Propiedades mecánicas y térmicas de hormigones modificados con residuos plásticos triturados y pelletizados.

La imposibilidad de degradación del plástico residual afecta negativamente el medio ambiente. El aprovechamiento de los residuos plásticos en la producción de hormigón modificado ha permitido disminuir su conductividad y por tanto reducir los consumos energéticos necesarios para garantizar el confor...

Full description

Autores:
Blanchar Amaya, Victor Manuel
Monsalve Romero, Sergio Andrés
Villalba Manjarres, Everyn Marcela
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2022
Institución:
Universidad Cooperativa de Colombia
Repositorio:
Repositorio UCC
Idioma:
OAI Identifier:
oai:repository.ucc.edu.co:20.500.12494/45706
Acceso en línea:
https://hdl.handle.net/20.500.12494/45706
Palabra clave:
Tereftalato de polietileno
Propiedades físicas
Conductividad térmica
Hormigón
TG 2022 ICI 45706
Polyethylene terephthalate
Physical properties
Thermal conductivity
Concrete
Rights
closedAccess
License
Atribución – No comercial – Sin Derivar
id COOPER2_06c5013b10fe38318ffecb45bb846f58
oai_identifier_str oai:repository.ucc.edu.co:20.500.12494/45706
network_acronym_str COOPER2
network_name_str Repositorio UCC
repository_id_str
dc.title.spa.fl_str_mv Propiedades mecánicas y térmicas de hormigones modificados con residuos plásticos triturados y pelletizados.
title Propiedades mecánicas y térmicas de hormigones modificados con residuos plásticos triturados y pelletizados.
spellingShingle Propiedades mecánicas y térmicas de hormigones modificados con residuos plásticos triturados y pelletizados.
Tereftalato de polietileno
Propiedades físicas
Conductividad térmica
Hormigón
TG 2022 ICI 45706
Polyethylene terephthalate
Physical properties
Thermal conductivity
Concrete
title_short Propiedades mecánicas y térmicas de hormigones modificados con residuos plásticos triturados y pelletizados.
title_full Propiedades mecánicas y térmicas de hormigones modificados con residuos plásticos triturados y pelletizados.
title_fullStr Propiedades mecánicas y térmicas de hormigones modificados con residuos plásticos triturados y pelletizados.
title_full_unstemmed Propiedades mecánicas y térmicas de hormigones modificados con residuos plásticos triturados y pelletizados.
title_sort Propiedades mecánicas y térmicas de hormigones modificados con residuos plásticos triturados y pelletizados.
dc.creator.fl_str_mv Blanchar Amaya, Victor Manuel
Monsalve Romero, Sergio Andrés
Villalba Manjarres, Everyn Marcela
dc.contributor.advisor.none.fl_str_mv Arbeláez Pérez, Oscar Felipe
dc.contributor.author.none.fl_str_mv Blanchar Amaya, Victor Manuel
Monsalve Romero, Sergio Andrés
Villalba Manjarres, Everyn Marcela
dc.subject.spa.fl_str_mv Tereftalato de polietileno
Propiedades físicas
Conductividad térmica
Hormigón
topic Tereftalato de polietileno
Propiedades físicas
Conductividad térmica
Hormigón
TG 2022 ICI 45706
Polyethylene terephthalate
Physical properties
Thermal conductivity
Concrete
dc.subject.classification.spa.fl_str_mv TG 2022 ICI 45706
dc.subject.other.spa.fl_str_mv Polyethylene terephthalate
Physical properties
Thermal conductivity
Concrete
description La imposibilidad de degradación del plástico residual afecta negativamente el medio ambiente. El aprovechamiento de los residuos plásticos en la producción de hormigón modificado ha permitido disminuir su conductividad y por tanto reducir los consumos energéticos necesarios para garantizar el confort térmico al interior de las edificaciones. El presente trabajo informa sobre la producción de mezclas y especímenes cilíndricos y prismáticos de concreto con residuos plásticos con procesamiento mecánico (en forma de hojuelas) y térmico (en forma de pellets) como sustitutos del 1.7%, 3.4% y 5% de la arena. Se llevaron a cabo ensayos experimentales para el cálculo de la densidad, la resistencia a compresión y la conductividad térmica de los especímenes. Los resultados experimentales dieron cuenta de la disminución la densidad y de la conductividad térmica, la cual proporcional al incremento en el contenido de desechos plásticos triturados y pelletizados. Los residuos plásticos triturados disminuyen la resistencia mecánica, sin embargo, el concreto preparado con un reemplazo de hormigón con 3.4% de residuos plásticos pelletizados mejora la resistencia a la compresión. Los resultados experimentales mostraron una mejora en las propiedades La adición de plásticos pelletizados mejora las propiedades mecánicas y térmicas del hormigón modificado.
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-07-13T17:09:53Z
dc.date.available.none.fl_str_mv 2022-07-13T17:09:53Z
dc.date.issued.none.fl_str_mv 2022-07-05
dc.type.none.fl_str_mv Trabajo de grado - Pregrado
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_7a1f
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12494/45706
dc.identifier.bibliographicCitation.spa.fl_str_mv Blanchar Amaya, V. M., Monsalve Romero, S.A. Y Villalba Manjarres, E.M. (2022). Propiedades mecánicas y térmicas de hormigones modificados con residuos plásticos triturados y pelletizados. [Tesis de pregrado, Universidad Cooperativa de Colombia]. Repositorio Institucional Universidad Cooperativa de Colombiahttps://repository.ucc.edu.co/handle/20.500.12494/45706
url https://hdl.handle.net/20.500.12494/45706
identifier_str_mv Blanchar Amaya, V. M., Monsalve Romero, S.A. Y Villalba Manjarres, E.M. (2022). Propiedades mecánicas y térmicas de hormigones modificados con residuos plásticos triturados y pelletizados. [Tesis de pregrado, Universidad Cooperativa de Colombia]. Repositorio Institucional Universidad Cooperativa de Colombiahttps://repository.ucc.edu.co/handle/20.500.12494/45706
dc.relation.references.spa.fl_str_mv Z. C. Steyn, A. J. Babafemi, H. Fataar, and R. Combrinck, “Concrete containing waste recycled glass, plastic and rubber as sand replacement,” Constr. Build. Mater., vol. 269, p. 121242, 2021, doi: 10.1016/j.conbuildmat.2020.121242.
H. M. Hamada et al., “Sustainable use of palm oil fuel ash as a supplementary cementitious material: A comprehensive review,” J. Build. Eng., vol. 40, no. July 2020, p. 102286, 2021, doi: 10.1016/j.jobe.2021.102286.
J. Chai and J. Fan, “Advanced thermal regulating materials and systems for energy saving and thermal comfort in buildings,” Mater. Today Energy, vol. 24, p. 100925, 2022, doi: 10.1016/j.mtener.2021.100925.
L. Van Thillo, S. Verbeke, and A. Audenaert, “The potential of building automation and control systems to lower the energy demand in residential buildings : A review of their performance and influencing parameters,” Renew. Sustain. Energy Rev., vol. 158, no. November 2021, p. 112099, 2022, doi: 10.1016/j.rser.2022.112099.
G. Thakur, M. Asalam, and M. El Ganaoui, “Energy efficient building envelope using waste PET in concrete,” MATEC Web Conf., vol. 307, p. 01022, 2020, doi: 10.1051/matecconf/202030701022.
“Buildings – Topics - IEA.” .
P. Shafigh, I. Asadi, and N. B. Mahyuddin, “Concrete as a thermal mass material for building applications - A review,” J. Build. Eng., vol. 19, no. February, pp. 14–25, 2018, doi: 10.1016/j.jobe.2018.04.021.
A. Karaki, M. Mohammad, E. Masad, and M. Khraisheh, “Case Studies in Thermal Engineering Theoretical and computational modeling of thermal properties of lightweight concrete,” Case Stud. Therm. Eng., vol. 28, no. September, p. 101683, 2021, doi: 10.1016/j.csite.2021.101683.
Z. Misri, M. H. W. Ibrahim, A. S. M. A. Awal, M. S. M. Desa, and N. S. Ghadzali, “Review on factors influencing thermal conductivity of concrete incorporating various type of waste materials,” IOP Conf. Ser. Earth Environ. Sci., vol. 140, no. 1, p. 012141, Apr. 2018, doi: 10.1088/1755-1315/140/1/012141.
I. Asadi, P. Shafigh, Z. F. Bin, A. Hassan, and N. B. Mahyuddin, “Author ’ s Accepted Manuscript Thermal conductivity of concrete - A review Reference :,” J. Build. Eng., 2018, doi: 10.1016/j.jobe.2018.07.002.
Z. Liu, X. Yuan, Y. Zhao, J. Wei, and H. Wang, “Concrete waste-derived aggregate for concrete manufacture,” J. Clean. Prod., vol. 338, no. September 2021, p. 130637, 2022, doi: 10.1016/j.jclepro.2022.130637.
“Plastics - the Facts 2020 • Plastics Europe.” .
J. Huang, A. Veksha, W. Ping, A. Giannis, and G. Lisak, “Chemical recycling of plastic waste for sustainable material management : A prospective review on catalysts and processes,” Renew. Sustain. Energy Rev., vol. 154, no. May 2021, p. 111866, 2022, doi: 10.1016/j.rser.2021.111866.
L. Gu and T. Ozbakkaloglu, “Use of recycled plastics in concrete: A critical review,” Waste Manag., vol. 51, pp. 19–42, 2016, doi: 10.1016/j.wasman.2016.03.005.
B. Abu-jdayil, A. Mourad, W. Hittini, M. Hassan, and S. Hameedi, “Traditional , state-of-the-art and renewable thermal building insulation materials : An overview,” Constr. Build. Mater., vol. 214, pp. 709–735, 2019, doi: 10.1016/j.conbuildmat.2019.04.102.
C. Xue, M. Yu, H. Xu, L. Xu, M. Saafi, and J. Ye, “Experimental study on thermal performance of ultra-high performance concrete with coarse aggregates at high temperature,” Constr. Build. Mater., vol. 314, no. PA, p. 125585, 2022, doi: 10.1016/j.conbuildmat.2021.125585.
Z. Ali and S. F. Gurmani, “Simultaneous measurement of thermal conductivity , thermal diffusivity and prediction of effective thermal,” doi: 10.1088/0022-3727/39/17/025.
“The effects of expanded perlite aggregate, silica fume and fly ash on the thermal conductivity of lightweight concrete,” vol. 33, no. 5, p. 2003, 2003.
A. A. Sayadi, J. V Tapia, T. R. Neitzert, and G. C. Clifton, “Effects of expanded polystyrene ( EPS ) particles on fire resistance , thermal conductivity and compressive strength of foamed concrete,” Constr. Build. Mater., vol. 112, pp. 716–724, 2016, doi: 10.1016/j.conbuildmat.2016.02.218.
Y. Xu, L. Jiang, J. Liu, Y. Zhang, J. Xu, and G. He, “Experimental study and modeling on effective thermal conductivity of EPS lightweight concrete,” vol. 11, no. 2, pp. 1–13, 2016, doi: 10.1299/jtst.2016jtst0023.
R. Demirboga and A. Kan, “Thermal conductivity and shrinkage properties of modified waste polystyrene aggregate concretes,” Constr. Build. Mater., vol. 35, pp. 730–734, 2012, doi: 10.1016/j.conbuildmat.2012.04.105.
A. Dixit, S. D. Pang, S. H. Kang, and J. Moon, “Lightweight structural cement composites with expanded polystyrene (EPS) for enhanced thermal insulation,” Cem. Concr. Compos., vol. 102, no. April, pp. 185–197, 2019, doi: 10.1016/j.cemconcomp.2019.04.023.
G. Bamigboye, K. Tarverdi, D. Adigun, B. Daniel, U. Okorie, and J. Adediran, “An appraisal of the mechanical, microstructural, and thermal characteristics of concrete containing waste PET as coarse aggregate,” Clean. Waste Syst., vol. 1, no. September 2021, p. 100001, 2022, doi: 10.1016/j.clwas.2022.100001.
S. I. Basha, M. R. Ali, S. U. Al-Dulaijan, and M. Maslehuddin, “Mechanical and thermal properties of lightweight recycled plastic aggregate concrete,” J. Build. Eng., p. 101710, 2020, doi: 10.1016/j.jobe.2020.101710.
M. Belmokaddem, A. Mahi, Y. Senhadji, and B. Y. Pekmezci, “Mechanical and physical properties and morphology of concrete containing plastic waste as aggregate,” Constr. Build. Mater., vol. 257, p. 119559, 2020, doi: 10.1016/j.conbuildmat.2020.119559.
O. F. Arbelaez-Perez, J. F. Venites-Mosquera, Y. M. Córdoba-Palacios, and K. P. Mena-Ramírez, “Propiedades mecánicas de concretos modificados con plástico marino reciclado en reemplazo de los agregados finos,” Rev. Politécnica, vol. 16, no. 31, pp. 77–84, 2020, doi: 10.33571/rpolitec.v16n31a6.
F. K. Alqahtani, G. Ghataora, M. I. Khan, and S. Dirar, “Novel lightweight concrete containing manufactured plastic aggregate,” Constr. Build. Mater., vol. 148, pp. 386–397, 2017, doi: 10.1016/j.conbuildmat.2017.05.011.
M. E. Kangavar, W. Lokuge, A. Manalo, W. Karunasena, and M. Frigione, “Investigation on the properties of concrete with recycled polyethylene terephthalate (PET) granules as fine aggregate replacement,” Case Stud. Constr. Mater., vol. 16, no. February, p. e00934, 2022, doi: 10.1016/j.cscm.2022.e00934.
O. Y. Marzouk, R. M. Dheilly, and M. Queneudec, “Valorization of post-consumer waste plastic in cementitious concrete composites,” Waste Manag., vol. 27, no. 2, pp. 310–318, 2007, doi: 10.1016/j.wasman.2006.03.012.
L. Pezzi, P. De Luca, D. Vuono, F. Chiappetta, and A. Nastro, “Concrete products with waste’s plastic material (bottle, glass, plate),” vol. 516, pp. 1753–1758, 2006, doi: 10.4028/www.scientific.net/MSF.514-516.1753.
M. Gesoglu, E. Güneyisi, O. Hansu, S. Etli, and M. Alhassan, “Mechanical and fracture characteristics of self-compacting concretes containing different percentage of plastic waste powder,” Constr. Build. Mater., vol. 140, pp. 562–569, 2017, doi: 10.1016/j.conbuildmat.2017.02.139.
N. Saikia and J. De Brito, “Use of plastic waste as aggregate in cement mortar and concrete preparation: A review,” Constr. Build. Mater., vol. 34, pp. 385–401, 2012, doi: 10.1016/j.conbuildmat.2012.02.066.
R. V Silva, J. De Brito, and N. Saikia, “Cement & Concrete Composites Influence of curing conditions on the durability-related performance of concrete made with selected plastic waste aggregates,” Cem. Concr. Compos., vol. 35, no. 1, pp. 23–31, 2013, doi: 10.1016/j.cemconcomp.2012.08.017.
X. Li, T. Ling, and K. Hung, “Functions and impacts of plastic / rubber wastes as eco-friendly aggregate in concrete – A review,” Constr. Build. Mater., vol. 240, p. 117869, 2020, doi: 10.1016/j.conbuildmat.2019.117869.
G. Bonifazi, G. Capobianco, and S. Serranti, “THE ITZ IN CONCRETE WITH NATURAL AND RECYCLED AGGREGATES: STUDY OF MICROSTRUCTURES BASED ON IMAGE AND SEM ANALYSIS Organic Micropollutants in Primary Raw Materials View project Monitoraggio dell’impatto del turismo nei centri storici. Roma: il caso studio Trevi-Pantheon View project,” no. June, 2015, [Online]. Available: http://www.c2ca.eu/activities/the-c2ca-project/.
I. Rahmouni, G. Promis, A. R’mili, H. Beji, and O. Limam, “Effect of carbonated aggregates on the mechanical properties and thermal conductivity of eco-concrete,” Constr. Build. Mater., vol. 197, pp. 241–250, 2019, doi: 10.1016/j.conbuildmat.2018.11.210.
M. Bederina, L. Marmoret, K. Mezreb, M. M. Khenfer, A. Bali, and M. Que, “Effect of the addition of wood shavings on thermal conductivity of sand concretes : Experimental study and modelling,” vol. 21, pp. 662–668, 2007, doi: 10.1016/j.conbuildmat.2005.12.008.
A. Boucedra, M. Bederina, and Y. Ghernouti, “Study of the acoustical and thermo-mechanical properties of dune and river sand concretes containing recycled plastic aggregates,” Constr. Build. Mater., vol. 256, p. 119447, 2020, doi: 10.1016/j.conbuildmat.2020.119447.
M. A. Al-osta, A. S. Al-tamimi, S. M. Al-tarbi, O. S. B. Al-amoudi, W. A. Al-awsh, and T. A. Saleh, “Development of sustainable concrete using recycled high-density polyethylene and crumb tires : Mechanical and thermal properties,” J. Build. Eng., vol. 45, no. September 2021, p. 103399, 2022, doi: 10.1016/j.jobe.2021.103399.
dc.rights.license.none.fl_str_mv Atribución – No comercial – Sin Derivar
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/closedAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_14cb
rights_invalid_str_mv Atribución – No comercial – Sin Derivar
http://purl.org/coar/access_right/c_14cb
eu_rights_str_mv closedAccess
dc.format.extent.spa.fl_str_mv 13 p.
dc.publisher.spa.fl_str_mv Universidad Cooperativa de Colombia, Facultad de Ingenierías, Ingeniería Civil, Medellín y Envigado
dc.publisher.program.spa.fl_str_mv Ingeniería Civil
dc.publisher.place.spa.fl_str_mv Medellín
institution Universidad Cooperativa de Colombia
bitstream.url.fl_str_mv https://repository.ucc.edu.co/bitstreams/815955a4-41cb-43bf-be8f-8857b9e95dbd/download
https://repository.ucc.edu.co/bitstreams/e4e0c9c5-8482-4cad-9640-cdcddcd540ac/download
https://repository.ucc.edu.co/bitstreams/3d600739-c5d6-4250-9f03-f428adf33703/download
https://repository.ucc.edu.co/bitstreams/0ac49e26-1112-4470-8db6-106794fdcaf6/download
https://repository.ucc.edu.co/bitstreams/b24388e4-d7cc-49b3-ad11-9cdfa154223e/download
https://repository.ucc.edu.co/bitstreams/88bf1c88-42ca-4192-88de-8ba010991462/download
https://repository.ucc.edu.co/bitstreams/51e21a5a-fe43-4a4b-959a-7dd45df67666/download
https://repository.ucc.edu.co/bitstreams/51456f5e-f60f-407b-9a39-21ff9ab4a690/download
https://repository.ucc.edu.co/bitstreams/15c5e84d-8244-458a-9789-9c4b9e810606/download
https://repository.ucc.edu.co/bitstreams/ff46900a-4a64-4421-aea7-1445d0ad9e23/download
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
88feaf95361a7097d1bfad37d7f14582
4f2249ff7ca1315b9a51d6a227bd6916
75516e47ebcce4bacea2363b5ce4875b
826d8d1ad9603026446c87ab0e447916
4247cd41672ef1c8992ff83ced6eaa75
00afc556cb0f511cc0ccd2a7950ee971
9c5375015c522c26593151afc6930667
9b0c18d9c818c55db502d3cf6ac59c65
4d5f9b6151ac12d35de540088f01858a
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Cooperativa de Colombia
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1814247293385179136
spelling Arbeláez Pérez, Oscar FelipeBlanchar Amaya, Victor ManuelMonsalve Romero, Sergio Andrés Villalba Manjarres, Everyn Marcela2022-07-13T17:09:53Z2022-07-13T17:09:53Z2022-07-05https://hdl.handle.net/20.500.12494/45706Blanchar Amaya, V. M., Monsalve Romero, S.A. Y Villalba Manjarres, E.M. (2022). Propiedades mecánicas y térmicas de hormigones modificados con residuos plásticos triturados y pelletizados. [Tesis de pregrado, Universidad Cooperativa de Colombia]. Repositorio Institucional Universidad Cooperativa de Colombiahttps://repository.ucc.edu.co/handle/20.500.12494/45706La imposibilidad de degradación del plástico residual afecta negativamente el medio ambiente. El aprovechamiento de los residuos plásticos en la producción de hormigón modificado ha permitido disminuir su conductividad y por tanto reducir los consumos energéticos necesarios para garantizar el confort térmico al interior de las edificaciones. El presente trabajo informa sobre la producción de mezclas y especímenes cilíndricos y prismáticos de concreto con residuos plásticos con procesamiento mecánico (en forma de hojuelas) y térmico (en forma de pellets) como sustitutos del 1.7%, 3.4% y 5% de la arena. Se llevaron a cabo ensayos experimentales para el cálculo de la densidad, la resistencia a compresión y la conductividad térmica de los especímenes. Los resultados experimentales dieron cuenta de la disminución la densidad y de la conductividad térmica, la cual proporcional al incremento en el contenido de desechos plásticos triturados y pelletizados. Los residuos plásticos triturados disminuyen la resistencia mecánica, sin embargo, el concreto preparado con un reemplazo de hormigón con 3.4% de residuos plásticos pelletizados mejora la resistencia a la compresión. Los resultados experimentales mostraron una mejora en las propiedades La adición de plásticos pelletizados mejora las propiedades mecánicas y térmicas del hormigón modificado.The non-biodegradable character of plastic wastes has a negative effect on the environment. The valorization of plastic in the production of concrete with lower thermal conductivity may contribute to decreasing the energy consumed to maintain indoor thermal comfort in buildings. The present study reports the preparation of mixes and cylindrical specimens of concrete with shredded and pelletized plastic wastes as replacements (1.7%, 3.4%, and 5%) for fine aggregates. Density, compressive strength, and thermal conductivity were measured. The experimental results demonstrated a decrease in density and thermal conductivity with increasing quantity of shredded and pelletized plastic wastes. Additionally, shredded plastic wastes have a negative effect by decreasing compressive strength. Concrete with 3.4% pelletized plastic presents the highest compressive strength. The incorporation of pelletized plastic improves the mechanical and thermal properties of modified concrete.Resumen. -- 1. Introducción. -- 2. Metodología. -- 2.1. Caracterización de los materiales precursores. -- 2.2. Diseño de mezcla de hormigón. -- 2.3. Elaboración de las mezclas y cilindros de hormigón. -- 2.4.Evaluacion de las propiedades mecánicas. -- 2.5. Evaluación de las propiedades térmicas. -- 3. Resultados y análisis. -- 4. Conclusiones. -- 5. Referencias.victor.blanchar@campusucc.edu.cosergio.monsalver@campusucc.edu.coeveryn.villalbam@campusucc.edu.co13 p.Universidad Cooperativa de Colombia, Facultad de Ingenierías, Ingeniería Civil, Medellín y EnvigadoIngeniería CivilMedellínTereftalato de polietilenoPropiedades físicasConductividad térmicaHormigónTG 2022 ICI 45706Polyethylene terephthalatePhysical propertiesThermal conductivityConcretePropiedades mecánicas y térmicas de hormigones modificados con residuos plásticos triturados y pelletizados.Trabajo de grado - Pregradohttp://purl.org/coar/resource_type/c_7a1finfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionAtribución – No comercial – Sin Derivarinfo:eu-repo/semantics/closedAccesshttp://purl.org/coar/access_right/c_14cbZ. C. Steyn, A. J. Babafemi, H. Fataar, and R. Combrinck, “Concrete containing waste recycled glass, plastic and rubber as sand replacement,” Constr. Build. Mater., vol. 269, p. 121242, 2021, doi: 10.1016/j.conbuildmat.2020.121242.H. M. Hamada et al., “Sustainable use of palm oil fuel ash as a supplementary cementitious material: A comprehensive review,” J. Build. Eng., vol. 40, no. July 2020, p. 102286, 2021, doi: 10.1016/j.jobe.2021.102286.J. Chai and J. Fan, “Advanced thermal regulating materials and systems for energy saving and thermal comfort in buildings,” Mater. Today Energy, vol. 24, p. 100925, 2022, doi: 10.1016/j.mtener.2021.100925.L. Van Thillo, S. Verbeke, and A. Audenaert, “The potential of building automation and control systems to lower the energy demand in residential buildings : A review of their performance and influencing parameters,” Renew. Sustain. Energy Rev., vol. 158, no. November 2021, p. 112099, 2022, doi: 10.1016/j.rser.2022.112099.G. Thakur, M. Asalam, and M. El Ganaoui, “Energy efficient building envelope using waste PET in concrete,” MATEC Web Conf., vol. 307, p. 01022, 2020, doi: 10.1051/matecconf/202030701022.“Buildings – Topics - IEA.” .P. Shafigh, I. Asadi, and N. B. Mahyuddin, “Concrete as a thermal mass material for building applications - A review,” J. Build. Eng., vol. 19, no. February, pp. 14–25, 2018, doi: 10.1016/j.jobe.2018.04.021.A. Karaki, M. Mohammad, E. Masad, and M. Khraisheh, “Case Studies in Thermal Engineering Theoretical and computational modeling of thermal properties of lightweight concrete,” Case Stud. Therm. Eng., vol. 28, no. September, p. 101683, 2021, doi: 10.1016/j.csite.2021.101683.Z. Misri, M. H. W. Ibrahim, A. S. M. A. Awal, M. S. M. Desa, and N. S. Ghadzali, “Review on factors influencing thermal conductivity of concrete incorporating various type of waste materials,” IOP Conf. Ser. Earth Environ. Sci., vol. 140, no. 1, p. 012141, Apr. 2018, doi: 10.1088/1755-1315/140/1/012141.I. Asadi, P. Shafigh, Z. F. Bin, A. Hassan, and N. B. Mahyuddin, “Author ’ s Accepted Manuscript Thermal conductivity of concrete - A review Reference :,” J. Build. Eng., 2018, doi: 10.1016/j.jobe.2018.07.002.Z. Liu, X. Yuan, Y. Zhao, J. Wei, and H. Wang, “Concrete waste-derived aggregate for concrete manufacture,” J. Clean. Prod., vol. 338, no. September 2021, p. 130637, 2022, doi: 10.1016/j.jclepro.2022.130637.“Plastics - the Facts 2020 • Plastics Europe.” .J. Huang, A. Veksha, W. Ping, A. Giannis, and G. Lisak, “Chemical recycling of plastic waste for sustainable material management : A prospective review on catalysts and processes,” Renew. Sustain. Energy Rev., vol. 154, no. May 2021, p. 111866, 2022, doi: 10.1016/j.rser.2021.111866.L. Gu and T. Ozbakkaloglu, “Use of recycled plastics in concrete: A critical review,” Waste Manag., vol. 51, pp. 19–42, 2016, doi: 10.1016/j.wasman.2016.03.005.B. Abu-jdayil, A. Mourad, W. Hittini, M. Hassan, and S. Hameedi, “Traditional , state-of-the-art and renewable thermal building insulation materials : An overview,” Constr. Build. Mater., vol. 214, pp. 709–735, 2019, doi: 10.1016/j.conbuildmat.2019.04.102.C. Xue, M. Yu, H. Xu, L. Xu, M. Saafi, and J. Ye, “Experimental study on thermal performance of ultra-high performance concrete with coarse aggregates at high temperature,” Constr. Build. Mater., vol. 314, no. PA, p. 125585, 2022, doi: 10.1016/j.conbuildmat.2021.125585.Z. Ali and S. F. Gurmani, “Simultaneous measurement of thermal conductivity , thermal diffusivity and prediction of effective thermal,” doi: 10.1088/0022-3727/39/17/025.“The effects of expanded perlite aggregate, silica fume and fly ash on the thermal conductivity of lightweight concrete,” vol. 33, no. 5, p. 2003, 2003.A. A. Sayadi, J. V Tapia, T. R. Neitzert, and G. C. Clifton, “Effects of expanded polystyrene ( EPS ) particles on fire resistance , thermal conductivity and compressive strength of foamed concrete,” Constr. Build. Mater., vol. 112, pp. 716–724, 2016, doi: 10.1016/j.conbuildmat.2016.02.218.Y. Xu, L. Jiang, J. Liu, Y. Zhang, J. Xu, and G. He, “Experimental study and modeling on effective thermal conductivity of EPS lightweight concrete,” vol. 11, no. 2, pp. 1–13, 2016, doi: 10.1299/jtst.2016jtst0023.R. Demirboga and A. Kan, “Thermal conductivity and shrinkage properties of modified waste polystyrene aggregate concretes,” Constr. Build. Mater., vol. 35, pp. 730–734, 2012, doi: 10.1016/j.conbuildmat.2012.04.105.A. Dixit, S. D. Pang, S. H. Kang, and J. Moon, “Lightweight structural cement composites with expanded polystyrene (EPS) for enhanced thermal insulation,” Cem. Concr. Compos., vol. 102, no. April, pp. 185–197, 2019, doi: 10.1016/j.cemconcomp.2019.04.023.G. Bamigboye, K. Tarverdi, D. Adigun, B. Daniel, U. Okorie, and J. Adediran, “An appraisal of the mechanical, microstructural, and thermal characteristics of concrete containing waste PET as coarse aggregate,” Clean. Waste Syst., vol. 1, no. September 2021, p. 100001, 2022, doi: 10.1016/j.clwas.2022.100001.S. I. Basha, M. R. Ali, S. U. Al-Dulaijan, and M. Maslehuddin, “Mechanical and thermal properties of lightweight recycled plastic aggregate concrete,” J. Build. Eng., p. 101710, 2020, doi: 10.1016/j.jobe.2020.101710.M. Belmokaddem, A. Mahi, Y. Senhadji, and B. Y. Pekmezci, “Mechanical and physical properties and morphology of concrete containing plastic waste as aggregate,” Constr. Build. Mater., vol. 257, p. 119559, 2020, doi: 10.1016/j.conbuildmat.2020.119559.O. F. Arbelaez-Perez, J. F. Venites-Mosquera, Y. M. Córdoba-Palacios, and K. P. Mena-Ramírez, “Propiedades mecánicas de concretos modificados con plástico marino reciclado en reemplazo de los agregados finos,” Rev. Politécnica, vol. 16, no. 31, pp. 77–84, 2020, doi: 10.33571/rpolitec.v16n31a6.F. K. Alqahtani, G. Ghataora, M. I. Khan, and S. Dirar, “Novel lightweight concrete containing manufactured plastic aggregate,” Constr. Build. Mater., vol. 148, pp. 386–397, 2017, doi: 10.1016/j.conbuildmat.2017.05.011.M. E. Kangavar, W. Lokuge, A. Manalo, W. Karunasena, and M. Frigione, “Investigation on the properties of concrete with recycled polyethylene terephthalate (PET) granules as fine aggregate replacement,” Case Stud. Constr. Mater., vol. 16, no. February, p. e00934, 2022, doi: 10.1016/j.cscm.2022.e00934.O. Y. Marzouk, R. M. Dheilly, and M. Queneudec, “Valorization of post-consumer waste plastic in cementitious concrete composites,” Waste Manag., vol. 27, no. 2, pp. 310–318, 2007, doi: 10.1016/j.wasman.2006.03.012.L. Pezzi, P. De Luca, D. Vuono, F. Chiappetta, and A. Nastro, “Concrete products with waste’s plastic material (bottle, glass, plate),” vol. 516, pp. 1753–1758, 2006, doi: 10.4028/www.scientific.net/MSF.514-516.1753.M. Gesoglu, E. Güneyisi, O. Hansu, S. Etli, and M. Alhassan, “Mechanical and fracture characteristics of self-compacting concretes containing different percentage of plastic waste powder,” Constr. Build. Mater., vol. 140, pp. 562–569, 2017, doi: 10.1016/j.conbuildmat.2017.02.139.N. Saikia and J. De Brito, “Use of plastic waste as aggregate in cement mortar and concrete preparation: A review,” Constr. Build. Mater., vol. 34, pp. 385–401, 2012, doi: 10.1016/j.conbuildmat.2012.02.066.R. V Silva, J. De Brito, and N. Saikia, “Cement & Concrete Composites Influence of curing conditions on the durability-related performance of concrete made with selected plastic waste aggregates,” Cem. Concr. Compos., vol. 35, no. 1, pp. 23–31, 2013, doi: 10.1016/j.cemconcomp.2012.08.017.X. Li, T. Ling, and K. Hung, “Functions and impacts of plastic / rubber wastes as eco-friendly aggregate in concrete – A review,” Constr. Build. Mater., vol. 240, p. 117869, 2020, doi: 10.1016/j.conbuildmat.2019.117869.G. Bonifazi, G. Capobianco, and S. Serranti, “THE ITZ IN CONCRETE WITH NATURAL AND RECYCLED AGGREGATES: STUDY OF MICROSTRUCTURES BASED ON IMAGE AND SEM ANALYSIS Organic Micropollutants in Primary Raw Materials View project Monitoraggio dell’impatto del turismo nei centri storici. Roma: il caso studio Trevi-Pantheon View project,” no. June, 2015, [Online]. Available: http://www.c2ca.eu/activities/the-c2ca-project/.I. Rahmouni, G. Promis, A. R’mili, H. Beji, and O. Limam, “Effect of carbonated aggregates on the mechanical properties and thermal conductivity of eco-concrete,” Constr. Build. Mater., vol. 197, pp. 241–250, 2019, doi: 10.1016/j.conbuildmat.2018.11.210.M. Bederina, L. Marmoret, K. Mezreb, M. M. Khenfer, A. Bali, and M. Que, “Effect of the addition of wood shavings on thermal conductivity of sand concretes : Experimental study and modelling,” vol. 21, pp. 662–668, 2007, doi: 10.1016/j.conbuildmat.2005.12.008.A. Boucedra, M. Bederina, and Y. Ghernouti, “Study of the acoustical and thermo-mechanical properties of dune and river sand concretes containing recycled plastic aggregates,” Constr. Build. Mater., vol. 256, p. 119447, 2020, doi: 10.1016/j.conbuildmat.2020.119447.M. A. Al-osta, A. S. Al-tamimi, S. M. Al-tarbi, O. S. B. Al-amoudi, W. A. Al-awsh, and T. A. Saleh, “Development of sustainable concrete using recycled high-density polyethylene and crumb tires : Mechanical and thermal properties,” J. Build. Eng., vol. 45, no. September 2021, p. 103399, 2022, doi: 10.1016/j.jobe.2021.103399.PublicationLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repository.ucc.edu.co/bitstreams/815955a4-41cb-43bf-be8f-8857b9e95dbd/download8a4605be74aa9ea9d79846c1fba20a33MD54ORIGINAL2022-BlancharMonsalveyVillalba_Propiedades_Mecanicas_Termicas_Acta.pdf2022-BlancharMonsalveyVillalba_Propiedades_Mecanicas_Termicas_Acta.pdfActa de sustentaciónapplication/pdf74381https://repository.ucc.edu.co/bitstreams/e4e0c9c5-8482-4cad-9640-cdcddcd540ac/download88feaf95361a7097d1bfad37d7f14582MD522022-BlancharMonsalveyVillalba_Propiedades_Mecanicas_Termicas_LicenciaUso.pd2022-BlancharMonsalveyVillalba_Propiedades_Mecanicas_Termicas_LicenciaUso.pdLicencia de usoapplication/pdf205033https://repository.ucc.edu.co/bitstreams/3d600739-c5d6-4250-9f03-f428adf33703/download4f2249ff7ca1315b9a51d6a227bd6916MD532022-BlancharMonsalveyVillalba_Propiedades_Mecanicas_Termicas.pdf2022-BlancharMonsalveyVillalba_Propiedades_Mecanicas_Termicas.pdfTrabajo de gradoapplication/pdf273660https://repository.ucc.edu.co/bitstreams/0ac49e26-1112-4470-8db6-106794fdcaf6/download75516e47ebcce4bacea2363b5ce4875bMD55THUMBNAIL2022-BlancharMonsalveyVillalba_Propiedades_Mecanicas_Termicas_Acta.pdf.jpg2022-BlancharMonsalveyVillalba_Propiedades_Mecanicas_Termicas_Acta.pdf.jpgGenerated Thumbnailimage/jpeg4946https://repository.ucc.edu.co/bitstreams/b24388e4-d7cc-49b3-ad11-9cdfa154223e/download826d8d1ad9603026446c87ab0e447916MD562022-BlancharMonsalveyVillalba_Propiedades_Mecanicas_Termicas_LicenciaUso.pd.jpg2022-BlancharMonsalveyVillalba_Propiedades_Mecanicas_Termicas_LicenciaUso.pd.jpgGenerated Thumbnailimage/jpeg5347https://repository.ucc.edu.co/bitstreams/88bf1c88-42ca-4192-88de-8ba010991462/download4247cd41672ef1c8992ff83ced6eaa75MD572022-BlancharMonsalveyVillalba_Propiedades_Mecanicas_Termicas.pdf.jpg2022-BlancharMonsalveyVillalba_Propiedades_Mecanicas_Termicas.pdf.jpgGenerated Thumbnailimage/jpeg4146https://repository.ucc.edu.co/bitstreams/51e21a5a-fe43-4a4b-959a-7dd45df67666/download00afc556cb0f511cc0ccd2a7950ee971MD58TEXT2022-BlancharMonsalveyVillalba_Propiedades_Mecanicas_Termicas_Acta.pdf.txt2022-BlancharMonsalveyVillalba_Propiedades_Mecanicas_Termicas_Acta.pdf.txtExtracted texttext/plain1823https://repository.ucc.edu.co/bitstreams/51456f5e-f60f-407b-9a39-21ff9ab4a690/download9c5375015c522c26593151afc6930667MD592022-BlancharMonsalveyVillalba_Propiedades_Mecanicas_Termicas.pdf.txt2022-BlancharMonsalveyVillalba_Propiedades_Mecanicas_Termicas.pdf.txtExtracted texttext/plain37781https://repository.ucc.edu.co/bitstreams/15c5e84d-8244-458a-9789-9c4b9e810606/download9b0c18d9c818c55db502d3cf6ac59c65MD5102022-BlancharMonsalveyVillalba_Propiedades_Mecanicas_Termicas_LicenciaUso.pd.txt2022-BlancharMonsalveyVillalba_Propiedades_Mecanicas_Termicas_LicenciaUso.pd.txtExtracted texttext/plain5999https://repository.ucc.edu.co/bitstreams/ff46900a-4a64-4421-aea7-1445d0ad9e23/download4d5f9b6151ac12d35de540088f01858aMD51120.500.12494/45706oai:repository.ucc.edu.co:20.500.12494/457062024-08-10 21:10:49.367restrictedhttps://repository.ucc.edu.coRepositorio Institucional Universidad Cooperativa de Colombiabdigital@metabiblioteca.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=