Forecasting biocapacity and ecological footprint at a worldwide level to 2030 using neural networks
Constant environmental deterioration is a problem widely addressed by multiple international organizations. However, given the current economic and technological limitations, alternatives that immediately and significantly impact environmental degradation negatively affect contemporary development a...
- Autores:
-
Moros Ochoa, María Andreína
Castro Nieto, Gilmer Yovani
Quintero Español, Anderson
Llorente Portillo, Carolina
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2022
- Institución:
- Colegio de Estudios Superiores de Administración
- Repositorio:
- Repositorio CESA
- Idioma:
- eng
- OAI Identifier:
- oai:repository.cesa.edu.co:10726/5034
- Acceso en línea:
- http://hdl.handle.net/10726/5034
https://doi.org/10.3390/ su141710691
- Palabra clave:
- Biocapacity
Ecological footprint
Sustainable business models
Neural networks
- Rights
- openAccess
- License
- Abierto (Texto Completo)
id |
CESA2_8d39c349ca68c72d34739057c8a23a75 |
---|---|
oai_identifier_str |
oai:repository.cesa.edu.co:10726/5034 |
network_acronym_str |
CESA2 |
network_name_str |
Repositorio CESA |
repository_id_str |
|
spelling |
Moros Ochoa, María Andreína65a5bd89-3a5d-498f-8adc-61b8d6497c3a600Castro Nieto, Gilmer Yovanib81eb0f0-0911-44a8-af58-64803570dd83600Quintero Español, Anderson9a238274-8767-458d-a316-910bf44c9208600Llorente Portillo, Carolinaf42a3773-c434-437e-b7c9-7799cb73d169600Moros Ochoa, María Andreína [0000-0001-8428-9056]Castro Nieto, Gilmer Yovani [0000-0001-9861-5588]Quintero Español, Anderson [0000-0002-6562-6245]Llorente Portillo, Carolina [0000-0002-2350-5891]Moros Ochoa, María Andreína [57195503017]Castro Nieto, Gilmer Yovani [24544764500]Quintero Español, Anderson [57888736800]Llorente Portillo, Carolina [57888736900]2023-06-21T22:22:58Z2023-06-21T22:22:58Z2022-08-27http://hdl.handle.net/10726/5034instname:Colegio de Estudios Superiores de Administración – CESAreponame:Biblioteca Digital – CESArepourl:https://repository.cesa.edu.co/2071-1050https://doi.org/10.3390/ su141710691engMDPI AGForecasting biocapacity and ecological footprint at a worldwide level to 2030 using neural networksarticlehttp://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/resource_type/c_6501info:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_71e4c1898caa6e32info:eu-repo/semantics/openAccessAbierto (Texto Completo)http://purl.org/coar/access_right/c_abf2Constant environmental deterioration is a problem widely addressed by multiple international organizations. However, given the current economic and technological limitations, alternatives that immediately and significantly impact environmental degradation negatively affect contemporary development and lifestyle. Because of this, rather than limiting population consumption patterns or developing sophisticated and highly expensive technologies, the solution to environmental degradation lies more in the progressive transformation of production and consumption patterns. Thus, to support this change, the objective of this article is to forecast the behavior of consumption and regeneration of biologically productive land until the year 2030, using a deep neural network adjusted to Global Footprint Network data for prediction, and to provide information that favors the development of local economic strategies based on the territorial strengths and weaknesses of each continent. The most relevant findings about biocapacity and ecological footprint data are: fishing grounds have the great renewable potential in the global consumption of products and focused on the Asian region being approximately 55% of the world’s ecological footprint; grazing lands indicate an exponential growth in terms of ecological footprint, however South America and Africa have almost 55% of the distribution in the world biocapacity, being great powers in the generation of agricultural products; forest lands show a decrease in biocapacity, there is a progressive and exponential deterioration of forest resources, the highest deficit in the world is generated in Asia; cropland presents an environmental balance between biocapacity and ecological footprint; and built land generates great impacts on development and regeneration in other lands, indicating the exponential crisis that could eventually be established by needing more and more resources from large built metropolises to replace the natural life provided by other lands.https://orcid.org/0000-0001-8428-9056https://orcid.org/0000-0001-9861-5588https://orcid.org/0000-0002-6562-6245https://orcid.org/0000-0002-2350-5891https://www.scopus.com/authid/detail.uri?authorId=57195503017https://www.scopus.com/authid/detail.uri?authorId=24544764500https://www.scopus.com/authid/detail.uri?authorId=57888736800https://www.scopus.com/authid/detail.uri?authorId=578887369001417SustainabilityBiocapacityEcological footprintSustainable business modelsNeural networks10726/5034oai:repository.cesa.edu.co:10726/50342023-10-02 20:30:20.969metadata only accessBiblioteca Digital - CESAbiblioteca@cesa.edu.co |
dc.title.eng.fl_str_mv |
Forecasting biocapacity and ecological footprint at a worldwide level to 2030 using neural networks |
title |
Forecasting biocapacity and ecological footprint at a worldwide level to 2030 using neural networks |
spellingShingle |
Forecasting biocapacity and ecological footprint at a worldwide level to 2030 using neural networks Biocapacity Ecological footprint Sustainable business models Neural networks |
title_short |
Forecasting biocapacity and ecological footprint at a worldwide level to 2030 using neural networks |
title_full |
Forecasting biocapacity and ecological footprint at a worldwide level to 2030 using neural networks |
title_fullStr |
Forecasting biocapacity and ecological footprint at a worldwide level to 2030 using neural networks |
title_full_unstemmed |
Forecasting biocapacity and ecological footprint at a worldwide level to 2030 using neural networks |
title_sort |
Forecasting biocapacity and ecological footprint at a worldwide level to 2030 using neural networks |
dc.creator.fl_str_mv |
Moros Ochoa, María Andreína Castro Nieto, Gilmer Yovani Quintero Español, Anderson Llorente Portillo, Carolina |
dc.contributor.author.spa.fl_str_mv |
Moros Ochoa, María Andreína Castro Nieto, Gilmer Yovani Quintero Español, Anderson Llorente Portillo, Carolina |
dc.contributor.orcid.none.fl_str_mv |
Moros Ochoa, María Andreína [0000-0001-8428-9056] Castro Nieto, Gilmer Yovani [0000-0001-9861-5588] Quintero Español, Anderson [0000-0002-6562-6245] Llorente Portillo, Carolina [0000-0002-2350-5891] |
dc.contributor.scopus.none.fl_str_mv |
Moros Ochoa, María Andreína [57195503017] Castro Nieto, Gilmer Yovani [24544764500] Quintero Español, Anderson [57888736800] Llorente Portillo, Carolina [57888736900] |
dc.subject.proposal.none.fl_str_mv |
Biocapacity Ecological footprint Sustainable business models Neural networks |
topic |
Biocapacity Ecological footprint Sustainable business models Neural networks |
description |
Constant environmental deterioration is a problem widely addressed by multiple international organizations. However, given the current economic and technological limitations, alternatives that immediately and significantly impact environmental degradation negatively affect contemporary development and lifestyle. Because of this, rather than limiting population consumption patterns or developing sophisticated and highly expensive technologies, the solution to environmental degradation lies more in the progressive transformation of production and consumption patterns. Thus, to support this change, the objective of this article is to forecast the behavior of consumption and regeneration of biologically productive land until the year 2030, using a deep neural network adjusted to Global Footprint Network data for prediction, and to provide information that favors the development of local economic strategies based on the territorial strengths and weaknesses of each continent. The most relevant findings about biocapacity and ecological footprint data are: fishing grounds have the great renewable potential in the global consumption of products and focused on the Asian region being approximately 55% of the world’s ecological footprint; grazing lands indicate an exponential growth in terms of ecological footprint, however South America and Africa have almost 55% of the distribution in the world biocapacity, being great powers in the generation of agricultural products; forest lands show a decrease in biocapacity, there is a progressive and exponential deterioration of forest resources, the highest deficit in the world is generated in Asia; cropland presents an environmental balance between biocapacity and ecological footprint; and built land generates great impacts on development and regeneration in other lands, indicating the exponential crisis that could eventually be established by needing more and more resources from large built metropolises to replace the natural life provided by other lands. |
publishDate |
2022 |
dc.date.issued.none.fl_str_mv |
2022-08-27 |
dc.date.accessioned.none.fl_str_mv |
2023-06-21T22:22:58Z |
dc.date.available.none.fl_str_mv |
2023-06-21T22:22:58Z |
dc.type.none.fl_str_mv |
article |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.none.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.coarversion.none.fl_str_mv |
http://purl.org/coar/version/c_71e4c1898caa6e32 |
format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/10726/5034 |
dc.identifier.instname.none.fl_str_mv |
instname:Colegio de Estudios Superiores de Administración – CESA |
dc.identifier.reponame.none.fl_str_mv |
reponame:Biblioteca Digital – CESA |
dc.identifier.repourl.none.fl_str_mv |
repourl:https://repository.cesa.edu.co/ |
dc.identifier.eissn.none.fl_str_mv |
2071-1050 |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.3390/ su141710691 |
url |
http://hdl.handle.net/10726/5034 https://doi.org/10.3390/ su141710691 |
identifier_str_mv |
instname:Colegio de Estudios Superiores de Administración – CESA reponame:Biblioteca Digital – CESA repourl:https://repository.cesa.edu.co/ 2071-1050 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.citationvolume.none.fl_str_mv |
14 |
dc.relation.citationissue.none.fl_str_mv |
17 |
dc.relation.ispartofjournal.none.fl_str_mv |
Sustainability |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.local.none.fl_str_mv |
Abierto (Texto Completo) |
dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
Abierto (Texto Completo) http://purl.org/coar/access_right/c_abf2 |
dc.publisher.none.fl_str_mv |
MDPI AG |
publisher.none.fl_str_mv |
MDPI AG |
institution |
Colegio de Estudios Superiores de Administración |
repository.name.fl_str_mv |
Biblioteca Digital - CESA |
repository.mail.fl_str_mv |
biblioteca@cesa.edu.co |
_version_ |
1793339984196927488 |