Inferring probability densities from expert opinion
When experts are asked to assess a situation, they often express their opinions providing estimates of the probability of observing the occurrence of a random variable in given intervals, sometimes up to a range of values, rather than simply providing point estimates. The problem we face is how to t...
- Autores:
-
Gzyl, Henryk
ter Horst, Enrique
Molina, Germán
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2017
- Institución:
- Colegio de Estudios Superiores de Administración
- Repositorio:
- Repositorio CESA
- Idioma:
- eng
- OAI Identifier:
- oai:repository.cesa.edu.co:10726/5102
- Palabra clave:
- Maximum entropy method
Maximum entropy with errors in the data
Probability elicitation with uncertainty
- Rights
- openAccess
- License
- Abierto (Texto Completo)
id |
CESA2_548286ebe4b9879152f26477907452ba |
---|---|
oai_identifier_str |
oai:repository.cesa.edu.co:10726/5102 |
network_acronym_str |
CESA2 |
network_name_str |
Repositorio CESA |
repository_id_str |
|
spelling |
Gzyl, Henryk169316a4-12f8-4afb-8213-5a74cbb8f41a600ter Horst, Enriquebb497a43-c019-48d2-8bff-b5b9172cf707600Molina, Germán1fa4e4bc-5890-49a2-aa16-7f5220145ef8600ter Horst, Enrique [0000-0001-5153-1475]Molina, Germán [0000-0003-4693-6907]Gzyl, Henryk [6701665186]ter Horst, Enrique [25655619900]Molina, Germán [15728099800]2023-06-21T22:23:08Z2023-06-21T22:23:08Z2017-030307-904Xhttp://hdl.handle.net/10726/5102instname:Colegio de Estudios Superiores de Administración – CESAreponame:Biblioteca Digital – CESArepourl:https://repository.cesa.edu.co/1872-8480https://doi.org/10.1016/j.apm.2016.11.006engElsevier Inc.Inferring probability densities from expert opinionarticlehttp://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/resource_type/c_6501info:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_71e4c1898caa6e32info:eu-repo/semantics/openAccessAbierto (Texto Completo)http://purl.org/coar/access_right/c_abf2When experts are asked to assess a situation, they often express their opinions providing estimates of the probability of observing the occurrence of a random variable in given intervals, sometimes up to a range of values, rather than simply providing point estimates. The problem we face is how to translate that expert opinion into probability distributions. We examine a novel way of solving that problem by making use of the maximum entropy method in the data to deal with expert opinions expressed with or without uncertainty bands. Our method allows us to unveil underlying probability distributions driving expert opinions expressed with and without uncertainty.https://orcid.org/0000-0001-5153-1475https://orcid.org/0000-0003-4693-6907https://www.scopus.com/authid/detail.uri?authorId=6701665186https://www.scopus.com/authid/detail.uri?authorId=25655619900https://www.scopus.com/authid/detail.uri?authorId=1572809980043306320Applied Mathematical ModellingMaximum entropy methodMaximum entropy with errors in the dataProbability elicitation with uncertainty10726/5102oai:repository.cesa.edu.co:10726/51022023-09-30 13:00:01.534metadata only accessBiblioteca Digital - CESAbiblioteca@cesa.edu.co |
dc.title.eng.fl_str_mv |
Inferring probability densities from expert opinion |
title |
Inferring probability densities from expert opinion |
spellingShingle |
Inferring probability densities from expert opinion Maximum entropy method Maximum entropy with errors in the data Probability elicitation with uncertainty |
title_short |
Inferring probability densities from expert opinion |
title_full |
Inferring probability densities from expert opinion |
title_fullStr |
Inferring probability densities from expert opinion |
title_full_unstemmed |
Inferring probability densities from expert opinion |
title_sort |
Inferring probability densities from expert opinion |
dc.creator.fl_str_mv |
Gzyl, Henryk ter Horst, Enrique Molina, Germán |
dc.contributor.author.spa.fl_str_mv |
Gzyl, Henryk ter Horst, Enrique Molina, Germán |
dc.contributor.orcid.none.fl_str_mv |
ter Horst, Enrique [0000-0001-5153-1475] Molina, Germán [0000-0003-4693-6907] |
dc.contributor.scopus.none.fl_str_mv |
Gzyl, Henryk [6701665186] ter Horst, Enrique [25655619900] Molina, Germán [15728099800] |
dc.subject.proposal.none.fl_str_mv |
Maximum entropy method Maximum entropy with errors in the data Probability elicitation with uncertainty |
topic |
Maximum entropy method Maximum entropy with errors in the data Probability elicitation with uncertainty |
description |
When experts are asked to assess a situation, they often express their opinions providing estimates of the probability of observing the occurrence of a random variable in given intervals, sometimes up to a range of values, rather than simply providing point estimates. The problem we face is how to translate that expert opinion into probability distributions. We examine a novel way of solving that problem by making use of the maximum entropy method in the data to deal with expert opinions expressed with or without uncertainty bands. Our method allows us to unveil underlying probability distributions driving expert opinions expressed with and without uncertainty. |
publishDate |
2017 |
dc.date.issued.none.fl_str_mv |
2017-03 |
dc.date.accessioned.none.fl_str_mv |
2023-06-21T22:23:08Z |
dc.date.available.none.fl_str_mv |
2023-06-21T22:23:08Z |
dc.type.none.fl_str_mv |
article |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.none.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.coarversion.none.fl_str_mv |
http://purl.org/coar/version/c_71e4c1898caa6e32 |
format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.identifier.issn.none.fl_str_mv |
0307-904X |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/10726/5102 |
dc.identifier.instname.none.fl_str_mv |
instname:Colegio de Estudios Superiores de Administración – CESA |
dc.identifier.reponame.none.fl_str_mv |
reponame:Biblioteca Digital – CESA |
dc.identifier.repourl.none.fl_str_mv |
repourl:https://repository.cesa.edu.co/ |
dc.identifier.eissn.none.fl_str_mv |
1872-8480 |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1016/j.apm.2016.11.006 |
identifier_str_mv |
0307-904X instname:Colegio de Estudios Superiores de Administración – CESA reponame:Biblioteca Digital – CESA repourl:https://repository.cesa.edu.co/ 1872-8480 |
url |
http://hdl.handle.net/10726/5102 https://doi.org/10.1016/j.apm.2016.11.006 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.citationvolume.none.fl_str_mv |
43 |
dc.relation.citationstartpage.none.fl_str_mv |
306 |
dc.relation.citationendpage.none.fl_str_mv |
320 |
dc.relation.ispartofjournal.none.fl_str_mv |
Applied Mathematical Modelling |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.local.none.fl_str_mv |
Abierto (Texto Completo) |
dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
Abierto (Texto Completo) http://purl.org/coar/access_right/c_abf2 |
dc.publisher.none.fl_str_mv |
Elsevier Inc. |
publisher.none.fl_str_mv |
Elsevier Inc. |
institution |
Colegio de Estudios Superiores de Administración |
repository.name.fl_str_mv |
Biblioteca Digital - CESA |
repository.mail.fl_str_mv |
biblioteca@cesa.edu.co |
_version_ |
1793339984200073216 |