Machine learning for assessing quality of service in the hospitality sector based on customer reviews

The increasing use of online hospitality platforms provides firsthand information about clients preferences, which are essential to improve hotel services and increase the quality of service perception. Customer reviews can be used to automatically extract the most relevant aspects of the quality of...

Full description

Autores:
Vargas Calderón, Vladimir
Moros Ochoa, María Andreína
Castro Nieto, Gilmer Yovani
Camargo, Jorge E.
Tipo de recurso:
Article of investigation
Fecha de publicación:
2021
Institución:
Colegio de Estudios Superiores de Administración
Repositorio:
Repositorio CESA
Idioma:
eng
OAI Identifier:
oai:repository.cesa.edu.co:10726/5053
Acceso en línea:
http://hdl.handle.net/10726/5053
https://doi.org/10.1007/s40558-021-00207-4
Palabra clave:
Quality of service
Natural language processing
Word embedding
Latent topic analysis
Dimensionality reduction
Rights
License
Acceso Restringido
id CESA2_c6aa1a2f82ba57f85124a00e3510b2c3
oai_identifier_str oai:repository.cesa.edu.co:10726/5053
network_acronym_str CESA2
network_name_str Repositorio CESA
repository_id_str
spelling Vargas Calderón, Vladimir16684ea8-cc57-4653-b726-65418f429568600Moros Ochoa, María Andreína65a5bd89-3a5d-498f-8adc-61b8d6497c3a600Castro Nieto, Gilmer Yovanib81eb0f0-0911-44a8-af58-64803570dd83600Camargo, Jorge E.3c12119a-381e-4727-b347-47791a4fb006600Vargas Calderón, Vladimir [0000-0001-5476-3300]Moros Ochoa, María Andreína [0000-0001-8428-9056]Castro Nieto, Gilmer Yovani [0000-0001-9861-5588]Vargas Calderón, Vladimir [57203879860]Moros Ochoa, María Andreína [57195503017]Castro Nieto, Gilmer Yovani [24544764500]Camargo, Jorge E. [57192957971]2023-06-21T22:23:00Z2023-06-21T22:23:00Z2021-07-241098-3058http://hdl.handle.net/10726/5053instname:Colegio de Estudios Superiores de Administración – CESAreponame:Biblioteca Digital – CESArepourl:https://repository.cesa.edu.co/1943-4294https://doi.org/10.1007/s40558-021-00207-4engSpringerQuality of serviceNatural language processingWord embeddingLatent topic analysisDimensionality reductionMachine learning for assessing quality of service in the hospitality sector based on customer reviewsarticlehttp://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/resource_type/c_6501info:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_71e4c1898caa6e32Acceso Restringidohttp://vocabularies.coar-repositories.org/access_rights/c_16ec/http://purl.org/coar/access_right/c_16ecThe increasing use of online hospitality platforms provides firsthand information about clients preferences, which are essential to improve hotel services and increase the quality of service perception. Customer reviews can be used to automatically extract the most relevant aspects of the quality of service for hospitality clientele. This paper proposes a framework for the assessment of the quality of service in the hospitality sector based on the exploitation of customer reviews through natural language processing and machine learning methods. The proposed framework automatically discovers the quality of service aspects relevant to hotel customers. Hotel reviews from Bogotá and Madrid are automatically scrapped from Booking.com. Semantic information is inferred through Latent Dirichlet Allocation and FastText, which allow representing text reviews as vectors. A dimensionality reduction technique is applied to visualise and interpret large amounts of customer reviews. Visualisations of the most important quality of service aspects are generated, allowing to qualitatively and quantitatively assess the quality of service. Results show that it is possible to automatically extract the main quality of service aspects perceived by customers from large customer review datasets. These findings could be used by hospitality managers to understand clients better and to improve the quality of service.https://orcid.org/0000-0001-5476-3300https://orcid.org/0000-0001-8428-9056https://orcid.org/0000-0001-9861-5588https://www.scopus.com/authid/detail.uri?authorId=57203879860https://www.scopus.com/authid/detail.uri?authorId=57195503017https://www.scopus.com/authid/detail.uri?authorId=24544764500https://www.scopus.com/authid/detail.uri?authorId=5719295797123351379Information Technology & Tourism10726/5053oai:repository.cesa.edu.co:10726/50532023-10-02 20:16:19.255metadata only accessBiblioteca Digital - CESAbiblioteca@cesa.edu.co
dc.title.eng.fl_str_mv Machine learning for assessing quality of service in the hospitality sector based on customer reviews
title Machine learning for assessing quality of service in the hospitality sector based on customer reviews
spellingShingle Machine learning for assessing quality of service in the hospitality sector based on customer reviews
Quality of service
Natural language processing
Word embedding
Latent topic analysis
Dimensionality reduction
title_short Machine learning for assessing quality of service in the hospitality sector based on customer reviews
title_full Machine learning for assessing quality of service in the hospitality sector based on customer reviews
title_fullStr Machine learning for assessing quality of service in the hospitality sector based on customer reviews
title_full_unstemmed Machine learning for assessing quality of service in the hospitality sector based on customer reviews
title_sort Machine learning for assessing quality of service in the hospitality sector based on customer reviews
dc.creator.fl_str_mv Vargas Calderón, Vladimir
Moros Ochoa, María Andreína
Castro Nieto, Gilmer Yovani
Camargo, Jorge E.
dc.contributor.author.spa.fl_str_mv Vargas Calderón, Vladimir
Moros Ochoa, María Andreína
Castro Nieto, Gilmer Yovani
Camargo, Jorge E.
dc.contributor.orcid.none.fl_str_mv Vargas Calderón, Vladimir [0000-0001-5476-3300]
Moros Ochoa, María Andreína [0000-0001-8428-9056]
Castro Nieto, Gilmer Yovani [0000-0001-9861-5588]
dc.contributor.scopus.none.fl_str_mv Vargas Calderón, Vladimir [57203879860]
Moros Ochoa, María Andreína [57195503017]
Castro Nieto, Gilmer Yovani [24544764500]
Camargo, Jorge E. [57192957971]
dc.subject.none.fl_str_mv Quality of service
Natural language processing
Word embedding
Latent topic analysis
Dimensionality reduction
topic Quality of service
Natural language processing
Word embedding
Latent topic analysis
Dimensionality reduction
description The increasing use of online hospitality platforms provides firsthand information about clients preferences, which are essential to improve hotel services and increase the quality of service perception. Customer reviews can be used to automatically extract the most relevant aspects of the quality of service for hospitality clientele. This paper proposes a framework for the assessment of the quality of service in the hospitality sector based on the exploitation of customer reviews through natural language processing and machine learning methods. The proposed framework automatically discovers the quality of service aspects relevant to hotel customers. Hotel reviews from Bogotá and Madrid are automatically scrapped from Booking.com. Semantic information is inferred through Latent Dirichlet Allocation and FastText, which allow representing text reviews as vectors. A dimensionality reduction technique is applied to visualise and interpret large amounts of customer reviews. Visualisations of the most important quality of service aspects are generated, allowing to qualitatively and quantitatively assess the quality of service. Results show that it is possible to automatically extract the main quality of service aspects perceived by customers from large customer review datasets. These findings could be used by hospitality managers to understand clients better and to improve the quality of service.
publishDate 2021
dc.date.issued.none.fl_str_mv 2021-07-24
dc.date.accessioned.none.fl_str_mv 2023-06-21T22:23:00Z
dc.date.available.none.fl_str_mv 2023-06-21T22:23:00Z
dc.type.none.fl_str_mv article
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_71e4c1898caa6e32
format http://purl.org/coar/resource_type/c_2df8fbb1
dc.identifier.issn.none.fl_str_mv 1098-3058
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10726/5053
dc.identifier.instname.none.fl_str_mv instname:Colegio de Estudios Superiores de Administración – CESA
dc.identifier.reponame.none.fl_str_mv reponame:Biblioteca Digital – CESA
dc.identifier.repourl.none.fl_str_mv repourl:https://repository.cesa.edu.co/
dc.identifier.eissn.none.fl_str_mv 1943-4294
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1007/s40558-021-00207-4
identifier_str_mv 1098-3058
instname:Colegio de Estudios Superiores de Administración – CESA
reponame:Biblioteca Digital – CESA
repourl:https://repository.cesa.edu.co/
1943-4294
url http://hdl.handle.net/10726/5053
https://doi.org/10.1007/s40558-021-00207-4
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.citationvolume.none.fl_str_mv 23
dc.relation.citationstartpage.none.fl_str_mv 351
dc.relation.citationendpage.none.fl_str_mv 379
dc.relation.ispartofjournal.none.fl_str_mv Information Technology & Tourism
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
dc.rights.local.none.fl_str_mv Acceso Restringido
dc.rights.coar.none.fl_str_mv http://vocabularies.coar-repositories.org/access_rights/c_16ec/
rights_invalid_str_mv Acceso Restringido
http://vocabularies.coar-repositories.org/access_rights/c_16ec/
http://purl.org/coar/access_right/c_16ec
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
institution Colegio de Estudios Superiores de Administración
repository.name.fl_str_mv Biblioteca Digital - CESA
repository.mail.fl_str_mv biblioteca@cesa.edu.co
_version_ 1793339972592336896