de la incorporación de residuos d...

Full description

Autores:
Carvajal Graciano, Juan Pablo
Aguirre Sierra, Daniel David
Valoyes Mena, Werlin
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2021
Institución:
Universidad Cooperativa de Colombia
Repositorio:
Repositorio UCC
Idioma:
OAI Identifier:
oai:repository.ucc.edu.co:20.500.12494/36478
Acceso en línea:
https://hdl.handle.net/20.500.12494/36478
Palabra clave:
Concreto modificado
Resistencia a compresión
Residuos de vidrio
Propiedades mecánicas
Poliestireno expandido
TG 2021 ICI 36478
Modified Concrete
Compressive strength
Glass waste
Mechanical properties
Expanded polystyrene
Rights
closedAccess
License
NINGUNA
id COOPER2_075e45af61644c1e5d3b5e2c3f48c7b9
oai_identifier_str oai:repository.ucc.edu.co:20.500.12494/36478
network_acronym_str COOPER2
network_name_str Repositorio UCC
repository_id_str
dc.title.spa.fl_str_mv Concretos modificados con poliestireno: efecto de la incorporación de residuos de vidrio
title Concretos modificados con poliestireno: efecto de la incorporación de residuos de vidrio
spellingShingle Concretos modificados con poliestireno: efecto de la incorporación de residuos de vidrio
Concreto modificado
Resistencia a compresión
Residuos de vidrio
Propiedades mecánicas
Poliestireno expandido
TG 2021 ICI 36478
Modified Concrete
Compressive strength
Glass waste
Mechanical properties
Expanded polystyrene
title_short Concretos modificados con poliestireno: efecto de la incorporación de residuos de vidrio
title_full Concretos modificados con poliestireno: efecto de la incorporación de residuos de vidrio
title_fullStr Concretos modificados con poliestireno: efecto de la incorporación de residuos de vidrio
title_full_unstemmed Concretos modificados con poliestireno: efecto de la incorporación de residuos de vidrio
title_sort Concretos modificados con poliestireno: efecto de la incorporación de residuos de vidrio
dc.creator.fl_str_mv Carvajal Graciano, Juan Pablo
Aguirre Sierra, Daniel David
Valoyes Mena, Werlin
dc.contributor.advisor.none.fl_str_mv Arbeláez Pérez, Oscar Felipe
dc.contributor.author.none.fl_str_mv Carvajal Graciano, Juan Pablo
Aguirre Sierra, Daniel David
Valoyes Mena, Werlin
dc.subject.spa.fl_str_mv Concreto modificado
Resistencia a compresión
Residuos de vidrio
Propiedades mecánicas
Poliestireno expandido
topic Concreto modificado
Resistencia a compresión
Residuos de vidrio
Propiedades mecánicas
Poliestireno expandido
TG 2021 ICI 36478
Modified Concrete
Compressive strength
Glass waste
Mechanical properties
Expanded polystyrene
dc.subject.classification.spa.fl_str_mv TG 2021 ICI 36478
dc.subject.other.spa.fl_str_mv Modified Concrete
Compressive strength
Glass waste
Mechanical properties
Expanded polystyrene
description El concreto de poliestireno expandido es un material respetuoso con el medio ambiente, sin embargo, su resistencia a la compresión se ve disminuida, requiriendo la incorporación de materiales que mejoren sus propiedades mecánicas. En este trabajo se evaluó el efecto de la incorporación de residuos de vidrio sobre las propiedades mecánicas de concretos preparados con 10% de reemplazo en volumen de los agregados finos por poliestireno y residuos de vidrio en relaciones poliestireno: vidrio de 1:0, 1:1, 1:2, 1:3 y 1:4. Los resultados experimentales mostraron que un incremento en el contenido de vidrio es inversamente proporcional al asentamiento y directamente proporcional a la densidad. Para los concretos preparado se encontró que la incorporación de residuos de vidrio mejora ostensiblemente la resistencia a la compresión, siendo la relación poliestireno: vidrio 1:3 la que mostro la mejor resistencia a la compresión, la cual presentó un aumento del 37.2% con respecto al concreto preparado solo con poliestireno denotado como 0:0. La adición de residuos de vidrio al concreto preparado a partir de perlas poliestireno expandido mejoró sus propiedades mecánicas, y esto lo convierte en un sistema potencial para reemplazar los materiales tradicionales utilizados en la producción de concretos.
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-11-23T13:53:25Z
dc.date.available.none.fl_str_mv 2021-11-23T13:53:25Z
dc.date.issued.none.fl_str_mv 2021-10-19
dc.type.none.fl_str_mv Trabajo de grado - Pregrado
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_7a1f
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12494/36478
dc.identifier.bibliographicCitation.spa.fl_str_mv Carvajal Graciano, J. P. Aguirre Sierra, D. D. y Valoyes Mena, W. (2021). Concretos modificados con poliestireno: efecto de la incorporación de residuos de vidrio [Tesis de pregrado, Universidad Cooperativa de Colombia]. Repositorio Institucional UCC http://hdl.handle.net/20.500.12494/36478
url https://hdl.handle.net/20.500.12494/36478
identifier_str_mv Carvajal Graciano, J. P. Aguirre Sierra, D. D. y Valoyes Mena, W. (2021). Concretos modificados con poliestireno: efecto de la incorporación de residuos de vidrio [Tesis de pregrado, Universidad Cooperativa de Colombia]. Repositorio Institucional UCC http://hdl.handle.net/20.500.12494/36478
dc.relation.references.spa.fl_str_mv Assaad, J. J., & El Mir, A. (2020). Durability of polymer-modified lightweight flowable concrete made using expanded polystyrene. Construction and Building Materials, (249), 118764, https://doi.org/10.1016/j.conbuildmat.2020.118764
ASTM (2012). ASTM C143/C143M. Standard Test Method for Slump of Hydraulic-Cement Concrete. American Society for Testing and Materials (ASTM).
ASTM (2001). ASTM C127. Standard Test Method for Relative Density (Specific Gravity) and Absorption of Coarse Aggregate. American Society for Testing and Materials (ASTM).
ASTM (2000). ASTM C192 / C192M - 15. Standard Practice for Making and Curing Concrete Test Specimens in the Laboratory. American Society for Testing and Materials (ASTM).
ASTM (2016). ASTM C29/C29M-07. Standard Test Method for Bulk Density (“Unit Weight”) and Voids in Aggregate. American Society for Testing and Materials (ASTM).
Bahij, S., Omary, S., Feugeas, F., & Faqiri, A. (2020). Fresh and hardened properties of concrete containing different forms of plastic waste – A review. Waste Management, (113), 157–175, https://doi.org/10.1016/j.wasman.2020.05.048
Balasubramanian, B., Gopala Krishna, G. V. T., Saraswathy, V., & Srinivasan, K. (2021). Experimental investigation on concrete partially replaced with waste glass powder and waste E-plastic. Construction and Building Materials, (278), 122400, https://doi.org/10.1016/j.conbuildmat.2021.122400
Batayneh, M., Marie, I., & Asi, I. (2007). Use of selected waste materials in concrete mixes. Waste Management, 27(12), 1870–1876, https://doi.org/10.1016/j.wasman.2006.07.026
Cadere, C. A., Barbuta, M., Rosca, B., Serbanoiu, A. A., Burlacu, A., & Oancea, I. (2018). Engineering properties of concrete with polystyrene granules. Procedia Manufacturing, (22), 288–293, https://doi.org/10.1016/j.promfg.2018.03.044
Chhachhia, A. (2021). Concrete mix design by IS, ACI and BS methods: A Comparative Analysis. Journal of Building Material Science, 2(1), 30–33, https://doi.org/10.30564/jbms.v2i1.2636
de Paula, F. G. F., de Castro, M. C. M., Ortega, P. F. R., Blanco, C., Lavall, R. L., & Santamaría, R. (2018). High value activated carbons from waste polystyrene foams. Microporous and Mesoporous Materials, 267(March), 181–184, https://doi.org/10.1016/j.micromeso.2018.03.027
Demirboga, R., & Kan, A. (2012). Thermal conductivity and shrinkage properties of modified waste polystyrene aggregate concretes. Construction and Building Materials, (35), 730–734, https://doi.org/10.1016/j.conbuildmat.2012.04.105
Elaqra, H. A., Haloub, M. A. A., & Rustom, R. N. (2019). Effect of new mixing method of glass powder as cement replacement on mechanical behavior of concrete. Construction and Building Materials, (203), 75–82, https://doi.org/10.1016/j.conbuildmat.2019.01.077
Grzeszczyk, S., & Janus, G. (2020). Reactive powder concrete with lightweight aggregates.Construction and Building Materials, (263), 120164, https://doi.org/10.1016/j.conbuildmat.2020.120164
Gu, L., & Ozbakkaloglu, T. (2016). Use of recycled plastics in concrete: A critical review. Waste Management, (51), 19–42, https://doi.org/10.1016/j.wasman.2016.03.005
Guo, P., Meng, W., Nassif, H., Gou, H., & Bao, Y. (2020). New perspectives on recycling waste glass in manufacturing concrete for sustainable civil infrastructure. Construction and Building Materials, (257), 119579, https://doi.org/10.1016/j.conbuildmat.2020.119579
Herki, B. A., Khatib, J. M., & Negim, E. M. (2013). Lightweight concrete made from waste polystyrene and fly ash. World Applied Sciences Journal, 21(9), 1356–1360, https://doi.org/10.5829/idosi.wasj.2013.21.9.20213
Liu, N., & Chen, B. (2014). Experimental study of the influence of EPS particle size on the mechanical properties of EPS lightweight concrete. Construction and Building Materials, (68), 227–232, https://doi.org/10.1016/j.conbuildmat.2014.06.062
Madandoust, R., Ranjbar, M. M., & Yasin Mousavi, S. (2011). An investigation on the fresh properties of self-compacted lightweight concrete containing expanded polystyrene. Construction and Building Materials, 25(9), 3721–3731, https://doi.org/10.1016/j.conbuildmat.2011.04.018
Nikbin, I. M., & Golshekan, M. (2018). The effect of expanded polystyrene synthetic particles on the fracture parameters, brittleness and mechanical properties of concrete. Theoretical and Applied Fracture Mechanics, 94(February), 160–172, https://doi.org/10.1016/j.tafmec.2018.02.002
Olofinnade, O., Chandra, S., & Chakraborty, P. (2020). Recycling of high impact polystyrene and low-density polyethylene plastic wastes in lightweight based concrete for sustainable construction. Materials Today: Proceedings, (38), 2151–2156, https://doi.org/10.1016/j.matpr.2020.05.176
Pecce, M., Ceroni, F., Bibbò, F. A., & Acierno, S. (2015). Steel–concrete bond behaviour of lightweight concrete with expanded polystyrene (EPS). Materials and Structures/Materiaux et Constructions, 48(1–2), 139–152, https://doi.org/10.1617/s11527-013-0173-7
Rosca, B. (2021). Materials Today : Proceedings Comparative aspects regarding a novel lightweight concrete of structural grade containing brick aggregate as coarse particles and expanded polystyrene beads. Materials Today: Proceedings, (45), 4979–4986, https://doi.org/10.1016/j.matpr.2021.01.415
Sharma, L., Taak, N., & Bhandari, M. (2021). Influence of ultra-lightweight foamed glass aggregate on the strength aspects of lightweight concrete. Materials Today: Proceedings, (45), 3240–3246 https://doi.org/10.1016/j.matpr.2020.12.383
Steyn, Z. C., Babafemi, A. J., Fataar, H., & Combrinck, R. (2021). Concrete containing waste recycled glass, plastic and rubber as sand replacement. Construction and Building Materials, (269), 121242, https://doi.org/10.1016/j.conbuildmat.2020.121242
Su, H., Yang, J., Ling, T., Ghataora, G. S., & Dirar, S. (2015). Properties of concrete prepared with waste tyre rubber particles of uniform and varying sizes. Journal of Cleaner Production, (91), 288–296, https://doi.org/10.1016/j.jclepro.2014.12.022
Tamanna, N., Tuladhar, R., & Sivakugan, N. (2020). Performance of recycled waste glass sand as partial replacement of sand in concrete. Construction and Building Materials, (239), 117804, https://doi.org/10.1016/j.conbuildmat.2019.117804
Tang, W. C., Lo, Y., & Nadeem, A. (2008). Mechanical and drying shrinkage properties of structural-graded polystyrene aggregate concrete. Cement and Concrete Composites, 30(5), 403–409, https://doi.org/10.1016/j.cemconcomp.2008.01.002
Uttaravalli, A. N., Dinda, S., & Gidla, B. R. (2020). Scientific and engineering aspects of potential applications of post-consumer (waste) expanded polystyrene: A review. Process Safety and Environmental Protection, (137), 140–148, https://doi.org/10.1016/j.psep.2020.02.023
Wang, C. C., & Wang, H. Y. (2017). Assessment of the compressive strength of recycled waste LCD glass concrete using the ultrasonic pulse velocity. Construction and Building Materials, (137), 345–353, https://doi.org/10.1016/j.conbuildmat.2017.01.117
Xu, Y., Xu, J., Jiang, L., Chu, H., & Li, Y. (2015). Prediction of compressive strength and elastic modulus of expanded polystyrene lightweight concrete. Magazine of Concrete Research, 67(17), 954–962, https://doi.org/10.1680/macr.14.00375
dc.rights.license.none.fl_str_mv NINGUNA
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/closedAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_14cb
rights_invalid_str_mv NINGUNA
http://purl.org/coar/access_right/c_14cb
eu_rights_str_mv closedAccess
dc.format.extent.spa.fl_str_mv 22 p.
dc.publisher.spa.fl_str_mv Universidad Cooperativa de Colombia, Facultad de Ingenierías, Ingeniería Civil, Medellín y Envigado
dc.publisher.program.spa.fl_str_mv Ingeniería Civil
dc.publisher.place.spa.fl_str_mv Medellín
institution Universidad Cooperativa de Colombia
bitstream.url.fl_str_mv https://repository.ucc.edu.co/bitstreams/a6baed87-fd45-4072-8d6d-fc82a350796d/download
https://repository.ucc.edu.co/bitstreams/da644972-5454-42bd-8697-f06411421419/download
https://repository.ucc.edu.co/bitstreams/2b6b6279-f8d9-419c-be05-3261acce3629/download
https://repository.ucc.edu.co/bitstreams/7ddd6a44-b02b-4075-b8ba-801c04837dcd/download
https://repository.ucc.edu.co/bitstreams/381b390b-9a19-404b-8fdb-4c06e0ea631f/download
https://repository.ucc.edu.co/bitstreams/299cb6dd-f954-4d51-a35b-f9ee8794b25a/download
https://repository.ucc.edu.co/bitstreams/df47a22e-c476-4a7d-90f6-1bda9288e4f1/download
https://repository.ucc.edu.co/bitstreams/2431e6ff-2c98-48e9-97f3-d37db6003d1b/download
https://repository.ucc.edu.co/bitstreams/1461f07a-0da0-4f7f-8038-69c0a1fb7fc4/download
https://repository.ucc.edu.co/bitstreams/9d0cd451-37e8-4d73-9941-a5cd166582f4/download
bitstream.checksum.fl_str_mv 786e50a85b499264cbe6b7291be09799
4e0a1cc7a4bd97839b960b99741ff85e
593f636c4d64a2f954616d2d8b01390a
3bce4f7ab09dfc588f126e1e36e98a45
2e855422d6d83375399c682a6f25a835
5937019993b21d9b1c8d20f47690345e
8a4a29a290e1bd7483c286e491b41fba
f9428acf23e907fa20d4d611434eeeeb
6ace975a30141d192e0d54b343397705
7e88b20cb4e65fa921b850cf9174fe5a
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Cooperativa de Colombia
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1814246981428576256
spelling Arbeláez Pérez, Oscar FelipeCarvajal Graciano, Juan PabloAguirre Sierra, Daniel DavidValoyes Mena, Werlin2021-11-23T13:53:25Z2021-11-23T13:53:25Z2021-10-19https://hdl.handle.net/20.500.12494/36478Carvajal Graciano, J. P. Aguirre Sierra, D. D. y Valoyes Mena, W. (2021). Concretos modificados con poliestireno: efecto de la incorporación de residuos de vidrio [Tesis de pregrado, Universidad Cooperativa de Colombia]. Repositorio Institucional UCC http://hdl.handle.net/20.500.12494/36478El concreto de poliestireno expandido es un material respetuoso con el medio ambiente, sin embargo, su resistencia a la compresión se ve disminuida, requiriendo la incorporación de materiales que mejoren sus propiedades mecánicas. En este trabajo se evaluó el efecto de la incorporación de residuos de vidrio sobre las propiedades mecánicas de concretos preparados con 10% de reemplazo en volumen de los agregados finos por poliestireno y residuos de vidrio en relaciones poliestireno: vidrio de 1:0, 1:1, 1:2, 1:3 y 1:4. Los resultados experimentales mostraron que un incremento en el contenido de vidrio es inversamente proporcional al asentamiento y directamente proporcional a la densidad. Para los concretos preparado se encontró que la incorporación de residuos de vidrio mejora ostensiblemente la resistencia a la compresión, siendo la relación poliestireno: vidrio 1:3 la que mostro la mejor resistencia a la compresión, la cual presentó un aumento del 37.2% con respecto al concreto preparado solo con poliestireno denotado como 0:0. La adición de residuos de vidrio al concreto preparado a partir de perlas poliestireno expandido mejoró sus propiedades mecánicas, y esto lo convierte en un sistema potencial para reemplazar los materiales tradicionales utilizados en la producción de concretos.Expanded polystyrene concrete is an environmentally friendly material, however, its compressivity is diminished, requiring the incorporation of materials that improve its mechanical properties. This paper evaluated the effect of the incorporation of glass residues on the mechanical properties of concrete prepared with 10% volume replacement of fine aggregates by polystyrene and glass residues in polystyrene: glass ratios of 1:0, 1:1, 1:2, 1:3 and 1:4. Experimental results showed that an increase in glass content is inversely proportional to settlement and directly proportional to density. For the concrete prepared it was found that the incorporation of glass residues ostensibly improves the resistance to compression, being the ratio polystyrene: glass 1:3 which showed the best resistance to compression, which presented an increase of 37.2% with respect to the concrete prepared only with polystyrene denoted as 0:0. The addition of glass residues to concrete prepared from expanded polystyrene improved its mechanical properties, making it a potential system to replace traditional materials used in concrete production.juan.carvajalg@campusucc.edu.codaniel.aguirres@campusucc.edu.cowerlin.valoyesm@campusucc.edu.co22 p.Universidad Cooperativa de Colombia, Facultad de Ingenierías, Ingeniería Civil, Medellín y EnvigadoIngeniería CivilMedellínConcreto modificadoResistencia a compresiónResiduos de vidrioPropiedades mecánicasPoliestireno expandidoTG 2021 ICI 36478Modified ConcreteCompressive strengthGlass wasteMechanical propertiesExpanded polystyreneConcretos modificados con poliestireno: efecto de la incorporación de residuos de vidrioTrabajo de grado - Pregradohttp://purl.org/coar/resource_type/c_7a1finfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionNINGUNAinfo:eu-repo/semantics/closedAccesshttp://purl.org/coar/access_right/c_14cbAssaad, J. J., & El Mir, A. (2020). Durability of polymer-modified lightweight flowable concrete made using expanded polystyrene. Construction and Building Materials, (249), 118764, https://doi.org/10.1016/j.conbuildmat.2020.118764ASTM (2012). ASTM C143/C143M. Standard Test Method for Slump of Hydraulic-Cement Concrete. American Society for Testing and Materials (ASTM).ASTM (2001). ASTM C127. Standard Test Method for Relative Density (Specific Gravity) and Absorption of Coarse Aggregate. American Society for Testing and Materials (ASTM).ASTM (2000). ASTM C192 / C192M - 15. Standard Practice for Making and Curing Concrete Test Specimens in the Laboratory. American Society for Testing and Materials (ASTM).ASTM (2016). ASTM C29/C29M-07. Standard Test Method for Bulk Density (“Unit Weight”) and Voids in Aggregate. American Society for Testing and Materials (ASTM).Bahij, S., Omary, S., Feugeas, F., & Faqiri, A. (2020). Fresh and hardened properties of concrete containing different forms of plastic waste – A review. Waste Management, (113), 157–175, https://doi.org/10.1016/j.wasman.2020.05.048Balasubramanian, B., Gopala Krishna, G. V. T., Saraswathy, V., & Srinivasan, K. (2021). Experimental investigation on concrete partially replaced with waste glass powder and waste E-plastic. Construction and Building Materials, (278), 122400, https://doi.org/10.1016/j.conbuildmat.2021.122400Batayneh, M., Marie, I., & Asi, I. (2007). Use of selected waste materials in concrete mixes. Waste Management, 27(12), 1870–1876, https://doi.org/10.1016/j.wasman.2006.07.026Cadere, C. A., Barbuta, M., Rosca, B., Serbanoiu, A. A., Burlacu, A., & Oancea, I. (2018). Engineering properties of concrete with polystyrene granules. Procedia Manufacturing, (22), 288–293, https://doi.org/10.1016/j.promfg.2018.03.044Chhachhia, A. (2021). Concrete mix design by IS, ACI and BS methods: A Comparative Analysis. Journal of Building Material Science, 2(1), 30–33, https://doi.org/10.30564/jbms.v2i1.2636de Paula, F. G. F., de Castro, M. C. M., Ortega, P. F. R., Blanco, C., Lavall, R. L., & Santamaría, R. (2018). High value activated carbons from waste polystyrene foams. Microporous and Mesoporous Materials, 267(March), 181–184, https://doi.org/10.1016/j.micromeso.2018.03.027Demirboga, R., & Kan, A. (2012). Thermal conductivity and shrinkage properties of modified waste polystyrene aggregate concretes. Construction and Building Materials, (35), 730–734, https://doi.org/10.1016/j.conbuildmat.2012.04.105Elaqra, H. A., Haloub, M. A. A., & Rustom, R. N. (2019). Effect of new mixing method of glass powder as cement replacement on mechanical behavior of concrete. Construction and Building Materials, (203), 75–82, https://doi.org/10.1016/j.conbuildmat.2019.01.077Grzeszczyk, S., & Janus, G. (2020). Reactive powder concrete with lightweight aggregates.Construction and Building Materials, (263), 120164, https://doi.org/10.1016/j.conbuildmat.2020.120164Gu, L., & Ozbakkaloglu, T. (2016). Use of recycled plastics in concrete: A critical review. Waste Management, (51), 19–42, https://doi.org/10.1016/j.wasman.2016.03.005Guo, P., Meng, W., Nassif, H., Gou, H., & Bao, Y. (2020). New perspectives on recycling waste glass in manufacturing concrete for sustainable civil infrastructure. Construction and Building Materials, (257), 119579, https://doi.org/10.1016/j.conbuildmat.2020.119579Herki, B. A., Khatib, J. M., & Negim, E. M. (2013). Lightweight concrete made from waste polystyrene and fly ash. World Applied Sciences Journal, 21(9), 1356–1360, https://doi.org/10.5829/idosi.wasj.2013.21.9.20213Liu, N., & Chen, B. (2014). Experimental study of the influence of EPS particle size on the mechanical properties of EPS lightweight concrete. Construction and Building Materials, (68), 227–232, https://doi.org/10.1016/j.conbuildmat.2014.06.062Madandoust, R., Ranjbar, M. M., & Yasin Mousavi, S. (2011). An investigation on the fresh properties of self-compacted lightweight concrete containing expanded polystyrene. Construction and Building Materials, 25(9), 3721–3731, https://doi.org/10.1016/j.conbuildmat.2011.04.018Nikbin, I. M., & Golshekan, M. (2018). The effect of expanded polystyrene synthetic particles on the fracture parameters, brittleness and mechanical properties of concrete. Theoretical and Applied Fracture Mechanics, 94(February), 160–172, https://doi.org/10.1016/j.tafmec.2018.02.002Olofinnade, O., Chandra, S., & Chakraborty, P. (2020). Recycling of high impact polystyrene and low-density polyethylene plastic wastes in lightweight based concrete for sustainable construction. Materials Today: Proceedings, (38), 2151–2156, https://doi.org/10.1016/j.matpr.2020.05.176Pecce, M., Ceroni, F., Bibbò, F. A., & Acierno, S. (2015). Steel–concrete bond behaviour of lightweight concrete with expanded polystyrene (EPS). Materials and Structures/Materiaux et Constructions, 48(1–2), 139–152, https://doi.org/10.1617/s11527-013-0173-7Rosca, B. (2021). Materials Today : Proceedings Comparative aspects regarding a novel lightweight concrete of structural grade containing brick aggregate as coarse particles and expanded polystyrene beads. Materials Today: Proceedings, (45), 4979–4986, https://doi.org/10.1016/j.matpr.2021.01.415Sharma, L., Taak, N., & Bhandari, M. (2021). Influence of ultra-lightweight foamed glass aggregate on the strength aspects of lightweight concrete. Materials Today: Proceedings, (45), 3240–3246 https://doi.org/10.1016/j.matpr.2020.12.383Steyn, Z. C., Babafemi, A. J., Fataar, H., & Combrinck, R. (2021). Concrete containing waste recycled glass, plastic and rubber as sand replacement. Construction and Building Materials, (269), 121242, https://doi.org/10.1016/j.conbuildmat.2020.121242Su, H., Yang, J., Ling, T., Ghataora, G. S., & Dirar, S. (2015). Properties of concrete prepared with waste tyre rubber particles of uniform and varying sizes. Journal of Cleaner Production, (91), 288–296, https://doi.org/10.1016/j.jclepro.2014.12.022Tamanna, N., Tuladhar, R., & Sivakugan, N. (2020). Performance of recycled waste glass sand as partial replacement of sand in concrete. Construction and Building Materials, (239), 117804, https://doi.org/10.1016/j.conbuildmat.2019.117804Tang, W. C., Lo, Y., & Nadeem, A. (2008). Mechanical and drying shrinkage properties of structural-graded polystyrene aggregate concrete. Cement and Concrete Composites, 30(5), 403–409, https://doi.org/10.1016/j.cemconcomp.2008.01.002Uttaravalli, A. N., Dinda, S., & Gidla, B. R. (2020). Scientific and engineering aspects of potential applications of post-consumer (waste) expanded polystyrene: A review. Process Safety and Environmental Protection, (137), 140–148, https://doi.org/10.1016/j.psep.2020.02.023Wang, C. C., & Wang, H. Y. (2017). Assessment of the compressive strength of recycled waste LCD glass concrete using the ultrasonic pulse velocity. Construction and Building Materials, (137), 345–353, https://doi.org/10.1016/j.conbuildmat.2017.01.117Xu, Y., Xu, J., Jiang, L., Chu, H., & Li, Y. (2015). Prediction of compressive strength and elastic modulus of expanded polystyrene lightweight concrete. Magazine of Concrete Research, 67(17), 954–962, https://doi.org/10.1680/macr.14.00375PublicationORIGINAL2021_Concreto_Poliestireno_Vidrio_Licenciauso.pdf2021_Concreto_Poliestireno_Vidrio_Licenciauso.pdfLicencia de Usoapplication/pdf220102https://repository.ucc.edu.co/bitstreams/a6baed87-fd45-4072-8d6d-fc82a350796d/download786e50a85b499264cbe6b7291be09799MD512021_Concreto_Poliestireno_Vidrio.pdf2021_Concreto_Poliestireno_Vidrio.pdfTrabajo de gradoapplication/pdf372075https://repository.ucc.edu.co/bitstreams/da644972-5454-42bd-8697-f06411421419/download4e0a1cc7a4bd97839b960b99741ff85eMD522021_Concreto_Poliestireno_Vidrio_Acta.pdf2021_Concreto_Poliestireno_Vidrio_Acta.pdfActa de sustentaciónapplication/pdf70610https://repository.ucc.edu.co/bitstreams/2b6b6279-f8d9-419c-be05-3261acce3629/download593f636c4d64a2f954616d2d8b01390aMD53LICENSElicense.txtlicense.txttext/plain; charset=utf-84334https://repository.ucc.edu.co/bitstreams/7ddd6a44-b02b-4075-b8ba-801c04837dcd/download3bce4f7ab09dfc588f126e1e36e98a45MD54THUMBNAIL2021_Concreto_Poliestireno_Vidrio_Licenciauso.pdf.jpg2021_Concreto_Poliestireno_Vidrio_Licenciauso.pdf.jpgGenerated Thumbnailimage/jpeg5333https://repository.ucc.edu.co/bitstreams/381b390b-9a19-404b-8fdb-4c06e0ea631f/download2e855422d6d83375399c682a6f25a835MD552021_Concreto_Poliestireno_Vidrio.pdf.jpg2021_Concreto_Poliestireno_Vidrio.pdf.jpgGenerated Thumbnailimage/jpeg4533https://repository.ucc.edu.co/bitstreams/299cb6dd-f954-4d51-a35b-f9ee8794b25a/download5937019993b21d9b1c8d20f47690345eMD562021_Concreto_Poliestireno_Vidrio_Acta.pdf.jpg2021_Concreto_Poliestireno_Vidrio_Acta.pdf.jpgGenerated Thumbnailimage/jpeg4721https://repository.ucc.edu.co/bitstreams/df47a22e-c476-4a7d-90f6-1bda9288e4f1/download8a4a29a290e1bd7483c286e491b41fbaMD57TEXT2021_Concreto_Poliestireno_Vidrio_Licenciauso.pdf.txt2021_Concreto_Poliestireno_Vidrio_Licenciauso.pdf.txtExtracted texttext/plain5941https://repository.ucc.edu.co/bitstreams/2431e6ff-2c98-48e9-97f3-d37db6003d1b/downloadf9428acf23e907fa20d4d611434eeeebMD582021_Concreto_Poliestireno_Vidrio.pdf.txt2021_Concreto_Poliestireno_Vidrio.pdf.txtExtracted texttext/plain35387https://repository.ucc.edu.co/bitstreams/1461f07a-0da0-4f7f-8038-69c0a1fb7fc4/download6ace975a30141d192e0d54b343397705MD592021_Concreto_Poliestireno_Vidrio_Acta.pdf.txt2021_Concreto_Poliestireno_Vidrio_Acta.pdf.txtExtracted texttext/plain1535https://repository.ucc.edu.co/bitstreams/9d0cd451-37e8-4d73-9941-a5cd166582f4/download7e88b20cb4e65fa921b850cf9174fe5aMD51020.500.12494/36478oai:repository.ucc.edu.co:20.500.12494/364782024-08-10 21:26:21.46restrictedhttps://repository.ucc.edu.coRepositorio Institucional Universidad Cooperativa de Colombiabdigital@metabiblioteca.comVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEKUkVQT1NJVE9SSU9TIElOU1RJVFVDSU9OQUxFUwpMSUNFTkNJQSBERSBVU08KClBvciBtZWRpbyBkZWwgcHJlc2VudGUgZG9jdW1lbnRvLCBlbCBBdXRvcihlcyksIG1heW9yIChlcykgZGUgZWRhZCwgcXVpZW4gZW4gYWRlbGFudGUgc2UgZGVub21pbmFyw6EgZWwgQVVUT1IsIGNvbmZpZXJlIGEgbGEgVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEsIGNvbiBOSVQuIDg2MC0wMjk5MjQtNywgdW5hIExJQ0VOQ0lBIERFIFVTTyBkZSBvYnJhLCBiYWpvIGxhcyBzaWd1aWVudGVzIGNvbmRpY2lvbmVzLgoKQ0zDgVVTVUxBUwoKUFJJTUVSQS4gT2JqZXRvLiBFTCBBVVRPUiBwb3IgZXN0ZSBhY3RvIGF1dG9yaXphIGxhIHV0aWxpemFjacOzbiBkZSBsYSBvYnJhLCBkZSBjb25mb3JtaWRhZCBjb24gbG8gZXN0aXB1bGFkbyBhIGNvbnRpbnVhY2nDs246IAoKKGEpIFBhcmEgZWZlY3RvcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSBzZSBhdXRvcml6YSBsYSByZXByb2R1Y2Npw7NuIGRlIGxhIG9icmEgYW50ZXJpb3JtZW50ZSBjaXRhZGEsIGxhIGN1YWwgc2UgYWxvamFyw6EgZW4gZm9ybWF0byBkaWdpdGFsIGVuIGxhcyBwbGF0YWZvcm1hcyBvIHJlcG9zaXRvcmlvcyBhZG1pbmlzdHJhZG9zIHBvciBsYSBVTklWRVJTSURBRCBvIGVuIG90cm8gdGlwbyBkZSByZXBvc2l0b3Jpb3MgZXh0ZXJub3MgbyBww6FnaW5hcyB3ZWIgZXNjb2dpZG9zIHBvciBsYSBVTklWRVJTSURBRCwgcGFyYSBmaW5lcyBkZSBkaWZ1c2nDs24geSBkaXZ1bGdhY2nDs24uIEFkaWNpb25hbG1lbnRlLCBzZSBhdXRvcml6YSBhIHF1ZSBsb3MgdXN1YXJpb3MgaW50ZXJub3MgeSBleHRlcm5vcyBkZSBkaWNoYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgcmVwcm9kdXpjYW4gbyBkZXNjYXJndWVuIGxhIG9icmEsIHNpbiDDoW5pbW8gZGUgbHVjcm8sIHBhcmEgZmluZXMgcHJpdmFkb3MsIGVkdWNhdGl2b3MgbyBhY2Fkw6ltaWNvczsgc2llbXByZSB5IGN1YW5kbyBubyBzZSB2aW9sZW4gYWN1ZXJkb3MgY29uIGVkaXRvcmVzLCBwZXJpb2RvcyBkZSBlbWJhcmdvIG8gYWN1ZXJkb3MgZGUgY29uZmlkZW5jaWFsaWRhZCBxdWUgYXBsaXF1ZW4uCgooYikgU2UgYXV0b3JpemEgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBkZSBsYSBvYnJhIG1lbmNpb25hZGEsIGVuIGFjY2VzbyBhYmllcnRvLCBwYXJhIHN1IHV0aWxpemFjacOzbiBlbiBsYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgYWRtaW5pc3RyYWRvcyBwb3IgbGEgVU5JVkVSU0lEQUQuCgooYykgTG8gYW50ZXJpb3IgZXN0YXLDoSBzdWpldG8gYSBsYXMgZGVmaW5pY2lvbmVzIGNvbnRlbmlkYXMgZW4gbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MyB5IGxhIExleSAyMyBkZSAxOTgyLgoKClNFR1VOREEuIE9yaWdpbmFsaWRhZCB5IHJlY2xhbWFjaW9uZXMuIEVsIEFVVE9SIGRlY2xhcmEgcXVlIGxhIE9CUkEgZXMgb3JpZ2luYWwgeSBxdWUgZXMgZGUgc3UgY3JlYWNpw7NuIGV4Y2x1c2l2YSwgbm8gZXhpc3RpZW5kbyBpbXBlZGltZW50byBkZSBjdWFscXVpZXIgbmF0dXJhbGV6YSAoZW1iYXJnb3MsIHVzbyBkZSBtYXRlcmlhbCBwcm90ZWdpZG8gcG9yIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGxhIGNvbmNlc2nDs24gZGUgbG9zIGRlcmVjaG9zIHByZXZpc3RvcyBlbiBlc3RlIGFjdWVyZG8uIEVsIEFVVE9SIHJlc3BvbmRlcsOhIHBvciBjdWFscXVpZXIgYWNjacOzbiBkZSByZWl2aW5kaWNhY2nDs24sIHBsYWdpbyB1IG90cmEgY2xhc2UgZGUgcmVjbGFtYWNpw7NuIHF1ZSBhbCByZXNwZWN0byBwdWRpZXJhIHNvYnJldmVuaXIuCgpURVJDRVJBLiBDb250cmFwcmVzdGFjacOzbi4gRWwgQVVUT1IgYXV0b3JpemEgYSBxdWUgc3Ugb2JyYSBzZWEgdXRpbGl6YWRhIGRlIGNvbmZvcm1pZGFkIGNvbiBsYSBjbMOhdXN1bGEgUFJJTUVSQSBkZSBmb3JtYSBncmF0dWl0YSwgZXMgZGVjaXIsIHF1ZSBsYSB1dGlsaXphY2nDs24gZGUgbGEgbWlzbWEgbm8gZ2VuZXJhIG5pbmfDum4gcGFnbyBvIHJlZ2Fsw61hcyBlbiBmYXZvciBkZSBlc3RlLgoKQ1VBUlRBLiBUaXR1bGFyaWRhZCBkZSBkZXJlY2hvcy4gRWwgcHJlc2VudGUgY29udHJhdG8gbm8gdHJhbnNmaWVyZSBsYSB0aXR1bGFyaWRhZCBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBzb2JyZSBsYXMgb2JyYXMgYW50ZXJpb3JtZW50ZSBtZW5jaW9uYWRhcyBhIGxhIFVOSVZFUlNJREFELiDDmm5pY2FtZW50ZSBoYWNlIHJlbGFjacOzbiBhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgZW4gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGFudGVyaW9ybWVudGUgcGFjdGFkb3MuCgpRVUlOVEEuIENyw6lkaXRvcy4gTGEgVU5JVkVSU0lEQUQgc2UgY29tcHJvbWV0ZSBhIGRhciBhbCBBVVRPUiwgZWwgcmVjb25vY2ltaWVudG8gZGVudHJvIGNhZGEgZm9ybWEgZGUgdXRpbGl6YWNpw7NuIGVuIGxhIG9icmEuIExvcyBjcsOpZGl0b3MgZGViZW4gZmlndXJhciBlbiBjYWRhIHVubyBkZSBsb3MgZm9ybWF0b3MgbyByZWdpc3Ryb3MgZGUgcHVibGljYWNpw7NuLiBObyBjb25zdGl0dWlyw6EgdW5hIHZpb2xhY2nDs24gYSBsb3MgZGVyZWNob3MgbW9yYWxlcyBkZWwgYXV0b3IgbGEgbm8gcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBvIGRlbcOhcyB1dGlsaXphY2lvbmVzIGRlIGxhIG9icmEuIExhIHV0aWxpemFjacOzbiBvIG5vIGRlIGxhIG9icmEsIGFzw60gY29tbyBzdSBmb3JtYSBkZSB1dGlsaXphY2nDs24gc2Vyw6EgZmFjdWx0YWQgZXhjbHVzaXZhIGRlIGxhIFVOSVZFUlNJREFELgogClNFWFRBLiBEdXJhY2nDs24geSB0ZXJyaXRvcmlvLiBMYSBwcmVzZW50ZSBsaWNlbmNpYSBkZSB1c28gcXVlIHNlIG90b3JnYSBhIGZhdm9yIGRlIGxhIFVOSVZFUlNJREFEIHRlbmRyw6EgdW5hIGR1cmFjacOzbiBlcXVpdmFsZW50ZSBhbCB0w6lybWlubyBkZSBwcm90ZWNjacOzbiBsZWdhbCBkZSBsYSBvYnJhIHkgcGFyYSB0b2RvcyBsb3MgcGHDrXNlcyBkZWwgbXVuZG8uCgpTw4lQVElNQS4gVXNvIGRlIENyZWF0aXZlIENvbW1vbnMuIEVsIEFVVE9SIGF1dG9yaXphcsOhIGxhIGRpZnVzacOzbiBkZSBzdSBjb250ZW5pZG8gYmFqbyB1bmEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBhdHJpYnVjacOzbiA0LjAgaW50ZXJuYWNpb25hbCwgcXVlIGRlYmVyw6EgaW5jbHVpcnNlIGVuIGVsIGNvbnRlbmlkby4gCgpPQ1RBVkEuIERlcmVjaG8gZGUgZXhjbHVzacOzbi4gQ2FkYSBhdXRvciBwdWVkZSBpbmRpY2FyIGVuIGVsIG1vbWVudG8gZGUgZGVww7NzaXRvIGRlbCBjb250ZW5pZG8gcXVlIGVsIHRleHRvIGNvbXBsZXRvIGRlIGxhIHByb2R1Y2Npw7NuIGFjYWTDqW1pY2EgbyBjaWVudMOtZmljYSBubyBlc3RlIGNvbiBhY2Nlc28gYWJpZXJ0byBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIHBvciBtb3Rpdm9zIGRlIGNvbmZpZGVuY2lhbGlkYWQsIHBvcnF1ZSBzZSBlbmN1ZW50cmUgZW4gdsOtYXMgZGUgb2J0ZW5lciB1biBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbmR1c3RyaWFsIG8gZXhpc3RpciBhY3VlcmRvcyBwcmV2aW9zIGNvbiB0ZXJjZXJvcyAoZWRpdG9yaWFsZXMsIHJldmlzdGFzIGNpZW50w61maWNhcywgb3RyYXMgaW5zdGl0dWNpb25lcykuIEVsIGF1dG9yIHNlIGNvbXByb21ldGUgYSBkZXBvc2l0YXIgbG9zIG1ldGFkYXRvcyBlIGluZm9ybWFyIGVsIHRpZW1wbyBkZSBlbWJhcmdvIGR1cmFudGUgZWwgY3VhbCBlbCB0ZXh0byBjb21wbGV0byB0ZW5kcsOhIGFjY2VzbyByZXN0cmluZ2lkby4gCgpOT1ZFTkEuIEVsIEFVVE9SIGFsIGFjZXB0YXIgZXN0YSBsaWNlbmNpYSBhZHVjZSBxdWUgZXN0YSBwcm9kdWNjacOzbiBzZSBkZXNhcnJvbGzDsyBlbiBlbCBwZXJpb2RvIGVuIHF1ZSBzZSBlbmN1ZW50cmEgY29uIHbDrW5jdWxvcyBjb24gTGEgVW5pdmVyc2lkYWQuCgpEw4lDSU1BLiBOb3JtYXMgYXBsaWNhYmxlcy4gUGFyYSBsYSBpbnRlcnByZXRhY2nDs24geSBjdW1wbGltaWVudG8gZGVsIHByZXNlbnRlIGFjdWVyZG8gbGFzIHBhcnRlcyBzZSBzb21ldGVuIGEgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgbGEgTGV5IDIzIGRlIDE5ODIgeSBkZW3DoXMgbm9ybWFzIGFwbGljYWJsZXMgZGUgQ29sb21iaWEuIEFkZW3DoXMsIGEgbGFzIG5vcm1hcyBJbnN0aXR1Y2lvbmFsZXMgcXVlIGFwbGlxdWVuLgoKTGEgcHJlc2VudGUgbGljZW5jaWEgc2UgYXV0b3JpemEgZW4gbGEgZmVjaGEgZGUgcHVibGljYWNpw7NuIGVuIGxvcyByZXBvc2l0b3Jpb3MgaW5zdGl0dWNpb25hbGVzLgo=