Machine learning for assessing quality of service in the hospitality sector based on customer reviews
The increasing use of online hospitality platforms provides firsthand information about clients preferences, which are essential to improve hotel services and increase the quality of service perception. Customer reviews can be used to automatically extract the most relevant aspects of the quality of...
- Autores:
-
Vargas Calderón, Vladimir
Moros Ochoa, María Andreína
Castro Nieto, Gilmer Yovani
Camargo, Jorge E.
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2021
- Institución:
- Colegio de Estudios Superiores de Administración
- Repositorio:
- Repositorio CESA
- Idioma:
- eng
- OAI Identifier:
- oai:repository.cesa.edu.co:10726/5053
- Palabra clave:
- Quality of service
Natural language processing
Word embedding
Latent topic analysis
Dimensionality reduction
- Rights
- License
- Acceso Restringido
id |
CESA2_c6aa1a2f82ba57f85124a00e3510b2c3 |
---|---|
oai_identifier_str |
oai:repository.cesa.edu.co:10726/5053 |
network_acronym_str |
CESA2 |
network_name_str |
Repositorio CESA |
repository_id_str |
|
spelling |
Vargas Calderón, Vladimir16684ea8-cc57-4653-b726-65418f429568600Moros Ochoa, María Andreína65a5bd89-3a5d-498f-8adc-61b8d6497c3a600Castro Nieto, Gilmer Yovanib81eb0f0-0911-44a8-af58-64803570dd83600Camargo, Jorge E.3c12119a-381e-4727-b347-47791a4fb006600Vargas Calderón, Vladimir [0000-0001-5476-3300]Moros Ochoa, María Andreína [0000-0001-8428-9056]Castro Nieto, Gilmer Yovani [0000-0001-9861-5588]Vargas Calderón, Vladimir [57203879860]Moros Ochoa, María Andreína [57195503017]Castro Nieto, Gilmer Yovani [24544764500]Camargo, Jorge E. [57192957971]2023-06-21T22:23:00Z2023-06-21T22:23:00Z2021-07-241098-3058http://hdl.handle.net/10726/5053instname:Colegio de Estudios Superiores de Administración – CESAreponame:Biblioteca Digital – CESArepourl:https://repository.cesa.edu.co/1943-4294https://doi.org/10.1007/s40558-021-00207-4engSpringerQuality of serviceNatural language processingWord embeddingLatent topic analysisDimensionality reductionMachine learning for assessing quality of service in the hospitality sector based on customer reviewsarticlehttp://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/resource_type/c_6501info:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_71e4c1898caa6e32Acceso Restringidohttp://vocabularies.coar-repositories.org/access_rights/c_16ec/http://purl.org/coar/access_right/c_16ecThe increasing use of online hospitality platforms provides firsthand information about clients preferences, which are essential to improve hotel services and increase the quality of service perception. Customer reviews can be used to automatically extract the most relevant aspects of the quality of service for hospitality clientele. This paper proposes a framework for the assessment of the quality of service in the hospitality sector based on the exploitation of customer reviews through natural language processing and machine learning methods. The proposed framework automatically discovers the quality of service aspects relevant to hotel customers. Hotel reviews from Bogotá and Madrid are automatically scrapped from Booking.com. Semantic information is inferred through Latent Dirichlet Allocation and FastText, which allow representing text reviews as vectors. A dimensionality reduction technique is applied to visualise and interpret large amounts of customer reviews. Visualisations of the most important quality of service aspects are generated, allowing to qualitatively and quantitatively assess the quality of service. Results show that it is possible to automatically extract the main quality of service aspects perceived by customers from large customer review datasets. These findings could be used by hospitality managers to understand clients better and to improve the quality of service.https://orcid.org/0000-0001-5476-3300https://orcid.org/0000-0001-8428-9056https://orcid.org/0000-0001-9861-5588https://www.scopus.com/authid/detail.uri?authorId=57203879860https://www.scopus.com/authid/detail.uri?authorId=57195503017https://www.scopus.com/authid/detail.uri?authorId=24544764500https://www.scopus.com/authid/detail.uri?authorId=5719295797123351379Information Technology & Tourism10726/5053oai:repository.cesa.edu.co:10726/50532023-10-02 20:16:19.255metadata only accessBiblioteca Digital - CESAbiblioteca@cesa.edu.co |
dc.title.eng.fl_str_mv |
Machine learning for assessing quality of service in the hospitality sector based on customer reviews |
title |
Machine learning for assessing quality of service in the hospitality sector based on customer reviews |
spellingShingle |
Machine learning for assessing quality of service in the hospitality sector based on customer reviews Quality of service Natural language processing Word embedding Latent topic analysis Dimensionality reduction |
title_short |
Machine learning for assessing quality of service in the hospitality sector based on customer reviews |
title_full |
Machine learning for assessing quality of service in the hospitality sector based on customer reviews |
title_fullStr |
Machine learning for assessing quality of service in the hospitality sector based on customer reviews |
title_full_unstemmed |
Machine learning for assessing quality of service in the hospitality sector based on customer reviews |
title_sort |
Machine learning for assessing quality of service in the hospitality sector based on customer reviews |
dc.creator.fl_str_mv |
Vargas Calderón, Vladimir Moros Ochoa, María Andreína Castro Nieto, Gilmer Yovani Camargo, Jorge E. |
dc.contributor.author.spa.fl_str_mv |
Vargas Calderón, Vladimir Moros Ochoa, María Andreína Castro Nieto, Gilmer Yovani Camargo, Jorge E. |
dc.contributor.orcid.none.fl_str_mv |
Vargas Calderón, Vladimir [0000-0001-5476-3300] Moros Ochoa, María Andreína [0000-0001-8428-9056] Castro Nieto, Gilmer Yovani [0000-0001-9861-5588] |
dc.contributor.scopus.none.fl_str_mv |
Vargas Calderón, Vladimir [57203879860] Moros Ochoa, María Andreína [57195503017] Castro Nieto, Gilmer Yovani [24544764500] Camargo, Jorge E. [57192957971] |
dc.subject.none.fl_str_mv |
Quality of service Natural language processing Word embedding Latent topic analysis Dimensionality reduction |
topic |
Quality of service Natural language processing Word embedding Latent topic analysis Dimensionality reduction |
description |
The increasing use of online hospitality platforms provides firsthand information about clients preferences, which are essential to improve hotel services and increase the quality of service perception. Customer reviews can be used to automatically extract the most relevant aspects of the quality of service for hospitality clientele. This paper proposes a framework for the assessment of the quality of service in the hospitality sector based on the exploitation of customer reviews through natural language processing and machine learning methods. The proposed framework automatically discovers the quality of service aspects relevant to hotel customers. Hotel reviews from Bogotá and Madrid are automatically scrapped from Booking.com. Semantic information is inferred through Latent Dirichlet Allocation and FastText, which allow representing text reviews as vectors. A dimensionality reduction technique is applied to visualise and interpret large amounts of customer reviews. Visualisations of the most important quality of service aspects are generated, allowing to qualitatively and quantitatively assess the quality of service. Results show that it is possible to automatically extract the main quality of service aspects perceived by customers from large customer review datasets. These findings could be used by hospitality managers to understand clients better and to improve the quality of service. |
publishDate |
2021 |
dc.date.issued.none.fl_str_mv |
2021-07-24 |
dc.date.accessioned.none.fl_str_mv |
2023-06-21T22:23:00Z |
dc.date.available.none.fl_str_mv |
2023-06-21T22:23:00Z |
dc.type.none.fl_str_mv |
article |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.none.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.coarversion.none.fl_str_mv |
http://purl.org/coar/version/c_71e4c1898caa6e32 |
format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.identifier.issn.none.fl_str_mv |
1098-3058 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/10726/5053 |
dc.identifier.instname.none.fl_str_mv |
instname:Colegio de Estudios Superiores de Administración – CESA |
dc.identifier.reponame.none.fl_str_mv |
reponame:Biblioteca Digital – CESA |
dc.identifier.repourl.none.fl_str_mv |
repourl:https://repository.cesa.edu.co/ |
dc.identifier.eissn.none.fl_str_mv |
1943-4294 |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1007/s40558-021-00207-4 |
identifier_str_mv |
1098-3058 instname:Colegio de Estudios Superiores de Administración – CESA reponame:Biblioteca Digital – CESA repourl:https://repository.cesa.edu.co/ 1943-4294 |
url |
http://hdl.handle.net/10726/5053 https://doi.org/10.1007/s40558-021-00207-4 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.citationvolume.none.fl_str_mv |
23 |
dc.relation.citationstartpage.none.fl_str_mv |
351 |
dc.relation.citationendpage.none.fl_str_mv |
379 |
dc.relation.ispartofjournal.none.fl_str_mv |
Information Technology & Tourism |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.rights.local.none.fl_str_mv |
Acceso Restringido |
dc.rights.coar.none.fl_str_mv |
http://vocabularies.coar-repositories.org/access_rights/c_16ec/ |
rights_invalid_str_mv |
Acceso Restringido http://vocabularies.coar-repositories.org/access_rights/c_16ec/ http://purl.org/coar/access_right/c_16ec |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
institution |
Colegio de Estudios Superiores de Administración |
repository.name.fl_str_mv |
Biblioteca Digital - CESA |
repository.mail.fl_str_mv |
biblioteca@cesa.edu.co |
_version_ |
1793339972592336896 |