A relationship between the ordinary maximum entropy method and the method of maximum entropy in the mean

There are two entropy-based methods to deal with linear inverse problems, which we shall call the ordinary method of maximum entropy (OME) and the method of maximum entropy in the mean (MEM). Not only does MEM use OME as a stepping stone, it also allows for greater generality. First, because it allo...

Full description

Autores:
Gzyl, Henryk
ter Horst, Enrique
Tipo de recurso:
Article of investigation
Fecha de publicación:
2014
Institución:
Colegio de Estudios Superiores de Administración
Repositorio:
Repositorio CESA
Idioma:
eng
OAI Identifier:
oai:repository.cesa.edu.co:10726/5127
Acceso en línea:
http://hdl.handle.net/10726/5127
https://doi.org/10.3390/e16021123
Palabra clave:
Maximum entropy
Maximum entropy in the mean
Constrained linear inverse problems
Rights
openAccess
License
Abierto (Texto Completo)
id CESA2_accc930559ea1b0f51007bdb70f2b041
oai_identifier_str oai:repository.cesa.edu.co:10726/5127
network_acronym_str CESA2
network_name_str Repositorio CESA
repository_id_str
spelling Gzyl, Henryk169316a4-12f8-4afb-8213-5a74cbb8f41a600ter Horst, Enriquebb497a43-c019-48d2-8bff-b5b9172cf707600ter Horst, Enrique [0000-0001-5153-1475]Gzyl, Henryk [6701665186]ter Horst, Enrique [49561184500]2023-06-21T22:23:11Z2023-06-21T22:23:11Z2014-02-24http://hdl.handle.net/10726/5127instname:Colegio de Estudios Superiores de Administración – CESAreponame:Biblioteca Digital – CESArepourl:https://repository.cesa.edu.co/1099-4300https://doi.org/10.3390/e16021123engMDPI AGA relationship between the ordinary maximum entropy method and the method of maximum entropy in the meanarticlehttp://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/resource_type/c_6501info:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_71e4c1898caa6e32info:eu-repo/semantics/openAccessAbierto (Texto Completo)http://purl.org/coar/access_right/c_abf2There are two entropy-based methods to deal with linear inverse problems, which we shall call the ordinary method of maximum entropy (OME) and the method of maximum entropy in the mean (MEM). Not only does MEM use OME as a stepping stone, it also allows for greater generality. First, because it allows to include convex constraints in a natural way, and second, because it allows to incorporate and to estimate (additive) measurement errors from the data. Here we shall see both methods in action in a specific example. We shall solve the discretized version of the problem by two variants of MEM and directly with OME. We shall see that OME is actually a particular instance of MEM, when the reference measure is a Poisson Measure.https://orcid.org/0000-0001-5153-1475https://www.scopus.com/authid/detail.uri?authorId=6701665186https://www.scopus.com/authid/detail.uri?authorId=4956118450016211231133EntropyMaximum entropyMaximum entropy in the meanConstrained linear inverse problems10726/5127oai:repository.cesa.edu.co:10726/51272023-09-18 09:46:11.589metadata only accessBiblioteca Digital - CESAbiblioteca@cesa.edu.co
dc.title.eng.fl_str_mv A relationship between the ordinary maximum entropy method and the method of maximum entropy in the mean
title A relationship between the ordinary maximum entropy method and the method of maximum entropy in the mean
spellingShingle A relationship between the ordinary maximum entropy method and the method of maximum entropy in the mean
Maximum entropy
Maximum entropy in the mean
Constrained linear inverse problems
title_short A relationship between the ordinary maximum entropy method and the method of maximum entropy in the mean
title_full A relationship between the ordinary maximum entropy method and the method of maximum entropy in the mean
title_fullStr A relationship between the ordinary maximum entropy method and the method of maximum entropy in the mean
title_full_unstemmed A relationship between the ordinary maximum entropy method and the method of maximum entropy in the mean
title_sort A relationship between the ordinary maximum entropy method and the method of maximum entropy in the mean
dc.creator.fl_str_mv Gzyl, Henryk
ter Horst, Enrique
dc.contributor.author.spa.fl_str_mv Gzyl, Henryk
ter Horst, Enrique
dc.contributor.orcid.none.fl_str_mv ter Horst, Enrique [0000-0001-5153-1475]
dc.contributor.scopus.none.fl_str_mv Gzyl, Henryk [6701665186]
ter Horst, Enrique [49561184500]
dc.subject.proposal.none.fl_str_mv Maximum entropy
Maximum entropy in the mean
Constrained linear inverse problems
topic Maximum entropy
Maximum entropy in the mean
Constrained linear inverse problems
description There are two entropy-based methods to deal with linear inverse problems, which we shall call the ordinary method of maximum entropy (OME) and the method of maximum entropy in the mean (MEM). Not only does MEM use OME as a stepping stone, it also allows for greater generality. First, because it allows to include convex constraints in a natural way, and second, because it allows to incorporate and to estimate (additive) measurement errors from the data. Here we shall see both methods in action in a specific example. We shall solve the discretized version of the problem by two variants of MEM and directly with OME. We shall see that OME is actually a particular instance of MEM, when the reference measure is a Poisson Measure.
publishDate 2014
dc.date.issued.none.fl_str_mv 2014-02-24
dc.date.accessioned.none.fl_str_mv 2023-06-21T22:23:11Z
dc.date.available.none.fl_str_mv 2023-06-21T22:23:11Z
dc.type.none.fl_str_mv article
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_71e4c1898caa6e32
format http://purl.org/coar/resource_type/c_2df8fbb1
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10726/5127
dc.identifier.instname.none.fl_str_mv instname:Colegio de Estudios Superiores de Administración – CESA
dc.identifier.reponame.none.fl_str_mv reponame:Biblioteca Digital – CESA
dc.identifier.repourl.none.fl_str_mv repourl:https://repository.cesa.edu.co/
dc.identifier.eissn.none.fl_str_mv 1099-4300
dc.identifier.doi.none.fl_str_mv https://doi.org/10.3390/e16021123
url http://hdl.handle.net/10726/5127
https://doi.org/10.3390/e16021123
identifier_str_mv instname:Colegio de Estudios Superiores de Administración – CESA
reponame:Biblioteca Digital – CESA
repourl:https://repository.cesa.edu.co/
1099-4300
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.citationvolume.none.fl_str_mv 16
dc.relation.citationissue.none.fl_str_mv 2
dc.relation.citationstartpage.none.fl_str_mv 1123
dc.relation.citationendpage.none.fl_str_mv 1133
dc.relation.ispartofjournal.none.fl_str_mv Entropy
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.local.none.fl_str_mv Abierto (Texto Completo)
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
rights_invalid_str_mv Abierto (Texto Completo)
http://purl.org/coar/access_right/c_abf2
dc.publisher.none.fl_str_mv MDPI AG
publisher.none.fl_str_mv MDPI AG
institution Colegio de Estudios Superiores de Administración
repository.name.fl_str_mv Biblioteca Digital - CESA
repository.mail.fl_str_mv biblioteca@cesa.edu.co
_version_ 1793339978211655680