Forecasting biocapacity and ecological footprint at a worldwide level to 2030 using neural networks

Constant environmental deterioration is a problem widely addressed by multiple international organizations. However, given the current economic and technological limitations, alternatives that immediately and significantly impact environmental degradation negatively affect contemporary development a...

Full description

Autores:
Moros Ochoa, María Andreína
Castro Nieto, Gilmer Yovani
Quintero Español, Anderson
Llorente Portillo, Carolina
Tipo de recurso:
Article of investigation
Fecha de publicación:
2022
Institución:
Colegio de Estudios Superiores de Administración
Repositorio:
Repositorio CESA
Idioma:
eng
OAI Identifier:
oai:repository.cesa.edu.co:10726/5034
Acceso en línea:
http://hdl.handle.net/10726/5034
https://doi.org/10.3390/ su141710691
Palabra clave:
Biocapacity
Ecological footprint
Sustainable business models
Neural networks
Rights
openAccess
License
Abierto (Texto Completo)
id CESA2_8d39c349ca68c72d34739057c8a23a75
oai_identifier_str oai:repository.cesa.edu.co:10726/5034
network_acronym_str CESA2
network_name_str Repositorio CESA
repository_id_str
spelling Moros Ochoa, María Andreína65a5bd89-3a5d-498f-8adc-61b8d6497c3a600Castro Nieto, Gilmer Yovanib81eb0f0-0911-44a8-af58-64803570dd83600Quintero Español, Anderson9a238274-8767-458d-a316-910bf44c9208600Llorente Portillo, Carolinaf42a3773-c434-437e-b7c9-7799cb73d169600Moros Ochoa, María Andreína [0000-0001-8428-9056]Castro Nieto, Gilmer Yovani [0000-0001-9861-5588]Quintero Español, Anderson [0000-0002-6562-6245]Llorente Portillo, Carolina [0000-0002-2350-5891]Moros Ochoa, María Andreína [57195503017]Castro Nieto, Gilmer Yovani [24544764500]Quintero Español, Anderson [57888736800]Llorente Portillo, Carolina [57888736900]2023-06-21T22:22:58Z2023-06-21T22:22:58Z2022-08-27http://hdl.handle.net/10726/5034instname:Colegio de Estudios Superiores de Administración – CESAreponame:Biblioteca Digital – CESArepourl:https://repository.cesa.edu.co/2071-1050https://doi.org/10.3390/ su141710691engMDPI AGForecasting biocapacity and ecological footprint at a worldwide level to 2030 using neural networksarticlehttp://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/resource_type/c_6501info:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_71e4c1898caa6e32info:eu-repo/semantics/openAccessAbierto (Texto Completo)http://purl.org/coar/access_right/c_abf2Constant environmental deterioration is a problem widely addressed by multiple international organizations. However, given the current economic and technological limitations, alternatives that immediately and significantly impact environmental degradation negatively affect contemporary development and lifestyle. Because of this, rather than limiting population consumption patterns or developing sophisticated and highly expensive technologies, the solution to environmental degradation lies more in the progressive transformation of production and consumption patterns. Thus, to support this change, the objective of this article is to forecast the behavior of consumption and regeneration of biologically productive land until the year 2030, using a deep neural network adjusted to Global Footprint Network data for prediction, and to provide information that favors the development of local economic strategies based on the territorial strengths and weaknesses of each continent. The most relevant findings about biocapacity and ecological footprint data are: fishing grounds have the great renewable potential in the global consumption of products and focused on the Asian region being approximately 55% of the world’s ecological footprint; grazing lands indicate an exponential growth in terms of ecological footprint, however South America and Africa have almost 55% of the distribution in the world biocapacity, being great powers in the generation of agricultural products; forest lands show a decrease in biocapacity, there is a progressive and exponential deterioration of forest resources, the highest deficit in the world is generated in Asia; cropland presents an environmental balance between biocapacity and ecological footprint; and built land generates great impacts on development and regeneration in other lands, indicating the exponential crisis that could eventually be established by needing more and more resources from large built metropolises to replace the natural life provided by other lands.https://orcid.org/0000-0001-8428-9056https://orcid.org/0000-0001-9861-5588https://orcid.org/0000-0002-6562-6245https://orcid.org/0000-0002-2350-5891https://www.scopus.com/authid/detail.uri?authorId=57195503017https://www.scopus.com/authid/detail.uri?authorId=24544764500https://www.scopus.com/authid/detail.uri?authorId=57888736800https://www.scopus.com/authid/detail.uri?authorId=578887369001417SustainabilityBiocapacityEcological footprintSustainable business modelsNeural networks10726/5034oai:repository.cesa.edu.co:10726/50342023-10-02 20:30:20.969metadata only accessBiblioteca Digital - CESAbiblioteca@cesa.edu.co
dc.title.eng.fl_str_mv Forecasting biocapacity and ecological footprint at a worldwide level to 2030 using neural networks
title Forecasting biocapacity and ecological footprint at a worldwide level to 2030 using neural networks
spellingShingle Forecasting biocapacity and ecological footprint at a worldwide level to 2030 using neural networks
Biocapacity
Ecological footprint
Sustainable business models
Neural networks
title_short Forecasting biocapacity and ecological footprint at a worldwide level to 2030 using neural networks
title_full Forecasting biocapacity and ecological footprint at a worldwide level to 2030 using neural networks
title_fullStr Forecasting biocapacity and ecological footprint at a worldwide level to 2030 using neural networks
title_full_unstemmed Forecasting biocapacity and ecological footprint at a worldwide level to 2030 using neural networks
title_sort Forecasting biocapacity and ecological footprint at a worldwide level to 2030 using neural networks
dc.creator.fl_str_mv Moros Ochoa, María Andreína
Castro Nieto, Gilmer Yovani
Quintero Español, Anderson
Llorente Portillo, Carolina
dc.contributor.author.spa.fl_str_mv Moros Ochoa, María Andreína
Castro Nieto, Gilmer Yovani
Quintero Español, Anderson
Llorente Portillo, Carolina
dc.contributor.orcid.none.fl_str_mv Moros Ochoa, María Andreína [0000-0001-8428-9056]
Castro Nieto, Gilmer Yovani [0000-0001-9861-5588]
Quintero Español, Anderson [0000-0002-6562-6245]
Llorente Portillo, Carolina [0000-0002-2350-5891]
dc.contributor.scopus.none.fl_str_mv Moros Ochoa, María Andreína [57195503017]
Castro Nieto, Gilmer Yovani [24544764500]
Quintero Español, Anderson [57888736800]
Llorente Portillo, Carolina [57888736900]
dc.subject.proposal.none.fl_str_mv Biocapacity
Ecological footprint
Sustainable business models
Neural networks
topic Biocapacity
Ecological footprint
Sustainable business models
Neural networks
description Constant environmental deterioration is a problem widely addressed by multiple international organizations. However, given the current economic and technological limitations, alternatives that immediately and significantly impact environmental degradation negatively affect contemporary development and lifestyle. Because of this, rather than limiting population consumption patterns or developing sophisticated and highly expensive technologies, the solution to environmental degradation lies more in the progressive transformation of production and consumption patterns. Thus, to support this change, the objective of this article is to forecast the behavior of consumption and regeneration of biologically productive land until the year 2030, using a deep neural network adjusted to Global Footprint Network data for prediction, and to provide information that favors the development of local economic strategies based on the territorial strengths and weaknesses of each continent. The most relevant findings about biocapacity and ecological footprint data are: fishing grounds have the great renewable potential in the global consumption of products and focused on the Asian region being approximately 55% of the world’s ecological footprint; grazing lands indicate an exponential growth in terms of ecological footprint, however South America and Africa have almost 55% of the distribution in the world biocapacity, being great powers in the generation of agricultural products; forest lands show a decrease in biocapacity, there is a progressive and exponential deterioration of forest resources, the highest deficit in the world is generated in Asia; cropland presents an environmental balance between biocapacity and ecological footprint; and built land generates great impacts on development and regeneration in other lands, indicating the exponential crisis that could eventually be established by needing more and more resources from large built metropolises to replace the natural life provided by other lands.
publishDate 2022
dc.date.issued.none.fl_str_mv 2022-08-27
dc.date.accessioned.none.fl_str_mv 2023-06-21T22:22:58Z
dc.date.available.none.fl_str_mv 2023-06-21T22:22:58Z
dc.type.none.fl_str_mv article
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_71e4c1898caa6e32
format http://purl.org/coar/resource_type/c_2df8fbb1
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10726/5034
dc.identifier.instname.none.fl_str_mv instname:Colegio de Estudios Superiores de Administración – CESA
dc.identifier.reponame.none.fl_str_mv reponame:Biblioteca Digital – CESA
dc.identifier.repourl.none.fl_str_mv repourl:https://repository.cesa.edu.co/
dc.identifier.eissn.none.fl_str_mv 2071-1050
dc.identifier.doi.none.fl_str_mv https://doi.org/10.3390/ su141710691
url http://hdl.handle.net/10726/5034
https://doi.org/10.3390/ su141710691
identifier_str_mv instname:Colegio de Estudios Superiores de Administración – CESA
reponame:Biblioteca Digital – CESA
repourl:https://repository.cesa.edu.co/
2071-1050
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.citationvolume.none.fl_str_mv 14
dc.relation.citationissue.none.fl_str_mv 17
dc.relation.ispartofjournal.none.fl_str_mv Sustainability
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.local.none.fl_str_mv Abierto (Texto Completo)
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
rights_invalid_str_mv Abierto (Texto Completo)
http://purl.org/coar/access_right/c_abf2
dc.publisher.none.fl_str_mv MDPI AG
publisher.none.fl_str_mv MDPI AG
institution Colegio de Estudios Superiores de Administración
repository.name.fl_str_mv Biblioteca Digital - CESA
repository.mail.fl_str_mv biblioteca@cesa.edu.co
_version_ 1793339984196927488