A relationship between the ordinary maximum entropy method and the method of maximum entropy in the mean
There are two entropy-based methods to deal with linear inverse problems, which we shall call the ordinary method of maximum entropy (OME) and the method of maximum entropy in the mean (MEM). Not only does MEM use OME as a stepping stone, it also allows for greater generality. First, because it allo...
- Autores:
-
Gzyl, Henryk
ter Horst, Enrique
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2014
- Institución:
- Colegio de Estudios Superiores de Administración
- Repositorio:
- Repositorio CESA
- Idioma:
- eng
- OAI Identifier:
- oai:repository.cesa.edu.co:10726/5127
- Acceso en línea:
- http://hdl.handle.net/10726/5127
https://doi.org/10.3390/e16021123
- Palabra clave:
- Maximum entropy
Maximum entropy in the mean
Constrained linear inverse problems
- Rights
- openAccess
- License
- Abierto (Texto Completo)
id |
CESA2_accc930559ea1b0f51007bdb70f2b041 |
---|---|
oai_identifier_str |
oai:repository.cesa.edu.co:10726/5127 |
network_acronym_str |
CESA2 |
network_name_str |
Repositorio CESA |
repository_id_str |
|
spelling |
Gzyl, Henryk169316a4-12f8-4afb-8213-5a74cbb8f41a600ter Horst, Enriquebb497a43-c019-48d2-8bff-b5b9172cf707600ter Horst, Enrique [0000-0001-5153-1475]Gzyl, Henryk [6701665186]ter Horst, Enrique [49561184500]2023-06-21T22:23:11Z2023-06-21T22:23:11Z2014-02-24http://hdl.handle.net/10726/5127instname:Colegio de Estudios Superiores de Administración – CESAreponame:Biblioteca Digital – CESArepourl:https://repository.cesa.edu.co/1099-4300https://doi.org/10.3390/e16021123engMDPI AGA relationship between the ordinary maximum entropy method and the method of maximum entropy in the meanarticlehttp://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/resource_type/c_6501info:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_71e4c1898caa6e32info:eu-repo/semantics/openAccessAbierto (Texto Completo)http://purl.org/coar/access_right/c_abf2There are two entropy-based methods to deal with linear inverse problems, which we shall call the ordinary method of maximum entropy (OME) and the method of maximum entropy in the mean (MEM). Not only does MEM use OME as a stepping stone, it also allows for greater generality. First, because it allows to include convex constraints in a natural way, and second, because it allows to incorporate and to estimate (additive) measurement errors from the data. Here we shall see both methods in action in a specific example. We shall solve the discretized version of the problem by two variants of MEM and directly with OME. We shall see that OME is actually a particular instance of MEM, when the reference measure is a Poisson Measure.https://orcid.org/0000-0001-5153-1475https://www.scopus.com/authid/detail.uri?authorId=6701665186https://www.scopus.com/authid/detail.uri?authorId=4956118450016211231133EntropyMaximum entropyMaximum entropy in the meanConstrained linear inverse problems10726/5127oai:repository.cesa.edu.co:10726/51272023-09-18 09:46:11.589metadata only accessBiblioteca Digital - CESAbiblioteca@cesa.edu.co |
dc.title.eng.fl_str_mv |
A relationship between the ordinary maximum entropy method and the method of maximum entropy in the mean |
title |
A relationship between the ordinary maximum entropy method and the method of maximum entropy in the mean |
spellingShingle |
A relationship between the ordinary maximum entropy method and the method of maximum entropy in the mean Maximum entropy Maximum entropy in the mean Constrained linear inverse problems |
title_short |
A relationship between the ordinary maximum entropy method and the method of maximum entropy in the mean |
title_full |
A relationship between the ordinary maximum entropy method and the method of maximum entropy in the mean |
title_fullStr |
A relationship between the ordinary maximum entropy method and the method of maximum entropy in the mean |
title_full_unstemmed |
A relationship between the ordinary maximum entropy method and the method of maximum entropy in the mean |
title_sort |
A relationship between the ordinary maximum entropy method and the method of maximum entropy in the mean |
dc.creator.fl_str_mv |
Gzyl, Henryk ter Horst, Enrique |
dc.contributor.author.spa.fl_str_mv |
Gzyl, Henryk ter Horst, Enrique |
dc.contributor.orcid.none.fl_str_mv |
ter Horst, Enrique [0000-0001-5153-1475] |
dc.contributor.scopus.none.fl_str_mv |
Gzyl, Henryk [6701665186] ter Horst, Enrique [49561184500] |
dc.subject.proposal.none.fl_str_mv |
Maximum entropy Maximum entropy in the mean Constrained linear inverse problems |
topic |
Maximum entropy Maximum entropy in the mean Constrained linear inverse problems |
description |
There are two entropy-based methods to deal with linear inverse problems, which we shall call the ordinary method of maximum entropy (OME) and the method of maximum entropy in the mean (MEM). Not only does MEM use OME as a stepping stone, it also allows for greater generality. First, because it allows to include convex constraints in a natural way, and second, because it allows to incorporate and to estimate (additive) measurement errors from the data. Here we shall see both methods in action in a specific example. We shall solve the discretized version of the problem by two variants of MEM and directly with OME. We shall see that OME is actually a particular instance of MEM, when the reference measure is a Poisson Measure. |
publishDate |
2014 |
dc.date.issued.none.fl_str_mv |
2014-02-24 |
dc.date.accessioned.none.fl_str_mv |
2023-06-21T22:23:11Z |
dc.date.available.none.fl_str_mv |
2023-06-21T22:23:11Z |
dc.type.none.fl_str_mv |
article |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.none.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.coarversion.none.fl_str_mv |
http://purl.org/coar/version/c_71e4c1898caa6e32 |
format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/10726/5127 |
dc.identifier.instname.none.fl_str_mv |
instname:Colegio de Estudios Superiores de Administración – CESA |
dc.identifier.reponame.none.fl_str_mv |
reponame:Biblioteca Digital – CESA |
dc.identifier.repourl.none.fl_str_mv |
repourl:https://repository.cesa.edu.co/ |
dc.identifier.eissn.none.fl_str_mv |
1099-4300 |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.3390/e16021123 |
url |
http://hdl.handle.net/10726/5127 https://doi.org/10.3390/e16021123 |
identifier_str_mv |
instname:Colegio de Estudios Superiores de Administración – CESA reponame:Biblioteca Digital – CESA repourl:https://repository.cesa.edu.co/ 1099-4300 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.citationvolume.none.fl_str_mv |
16 |
dc.relation.citationissue.none.fl_str_mv |
2 |
dc.relation.citationstartpage.none.fl_str_mv |
1123 |
dc.relation.citationendpage.none.fl_str_mv |
1133 |
dc.relation.ispartofjournal.none.fl_str_mv |
Entropy |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.local.none.fl_str_mv |
Abierto (Texto Completo) |
dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
Abierto (Texto Completo) http://purl.org/coar/access_right/c_abf2 |
dc.publisher.none.fl_str_mv |
MDPI AG |
publisher.none.fl_str_mv |
MDPI AG |
institution |
Colegio de Estudios Superiores de Administración |
repository.name.fl_str_mv |
Biblioteca Digital - CESA |
repository.mail.fl_str_mv |
biblioteca@cesa.edu.co |
_version_ |
1793339978211655680 |