Control biológico de fitopatógenos, insectos y ácaros: agentes de control biológico. V. 1
El presente libro recoge los desarrollos más relevantes a nivel mundial, las experiencias de Corpoica (hoy AGROSAVIA) y el trabajo de décadas de los coautores nacionales e internacionales que hacen parte del mismo. La documentación sobre los avances y las perspectivas en la materia tiene la intenció...
- Autores:
-
Santos Díaz, Adriana Marcela
Cotes Prado, Alba Marina
Caro Quintero, Alejandro
Bustillo Pardey, Alex Enrique
Escobar, Alexander
Díaz García, Andrés
Arcila Cardona, Ángela María
Carabalí Muñoz, Arturo
Vásquez Ordóñez, Aymer Andrés
Lohr, Bernhard Leo
Oehlschlager, Cam
Beltrán Acosta, Camilo Rubén
Moreno Velandia, Carlos Andres
Espinel Correal, Carlos
González Almario, Carolina
Clerck, Caroline de
Hoy, Casey W.
Narváez Vásquez, Consuelo Alexandra
León, Diana Marcela
Rincón Rueda, Diego Fernando
Espitia Malagón, Eduardo María
Alarcón Torres, Érika Andrea
Grijalba, Érika Paola
Moreno, Fabiola
Borrero Echeverry, Felipe
Cruz Barrera, Fredy Mauricio
Berg, Gabriele
Vargas, Germán
Barrera Cubillos, Gloria Patricia
León Martínez, Guillermo Adolfo
González F., Guillermo
Jijakil, Haissam
Rivera Trujillo, Hugo Fernando
Hernández Nopsa, John Fredy
Ibarra, Jorge
Jurat Fuentes, Juan Luis
Gómez Valderrama, Juliana Andrea
Köhl, Jürgen
Smalla, Kornelia
Villamizar, Laura Fernanda
Solorzano Buitrago, Leonardo
Torres Torres, Lissette Aracelly
Uribe Gutiérrez, Liz Alejandra
Pulido, Luz Astrid
Pérez, Manuel Ricardo
Manzano Martínez, María del Rosario
Díaz Niño, María Fernanda
Díaz Niño, María Fernanda
Zuluaga Mogollón, María Victoria
Belaich, Mariano Nicolás
Hurst, Mark
Gómez Álvarez, Martha Isabel
Rodríguez, Martha Liliana
Wisniewski, Michael
López Ferber, Miguel
Barreto Triana, Nancy del Carmen
Ghiringhelli, Pablo Daniel
Cuartas, Paola Emilia
Betancourt, Ruth Análida
Kobayashi, Sadao
Aragón Rodríguez, Sandra Milena
Massart, Sébastien
Lewis Mosher, Stephen
Kondo Rodriguez, Demian Takumasa
Jackson, Trevor
Bettiol, Wagner
Fargetton, Xavier
Elad, Yigal
Zapata Narváez, Yimmy Alexander
Martínez, Yohana Alexandra
Balbín Suárez, Alicia
- Tipo de recurso:
- Book
- Fecha de publicación:
- 2018
- Institución:
- Agrosavia
- Repositorio:
- Agrosavia
- Idioma:
- spa
- OAI Identifier:
- oai:repository.agrosavia.co:20.500.12324/33829
- Acceso en línea:
- http://hdl.handle.net/20.500.12324/33829
https://doi.org/10.21930/agrosavia.investigation.7402537
- Palabra clave:
- Plagas de las plantas
Control biológico de plagas
Fitopatología
Control de insectos
Bioplaguicidas
Transversal
- Rights
- License
- Attribution-NonCommercial-ShareAlike 4.0 International
id |
Agrosavia2_f31f72bc772adc60c5b010e46b257a33 |
---|---|
oai_identifier_str |
oai:repository.agrosavia.co:20.500.12324/33829 |
network_acronym_str |
Agrosavia2 |
network_name_str |
Agrosavia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Control biológico de fitopatógenos, insectos y ácaros: agentes de control biológico. V. 1 |
title |
Control biológico de fitopatógenos, insectos y ácaros: agentes de control biológico. V. 1 |
spellingShingle |
Control biológico de fitopatógenos, insectos y ácaros: agentes de control biológico. V. 1 Plagas de las plantas Control biológico de plagas Fitopatología Control de insectos Bioplaguicidas Transversal |
title_short |
Control biológico de fitopatógenos, insectos y ácaros: agentes de control biológico. V. 1 |
title_full |
Control biológico de fitopatógenos, insectos y ácaros: agentes de control biológico. V. 1 |
title_fullStr |
Control biológico de fitopatógenos, insectos y ácaros: agentes de control biológico. V. 1 |
title_full_unstemmed |
Control biológico de fitopatógenos, insectos y ácaros: agentes de control biológico. V. 1 |
title_sort |
Control biológico de fitopatógenos, insectos y ácaros: agentes de control biológico. V. 1 |
dc.creator.fl_str_mv |
Santos Díaz, Adriana Marcela Cotes Prado, Alba Marina Caro Quintero, Alejandro Bustillo Pardey, Alex Enrique Escobar, Alexander Díaz García, Andrés Arcila Cardona, Ángela María Carabalí Muñoz, Arturo Vásquez Ordóñez, Aymer Andrés Lohr, Bernhard Leo Oehlschlager, Cam Beltrán Acosta, Camilo Rubén Moreno Velandia, Carlos Andres Espinel Correal, Carlos González Almario, Carolina Clerck, Caroline de Hoy, Casey W. Narváez Vásquez, Consuelo Alexandra León, Diana Marcela Rincón Rueda, Diego Fernando Espitia Malagón, Eduardo María Alarcón Torres, Érika Andrea Grijalba, Érika Paola Moreno, Fabiola Borrero Echeverry, Felipe Cruz Barrera, Fredy Mauricio Berg, Gabriele Vargas, Germán Barrera Cubillos, Gloria Patricia León Martínez, Guillermo Adolfo González F., Guillermo Jijakil, Haissam Rivera Trujillo, Hugo Fernando Hernández Nopsa, John Fredy Ibarra, Jorge Jurat Fuentes, Juan Luis Gómez Valderrama, Juliana Andrea Köhl, Jürgen Smalla, Kornelia Villamizar, Laura Fernanda Solorzano Buitrago, Leonardo Torres Torres, Lissette Aracelly Uribe Gutiérrez, Liz Alejandra Pulido, Luz Astrid Pérez, Manuel Ricardo Manzano Martínez, María del Rosario Díaz Niño, María Fernanda Díaz Niño, María Fernanda Zuluaga Mogollón, María Victoria Belaich, Mariano Nicolás Hurst, Mark Gómez Álvarez, Martha Isabel Rodríguez, Martha Liliana Wisniewski, Michael López Ferber, Miguel Barreto Triana, Nancy del Carmen Ghiringhelli, Pablo Daniel Cuartas, Paola Emilia Betancourt, Ruth Análida Kobayashi, Sadao Aragón Rodríguez, Sandra Milena Massart, Sébastien Lewis Mosher, Stephen Kondo Rodriguez, Demian Takumasa Jackson, Trevor Bettiol, Wagner Fargetton, Xavier Elad, Yigal Zapata Narváez, Yimmy Alexander Martínez, Yohana Alexandra Balbín Suárez, Alicia |
dc.contributor.author.none.fl_str_mv |
Santos Díaz, Adriana Marcela Cotes Prado, Alba Marina Caro Quintero, Alejandro Bustillo Pardey, Alex Enrique Escobar, Alexander Díaz García, Andrés Arcila Cardona, Ángela María Carabalí Muñoz, Arturo Vásquez Ordóñez, Aymer Andrés Lohr, Bernhard Leo Oehlschlager, Cam Beltrán Acosta, Camilo Rubén Moreno Velandia, Carlos Andres Espinel Correal, Carlos González Almario, Carolina Clerck, Caroline de Hoy, Casey W. Narváez Vásquez, Consuelo Alexandra León, Diana Marcela Rincón Rueda, Diego Fernando Espitia Malagón, Eduardo María Alarcón Torres, Érika Andrea Grijalba, Érika Paola Moreno, Fabiola Borrero Echeverry, Felipe Cruz Barrera, Fredy Mauricio Berg, Gabriele Vargas, Germán Barrera Cubillos, Gloria Patricia León Martínez, Guillermo Adolfo González F., Guillermo Jijakil, Haissam Rivera Trujillo, Hugo Fernando Hernández Nopsa, John Fredy Ibarra, Jorge Jurat Fuentes, Juan Luis Gómez Valderrama, Juliana Andrea Köhl, Jürgen Smalla, Kornelia Villamizar, Laura Fernanda Solorzano Buitrago, Leonardo Torres Torres, Lissette Aracelly Uribe Gutiérrez, Liz Alejandra Pulido, Luz Astrid Pérez, Manuel Ricardo Manzano Martínez, María del Rosario Díaz Niño, María Fernanda Díaz Niño, María Fernanda Zuluaga Mogollón, María Victoria Belaich, Mariano Nicolás Hurst, Mark Gómez Álvarez, Martha Isabel Rodríguez, Martha Liliana Wisniewski, Michael López Ferber, Miguel Barreto Triana, Nancy del Carmen Ghiringhelli, Pablo Daniel Cuartas, Paola Emilia Betancourt, Ruth Análida Kobayashi, Sadao Aragón Rodríguez, Sandra Milena Massart, Sébastien Lewis Mosher, Stephen Kondo Rodriguez, Demian Takumasa Jackson, Trevor Bettiol, Wagner Fargetton, Xavier Elad, Yigal Zapata Narváez, Yimmy Alexander Martínez, Yohana Alexandra |
dc.contributor.author.spa.fl_str_mv |
Balbín Suárez, Alicia |
dc.subject.fao.spa.fl_str_mv |
Plagas de las plantas |
topic |
Plagas de las plantas Control biológico de plagas Fitopatología Control de insectos Bioplaguicidas Transversal |
dc.subject.agrovoc.spa.fl_str_mv |
Control biológico de plagas Fitopatología Control de insectos Bioplaguicidas |
dc.subject.red.spa.fl_str_mv |
Transversal |
description |
El presente libro recoge los desarrollos más relevantes a nivel mundial, las experiencias de Corpoica (hoy AGROSAVIA) y el trabajo de décadas de los coautores nacionales e internacionales que hacen parte del mismo. La documentación sobre los avances y las perspectivas en la materia tiene la intención de acelerar los nuevos desarrollos en aspectos aún no estudiados del control biológico y estimular el progreso en su implementación. La comprensión de los aspectos científicos, tecnológicos y del mercado del control biológico, visto como un componente fundamental del manejo integrado de plagas agrícolas, es la base para el desarrollo de estrategias de protección de cultivos respetuosas con el medio ambiente, con la salud humana, con la salud animal y eficaces para el control de estas, no solo en Colombia, sino a nivel mundial. El control biológico implica el uso tanto de bacterias, hongos y virus, como de insectos benéficos para el control de fitopatógenos o de insectos plaga según el caso. Este sistema de control ofrece un enfoque amigable con el medio ambiente que se puede incluir al manejo integrado, en el cual se incorporan los controles cultural, físico, genético y al uso racional de agroquímicos, entre otros. |
publishDate |
2018 |
dc.date.accessioned.none.fl_str_mv |
2018-10-26T21:10:35Z |
dc.date.available.none.fl_str_mv |
2018-10-26T21:10:35Z |
dc.date.created.none.fl_str_mv |
2018-10 |
dc.date.issued.none.fl_str_mv |
2018 |
dc.type.localeng.eng.fl_str_mv |
book |
dc.type.local.spa.fl_str_mv |
Libro resultado de investigación |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_2f33 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/book |
dc.type.redcol.none.fl_str_mv |
https://purl.org/redcol/resource_type/LIB |
dc.type.version.none.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
format |
http://purl.org/coar/resource_type/c_2f33 |
dc.identifier.isbn.none.fl_str_mv |
978-958-740-253-7 (e-book) |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/20.500.12324/33829 |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.21930/agrosavia.investigation.7402537 |
dc.identifier.reponame.spa.fl_str_mv |
reponame:Biblioteca Digital Agropecuaria de Colombia |
dc.identifier.repourl.none.fl_str_mv |
repourl:https://repository.agrosavia.co |
dc.identifier.instname.spa.fl_str_mv |
instname:Corporación colombiana de investigación agropecuaria AGROSAVIA |
identifier_str_mv |
978-958-740-253-7 (e-book) reponame:Biblioteca Digital Agropecuaria de Colombia repourl:https://repository.agrosavia.co instname:Corporación colombiana de investigación agropecuaria AGROSAVIA |
url |
http://hdl.handle.net/20.500.12324/33829 https://doi.org/10.21930/agrosavia.investigation.7402537 |
dc.language.iso.none.fl_str_mv |
spa |
language |
spa |
dc.relation.ispartofseries.spa.fl_str_mv |
Colección nuevo conocimiento agropecuario Corporación Colombiana de Investigación Agropecuaria (Colombia) |
dc.relation.haspart.spa.fl_str_mv |
34057 ; El concepto de control biológico y sus premisas fundamentales 34058 ; Cap: 1 Control biológico de patógenos foliares 34059 ; Cap: 2 Control biológico de fitopatógenos del suelo 34060 ; Cap:3 Control biológico de patógenos en poscosecha 34069 ; Cap: 4 Estudios del microbioma y su aplicación en el control biológico de fitopatógenos 34070 ; Cap: 5 Bacterias entomopatógenas en el control biológico de insectos 34071 ; Cap: 6 Hongos entomopatógenos en el control biológico de insectos plaga 34072 ; Cap: 7 Virus entomopatógenos en el control biológico de insectos 34073 ; Cap: 8 Las feromonas en el control de insectos 34074 ; Cap: 9 Uso de depredadores como agentes de control biológico para insectos plaga 34075 ; Cap: 10 Uso de parasitoides en el control biológico de insectos plaga en Colombia |
dc.relation.hasversion.eng.fl_str_mv |
Giblin-Davis, R. M., Gries, R., Gries, G., Peña-Rojas, E., Pinzón, I., Peña, J. E., … Oehlschlager, A. C. (1997). Aggregation pheromone of palm weevil, Dynamis borassi. Journal of Chemical Ecology, 23(10), 2287-2297. doi:10.1023/B:JOEC.0000006674.64858.f2. Giblin-Davis, R. M., Oehlschlager, A. C., Perez, A., Gries, G., Gries, R., Weissling, T. J., … Gonzalez, L. M. (1996). Chemical and behavioral ecology of palm weevils (Curculionidae: Rhynchophorinae). Florida Entomologist, 79(2), 153-167. doi:10.2307/3495812. Grand View Research (2015). Research and markets: ipm pheromones market analysis by product (sex pheromones, aggregation pheromones, oviposition-deterring pheromones, alarm pheromones) and segment forecasts to 2020. Recuperado de https://www.businesswire.com/news/ home/20151030005281/en/Research-Markets-IPMPheromones- Market-Analysis-Product. Grant, G. G. (1991). Development and use of pheromones for monitoring lepidopteran forest defoliators in North America. Forest Ecology and Management, 39, 153-162. doi:10.1016/0378-1127(91)90173-s. Griffith, R. (1969). A method of controlling red ring disease of coconuts. Journal of the Agricultural Society of Trinidad & Tobago, 69(3), 827-845. Gries, R., Britton, R., Holmes, M., Zhai, H., Draper, J., & Gries, G. (2015). Bed bug aggregation pheromone finally identified. Angewandte Chemie, 54(4), 1151-1154. doi:10.1002/anie.201409890. Hansson, B. S., & Anton, S. (2000). Function and morphology of the antennal lobe: New developments. Annual Review of Entomology, 45, 203-231. doi:10.1146/ annurev.ento.45.1.203. Hagley, E. A. C. (1963). The role of the palm weevil, Rhynchophorus palmarum, as a vector of Red Ring Disease of Coconuts. I. Results of preliminary investigations. Journal of Economic Entomology, 56(3), 375-380. doi:10.1093/jee/56.3.375. Hartmann, T. (2008). The lost origin of chemical ecology in the late 19th century. Proceedings of the National Academy of Sciences of the United States of America, 105(12), 4541- 4546. doi:10.1073/pnas.0709231105. Harborne, J. B. (2001). Twenty-five years of chemical ecology. Natural Products Report, 18(4), 361-379. doi:10.1039/ b005311m. Hatano, E., Saveer, A., Borrero-Echeverry, F., Strauch, M., Zakir, A., Bengtsson, M., … Dekker, T., (2015). A herbivore-induced plant volatile interferes with host plant and mate location in moths through suppression of olfactory signaling pathways. BMC Biology, 13(1), 75. doi:10.1186/s12915-015-0188-3. Haynes, K. F., Miller, T. A., Staten, R. T., Li, W. G., & Baker, T. C. (1986). Monitoring insecticide resistance with insect pheromones. Experientia, 42(11-12), 1293-1295. doi:10.1007/bf01946429. Heisenberg, M. (2003). Mushroom body memoir: From maps to models. Nature Reviews Neuroscience, 4, 266-275. doi:10.1038/nrn1074. IndexMundi. (2016). Guatemala Palm Oil Production by Year. Recuperado de https://www.indexmundi. com/agriculture/?country=gt&commodity=palmoil& graph=production. Jacobson, M. (2012). Insect sex pheromones. Nueva York, EE. UU.: Elsevier. Jaffé, K., Sánchez, P., Cerda, H., Hernández, J. V., Jaffé, R., Urdaneta, N., … Miras, B. (1993). Chemical ecology of the palm weevil Rhynchophorus palmarum (L.) (Coleoptera: Curculionidae): Attraction to host plants and to a male-produced aggregation pheromone. Journal of Chemical Ecology, 19(8), 1703-1720. doi:10.1007/ bf00982302. Jaffé, K., Sánchez, P., Cerda, H., Hernández, J. V., Jaffé, R., Urdaneta, N., … Miras, B. (1993). Chemical ecology of the palm weevil Rhynchophorus palmarum (L.) (Coleoptera: Curculionidae): Attraction to host plants and to a male-produced aggregation pheromone. Journal of Chemical Ecology, 19(8), 1703-1720. doi:10.1007/ bf00982302. Karlson, P., & Lüscher, M. (1959). ‘Pheromones’: a new term for a class of biologically active substances. Nature, 183, 55-56. doi:10.1038/183055a0. Karlsson, M. F., Birgersson, G., Cotes-Prado, A. M., Bosa, C. F., Bengtsson, M., & Witzgall, P. (2009). Plant Odor Analysis of Potato: Response of Guatemalan Moth to Above- and Belowground Potato Volatiles. Journal of Agricultural and Food Chemical, 57(13), 5903-5909. doi:10.1021/jf803730h. Karlsson, M. F., Birgersson, G., Witzgall, P., Lekfeldt, J. D. S., Punyasiri, P. A. N., & Bengtsson, M. (2013). Guatemalan potato moth Tecia solanivora distinguish odour profiles from qualitatively, different potatoes Solanum tuberosum L. Phytochemistry, 85, 72-81. doi:10.1016/j. phytochem.2012.09.015. Karlsson, M. F., Proffit, M., & Birgersson, G. (2017). Hostplant location by the Guatemalan potato moth Tecia solanivora is assisted by floral volatiles. Chemoecology, 27(5), 187-198. doi:10.1007/s00049-017-0244-2. Kennedy, J. S., & Marsh, D. (1974). Pheromone-regulated qnemotaxis in flying moths. Science, 184(4140), 999-1001. Kohl, J., Huoviala, P., & Jefferis, G. S. (2015). Pheromone processing in Drosophila. Current Opinion in Neurobiology, 34, 149-157. doi:10.1016/j.conb.2015.06.009. Knight, A., Hilton, R., & Light, D. (2005). Monitoring codling moth (Lepidoptera: Tortricidae) in apple with blends of ethyl (E, Z)-2, 4-decadienoate and codlemone. Environmental Entomology, 34(3), 598-603. doi:10.1603/0046-225X-34.3.598. Kriticos, D. J., Potter, K. J. B., Alexander, N. S., Gibb, A. R., & Suckling, D. M. (2007). Using a pheromone lure survey to establish the native and potential distribution of an invasive Lepidopteran, Uraba lugens. Journal of Applied Ecology, 44(4), 853-863. doi:10.1111/j.1365- 2664.2007.01331.x. Kromann, S. H., Saveer, A. M., Binyameen, M., Bengtsson, M., Birgersson, G., Hansson, B. S., … Becher, P. G. (2015). Concurrent modulation of neuronal and behavioural olfactory responses to sex and host plant cues in a male moth. Proceedings of the Royal Society of London. Series B, Biological Sciences, 282(1799), 20141884. doi:10.1098/ rspb.2014.1884. Lance, D. R., Leonard, D. S., Mastro, V. C., & Walters, M. L. (2016). Mating disruption as a suppression tactic in programs targeting regulated lepidopteran pests in US. Journal of Chemical Ecology, 42(7), 590-605. doi10.1007/ s10886-016-0732-9. Larsson, M. C., Domingos, A. I., Jones, W. D., Chiappe, M. E., Amrein, H., & Vosshall, L. B. (2004). Or83b encodes a broadly expressed odorant receptor essential for Drosophila olfaction. Neuron, 43(5), 703-714. doi:10.1016/j.neuron.2004.08.019. Leahy, J., Mendelsohn, M., Kough, J., Jones, R., & Berckes, N. (2014). Biopesticide oversight and registration at the U.S. Environmental Protection Agency. Recuperado de https://www.epa.gov/sites/production/files/2015-08/ documents/biopesticide-oversight-chapter_0.pdf. Leal, W. S. (2013). Odorant reception in insects: roles of receptors, binding proteins, and degrading enzymes. Annual Review of Entomology, 58, 373-391. doi:10.1146/ annurev-ento-120811-153635. |
dc.relation.hasversion.spa.fl_str_mv |
Gómez, R., Galindo, A., Mondragón, A., & Lobatón, V. (2000). Plan nacional de exclusión, supresión y erradicación económica del picudo del algodonero Anthonomus grandis Boheman (Coleoptera: Curculionidae) [Boletín de Sanidad Vegetal, N.º 10]. Bogotá, Colombia: Unidad de proyectos de prevención del Instituto Colombiano Agropecuario (ica). Instituto Colombiano Agropecuario (ica). (2009a). Boletín epidemiológico Mosca del Mediterráneo (Ceratitis capitata) en Colombia año 2008-2009. Bogotá, Colombia: ica. Instituto Colombiano Agropecuario (ica). (2009b). Plan nacional para el establecimiento, mantenimiento, declaración y reconocimiento de áreas libres y de baja prevalencia del picudo del algodonero Anthonomus grandis Boheman en Colombia. Bogotá, Colombia: ica. Instituto Colombiano Agropecuario (ica). (6 de septiembre de 2010). Por medio de la cual se establecen las plagas cuarentenarias sometidas a control oficial ausentes y presentes en el territorio nacional. [Resolución 2895 de 2010]. Recuperado de: https://www.redjurista. com/documents/resolucion_2895_de_2010_ica_-_ instituto_colombiano_agropecuario.aspx#/. Instituto Colombiano Agropecuario (ica). (2012). Boletín epidemiológico Situación actual del picudo del algodonero Anthonomus grandis Boheman (Coleoptera: Curculionidae) en Colombia. Bogotá, Colombia: ica. Instituto Colombiano Agropecuario (ica). (2012). Boletín epidemiológico Situación actual del picudo del algodonero Anthonomus grandis Boheman (Coleoptera: Curculionidae) en Colombia. Bogotá, Colombia: ica. Instituto Colombiano Agropecuario (ica). (2015). Sistema de Alerta Fitosanitaria. Actualización de la situación de la Mosca del Mediterráneo (Ceratitis capitata (Wiedemann)) en Colombia. Bogotá, Colombia: ica. Instituto Colombiano Agropecuario (ica). (2017). Productos registrados Bioinsumos. Recuperado el 27 de julio del 2017, de https://www.ica.gov.co/getdoc/2ad9e987-8f69-4358- b8a9-e6ee6dcc8132/PRODUCTOSBIOINSUMOSMAYO- 13-DE-2008.aspx. Kuratomi, N. H. (2001). Evaluación del uso de la feromona sexual “Neoelegantol” en la atracción de machos de Neoleucinodes elegantalis (Guenée) (Lep. Pyralidae) y su impacto en la reductión del daño de la plaga, en cultivos de tomate Lycopersicon esculentum. Palmira, Colombia: Universidad Nacional de Colombia. |
dc.relation.references.spa.fl_str_mv |
Baker, K. F., & Cook, R. J. (1974). Biological control of plant pathogens. San Francisco, EE. UU.: W. H. Freeman and Company. Baker, R. (1983, febrero). State of the art: plant diseases. Ponencia presentada en Proceedings of the National Interdisciplinary Biological Control Conference. Las Vegas, EE. UU. Bale, J. S., Van Lenteren, J. C., & Bigler, F. (2008). Biological control and sustainable food production. Philosophical Transactions of the Royal Society B, 363(1492), 761-776. Bebber, D., Holmes, T., & Gurr, S. (2014). The global spread of crop pests and pathogens. Global Ecology and Biogeography, 23(12), 1398-1407. doi: 10.1111/geb.12214. Carefoot, G. L., & Sprott, E. R. (1967). Famine on the wind: Plant diseases and human history. Chicago, EE. UU.: Rand McNally & Co. Carson, R. (1962). Silent Spring, 40th anniversary edition. Boston, EE. UU.: Houghton Mifflin. Chisholm, S. T., Coaker, G., Day, B., & Staskawicz, B. J. (2006). Host-microbe interactions: Shaping the evolution of the plant immune response. Cell, 124(4), 803-814. Cook, R. J., & Baker, K.F. (1983). The nature and practice of biological control of plants pathogens. Saint Paul, EE. UU.: The American Phytopathological Society. Culliney, T. W. (2014). Crop losses to arthropods. En D. Pimentel, & R. Peshin (Eds.), Integrated pest management (pp. 201-225). Dordrecht, Holanda: Springer. De Bach, P. (1964). Biological control of insect pests and weeds. Londres, Reino Unido: Chapman and Hall. Dhaliwal, G. S., Dhawan, A. K., & Singh, R. (2007). Biodiversity and ecological agriculture: Issues and perspectives. Indian Journal of Ecology, 34(2), 100-109. Dhaliwal, G. S., Dhawan, A. K., & Singh, R. (2007). Biodiversity and ecological agriculture: Issues and perspectives. Indian Journal of Ecology, 34(2), 100-109. Eilenberg, J. (2006). Concepts and visions of biological control. En J. Eilenberg & H. Hokkanen (Eds.), An ecological and societal approach to biological control (pp.1-11). Dordrecht, Holanda: Springer. Eilenberg, J., Hajek, A., & Lomer, C. (2001). Suggestions for unifying the terminology in biological control. BioControl, 46(4), 387-400. Food and Agriculture Organization (fao). (2017). Glosario de términos fitosanitarios. Recuperado de http://www.fao.org/docrep/W3587E/w3587e03.htm. Govorushko, S. (2012). Natural processes and human impacts: Interactions between humanity and the environment. Dordrecht, Holanda: Springer. doi:10.1007/978-94007-1423-6. Gurr, G. M., Barlow, N. D., Memmott, J., Wratten, S. D., & Greathead, D. J. (2000). A history of methodological, theoretical and empirical approaches to biological control. En G. Gurr & S. Wratten (Eds.), Biological control: measures of success (pp. 3-37). Dordrecth, Holanda: Kluwer Academic Press. Hajek, A. (2004). Natural enemies. An introduction to biological control. Cambridge, Reino Unido: Cambridge University Press. Heinrich, D., & Hergt, M. (2003). Ecology: dtv – atlas. Moscú,Rusia: Rybari. Hull, R. (2013). Plant virology (5.a Ed.). doi: 10.1016/C2010-0-64974-1. Jetter, K., & Paine, T. D. (2004). Consumer preferences and willingness to pay for biological control in the urban landscape. Biological Control, 30(2), 312-322. Krutov V. I., & Minkevich, I. I. (2002). Fungal disease of the wood species. Petrozavodsk, Rusia: Karelian Scientific Center of Russian Academy of Sciences. Letourneau, D. K. (1998). Conservation biology: lessons for conserving natural enemies. En P. Barbosa (Ed.), Conservation biological control (pp. 9-38). San Diego: Academic Press. Leung, T. L. F., & Poulin, R. (2008). Parasitism, commensalism, and mutualism: exploring the many shades of symbioses. Vie et Milieu - Life and Environment, 58(2), 107-115. Monastyrsky, O. A. (2002). A role of cultivated plants in the evolution of toxigenic fungi. En Modern mycology in Russia (pp. 262-263). Moscú, Rusia: National Academy of Mycology. Narayanasamy, P. (2013). Introduction. En P. Narayanasamy (Ed.), Biological management of diseases of crops. Progress in biological control (Vol. 16). Dordrecht, Holanda: Springer. doi: 10.1007/978-94-007-6377-7_1. Padmanabhan, S. Y. (1973). The great Bengal famine. Annual Review of Phytopathology, 11(1), 11-26. Pérez-Brocal, V., Latorre, A., & Moya, A. (2013). Symbionts and pathogens: What is the difference? En U. Dobrindt, J. H. Hacker, & C. Svanborg (Eds.) Between pathogenicity and commensalism (pp. 215-243). Berlín, Alemania: Pérez-Brocal, V., Latorre, A., & Moya, A. (2013). Symbionts and pathogens: What is the difference? En U. Dobrindt, J. H. Hacker, & C. Svanborg (Eds.) Between pathogenicity and commensalism (pp. 215-243). Berlín, Alemania: Springer. Perkins, J. H., & Garcia, R. (1999). Social and economic factors affecting research and implementation of biological control. En T. S. Bellows, & T. W. Fischer (Eds.), Handbook of biological control (pp. 993-1009). San Diego, EE. UU.: Academic Press. Pimentel, D., Wilson, C., McCullum, C., Huang, R., Dwen, P., Flack, J., … Cliff, B. (1997). Economic and environmental benefits of biodiversity. BioScience, 47(11), 747-757 Pimentel, D., Bailey, O., Kim, P., Mullaney, E., Calabrese, J., Walman, F., … Yao, X. (1999). Will the limits of the Earth's resources control human populations? Environment, Development and Sustainability, 1, 19-39. Pinstrup-Andersen, P. (2000). The future world food situation and the role of plant diseases. Canadian Journal of athology, 22(4). doi: https://doi.org/10.1080/0706066 0009500451. Singh, H. (2014). Management of plant pathogens with microorganisms. Proceedings of the Indian National Science Academy, 80(2), 443-454. doi: 10.16943/ptinsa/2014/v80i2/55120. Thrall, P. H., Oakeshott, J. G., Fitt, G., Southerton, S., Burdon, J. J., Sheppard, A., ... Denison, R. F. (2011). Evolution in agriculture: the application of evolutionary approaches to the management of biotic interactions in agro-ecosystems. Evolutionary Applications, 4(2), 200 215. doi: 10.1111/j.1752-4571.2010.00179.x. Ullstrup, A. J. (1972). The impacts of the southern corn leaf blight epidemics of 1970-1971. Annual Review of Phytopathology, 10, 37-50. Van den Bosch, R., Messenger, P. S., & Gutierrez, A. P. (1982). An introduction to biological control. Nueva York, EE. UU.: Plenum Press. Waage, J. K. (2001). Indirect ecological effects in iological control: the challenge and the opportunity. En E. Wajnberg, J. K. Scott, & P. C. Quimby (Eds.), Evaluating indirect ecological effects of biological control (pp. 1-12). Wallingford, EE. UU.: CABI Publishing. Abanda-Nkpwatt, D., Krimm, U., Coiner, H. A., Schreiber, L., & Schwab, W. (2006). Plant volatiles can minimize the growth suppression of epiphytic bacteria by the phytopathogenic fungus Botrytis cinerea in co-culture experiments. Environmental and Experimental Botanic, 56(1), 108-119. doi:10.1016/j.envexpbot.2005.01.010. Abdallah, M. E., Haroun, S. A., Gomah, A. A., El- Naggar, N. E., & Badr, H. H. (2013). Application of actinomycetes as biocontrol agents in the management of onion bacterial rot diseases. Arch. Phytopathol. Plant Protection, 46(15), 1797-1808. do i:10.1080/03235408.2013.778451. Abel., P. P., Nelson. R. S., De, B., Hoffmann, N., Rogers, S. G., ... Beachy, R. N. (1986). Delay of disease development in transgenic plants that express the tobacco mosaic virus coat protein gene. Science, 232(4751), 738-744. Abriouel, H., Franz, C. M. A. P., Omar, N. B., & Gálvez, A. (2011). Diversity and applications of Bacillus bacteriocins. FEMS Microbiology Review, 35(1), 201- 232. doi:10.1111/j.1574-6976.2010.00244.x. Agencia de Protección Ambiental de Estados Unidos (epa). (2002). Pseudozyma flocculosa strain PF-A22 UL (PC Code 119196) Pseudozyma flocculosa strain PF-A22 UL (TGAI) sporodex L (ep). Recuperado de https://www3.epa.gov/pesticides/chem_search/ reg_actions/registration/decision_PC-119196_1- Sep-02.pdf. Agencia de Protección Ambiental de Estados Unidos (epa). (2009). Candida oleophila Strain O PC Code: 021010 office of pesticide programs biopesticides and pollution prevention division last updated. Recuperado de https://www3.epa.gov/pesticides/chem_search/reg_actions/registration/decision_PC-021010_15-Jul-09.pdf. Agencia de Protección Ambiental de Estados Unidos (epa). (2017). Pesticides. Recuperado de https://www.epa.gov/pesticides. Agrios, G. N. (2015). Plant pathology. Londres, Inglaterra: Elsevier. Ajith, P., & Lakshmidevi, N. (2010). Effect of volatile and non-volatile compounds from Trichoderma spp. against Colletotrichum capsici incitant of anthracnose on bell peppers. Nature and Science, 8(9), 265-269. Ajouz, S., Nicot, P. C., & Bardin, M. (2010). Adaptation to pyrrolnitrin in Botrytis cinerea and cost of resistance. Plant Pathology, 59(3), 556-566. doi:10.1111/j.13653059.2009.02230.x. Aksu, Z., & Eren, A. T. (2007). Production of carotenoids by the isolated yeast of Rhodotorula glutinis. Biochemical Engineering Journal, 35(2), 107-113. doi:10.1016/j.bej.2007.01.004. Al-Awadhi, H., Al-Mailem, D., Dashti, N., Hakam, L., Eliyas, M., & Radwan, S. (2012). The abundant occurrence of hydrocarbon utilizing bacteria in the phyllospheres of cultivated and wild plants in Kuwait. International Biodeterioration & Biodegradation, 73, 73-79. doi:10.1016/j.ibiod.2012.05.016. Albano, S., Chagnon, M., De Oliveira, D., Houle, E., Thibodeau, P., & Mexia, A. (2009). Effectiveness of Apis mellifera and bombus impatiens as dispersers of the Rootshield® biofungicide (Trichoderma harzianum, strain T-22) in a strawberry crop. Hellenic Plant Protection Journal, 2(2), 57-66. Alfonzo, A., Conigliaro, G., Torta, L., Burruano, S., & Moschetti, G. (2009). Antagonism of Bacillus subtilis strain AG1 against vine wood fungal pathogens. Phytopathologia Mediterranea, 48, 155-158. doi:10.14601/Phytopathol_Mediterr-2886. Ali, G. S., El-Sayed, A. S. A., Patel, J. S., Green, K. B., Ali, M., ... Norman, D. (2016). Ex vivo application of secreted metabolites produced by soil-inhabiting Bacillus spp. Efficiently controls foliar diseases caused by Alternaria spp. Applied and Environmental Microbiology, 82(12), 478-490. doi:10.1128/aem.02662-15. Ali, H., & Nadarajah, K. (2014). Evaluating the efficacy of Trichoderma spp. and Bacillus subtilis as biocontrol agents against Magnaporthe grisea in rice. Australian Journal of Crop Science, 8(9), 1324. Alippi, A. M., Perelló, A. E., Sisterna, N. M., Greco, N. M., & Cordo, C. A. (2000). Potential of Spore-forming bacteria as biocontrol agents of wheat foliar diseases under laboratory and greenhouse conditions. Journal of Plant Diseases and Protection, 107(2), 155-169. Allard, H. A. (1915). Distribution of the virus of the mosaic disease in capsules, filaments, anthers, and pistils of affected tobacco plants. Journal of Agricultural Research, 5(6), 251-256. Anagnostakis, S. L. (1982). Biological control of chestnut blight. Science, 215(4532), 466-471. doi:10.1126/science.215.4532.466. Andrews, J. H. (1990). Biological control in the phyllosphere: Realistic goal or false hope? Canadian Journal of Plant Pathology, 12(3), 300-307. doi:10.1080/07060669009501004. Andrews, J. H. (1992). Biological control in the phyllosphere. Annual Review of Phytopathology, 30, 603-635. doi:10.1146/annurev.py.30.090192.003131. Andrews, J. H., & Harris, R. F. (2000). The ecology and biogeography of microorganisms on plant surfaces. Annual Review of Phytopathology, 38, 145-180. doi:10.1146/annurev.phyto.38.1.145. Aoki, M., Tan, M., Fukushima, A., Hieda, T., Kubo, S., ... Mikami, Y. (1993). Antiviral substances with systemic effects produced by basidiomycetes such as fomes fomentarius. Bioscience, Biotechnology and Biochemistry, 57(2), 278-282. doi:10.1271/bbb.57.278. Ara, I., Bukhari, N. A., Aref, N., Shinwari, M. M., & Bakir, M. (2012). Antiviral activities of streptomycetes against tobacco mosaic virus (tmv) in Datura plant: Evaluation of different organic compounds in their metabolites. African Journal of Biotechnology, 11(8), 2130-2138. doi:10.5897/AJB11.3388 Arguelles-Arias, A., Ongena, M., Halimi, B., Lara, Y., Brans, A., ... Fickers, P. (2009). Bacillus amyloliquefaciens GA1 as a source of potent antibiotics and other secondary metabolites for biocontrol of plant pathogens. Microbial Cell Factories, 8, 63. doi:10.1186/1475-2859-8-63. Arnold, A. E., Maynard, Z., Gilbert, G. S., Coley, P. D., & Kursar, T. A. (2000). Are tropical fungal endophytes hyperdiverse? Ecology Letters, 3(4), 267- 274. doi:10.1046/j.1461-0248.2000.00159.x. Arya, S., & Parashar, R. (2002). Biological control of cotton bacterial blight with phylloplane bacterial antagonists. Troical Agriculture, 79(1), 51-55 Ashwini, N., & Srividya, S. (2014). Potentiality of Bacillus subtilis as biocontrol agent for management of anthracnose disease of chilli caused by Colletotrichum gloeosporioides OGC1. Biotechnology, 4(2), 127-136. doi:10.1007/s13205-013-0134-4 Atlas, R. M., & Bartha, R. (2002). Ecología microbiana y microbiología ambiental. Madrid, España: Pearson-Addison Wesley. Audy, P., Palukaitis, P., Slack, S. A., & Zaitlin, M. (1994). Replicase-mediated resistance to potato virus Y in transgenic tobacco plants. Molecular Plant Microbe Interactions, 7(1), 15-15. doi:10.1094/MPMI-7-0015 Autoridad Europea de Seguridad Alimentaria (efsa). (2004a). Ampelomyces quisqualis 4205/VI/98. Recuperado de http://ec.europa.eu/food/plant/pesticides/eu-pesticidesdatabasepublic/event=activesubstance.detail&language=EN&selectedID=959 Autoridad Europea de Seguridad Alimentaria (efsa). (2004b). Gliocladium catenulatum SANCO/10383/2004. Recuperado de http://ec.europa.eu/food/plant/pesticides/eu-pesticides-database/public/event=activesubstance.detail&language=EN&selec tedID=1435 Autoridad Europea de Seguridad Alimentaria (efsa). (2006). Bacillus subtilis SANCO/10184/2003. Recuperado de http://ec.europa.eu/food/plant/pesticides/eu-pesticides-database/public/?event=activesubstance.detail&language=EN&selectedID=986. Autoridad Europea de Seguridad Alimentaria (efsa). (2013a). Candida oleophila strain O SANCO/10395/2013. Recuperado de http://ec.europa.eu/food/plant/pesticides/eu-pesticides-database/public/?event=activesubstance.detail&language=E N&selectedID=1074 Autoridad Europea de Seguridad Alimentaria (efsa). (2013b). Pythium oligandrum M1 SANCO/1864/08. Recuperado de http://ec.europa.eu/food/plant/pesticides/eu-pesticides-database/public/event=activesubstance.detail&language=EN&selectedID=1810 Autoridad Europea de Seguridad Alimentaria (efsa). (2014a). Bacillus amyloliquefaciens subsp. plantarum strain D747.SANCO/11391/2014. Recuperado de http://ec.europa.eu/food/plant/pesticides/eu-pesticides-database/public/event=activesubstance.detail&language=EN&selectedID=2252 Autoridad Europea de Seguridad Alimentaria (efsa). (2014b). Bacillus pumilus QST 2808 SANCO/12800/2013. Recuperado de http://ec.europa.eu/food/plant/pesticides/eu-pesticides-database/public/event=activesubstance.detail&language=EN&selectedID=2253 Autoridad Europea de Seguridad Alimentaria (efsa). (2014c). Streptomyces K61 (formerly Streptomyces griseoviridis) SANCO/1865/08. Recuperado de http://ec.europa.eu/food/plant/pesticides/eu-pesticides-database/public/event=activesubstance.detail&language=EN&selectedID=1895 Autoridad Europea de Seguridad Alimentaria (efsa). (2014d). Streptomyces lydicus strain WYEC 108SANCO/11427/2014. Recuperado de http://ec.europa.eu/food/plant/pesticides/eu-pesticides-database/public/event=activesubstance.detail&language=EN&selectedID=2256 Autoridad Europea de Seguridad Alimentaria (efsa).(2014e). Trichoderma asperellum (formerly T. harzianum) ICC012 SANCO/1842/08. Recuperado de http:// ec.europa.eu/food/plant/pesticides/eu-pesticidesdatabase/public/event=activesubstance.detail&language=EN&selectedID=1979 Autoridad Europea de Seguridad Alimentaria (efsa). (2014f ). Trichoderma atroviride IMI 206040 (formerly T. harzianum imi 206040) SANCO/1866/08. Recuperado de http://ec.europa.eu/food/plant/pesticides/eu-pesticides-database/public/ event=activesubstance.detail&language=EN&selectedID=1980 Autoridad Europea de Seguridad Alimentaria (efsa). (2014g). Trichoderma gamsii ICC080, Trichoderma asperellum T25 and TV1, formerly Trichoderma viride strain ICC080, strain T-25 and strain TV1 SANCO/1868/08. Recuperado de http://ec.europa.eu/food/plant/pesticides/eu-pesticides-database/public/ event=activesubstance.detail&language=E N&selectedID=1982 Autoridad Europea de Seguridad Alimentaria (efsa). (2014h). Trichoderma polysporum imi 206039 SANCO /1867/08. Recuperado de http://ec.europa.eu/food/plant/pesticides/eu-pesticides-database/public/ event=activesubstance.detail&language=EN&selectedID=1984 Autoridad Europea de Seguridad Alimentaria (efsa). (2015). European Food Safety Authority. Conclusion on the peer review of the pesticide risk assessment of the active substance Saccharomyces cerevisiae LAS02. EFSA Journal, 13(12), 4322-4329 doi:10.2903/j.efsa.2015.4322 Autoridad Europea de Seguridad Alimentaria (efsa). (2016a). Bacillus amyloliquefaciens strain mbi 600 SANTE/10008/2016. Recuperado de http://ec.europa.eu/food/plant/pesticides/eu-pesticidesdatabase/public/event=activesubstance.detail&language=EN&selectedID=2325 Autoridad Europea de Seguridad Alimentaria (efsa). (2016b). Pseudomonas sp. strain DSMZ 13134 SANCO/11455/2013. Recuperado de http:// ec.europa.eu/food/plant/pesticides/eu-pesticidesdatabase/public/?event=activesubstance.detail&lan guage=EN&selectedID=1787 Autoridad Europea de Seguridad Alimentaria (efsa). (2017a). Bacillus amyloliquefaciens strain FZB24 SANTE/12037/2016. Recuperado de http://ec.europa.eu/food/plant/pesticides/eu-pesticidesdatabase/public/?event=activesubstance.detail&language=EN&selectedID=2324 Autoridad Europea de Seguridad Alimentaria (efsa). (2017b). Healt and food safety. Recuperado de http://ec.europa.eu/food/plant/pesticides/eupesticides-database/public/event=activesubstance. selection&language=EN Avelino, J., Cristancho, M., Georgiou, S., Imbach, P., Aguilar, L., Bornemann, G., ... Morales, C. (2015). The coffee rust crises in Colombia and Central America (2008-2013): impacts, plausible causes and proposed solutions. Food Security, 7(2), 303-321. doi:10.1007/s12571-015-0446-9 Avis, T. J., & Bélanger, R. R. (2002). Mechanisms and means of detection of biocontrol activity of Pseudozyma yeasts against plant-pathogenic fungi. FEMS Yeast Research, 2(1), 5-8. doi:10.1111/j.1567-1364.2002.tb00062.x Avis, T. J., Caron, S. J., Boekhout, T., Hamelin, R. C., & Bélanger, R. R. (2001). Molecular and physiological analysis of the powdery mildew antagonist Pseudozyma flocculosa and related fungi. Phytopathology, 91(3), 249-254. doi:10.1094/PHYTO.2001.91.3.249 Baker, C. J., Stavely, J. R., & Mock, N. (1985). Biocontrol of bean rust by Bacillus subtilis under field conditions. Plant Disease, 69(9), 770-772. Baker, K. F. (1987). Evolving concepts of biological control of plant pathogens. Annual Review of Phytopathology, 25, 67-85. doi:10.1146/annurev.py.25.090187.000435 Barbieri, L., Battelli, M. G., & Stirpe, F. (1993). Ribosomeinactivating proteins from plants. Biochimica et Biophysica Acta, 1154(3-4), 237-282. doi:10.1016/0304-4157(93)90002-6 Beachy, R. N. (1999). Coat-protein-mediated resistance to tobacco mosaic virus: discovery mechanisms and exploitation. Philosophical Transactions of the Royal Society B: Biological Sciences, 354(1383), 659-664. doi:10.1098/rstb.1999.0418 Beattie, G. A., & Lindow, S. E. (1995). The secret life of foliar bacterial pathogens on leaves. Annual Review of Phytopathology, 33, 145-172. doi:10.1146/annurev.py.33.090195.001045 Beever, R. E., & Weeds, P. L. (2004). Taxonomy and genetic variation of botrytis and Botryotinia. En Y. Elad, B. Williamson, P. Tudzynski, & N. Delen (Eds.), Botrytis: Biology, Pathology and Control (pp. 29-52). Dordrecht, Holanda: Springer. doi:10.1007/978-1-4020-2626-3_3 Begerow, D., Bauer, R., & Boekhout, T. (2000). Phylogenetic placements of ustilaginomycetous anamorphs as deduced from nuclear LSU rDNA sequences. Mycology Research, 104(1), 5360. doi:10.1017/S0953756299001161 Bélanger, R. R., Dufour, N., Caron, J., & Benhamou, N. (1995). Chronological events associated with the antagonistic properties of Trichoderma harzianum against Botrytis cinerea: Indirect evidence for sequential role of antibiosis and parasitism. Biocontrol Science and Technology, 5(1), 41-54. doi:10.1080/09583159550040006 Belsare, S. W., Moniz, L., & Deo, V. B. (1980). The hyperparasite Ampelomyces quisqualis Ces. from Maharashtra State, India. Biovigyanam, 6(2), 173-176 Beltrán-Acosta, C. R., & Cotes-Prado, M. A. (2009). Promoción de crecimiento en endurecimiento de plántulas de mora producidas in vitro (efecto de la aplicación de Trichoderma koningiopsis Th003). En L. S. Barrero-Meneses (Ed.), Caracterización, evaluación y producción de material limpio de mora con alto valor agregado (pp. 57-63). Bogotá, Colombia: Corporación Colombiana de Investigación Agropecuaria (Corpoica). Bhatt, D. D., & Vaughan, E. K. (1962). Preliminary investigations on biological control of grey mould (Botrytis cinerea) of strawberries. Plant Disease Reporter, 46, 342-345. Bilu, A., Dag, A., Elad, Y., & Shafir, S. (2004). Honey bee dispersal of biocontrol agents: An evaluation of dispensing devices. Biocontrol Science Technology,14(6), 607-617. doi:10.1080/09583150410001682340 Bochow, H., El-Sayed, S. F., Junge, H., Stavropoulou, A., & Schmiedeknecht, G. (2001). Use of Bacillus subtilis as biocontrol agent. IV. Salt-stress tolerance induction by Bacillus subtilis FZB24 seed treatment in tropical vegetable field crops, and its mode of action. Journal of Plant Diseases and Protection, 108(1), 21-30. Boddy, L. (2016). Pathogens of Autotrophs. En S. C. Watkinson, N. Money, & L. Boddy (Ed.), The Fungi (pp. 245-292). Boston, EE. UU.: Academic Press. doi:10.1016/B978-0-12-382034-1.00008-6 Boekhout, T. (1995). Pseudozyma bandoni emend. Boekhout, a genus for yeast-like anamorphs of ustilaginales. The Journal of General and Applied Microbiology, 41(4), 359-366. doi:10.2323/jgam.41.359. Boland, G. J., & Hunter, J. E. (1988). Influence of Alternaria alternata and Cladosporium cladosporioides on white mold of bean caused by Sclerotinia sclerotiorum. Canadian Journal of Plant Pathology, 10(2), 172-177. doi:10.1080/07060668809501750. Borriss, R. (2011). Use of plant-associated Bacillus strains as biofertilizers and biocontrol agents in agriculture. En: D. K. Maheshwari (Ed.), Bacteria in agrobiology: Plant growth responses (pp. 41-76). Berlin, Alemania: Springer. doi:10.1007/978-3-642-20332-9_3 Bradbury, J. F. (1986). Guide to plant pathogenic bacteria. Minnesota, EE. UU: CAB International, University of Minnesota. Brederode, F. T., Taschner, P. E. M., Posthumus, E., & Bol, J. F. (1995). Replicase-mediated resistance to Alfalfa Mosaic Virus. Virology, 207(2), 467-474. doi:10.1006/viro.1995.1106 Brent, K. J., & Hollomon, D. W. (2007). Fungicide resistance: the assessment of risk. Bruselas, Belgica: Global crop protection federation Brussels. Brigneti, G., Voinnet, O., Li, W. X., Ji, L.H., Ding, S. W., & Baulcombe, D. C. (1998). Retracted: Viral pathogenicity determinants are suppressors of transgene silencing in Nicotiana benthamiana. The EMBO Journal, 17(22), 6739-6746. doi:10.1093/emboj/17.22.6739 Brunner, K., Zeilinger, S., Ciliento, R., Woo, S. L., Lorito, M., Kubicek, C. P., & Mach, R. L. (2005). Improvement of the fungal biocontrol agent Trichoderma atroviride to enhance both antagonism and induction of plant systemic disease resistance. Applied and Environmental Microbiology, 71(7), 3959-3965. doi:10.1128/aem.71.7.3959-3965.2005. Buck, J. W., & Andrews, J. H. (1999). Attachment of the yeast Rhodosporidium toruloides is mediated by adhesives localized at sites of bud cell development. Applied and Environmental Microbiology, 65(2), 465-471. Buck, J. W., & Burpee, L. L. (2002). The effects of fungicides on the phylloplane yeast populations of creeping bentgrass. Canadian Journal of Microbiology, 48(6), 522-529. doi:10.1139/w02-050 Caffi, T., Legler, S. E., Bugiani, R., & Rossi, V. (2013). Combining sanitation and disease modelling for control of grapevine powdery mildew. European Journal of Plant Pathology, 135(4), 817-829. doi:10.1007/s10658-012-0124-0 Calvente, V., Benuzzi, D., & de Tosetti, M. I. S. (1999). Antagonistic action of siderophores from Rhodotorula glutinis upon the postharvest pathogen Penicillium expansum. International Biodeterioration and Biodegradation, 43(4), 167-172. doi:10.1016/ S0964-8305(99)00046-3 Campbell, R. (1989). Biological control of microbial plant pathogens. Cambridge, Reino Unido: Cambridge University. doi.10.1017/CBO9780511608612 Cannon, P. F., Damm, U., Johnston, P. R., & Weir, B. S. (2012). Colletotrichum – current status and future directions. Studies in Mycology, 73, 181-213. doi:10.3114/sim0014. Cano, R., & Borucki, M. K. (1995). Revival and identification of bacterial spores in 25- to 40-million-year-old dominican amber. Science, 268(5213), 1060-1064. Carisse, O., & Rolland, D. (2004). Effect of timing of application of the biological control agent microsphaeropsis ochracea on the production and ejection pattern of ascospores by Venturia inaequalis. Phytopathology, 94(12), 1305-1314. doi:10.1094/PHYTO.2004.94.12.1305 Carisse, O., Willman-Desbiens, W., Toussaint, V., & Otis, T. (1998). Preventing Black Rot. Quebec, Canadá: Agriculture and Agri-Food Canada. Collins, D. P., & Jacobsen, B. J. (2003). Optimizing a Bacillus subtilis isolate for biological control of sugar beet cercospora leaf spot. Biological Control, 26(2), 153-161. doi:10.1016/S1049-9644(02)00132-9 Comité Nacional Sistema Producto Mango (Conaspromango). (2012). Plan rector nacional de sistema producto mango. Colima, México: Comite Nacional del Sistema Producto Mango. Cook, R. J. (1988). Biological control and holistic plant-health care in agriculture. American Journal of Alternative Agriculture, 3(2-3), 51-62. doi:10.1017/S0889189300002186 Cooper, B., Lapidot, M., Heick, J. A., Dodds, J. A., & Beachy, R. N. (1995). Multivirus resistance in transgenic tobacco plants expressing a dysfunctional movement protein of tobacco mosaic virus. Virology, 206, 307-313. Cotes, A. M. (2001). Biocontrol of fungal plant pathogens - from the discovery of potential biocontrol agents to the implementation of formulated products. IOBC Bulletin, 24(3), 43-47. Cotes, A. M., Moreno, C. A., Molano, L. F., Villamizar, L., & Piedrahita, W. (2007). Prospects for integrated management of Sclerotinia sclerotiorum in lettuce. IOBC/WPRS Bulletin, 30(6), 391-394. Cotes, A. M., Zapata, J., Díaz, A., García, M., Medina, C., ... Uribe, D. (2011). Selección de levaduras filosféricas con potencial para el control biológico de Botrytis cinerea. Fitopatología Colombiana, 35(2), 51-56. Cuéllar-Quintero, A., Álvarez-Cabrera, E., & Castaño- Zapata, J. (2011). Evaluación de resistencia degenotipos de plátano y banano a la Sigatoka negra. Revista Facultad Nacional de Agronomía Medellín, 64(1), 5853-5865. Cullen, D., Berbee, F. M., & Andrews, J. H. (1984). Chaetomium globosum antagonizes the apple scab pathogen, Venturia inaequalis, under field conditions. Canadian Journal of Botany, 62(9), 1814-1818. doi:10.1139/b84-245. Cuppels, D. A., Higham, J., & Traquair, J. A. (2013). Efficacy of selected streptomycetes and a streptomycete+pseudomonad combination in the management of selected bacterial and fungal diseases of field tomatoes. Biological Control, 67, 361-372. doi:10.1016/j.biocontrol.2013.09.005. Chaparro, A. P., Carvajal, L. H., & Orduz, S. (2011). Fungicide tolerance of Trichoderma asperelloides and T. harzianum strains. Agricultural sciences, 2(3), 301- 307. doi:10.4236/as.2011.23040. Chen, X. H., Koumoutsi, A., Scholz, R., Schneider, K., Vater, J., ... Borriss, R. (2009). Genome analysis of Bacillus amyloliquefaciens FZB42 reveals its potential for biocontrol of plant pathogens. Journal of Biotechnology, 140(1-2): 27-37. doi:10.1016/j.jbiotec.2008.10.011 Chet, I., Benhamou, N., & Haran, S. (1998). Mycoparasitism and lytic enzymes. En G. E. Harman, C. P. Kubicek (Eds.), Trichoderma and Gliocladium (pp. 153-171). Londres, Reino Unido: Taylor and Francis Ltd. Chitarra, G. S., Breeuwer, P., Nout, M. J. R., Van Aelst, A. C., ... Abee, T. (2003). An antifungal compound produced by Bacillus subtilis YM 10–20 inhibits germination of Penicillium roqueforti conidiospores. Journal Applied Microbiology, 94(2), 159-166. doi:10.1046/j.1365-2672.2003.01819.x. Daoust, R. A., & Hofstein, R. (1996). Ampelomyces quisqualis, a new biofungicide to control powdery mildew in grapes. En British Crop Protection Council (Ed.), Brighton Crop Protection Conference, Pest and Diseases (pp. 33-40). Farnham, Reino Unido: British Crop Protection Council. Dayarathne, M., Boonmee, S., Braun, U., Crous, P., Daranagama, D., ... Maharachchikumbura, S. (2016). Taxonomic utility of old names in current fungal classification and nomenclature: Conflicts, confusion & clarifications. Mycosphere, 7(11), 1622-1648. doi:10.5943/mycosphere/7/11/2. De Jong, J. C., McCormack, B. J., Smirnoff, N., & Talbot, N. J. (1997). Glycerol generates turgor in rice blast. Nature, 389, 244. doi:10.1038/38418. De Meyer, G., Bigirimana, J., Elad, Y., & Höfte, M. (1998). Induced systemic resistance in Trichoderma harzianum T39 biocontrol of Botrytis cinerea. European Journal of Plant Pathology, 104(3), 279-286. doi:10.1023/a:1008628806616 Dean, R., Van Kan, J. A., Pretorius, Z.A., Hammond-Kosack, K.E., Di Pietro, A., Spanu, P.D., ... Ellis, J. (2012). The Top 10 fungal pathogens in molecular plant pathology. Molecular Plant Pathology, 13(4), 414-430. doi:10.1111/j.1364-3703.2011.00783.x. Défago, G., Berling, C. H., Burger, U., Haas, D., Kahr, G., ... Wüthrich, B. (1990). Suppression of black root rot of tobacco and other root diseases by strains of Pseudomonas fluorescens: potential applications and mechanisms. En D. Hornby (Ed.), Biological control of soil-borne plant pathogens (pp. 93-108). Wallingford, Reino Unido: CAB International. Dennis, C., & Webster, J. (1971). Antagonistic properties of species-groups of Trichoderma: II. Production of volatile antibiotics. Transactions of the British Mycological Society, 57(1), 41-IN44. doi:10.1016/S0007-1536(71)80078-5. Deom, C. M., Schubert, K. R., Wolf, S., Holt, C. A., Lucas, W. J., & Beachy, R. N. (1990). Molecular characterization and biological function of the movement protein of tobacco mosaic virus in transgenic plants. Proceedings of the National Academy of Sciences, 87(9), 3284-3288. Dewey, F. M., & Grant-Downton, R. (2016). Botrytis -Biology, Detection and Quantification. En S. Fillinger & Y., Elad (Eds.), Botrytis – the Fungus, the Pathogen and its Management in Agricultural Systems (pp. 17-34). Cham, Suiza: Springer International Publishing. Dickinson, C. H., & Preece, T. F. (1977). Microbiology of aerial plant surfaces. Londres, Inglaterra: Academic Press. doi:10.1002/jobm.19770170712. Ding, S. W., Li, W. X., & Symons, R. H. (1995). A novel naturally occurring hybrid gene encoded by a plant rna virus facilitates long distance virus movement. The EMBO Journal, 14(23), 5762-5772. Dodd, S. L., Lieckfeldt, E., & Samuels, G. J. (2003). Hypocrea atroviridis sp. nov., the teleomorph of Trichoderma atroviride. Mycologia, 95(1), 27-40. doi:10.1080/15572536.2004.11833129. Doudoroff, M., & Palleroni, N. J. (1974). Genus I. Pseudomonas migula. En R. E. Buchanan & N. E. Gibbons (Eds.), Bergey’s manual of determinative bacteriology (pp. 217-243). Baltimore, EE. UU.: Williams & Wilkins. Droby, S., Wisniewski, M., Macarisin, D., & Wilson, C. (2009). Twenty years of postharvest biocontrol research: Is it time for a new paradigm? Postharvest Biology and Technology, 52(2), 137-145. doi:10.1016/j.postharvbio.2008.11.009. Druzhinina, I. S., Kopchinskiy, A. G., & Kubicek, C. P. (2006). The first 100 Trichoderma species characterized by molecular data. Mycoscience, 47, 55-64. doi:10.1007/S10267-006-0279-7. Duan, C. G., Wang, C. H., & Guo, H. S. (2012).Application of rna silencing to plant disease resistance. Silence, 3, 5. doi:10.1186/1758-907X-3-5. Dubos, B. (1992). Biological control of Botrytis, State -of-the-art. En K. Verhoeff, N. Malathrakis, & B. Williamson (Eds.), Recent advances in Botrytis research (pp. 169-178). Wageningen, Holanda: Pudoc Scientific Publishers. Duggar, B. M., & Armstrong, J. K. (1925). The effect of treating the Virus of Tobacco Mosaic with the juices of various plants. Annals of the Missouri Botanical Garden, 12(4), 359-366. doi:10.2307/2394061. Edwards, S., & Seddon, B. (1992). Bacillus brevis as biocontrol agent against Botrytis cinerea on protected Chinese cabbage. En K. Verhoeff, N. Malathrakis, & B. Williamson (Eds.), Recent advances in Botrytis research (pp. 267-271). Wageningen, Holanda: Pudoc Scientific Publishers. Eichenlaub, R., & Gartemann, K. H. (2011). The Clavibacter michiganensis subspecies: Molecular investigation of gram-positive bacterial plant pathogens.Annual Review of Phytopathology, 49, 445-464. doi:10.1146/annurev-phyto-072910-095258. Eichenlaub, R., & Gartemann, K. H. (2011). The Clavibacter michiganensis subspecies: Molecular investigation of gram-positive bacterial plant pathogens.Annual Review of Phytopathology, 49, 445-464. doi:10.1146/annurev-phyto-072910-095258. Elad, Y. (1994). Biological control of grape grey mould by Trichoderma harzianum. Crop Protection, 13(1), 35-38. doi:10.1016/0261-2194(94)90133-3. Elad, Y. (1990). Reasons for the delay in development of biological control of foliar pathogens. Phytoparasitica, 18(2): 99-105. doi:10.1007/bf02981226. Elad, Y. (1995). Mycoparasitism. En K. Kohmoto, R. P. Singh, & U. S. Singh, (Eds.), Pathogenesis and host specificity in plant diseases: histopathological, biochemical, genetic and molecular basis (pp. 289-307). Oxford, Reino Unido: Elsevier Science Ltd. Elad, Y. (1996). Mechanisms involved in the biological control of Botrytis cinerea incited diseases. European Journal of Plant Pathology, 102(8), 719-732. doi:10.1007/bf01877146. Elad, Y. (2000a). Biological control of foliar pathogens by means of Trichoderma harzianum and potential modes of action. Crop Protection, 19(8), 709-714. doi:10.1016/S0261-2194(00)00094-6. Elad, Y. (2000b). Trichoderma harzianum T39 preparation for biocontrol of plant diseases-control of Botrytis cinerea, Sclerotinia sclerotiorum and Cladosporium fulvum. Biocontrol Science and Technology, 10(4), 499-507. doi:10.1080/09583150050115089. Elad, Y. (2001). Trichodex: commercialization ofTrichoderma harzianum T39 – a case study. Agrow report, biopesticides: Trends and opportunities. Richmond, Reino Unido: PJB Publications Ltd. Elad, Y. (2003). Biocontrol of foliar pathogens: mechanisms and application. Communications in Agricultural and Applied Biological Sciences, 68(4 pt. A), 17-24. Elad, Y., & Freeman, S. (2002). Biological control of fungal plant pathogens. En F. Kempken (Ed.), The Mycota, a comprehensive treatise on fungi as experimental systems for basic and applied research. Vol. 11 Agricultural Applications (pp. 93-109). Heidelberg, Alemania: Springer. Elad, Y., & Kapat, A. (1999). The role of Trichoderma harzianum protease in the biocontrol of Botrytis cinerea. European Journal of Plant Pathology, 105(2), 177-189. doi:10.1023/a:1008753629207. Elad, Y., Kirshner, B., Yehuda, N., & Sztejnberg, A. (1998). Management of powdery mildew and gray mold of cucumber by Trichoderma harzianum T39 and Ampelomyces quisqualis AQ10. BioControl, 43(2), 241-251. doi:10.1023/a:1009919417481. Elad, Y., Pertot, I., Cotes-Prado, A. M., & Stewart, A. (2016). Plant hosts of Botrytis spp. En S. Fillinger & Y. Elad, (Eds.), Botrytis – the fungus, the pathogen and its management in agricultural systems (pp. 413-486). Cham, Suiza: Springer International Publishing. doi:10.1007/978-3-319-23371-0_20. Elad, Y., & Shtienberg, D. (1995). Botrytis cinerea in greenhouse vegetables: chemical, cultural, physiological and biological controls and their integration. Integrated Pest Management Review, 1(1), 15-29. doi:10.1007/BF00140331. Elad, Y., & Shtienberg, D. (1997). Integrated management of foliar diseases in greenhouse vegetables according to principles of a decision support system – Greenman. IOBC WPRS Bulletin, 20(4), 71-76. Elad, Y., & Stewart, A. (2004). Microbial control of Botrytis spp. En: Y. Elad (Ed.), Botrytis: Biology, Pathology and Control (pp. 223-240). Norwell, EE. UU.: Kluwer Academic Publishers. Elad, Y., & Zimand, G. (1991). Experience in integrated chemicalbiological control of grey mould (Botrytis cinerea). WPRS Bulletin, 14, 195-199. Elad, Y., & Zimand, G. (1992). Integration of biological and chemical control for grey mould. En K. Verhoeff, N. Malathrakis, & B. Williamson (Eds.), Recent advances in Botrytis research (pp. 272-276). Wageningen, Holanda: Pudoc Scientific Publishers. Elad, Y., Zimand, G., Zaqs, Y., Zuriel, S., & Chet, I. (1993a). Biological and integrated control of cucumber grey mould (Botrytis cinerea) under commercial greenhouse condition. Plant Pathology, 42(3), 324-332. doi:10.1111/j.1365-3059.1993.tb01508.x. Elad, Y., Zimand, G., Zaqs, Y., Zuriel, S., & Chet, I. (1993b). Use of Trichoderma harzianum in combination or alternation with fungicides to control cucumber grey mould (Botrytis cinerea) under commercial greenhouse conditions. Plant Pathology, 42(3), 324-332. doi10.1111/j.1365-3059.1993.tb01508.x. Elad, Y., Köhl, J., & Fokkema, N. J. (1994a). Control of infection and sporulation of Botrytis cinerea on bean and tomato by saprophytic bacteria and fungi. European Journal Plant Pathology, 100(5), 315-336. doi:10.1007/bf01876443. Elad, Y., Köhl, J., & Fokkema, N. J. (1994b). Control of infection and sporulation of Botrytis cinerea on bean and tomato by saprophytic yeasts. Phytopathology, 84(10), 1193-1200. doi:10.1094/Phyto-84-1193. Elad, Y., Köhl, J., & Fokkema, N. J. (1994b). Control of infection and sporulation of Botrytis cinerea on bean and tomato by saprophytic yeasts. Phytopathology, 84(10), 1193-1200. doi:10.1094/Phyto-84-1193. Elmer, P. A. G., & Reglinski, T. (2006). Biosuppression of Botrytis cinerea in grapes. Plant Pathology, 55(2), 155-177. doi:10.1111/j.1365-3059.2006.01348.x. Elmer, P. A. G., & Reglinski, T. (2006). Biosuppression of Botrytis cinerea in grapes. Plant Pathology, 55(2), 155-177. doi:10.1111/j.1365-3059.2006.01348.x. Errampalli, D., & Brubacher, N. R. (2006). Biological and integrated control of postharvest blue mold (Penicillium expansum) of apples by Pseudomonas syringae and cyprodinil. Biological Control, 36(1), 49- 56. doi:10.1016/j.biocontrol.2005.07.011. Etchegaray, A., de Castro-Bueno, C., de Melo, I. S., Tsai, S. M., de Fátima-Fiore, M., ... Teschke, O., 2008. Effect of a highly concentrated lipopeptide extract of Bacillus subtilis on fungal and bacterial cells. Archives of Microbiology, 190(6), 611-622. doi:10.1007/s00203-008-0409-z. Farré-Armengol, G., Filella, I., Llusia, J., & Peñuelas, J. (2016). Bidirectional interaction between phyllospheric microbiotas and plant volatile emissions. Trends Plant Science, 21(10), 854-860. doi:10.1016/j.tplants.2016.06.005. Fenner, K., Canonica, S., Wackett, L. P., & Elsner, M. (2013). Evaluating pesticide degradation in the environment: Blind spots and emerging opportunities. Science, 341(6147), 752-758. doi:10.1126/science.1236281. Fernández, N. V., Mestre, M. C., Marchelli, P., & Fontenla, S. B. (2012). Yeast and yeast-like fungi associated with dry indehiscent fruits of Nothofagus nervosa in Patagonia, Argentina. FEMS Microbiology Ecology, 80(1), 179-192. doi:10.1111/j.1574-6941.2011.01287.x. Fernando, W. G. D., Ramarathnam, R., Krishnamoorthy, A. S., & Savchuk, S. C. (2005). Identification and use of potential bacterial organic antifungal volatiles in biocontrol. Soil Biology and iochemestry, 37(5), 955-964. doi:10.1016/j.soilbio.2004.10.021. Filonow, A. B., Vishniac, H. S., Anderson, J. A., & Janisiewicz, W. J. (1996). Biological control of Botrytis cinerea in apple by yeasts from various habitats and their putative mechanisms of antagonism. Biological Control, 7(2), 212-220. doi:10.1006/bcon.1996.0086. Fincheira, P., Parra, L., Mutis, A., Parada, M., & Quiroz, A. (2017). Volatiles emitted by Bacillus sp. BCT9 act as growth modulating agents on Lactuca sativa seedlings. Microbiologyical Research, 203, 47-56. doi:10.1016/j.micres.2017.06.007. Fitch, M. M. M., Manshardt, R. M., Gonsalves, D., Slightom, J. L., & Sanford, J. C. (1992). Virus resistant papaya plants derived from tissues bombarded with the coat protein gene of papaya ringspot virus. Bio/Technology, 10, 1466-1472. doi.10.1038/nbt1192-1466 Flint, M. L. (1998). Pests of the garden and small farm: a grower's guide to using less pesticide. Oakland, EE. UU.: University of California, Agriculture and Natural Resources. Fokkema, N. J. (1993). Opportunities and problems of control of foliar pathogens with micro-organisms. Pest Management Science, 37(4), 411-416. doi:10.1002/ps.2780370416. Fravel, D. (1999). Commercial biocontrol products for use against soilborne crop diseases. Recuperado de http://www.barc.usda.gov/psi/bpdl/bpdlprod/bioprod.html. Fravel, D. R. (2005). Commercialization and implementation of biocontrol. Annual Review of Phytopathology, 43, 337-359. doi:10.1146/annurev.phyto.43.032904.092924. Freeman, S., Minz, D., Kolesnik, I., Barbul, O., Zveibil, A., Maymon, M., ... Elad, Y. (2004). Trichoderma biocontrol of Colletotrichum acutatum and Botrytis cinerea and survival in strawberry. European Journal of Plant Pathology, 110(4), 361-370. doi:10.1023/B:EJPP.0000021057.93305.d9. Fuchs, M., & Gonsalves, D. (1995). Resistance of transgenic hybrid squash zw-20 expressing the coat protein genes of zucchini yellow mosaic virus and watermelon mosaic virus 2 to mixed infections by both potyviruses. Bio/Technology, 13, 1466-1473. doi:10.1038/nbt1295-1466. Fujiwara, M., Kanamori, T., Ohki, S. T., & Osaki, T. (2001). Purification and partial characterization of figaren, an RNase-like novel antiviral protein from Cucumis figarei. Journal of General Plant Pathology, 67(2), 152-158. doi:10.1007/PL00013002. Fulcher, M. R., Cummings, J. A., & Bergstrom, G. C. (2017). First report of an Alternaria leaf spot of wheat in the U.S.A. Plant Disease, 101(7), 1326- 1326. doi:10.1094/PDIS-10-16-1541-PDN. Fulcher, M. R., Cummings, J. A., & Bergstrom, G. C. (2017). First report of an Alternaria leaf spot of wheat in the U.S.A. Plant Disease, 101(7), 1326- 1326. doi:10.1094/PDIS-10-16-1541-PDN. Gafni, A., Calderon, C. E., Harris, R., Buxdorf, K., Dafa-Berger, A., ... Levy, M. (2015). Biological control of the cucurbit powdery mildew pathogen Podosphaera xanthii by means of the epiphytic fungus Pseudozyma aphidis and parasitism as a mode of action. Frontiers in Plant Science, 6, 132. doi:10.3389/fpls.2015.00132. Galindo, E., Serrano-Carreón, L., Gutiérrez, C. R., Balderas-Ruíz, K. A., Muñoz-Celaya, A. L., ... Arroyo- Colín, J. (2015). Desarrollo histórico y los retos tecnológicos y legales para comercializar Fungifree AB®, el primer biofungicida 100 % mexicano. tip. Revista Especializada en Ciencias Químico-Biológicas, 18(1), 52-60. Gao, Y.-R., Han, Y.-T., Zhao, F.-L., Li, Y.-J., Cheng, Y.,... Wen, Y.-Q. (2016). Identification and utilization of a new Erysiphe necator isolate NAFU1 to quickly evaluate powdery mildew resistance in wild Chinese grapevine species using detached leaves. Plant Physiology and Biochemestry, 98, 12-24. doi:10.1016/j.plaphy.2015.11.003. Garibaldi, L. A., Bartomeus, I., Bommarco, R., Klein, A. M., Cunningham, S. A., ... Woyciechowski, M. (2015). Editor's choice: Review: Trait matching of flower visitors and crops predicts fruit set better than trait diversity. Journal of Applied Ecology, 52(6), 1436-1444. doi:10.1111/1365-2664.12530. Garry, G., Forbes, G., Salas, A., Santa-Cruz, M., Pérez, W., & Nelson, R. J. (2005). Genetic diversity and host differentiation among isolates of Phytophthora infestans from cultivated potato and wild solanaceous hosts in Peru. Plant Pathology, 54(6), 740-748. doi:10.1111/j.1365-3059.2005.01250.x. Ghabrial, S. A., & Suzuki, N. (2009). Viruses of plant pathogenic fungi. Annual Review of Phytopathology, 47, 353-384. doi:10.1146/annurevphyto-080508-081932. Goldman, G. H., Temmerman, W., Jacobs, D., Contreras, R., Van Montagu, M., & Herrera-Estrella, A. (1993). A nucleotide substitution in one of the -tubulin genes of Trichoderma viride confers resistance to the antimitotic drug methyl benzimidazole-2-ylcarbamate. Molecular and General Genetics, 240(1), 73-80. doi:10.1007/bf00276886. Golemboski, D. B., Lomonossoff, G. P., & Zaitlin, M. (1990). Plants transformed with a tobacco mosaic virus nonstructural gene sequence are resistant to the virus. Proceedings of the National Academy of Sciences, 87(16), 6311-6315. doi:10.1073/pnas.87.16.6311. Gómez-Expósito, R., Postma, J., Raaijmakers, J. M., & De Bruijn, I. (2015). Diversity and activity of Lysobacter species from disease suppressive soils. Frontiers in Microbiology, 6, 1243. doi:10.3389/fmicb.2015.01243. Goodwin, S. B., Cohen, B. A., & Fry, W. E. (1994). Pan global distribution of a single clonal lineage of the Irish potato famine fungus. Proceedings of the National Academy of Sciences of the United States of America, 91(24), 11591-11595. Grant, T. J., & Costa, A. S. (1951). A mild strain of the tristeza virus of citrus. Phytopathology, 41, 114-122. Guamán-Burneo, C., & Carvajal-Barriga, J. (2009). Caracterización e identificación de aislados de levaduras carotenogénicas de varias zonas naturales del Ecuador. Universitas Scientiarum, 14(2-3), 11. doi:10.11144/javeriana.SC14-2-3.ceid. Guetsky, R., Shtienberg, D., Elad, Y., & Dinoor, A. (2001). Combining biocontrol agents to reduce the variability of biological control. Phytopathology, 91(7), 621-627. doi:10.1094/PHYTO.2001.91.7.621. Guetskyl, R., Shtienberg, D., Dinoor, A., & Elad, Y. (2002). Establishment, survival and activity of the biocontrol agents Pichia guilliermondii and Bacillus mycoides applied as a mixture on strawberry plants. Biocontrol Science and Technology, 12(6), 705-714. do i:10.1080/0958315021000039888. Gupta, B. M., Chandra, K., Verma, H. N., & Verma, G. S. (1974). Induction of antiviral resistance in Nicotiana glutinosa plants by treatment with Trichothecium polysaccharide and its reversal by actinomycin d. Journal of General Virology, 24(1), 211-213. doi:10.1099/0022-1317-24-1-211. Hahn, M. (2014). The rising threat of fungicide resistance in plant pathogenic fungi: Botrytis as a case study. Journal of Chemical Biology, 7(4), 133-141. doi:10.1007/s12154-014-0113-1. Hajlaoui, M. R., & Bélanger, R. R. (1991). Comparative effects of temperature and humidity on the activity of three potential antagonists of rose powdery mildew. Netherlands Journal of Plant Pathology, 97(4), 203-208. doi:10.1007/bf01989818. Hajlaoui, M. R., & Bélanger, R. R. (1993). Antagonism of the yeast-like phylloplane fungus Sporothrix flocculosa against Erysiphe graminis var tritici. Biocontrol Science and Technology, 3(4), 427-434. doi:10.1080/09583159309355297. Hammami, W., Castro, C. Q., Rémus-Borel, W., Labbé, C., & Bélanger, R. R. (2011). Ecological basis of the interaction between Pseudozyma flocculosa and powdery mildew fungi. Applied and Environmental Microbiology, 77(3), 926-933. doi:10.1128/aem.01255-10. Harel, Y. M., Mehari, Z. H., Rav-David, D., & Elad, Y. (2014). Induced systemic resistance against gray mold in tomato (Solanum lycopersicum) by benzothiadiazole and Trichoderma harzianum T39. Phytopathology, 104(2), 150-157. doi:10.1094/PHYTO-02-13-0043-R. Harman, G. E. (2000). Myths and dogmas of biocontrol changes in perceptions derived from research on Trichoderma harzianum T-22. Plant Disase, 84(4), 377-393. doi:10.1094/PDIS.2000.84.4.377. Harman, G. E., Howell, C. R., Viterbo, A., Chet, I., & Lorito, M. (2004). Trichoderma species — opportunistic, avirulent plant symbionts. Nature Reviews Microbiology, 2, 43-56. doi:10.1038/nrmicro797. Hashioka, Y., & Nakai, Y. (1980). Ultrastructure of pycnidial development and mycoparasitism of Ampelomyces quisqualis parasitic on Erysiphales. Transactions of the Mycological Society of Japan, 21(3), 329-338. Heath, M. C., Howard, R. J., Valent, B., & Chumley, F. G. (1992). Ultrastructural interactions of one strain of Magnaporthe grisea with goosegrass and weeping lovegrass. Canadian Journal of Botany, 70(4), 779-787. doi:10.1139/b92-099. Hellwald, K.-H., & Palukaitis, P. (1995). Viral rna as a potential target for two independent mechanisms of replicase-mediated resistance against cucumber mosaic virus. Cell, 83(6), 937-946. doi:10.1016/0092-8674(95)90209-0. Hemenway, C., Fang, R.-X., Kaniewski, W. K., Chua, N.-H., & Tumer, N. E. (1988). Analysis of the mechanism of protection in transgenic plants expressing the potato virus X coat protein or its antisense rna. The EMBO Journal, 7(5), 1273-1280. Heydari, A., & Pessarakli, M. (2010). A review on biological control of fungal plant pathogens using microbial antagonists. Journal of Biological Sciences, 10(4), 273-290. doi:10.3923/jbs.2010. 273.290. Heye, C. C. (1982). Biological control of the perfect stage of the apple scab pathogen, Venturia inaequalis (Cke.) Wint. Madison, Wisconsin, EE. UU.: University of Wisconsin. Hijwegen, T., & Buchenauer, H. (1984). Isolation and identification of hyperparasitic fungi associated with Erysiphaceae. Netherlands Journal of Plant Pathology, 90(2), 79-83. doi:10.1007/bf01999956. Hiltunen, L. H., Ojanpera, T., Kortemaa, H., Richter, E., Lehtonen, M. J., & Valkonen, J. P. T. (2009). Interactions and biocontrol of pathogenic Streptomyces strains cooccurring in potato scab lesions. Journal of Applied Microbiology, 106(1), 199-212. Hino, I., & Kato, H. (1929). Cicinnoboli parasitic on mildew fungi. Bulletin of the Miyazaki Collegium of Agriculture and Forestry, 1, 91-100. Hiradate, S., Yoshida, S., Sugie, H., Yada, H., & Fujii, Y. (2002). Mulberry anthracnose antagonists (iturins) produced by Bacillus amyloliquefaciens RC-2. Phytochemistry, 61(6), 693-698. doi:10.1016/S0031-9422(02)00365-5. Hirai, T., Hiashima, A., Itoh, T., Takahashi, T., Shimomura, T., & Hayashi, H. (1966). Inhibitory effect of blasticidin S on Tobacco Mosaic Virus multiplication. Phytopathology, 56(4), 1236-1239. doi:10.1016/0042-6822(68)90195-5. Hirano, S. S., & Upper, C. D. (2000). Bacteria in the leaf ecosystem with emphasis on Pseudomonas syringae—a pathogen, ice nucleus, and epiphyte. Microbiology Molecular Biology Reviews, 64(3), 624-653. doi:10.1128/mmbr.64.3.624-653.2000. Hislop, E. C., & Cox, T. W. (1969). Effects of captan on the non-parasitic microflora of apple leaves. Transactions of the British mycological society, 52(2), 223-235. doi:10.1016/S00071536(69)80035-5. Hjeljord, L., & Tronsmo, A. (1998). Trichoderma and Gliocladium in biological control: an overview. En G. E. Harman & C. P. Kubice (Eds.), Trichoderma & Gliocladium: Enzymes, biological control and commercial applications (pp. 131-151). Londres, Reino Unido: Taylor & Francis Ltd. Hofstein, R., Daoust, R. A., & Aeschlimann, J. P. (1996). Constraints to the development of biofungicides: The example of “AQ10”, a new product for controlling powdery mildews. Entomophaga, 41(3-4), 455-460. doi:10.1007/bf02765797. Hogenhout, S. A., Ammar, E. D., Whitfield, A. E., & Redinbaugh, M. G. (2008). Insect vector interactions with persistently transmitted viruses. Annual Review of Phytopathology, 46, 327-359. doi:10.1146/annurev.phyto.022508.092135. Hokama, N., Kawano, S., & Tokashiki, I. (1993). Effectiveness of cross protection by a mild strain of Zucchini Yellow Mosaic Virus for Mosaic disease of pumpukin ( Japanese). Annals of Phytopathology of Society Japan, 59, 323. Holmes, F. O. (1934). A masked strain of tobaccomosaic virus. Phytopathology, 24, 845-873. Holtz, G., Coertze, S., & Williamson, B. (2007). The ecology of Botrytis on plant surfaces. En: Y. Elad, B. Williamson, P. Tudzynski, & N. Delen (Eds.), Botrytis: Biology, Pathology and Control (pp. 9-27). Dordrecht, Holanda: Springer. doi:10.1007/978-1-4020-2626-3_2. Hoog, G. S., & Guarro, J. (1995). Atlas of clinical fungi. Baarn, Holanda: Centraalbureau voor Schimmelcultures. Horst, R. K. (2013). Powdery mildews. En R. K. Horst (Ed.), Westcott's plant disease handbook. Springer Netherlands (pp. 285-293). Dordrecht, Holanda: Springer. doi:10.1007/978-94-007-2141-8_40. Howard, R. J., Ferrari, M. A., Roach, D. H., & Money, N. P. (1991). Penetration of hard substrates by a fungus employing enormous turgor pressures. Proceedings of the national academy of sciences, 88(24), 11281-11284. Howell, C. R. (2003). Mechanisms employed by Trichoderma species in the biological control of plant diseases: The history and evolution of current concepts. Plant Disease, 87(1), 4-10. doi:10.1094/PDIS.2003.87.1.4. Hughes, J. A., & Ollennu, L. A. A. (1994). Mild strain protection of cocoa in Ghana against cocoa swollen shoot virus—a review. Plant Pathology, 43(3), 442- 457. doi:10.1111/j.13653059.1994.tb01578.x. Hull, R. (2014). Plant Virology (5.a ed.). Boston, EE. UU.: Elsevier. Iáñez, E. (1998). Curso de microbiología general. Acción de los agentes físicos sobre las bacterias (ii). Recuperado de http://www.biologia.edu.ar/microgeneral/microianez/18_micro.htm. Index Fungorum (ifs). (2017). Index Fungorum. Recuperado de http://www.indexfungorum.org/Index.htm. Inácio, J., Rodrigues, M. G., Sobral, P., & Fonseca, Á. (2004). Characterisation and classification of phylloplane yeasts from Portugal related to the genus Taphrina and description of five novel Lalaria species. FEMS Yeast Research, 4(4-5), 541-555. doi:10.1016/S1567-1356(03)00226-5. Ippolito, A., & Nigro, F. (2000). Impact of preharvest application of biological control agents on postharvest diseases of fresh fruits and vegetables. Crop Protection, 19(8), 715-723. doi:10.1016/S0261-2194(00)00095-8. International Service for the Acquisition of Agribiotech Applications (isaaa). (2017). GM Approval Database. Recuperado de ttp://www.isaaa.org/gmap provaldatabase/ Ishimaru, C. A., Klos, E. J., & Brubaker, R. R. (1988). Multiple antibiotic production by Erwinia herbicola. Phytopathology, 78(6), 746-750. doi:10.1094/Phyto-78-746 International Subcommission on Trichoderma and Hypocrea Taxonomy (isth). (2017). Hypocrea/ Trichoderma diversity. List of known species described by 2006. Recuperado de http://www.isth.info/biodiversity/index.ph. Izuno, A., Tanabe, A. S., Toju, H., Yamasaki, M., Indrioko, S., & Isagi, Y. (2016). Structure of phyllosphere fungal communities in a tropical dipterocarp plantation: A massively parallel nextgeneration sequencing analysis. Mycoscience, 57(3), 171-180. doi:10.1016/j.myc.2015.12.005. Jackson, A. J., Walters, D. R., & Marshall, G. (1997). Antagonistic interactions between the foliar pathogen Botrytis fabae and isolates of Penicillium brevicompactum and Cladosporium cladosporioides on faba beans. Biological Control, 8(2), 97-106. doi:10.1006/bcon.1996.0481. Jackson, D., Skillman, J., & Vandermeer, J. (2012). Indirect biological control of the coffee leaf rust, Hemileia vastatrix, by the entomogenous fungus Lecanicillium lecanii in a complex coffee agroecosystem. Biological Control, 61(1), 89-97. doi:10.1016/j.biocontrol.2012.01.004. Jacobsen, B. (2006). Biological control of plant diseases by phyllosphere applied biological control agents. En M. J. Bailey, A. K. Lilley, T. M. Timms-Wilson, P. T. N. Spencer-Phillips (Eds.), Microbial Ecology of Aerial Plant Surfaces (pp. 133-147). Londres, Reino Unido: CABI. Jacques, M., Kinkel, L. L., & Morris, C. E. (1995). Population sizes, immigration, and growth of epiphytic bacteria on leaves of different ages and positions of field-grown endive (Cichorium endivia var. latifolia). Applied and Environental Microbiology, 61(3), 899-906. Janisiewicz, W. J., Tworkoski, T. J., & Sharer, C. (2000). Characterizing the mechanism of biological control of postharvest diseases on fruits with a simple method to study competition for nutrients. Phytopathology, 90(11), 1196-1200. doi:10.1094/ PHYTO.2000.90.11.1196. Jarvis, W. R. (1977). Botryotinia and Botrytis species: taxonomy, physiology, and pathogenicity. Quebec, Canadá: Department of Agriculture of Canada. Jeleń, H., Błaszczyk, L., Chełkowski, J., Rogowicz, K., & Strakowska, J. (2014). Formation of 6-n-pentyl-2Hpyran- 2-one (6-PAP) and other volatiles by different Trichoderma species. Mycological Progress, 13(3), 589-600. doi:10.1007/s11557-013-0942-2. Jijakli, M., Lepoivre, P., Tossut, P., & Thonard, P. (1993). Biological control of Botrytis cinerea and Penicillium sp. on post-harvest apples by two antagonistic yeasts. Mededelingen van de Faculteit Landbouwkundige en Toegepaste Biologische Wetenschappen (Rijksuniversiteit te Gent), 58(3b), 1349-1358. Jin, Y., Szabo, L. J., & Carson, M. (2010). Century-old mystery of Puccinia striiformis life history solved with the identification of Berberis spp. as an alternate host. Phytopathology, 100(5), 432-435. doi:10.1094/ PHYTO-100-5-0432. Jones, D. G. (1993). Exploitation of microorganisms. London, United Kingdom: Springer science & business media. doi:10.1007/978-94-011-1532-2. Junqueira, N. T. V., & Gasparotto, L. (1991). Controle biológico de fungos estromáticos causadores de doenças foliares em seringueira. En: W. Bettiol (Ed.) Controle biológico de doenças de plantas (pp. 307-331, Vol. 1). Jaguariúna, Brasil: Embrapa-cnpda. Kalogiannis, S., Tjamos, S. E., Stergiou, A., Antoniou, P. P., Ziogas, B. N., & Tjamos, E. C. (2006). Selection and evaluation of phyllosphere yeasts as biocontrol agents against grey mould of tomato. European Journal of Plant Pathology, 116(1), 69-76. doi:10.1007/ s10658-006-9040-5. Kämpfer, P. (2006). The family Streptomycetaceae, Part I: Taxonomy. En: M. Dworkin, S. Falkow, E. Rosenberg, K.-H. Schleifer & E. Stackebrandt (Eds.), The Prokaryotes: Volume 3: Archaea. bacteria: Firmicutes, Actinomycetes (pp. 538-604). Nueva York, EE. UU.: Springer. doi:10.1007/0-387-30743-5_22. Kaniewski, W., Lawson, C., & Thomas, P. (1993). Agronomically useful resistance in Russet Burbank potato containing a plrv cp gene. Documento presentado en ix International Congress of Virology. Glasgow, Scotland. Kapat, A., Zimand, G., & Elad, Y. (1998). Biosynthesis of pathogenicity hydrolytic enzymes by Botrytis cinerea during infection of bean leaves and in vitro. Mycology Research, 102(8), 1017-1024. doi:10.1017/ S0953756297006023. Karabulut, O. A., Tezcan, H., Daus, A., Cohen, L., Wiess, B., & Droby, S. (2004). Control of preharvest and postharvest fruit rot in Strawberry by Metschnikowia fructicola. Biocontrol Science and Technology, 14(5), 513-521. doi:10.1080/09583150410001682287. Keel, C., Schnider, U., Maurhofer, M., Voisard, C., Laville, J., Burger, U., … Défago, G. (1992). Suppression of root diseases by Pseudomonas fluorescens CHA0: Importance of the bacterial secondary metabolite 2,4-Diacetylphloroglucinol. Molecular Plant-Microbe Interactions, 5(1), 4-13. Kema, G., Annone, J., Sayoud, R., & Van Silfhout, C. (1996). Genetic variation for virulence and resistance in the wheat-Mycosphaerella graminicola pathosystem. I. Interactions between pathogen isolates and host cultivars. Phytopathology, 86(2), 200-212. doi:10.1094/Phyto-86-200. Kema, G., Sayoud, R., Annone, J., & Van Silfhout, C. (1996). Genetic variation for virulence and resistance in the wheat-Mycosphaerella graminicola pathosystem. ii. Analysis of interactions between pathogen isolates and host cultivars. Phytopathology, 86(2), 213-220. doi:10.1094/Phyto-86-213 Kerling, L. C. P. (1958). De microflora of het blad van Beta vulgaris. Tijdschrift Over Plantenziekten, 64, 402-410. doi:10.1007/bf02137361. Kevan, P., Kapongo, J., Al-mazra'awi, M., & Shipp, L. (2008). Honey bees, bumble bees, and biocontrol: New alliances between old friends. En R. James & T. L. Pitts-Singer (Eds.), Bee pollination in agricultural ecosystems (pp. 65-81). Oxford, Reino Unido: Oxford University Press. Khan, M. M. A. A., & Verma, H. N. (1990). Partial characterisation of an induced virus inhibitory protein, associated with systemic resistance in Cyamopsis tetragonoloba (L.) Taub. plants. Annals of Applied Biology, 117(3), 617-623. doi:10.1111/j.1744-7348.1990. tb04827.x. Khan, N., Mishra, A., & Nautiyal, C. S. (2012). Paenibacillus lentimorbus B-30488r controls early blight disease in tomato by inducing host resistance associated gene expression and inhibiting Alternaria solani. Biological Control, 62(2), 65-74. doi:10.1016/j. biocontrol.2012.03.010. Khoa, N. Đ., Giàu, N. Đ. N., & Tun, T. Q. (2016). Effects of Serratia nematodiphila CT-78 on rice bacterial leaf blight caused by Xanthomonas oryzae pv. oryzae. Biological Control, 103, 1-10. doi:10.1016/j. biocontrol.2016.07.010. Kim, J. J., Goettel, M. S., & Gillespie, D. R. (2007). Potential of Lecanicillium species for dual microbial control of aphids and the cucumber powdery mildew fungus, Sphaerotheca fuliginea. Biological Control, 40(3), 327-332. doi:10.1016/j.biocontrol.2006.12.002. Kinkel, L. L. (1997). Microbial population dynamics on leaves. Annual Review of Phytopathology, 35, 327-347. doi:10.1146/annurev.phyto.35.1.327 Kiss, L. (1997). Graminicolous powdery mildew fungi as new natural hosts of Ampelomyces mycoparasites. Canadian Journal of Botany, 75(4), 680-683. doi:10.1139/b97-076. Kiss, L. (1998). Natural occurrence of ampelomyces intracellular mycoparasites in mycelia of powdery mildew fungi. The New Phytologist, 140(4), 709-714. doi:10.1046/j.1469-8137.1998.00316.x. Kiss, L. (2003). A review of fungal antagonists of powdery mildews and their potential as biocontrol agents. Pest Management Science, 59(4), 475-483. doi:10.1002/ps.689. Kiss, L., Russell, J. C., Szentiványi, O., Xu, X., & Jeffries, P. (2004). Biology and biocontrol potential of Ampelomyces mycoparasites, natural antagonists of powdery mildew fungi. Biocontrol Science and Technology, 14(7), 635-651. doi:10.1080/095831504 10001683600. Klatt, B. K., Holzschuh, A., Westphal, C., Clough, Y., Smit, I., . . . Tscharntke, T. (2014). Bee pollination improves crop quality, shelf life and commercial value. Proceedings of the Royal Society B: Biological Sciences, 281(1775). doi:10.1098/rspb.2013.2440. Knudsen, G. R., & Hudler, G. W. (1987). Use of a computer simulation model to evaluate a plant disease biocontrol agent. Ecological Modelling, 35(1- 2), 45-62. doi:10.1016/0304-3800(87)90090-1. Ko, H.-S., Jin, R.-D., Krishnan, H. B., Lee, S.-B., & Kim, K.-Y. (2009). Biocontrol ability of Lysobacter antibioticus HS124 against Phytophthora Blight is mediated by the production of 4-Hydroxyphenylacetic acid and several lytic enzymes. Current Microbiology, 59(6), 608-615. doi:10.1007/s00284-009-9481-0. Kobayashi, N., Hiramatsu, A., & Akatsuka, T. (1987). Purification and chemical properties of an inhibitor of plant virus infection from fruiting bodies of Lentinus edodes. Agricultural and Biological Chemistry, 51(3), 883-890. doi:10.1271/bbb1961.51.883. Köhl, J., & Fokkema, N. J. (1993). Fungal interactions on living and necrotic leaves. En J. P. Blakeman & B. Williamson (Eds.), Ecology of plant pathogens (pp. 321-334). Oxon, Reino Unido: cabi. Köhl, J., Molhoek, W., Van der Plas, C., & Fokkema, N. (1995). Effect of Ulocladium atrum and other antagonists on sporulation of Botrytis cinerea on dead lily leaves exposed to field conditions. Phytopathology, 85(4), 393-400. Köhl, J., & Schlösser, E. (1989). Decay of sclerotia of Botrytis cinerea by Trichoderma spp. At low temperatures. Journal of Phytopathology, 125(4), 320- 326. doi:10.1111/j.1439-0434.1989.tb01076.x. Kokalis-Burelle, N., Backman, P. A., Rodríguez- Kábana, R., & Ploper, L. D. (1992). Potential for biological control of early leafspot of peanut using Bacillus cereus and chitin as foliar amendments. Biological Control, 2(4), 321-328. doi:10.1016/1049- 9644(92)90026-A. Korsten, L., De Villiers, E. E., Wehner, F. C., & Kotzé, J. M. (1997). Field sprays of Bacillus subtilis and fungicides for control of preharvest fruit diseases of avocado in South Africa. Plant Disease, 81(5), 455- 459. doi:10.1094/PDIS.1997.81.5.455. Kovach, J., Petzoldt, R., & Harman, G. E. (2000). Use of honey bees and bumble bees to disseminate Trichoderma harzianum 1295-22 to Strawberries for Botrytis control. Biological Control, 18(3), 235-242. doi:10.1006/bcon.2000.0839. Krauss, U., & Soberanis, W. (2002). Effect of fertilization and biocontrol application frequency on cocoa pod diseases. Biological Control, 24(1), 82-89. doi:10.1016/S1049-9644(02)00007-5. Kubicek, C. P., & Penttila, M. (1998). Regulation of production of plant polysaccharide degrading enzymes by Trichoderma. En G. E. Harman & C. P. Kubicek (Eds.), Trichoderma and Gliocladium (Chapter 3). Londres, Reino Unido: Taylor & Francis Ltd. Kubo, S., Ikeda, T., Imaizumi, S., Takanami, Y., & Mikami, Y. (1990). A potent plant virus inhibitor found in Mirabilis jalapa L. Japanese Journal of Phytopathology, 56(4), 481-487. doi:10.3186/jjphy topath.56.481. Kubota, K., Tsuda, S., Tamai, A., & Meshi, T. (2003). Tomato mosaic virus replication protein suppresses virus-targeted posttranscriptional gene silencing. Journal of Virology, 77(20), 11016-11026. doi:10.1128/jvi.77.20.11016-11026.2003. Kumar, A., & Purohit, A. K. (2012). The role of indigenous knowledge in biological control of plant pathogens: Logistics of new research initiatives. En: J. M. Mérillon & K. G. Ramawat (Eds.), Plant defence: Biological control (pp. 161-194). Dordrecht, Holanda: Springer. doi:10.1007/978-94-007-1933-0_7. Kupferschmidt, K. (2013). A lethal dose of rna. Science, 341(6147), 732-733. doi:10.1126/science. 341.6147.732. Kutuzova, S. N., Porokhovinova, E. A., & Brutch, N. B. (2017). Evolution of virulence in a population of the flax rust pathogen Melampsora lini (Pers.) Lev. in northwestern Russia. Russian Journal of Genetics: Applied Research, 7(2), 159-169. doi:10.1134/S20 7905971702006X. Labudova, I., & Gogorova, L. (1988). Biological control of phytopathogenic fungi through lytic action of Trichoderma species. FEMS Microbiology Letters, 52(3), 193-198. doi:10.1111/j.1574-6968.1988.tb 02594.x. Lam, K. S. (2006). Discovery of novel metabolites from marine actinomycetes. Current in Opinion Microbiology, 9(3), 245-251. doi:10.1016/j.mib. 2006.03.004. Lam, Y.-H., Wong, Y.-S., Wang, B., Wong, R.N.S., Yeung, H.-W., & Shaw, P.-C. (1996). Use of trichosanthin to reduce infection by turnip mosaic virus. Plant Science, 114(1), 111-117. doi:10.1016/0168-9452 (95)04310-1. Landry, C., Bonnot, F., Ravigné, V., Carlier, J., Rengifo, D., . . . Abadie, C. (2017). A foliar disease simulation model to assist the design of new control methods against black leaf streak disease of banana. Ecological Modelling, 359(C), 383-397. doi:10.1016/j.ecolmodel. 2017.05.009. Lapsker, Z., & Elad, Y. (2001). Involvement of reactive oxygen species and antioxidant process in the disease caused by Botrytis cinerea on bean leaves and in its biological control by means of Trichoderma harzianum T39. Biological Control of Fungal and Bacterial Plant Pathogens IOBC WPRS Bulletin, 24(3), 21-25. Larone, D. H., & Howard, D. H. (1996). Medically Important Fungi: A Guide to Identification. Washington, D.C., EE. UU.: ASM Press. Law, J. W.-F., Ser, H.-L., Khan, T. M., Chuah, L.-H., Pusparajah, P., . . . Lee, L.-H. (2017). The potential of Streptomyces as biocontrol agents against the rice blast fungus, Magnaporthe oryzae (Pyricularia oryzae). Frontiers in Microbiology, 8, 3. doi:10.3389/ fmicb.2017.00003. Lee, G., Lee, S.-H., Kim, K.M., & Ryu, C.-M. (2017). Foliar application of the leaf-colonizing yeast Pseudozyma churashimaensis elicits systemic defense of pepper against bacterial and viral pathogens. Scientific Reports, 7, 39432. doi:10.1038/srep39432 Lee, R. E. J., Warren, G. J., & Gusta, L. V. (1995). Bioquímica de nucleos de hielo bacteriales. En F. Ray & K. Paul (Eds.), Nucleación biológica de hielo y sus aplicaciones (pp. 63-83). St. Paul, Minnesota, EE. UU.: The American Phytopathological Society (aps). Legler, S. E., Caffi, T., Kiss, L., Pintye, A., & Rossi, V. (2011). Methods for screening new Ampelomyces strains to be used as biocontrol agents against grapevine powdery mildew. IOBC/WPRS Bulletin, 67(marzo), 149-154. Legler, S. E., Pintye, A., Caffi, T., Gulyás, S., Bohár, G., ... Kiss, L. (2016). Sporulation rate in culture and mycoparasitic activity, but not mycohost specificity, are the key factors for selecting Ampelomyces strains for biocontrol of grapevine powdery mildew (Erysiphe necator). European Journal of Plant Pathology, 144(4), 723-736. doi:10.1007/s10658-015-0834-1. Lelliott, R. A., & Dickey, R. S. (1984). Genus VII. Erwinia. En J. Holt (Ed.), Bergey's Manual of Systematic Bacteriology (pp. 469-476). Filadelfia, EE. UU.: Wolters Kluwer Health. Lemanceau, P., Barret, M., Mazurier, S., Mondy, S., Pivato, B., ... Vacher, C. (2017). Chapter Five - plant communication with associated microbiota in the Spermosphere, Rhizosphere and Phyllosphere. Advances in Botanical Research, 82, 101-133. doi:10.1016/bs.abr.2016.10.007. Leonard, K. J., & Bushnell, W. R. (2003). Fusarium head blight of wheat and barley. St. Paul, EE. UU.: American Phytopathological Society (aps). Leroux, P. (2004). Chemical control of Botrytis and its resistance to chemical fungicides. En Y. Elad, B. Williamson, P. Tudzynski & N. Delen, (Eds.), Botrytis: Biology, pathology and control (pp. 195-222). Dordrecht, Holanda: Springer. doi:10.1007/978-1- 4020-2626-3_12. Leveau, J. H. J. (2007). Microbia communities in the phyllosphere. En M. Riederer & C. Müller (Eds.), Annual plant reviews volume 23: Biology of the plant cuticle (pp. 334-367). New Jersey, EE. UU.: Blackwell Publishing Ltd. doi:10.1002/9780470988718.ch11. Libkind, D. (2007). Evaluación de la técnica de msp-pcr para la caracterización molecular de aislamientos de Rhodotorula mucilaginosa provenientes de la Patagonia noroccidental. Revista Argentina de Microbiología, 39(3), 133-137. Lindow, S., Hecht-Poinar, E., & Elliott, V. (2004). Phyllosphere microbiology. St. Paul, EE. UU.: American Phytopathological Society (aps). Lindow, S. E., & Andersen, G. L. (1996). Influence of immigration on epiphytic bacterial populations on navel orange leaves. Applied and Environmental Microbiology, 62(8), 2978-2987. Lindow, S. E., & Brandl, M. T. (2003). Microbiology of the Phyllosphere. Applied Environmental Microbiology, 69(4), 1875-1883. doi:10.1128/aem.69.4.1875- 1883.2003. Lindow, S. E., & Leveau, J. H. J. (2002). Phyllosphere microbiology. Current Opinion in Biotechnology, 13(3), 238-243. doi:10.1016/S0958-1669(02)00313-0. Lo, C.-T. (1998). General mechanisms of action of microbial biocontrol agents. Plant Pathology Bulletin, 7(4), 155-166. Lorito, M., Woo, S. L., Harman, G. E., & Monte, E. (2010). Translational research on Trichoderma: from omics to the field. Annual Review of Phytopathology, 48, 395-417. doi:10.1146/annurev-phyto-073009- 114314. Louws, F. J., Rivard, C. L., & Kubota, C. (2010). Grafting fruiting vegetables to manage soilborne pathogens, foliar pathogens, arthropods and weeds. Scientia horticulturae, 127(2), 127-146. doi:10.1016/j.scienta. 2010.09.023. Maiti, C. K., Sen, S., Paul, A. K., & Acharya, K. (2012). Pseudomonas aeruginosa WS-1 for biological control of leaf blight disease of Withania somnifera. Arch. Phytopathol. Plant Protection, 45(7), 796-805. doi:10 .1080/03235408.2011.597150. Mansfield, J., Genin, S., Magori, S., Citovsky, V., Sriariyanum, M., Ronald, P., ... Foster, G. D. (2012). Top 10 plant pathogenic bacteria in molecular plant pathology. Molecular Plant Pathology, 13(6), 614-629. doi:10.1111/j.1364-3703.2012.00804.x. Marchand, D., & McNeil, J. N. (2000). Effects of wind speed and atmospheric pressure on mate searching behavior in the aphid parasitoid Aphidius nigripes (Hymenoptera: Aphidiidae). Journal of Insect Behavior, 13(2), 187-199. doi:10.1023/a:1007732113390. Martirosyan, V., & Steinberger, Y. (2014). Microbial functional diversity in the phyllosphere and laimosphere of different desert plants. Journal of Arid Environments, Martirosyan, V., & Steinberger, Y. (2014). Microbial functional diversity in the phyllosphere and laimosphere of different desert plants. Journal of Arid Environments, 107, 26-33. doi:10.1016/j. jaridenv.2014.04.002. Masih, E. I., Slezack-Deschaumes, S., Marmaras, I., Barka, E. A., ... Paul, B. (2001). Characterisation of the yeast Pichia membranifaciens and its possible use in the biological control of Botrytis cinerea, causing the grey mould disease of grapevine. fems Microbiology Letters, 202(2), 227-232. doi:10.1111/j.1574-6968.2001.tb10808.x. Mastouri, F., Björkman, T., & Harman, G. E. (2010). Seed treatment with Trichoderma harzianum alleviates biotic, abiotic, and physiological stresses in germinating seeds and seedlings. Phytopathology, 100(11), 1213-1221. doi:10.1094/ PHYTO-03-10-0091. Matei, A., & Doehlemann, G. (2016). Cell biology of corn smut disease—Ustilago maydis as a model for biotrophic interactions. Current Opinion in Microbiology, 34, 60-66. doi:10.1016/j.mib. 2016.07.020. McCain, A. (1994). Powdery Mildew. HortScript # 3. California, EE. UU.: University of California Cooperative Extension Marin County. McCook, S. (2006). Global rust belt: Hemileia vastatrix and the ecological integration of world coffee production since 1850. Journal of Global History, 1(2), 177-195. doi:10.1017/S174002280600012X. McCook, S. (2006). Global rust belt: Hemileia vastatrix and the ecological integration of world coffee production since 1850. Journal of Global History, 1(2), 177-195. doi:10.1017/S174002280600012X. McGuire, J. M., Kim, K. S., & Douthit, L. B. (1970). Tobacco ringspot virus in the nematode Xiphinema americanum. Virology 42(1), 212-216. doi:10.1016/0042-6822(70)90254-0. McKinney, H. H. (1929). Mosaic diseases in the Canary Islands, West Africa and Gibraltar. Journal of Agricultural Research, 39, 577-578. McManus, P. S., Stockwell, V. O., Sundin, G. W., & Jones, A. L. (2002). Antibiotic use in plant agriculture. Annual Review of Phytopathology, 40, 443-465. doi:10.1146/annurev.phyto.40.120301.093927. McQuilken, M. P., Gemmell, J., & Lahdenperä, M. I. (2001). Gliocladium catenulatum as a potential biological control agent of damping-off in bedding plants. Journal of Phytopathology, 149(3-4), 171-178. doi:10.1046/j.1439-0434.2001.00602.x. McSpadden-Gardener, B. B., & Fravel, D. (2002). Biological control of plant pathogens: Research, commercialization, and application in the usa. Plant health progress (pp. 207-209). doi:10.1094/PHP- 2002-0510-01-RV. Meena, B. (2014). Biological control of pest and diseases using fluorescent pseudomonads. En K. Sahayaraj (Ed.), Basic and Applied Aspects of Biopesticides (pp. 17-29). Nueva Delhi, India: Springer. doi.10.1007/978-81-322-1877-7_2. Mercier, J., & Lindow, S. E. (2000). Role of leaf surface sugars in colonization of plants by bacterial epiphytes. Applied and Environmental Microbiology, 66(1), 369- 374. doi:10.1128/aem.66.1.369-374.2000. Mew, T. W., Alvarez, A. M., Leach, J. E., & Swings, J. (1993). Focus on bacterial blight of rice. Plant Disease, 77(1), 5-12. doi:10.1094/PD-77-0005. Meyer, K. M., & Leveau, J. H. J. (2012). Microbiology of the phyllosphere: a playground for testing ecological concepts. Oecologia, 168(3), 621-629. doi:10.1007/ s00442-011-2138-2. Meyer, U., Fischer, E., Barbul, O., & Elad, Y. (2001). Effect of biocontrol agents on antigens present in the extracellular matrix of Botrytis cinerea, which are important for pathogenesis. IOBC WPRS Bulletin, 24(3), 5-9. Miedtke, U., & Kennel, W. (1990). Athelia bombacina and Chaetomium globosum as antagonists of the perfect stage of the apple scab pathogen (Venturia inaequalis) under field conditions. Journal of Plant Diseases and Protection, 97(1), 24-32. Milgroom, M. G., & Cortesi, P. (2004). Biological control of chestnut blight with hypovirulence: A critical analysis. Annual Review of Phytopathology, 42, 311- 338. doi:10.1146/annurev.phyto.42.040803.140325. Mizukami, T., & Wakimoto, S. (1969). Epidemiology and control of bacterial leaf blight of rice. Annual Review of Phytopathology, 7, 51-72. doi:10.1146/ annurev.py.07.090169.000411. Mommaerts, V., Put, K., Vandeven, J., Jans, K., Sterk, G., ... Smagghe, G. (2010). Development of a new dispenser for microbiological control agents and evaluation of dissemination by bumblebees in greenhouse strawberries. Pest Management Science, 66(11), 1199-1207. doi:10.1002/ps.1995. Momonoi, K., Mori, M., Matsuura, K., Moriwaki, J., & Morikawa, T. (2015). Quantification of Mirafiori lettuce big-vein virus and its vector, Olpidium virulentus, from soil using real-time pcr. Plant Pathology, 64(4), 825-830. doi:10.1111/ppa.12333. Montesinos, E., & Bonaterra, A. (2009). Pesticides, Microbial. En Reference module in life sciences (pp. 110- 120). Oxford, Reino Unido: Elsevier. doi:10.1016/ B978-0-12-809633-8.13087-0. Morandi, M. A. B., Sutton, J. C., & Maffia, L. A. (2000). Effects of host and microbial factors on development of Clonostachys rosea and control of Botrytis cinerea in rose. European Journal of Plant Pathology, 106(5), 439-448. doi:10.1023/a:1008738513748. Moreno, C., & Cotes, A. (2006). Survival in the phylloplane of Trichoderma koningii and biocontrol activity against tomato foliar pathogens. IOBC/ WPRS Bulletin, 30, 557-561. Moreno, C., Ramírez, J., Zapata, J., Diaz, A., & Cotes, A. (2012). Selection of Pichia onychis isolate for biological control of Botrytis cinerea based on its ecophysiological characteristics. IOBCWPRS Bulletin, 78, 229-232. Moreno, C., Smith, A., & Cotes, A. M. (2010a). Pruebas de eficacia de Trichoderma koningiopsis Th003 para el control del moho blanco de la lechuga. En C. A. Moreno & A. M. Cotes (Eds.), Desarrollo de un bioplaguicida a base de Trichoderma koningiopsis Th003 y uso en el cultivo de lechuga para el control del moho blanco (Sclerotinia sclerotiorum y Sclerotinia minor) (pp. 60-75). Bogotá, Colombia: Corporación Colombiana de Investigación Agropecuaria (Corpoica). Moreno, C. A., Cotes, A. M., Smith, A., Beltrán, C., Villamizar, L., ... Santos, A. (2010b). Desarrollo de un bioplaguicida a base de Trichoderma koningiopsis Th003 y uso en el cultivo de lechuga para el control del moho blanco Sclerotinia sclerotiorum y Sclerotinia minor. Bogotá, Colombia: Corporación Colombiana de Investigación Agropecuaria (Corpoica). Moreno, C. A., Cotes, A. M., & Vergara, E. G. (2007). Biological control of foliar diseases in tomato greenhouse crop in Colombia: selection of antagonists and efficacy tests. IOBC WPRS Bulletin, 30, 59. Moretto, C., Cervantes, A. L. L., Batista, A., & Kupper, K. C. (2014). Integrated control of green mold to reduce chemical treatment in post-harvest citrus fruits. Scientia Horticulturae, 165, 433-438. doi:10.1016/j. scienta.2013.11.019. Morris, C., E., Monteil, C. L., & Berge, O. (2013). The life history of Pseudomonas syringae: Linking agriculture to earth system processes. Annual Review Phytopathology, 51, 85-104. doi:10.1146/annurevphyto- 082712-102402. Muccilli, S., & Restuccia, C. (2015). Bioprotective role of yeasts. Microorganisms, 3(4), 588-611. doi:10.3390/ microorganisms3040588. Mukherjee, P., Sherkhane, P., & Murthy, N. (1999). Induction of stable benomyl-tolerant phenotypic mutants of Trichoderma pseudokoningii mtcc 3011, and their evaluation for antagonistic and biocontrol potential. Indian Journal of Experimental Biology, 37(7), 710-712. Mukherjee, P. K., Horwitz, B. A., & Kenerley, C. M. (2012). Secondary metabolism in Trichoderma – a genomic perspective. Microbiology, 158(1), 35-45. doi:10.1099/mic.0.053629-0. Mukherjee, P. K., Horwitz, B. A., Singh, U. S., Mukherjee, M., & Schmoll, M. (2013). Trichoderma in agriculture, industry and medicine: an overview. En P. K. Mukherjee, U. S. Singh, B. A. Horwitz, M. Schmoll, & M. Mukherjee (Eds.), Trichoderma biology and applications (pp. 1-9). CAB International. doi:10.1079/9781780642475.0001. Murphy, J. F. (2006). Applied aspects of induced resistance to plant virus infection. En G. Loebenstein & J. P. Carr (Eds.), Natural resistance mechanisms of plants to viruses (pp. 1-11). Dordrecht, Holanda: Springer. doi:10.1007/1-4020-3780-5_1. Murty, V. S. & Devadath, S. (1984). Role of seed in survival and transmission of Xanthomonas campestris pv. oryzae causing bacterial Blight of rice. Journal of Phytopathology, 110(1), 15-19. doi:10.1111/j.1439-0434.1984.tb00735.x. Nakano, M. M. & Zuber, P. (1998). Anaerobic growth of a “Strict aerobe” (Bacillus subtilis). Annual Review of Microbiology, 52, 165-190. doi:10.1146/annurev. micro.52.1.165. Nakazono-Nagaoka, E., Sato, C., Kosaka, Y., & Natsuaki, T. (2004). Evaluation of cross-protection with an attenuated isolate of Bean yellow mosaic virus by differential detection of virus isolates using rt-pcr. Journal of General Plant Pathology, 70(6), 359-362. doi:10.1007/s10327-004-0138-3. Narayanasamy, P. (2013). Mechanisms of action of fungal biological control agents. En P. Narayanasamy (Ed.), Biological management of diseases of crops: Volume 1: Characteristics of biological control agents (pp. 99-200). Dordrecht, Holanda: Springer. doi:10.1007/978-94- 007-6380-7_3. Navazio, L., Baldan, B., Moscatiello, R., Zuppini, A., Woo, S. L., ... Lorito, M. (2007). Calcium-mediated perception and defense responses activated in plant cells by metabolite mixtures secreted by the biocontrol fungus Trichoderma atroviride. BMC Plant Biology, 7, 41. doi:10.1186/1471-2229-7-41. National Center for Biotechnology Information (ncbi). (2017). Taxonomy browser. Recuperado de https:// www.ncbi.nlm.nih.gov/Taxonomy/Browser/ wwwtax.cgi?id=1883. Nelson, M. E., & Powelson, M. L. (1998). Biological control of gray mold of snap beans by Trichoderma hamatum. Plant Disease, 72(8), 727-729. doi:10.1094/ PD-72-0727. Newhook, F. J. (1951). Microbiological control of Botrytis cinerea pers. Ii. Antagonism by fungi and actinomycetes. Annals of Applied Biology, 38(1), 185- 202. doi:10.1111/j.1744-7348.1951.tb07796.x. Niño-Liu, D. O., Ronald, P. C., & Bogdanove, A. J. (2006). Xanthomonas oryzae pathovars: model pathogens of a model crop. Molecular Plant Pathology, 7(5), 303- 324. doi:10.1111/j.1364-3703.2006.00344.x. Nishiguchi, M., Kikuchi, S., Kiho, Y., Ohno, T., Meshi, T., & Okada, Y. (1985). Molecular basis of plant viral virulence; the complete nucleotide sequence of an attenuated strain of tobacco mosaic virus. Nucleic Acids Research, 13(15), 5585-5590. doi:10.1093/ nar/13.15.5585. Nishiguchi, M., & Kobayashi, K. (2011). Attenuated plant viruses: preventing virus diseases and understanding the molecular mechanism. Journal of General Plant Pathology, 77(4), 221-229. doi:10.1007/ s10327-011-0318-x. Noris, E., Accotto, G. P., Tavazza, R., Brunetti, A., Crespi, S., & Tavazza, M. (1996). Resistance to tomato yellow leaf curl geminivirus in Nicotiana benthamiana plants transformed with a truncated viral C1 gene. Virology, 224(1), 130-138. doi:10.1006/viro.1996.0514. O'Neill, T. M., Elad, Y., Shtienberg, D., & Cohen, A. (1996). Control of grapevine grey mould with Trichoderma harzianum T39. Biocontrol Science and Technology, 6(2), 139-146. doi:10.1080/09583159650039340. Orton, E. S., Deller, S., & Brown, J. K. M. (2011). Mycosphaerella graminicola: from genomics to disease control. Molecular Plant Pathology, 12(5), 413-424. doi:10.1111/j.1364-3703.2010.00688.x. Oshima, N. (1981). Control of tomato mosaic disease by attenuated virus. Japan Agricultural Research Quarterly, 14(4), 222-228. Pal, K. K., & Gardener, B. M. (2006). Biological control of plant pathogens. The Plant Health Instructor, 2, 1117-1142. doi:10.1094/PHI-A-2006-1117-02. Palaniyandi, S. A., Yang, S. H., Cheng, J. H., Meng, L., & Suh, J. W. (2011). Biological control of anthracnose (Colletotrichum gloeosporioides) in yam by Streptomyces sp. MJM5763. Journal of Applied Microbiology, 111(2), 443-455. doi:10.1111/j.1365- 2672.2011.05048.x. Palmieri, M. C., Perazzolli, M., Matafora, V., Moretto, M., Bachi, A., & Pertot, I. (2012). Proteomic analysis of grapevine resistance induced by Trichoderma harzianum T39 reveals specific defence pathways activated against downy mildew. Journal of Experimental Botany, 63(17), 6237-6251. doi:10.1093/jxb/ers279. Parker, J. E., Schulte, W., Hahlbrock, K., & Scheel, D. (1991). An extracellular glycoprotein from Phytophthora megasperma f. sp. glycinea elicits phytoalexin synthesis in cultured parsley cells and protoplasts. Molecular Plant-Microbe Interaction, 4, 19-27. Patiño-Vera, M., Jiménez, B., Balderas, K., Ortiz, M., Allende, R., ... Galindo, E. (2005). Pilot-scale production and liquid formulation of Rhodotorula minuta, a potential biocontrol agent of mango anthracnose. Journal of Applied Microbiology, 99(3), 540-550. doi:10.1111/j.1365-2672.2005.02646.x. Paulitz, T. C., & Bélanger, R. R. (2001). Biological control in greenhouse systems. Annual Review of Phytopathology, 39, 103-133. doi:10.1146/annurev. phyto.39.1.103. Pearson, M. N., & Bailey, A. M. (2013). Viruses of Botrytis. Advances in Virus Research, 86, 249-272. doi.10.1016/B978-0-12-394315-6.00009-X. Peng, G., & Sutton, J. C. (1991). Evaluation of microorganisms for biocontrol of Botrytis cinerea in strawberry. Canadian Journal of Plant Pathology, 13(3), 247-257. doi:10.1080/07060669109500938. Peng, G., Sutton, J. C., & Kevan, P. G. (1992). Effectiveness of honey bees for applying the biocontrol agent Gliocladium roseum to strawberry flowers to suppress Botrytis cinerea. Canadian Journal of Plant Pathology, 14(2), 117-129. doi:10.1080/07060669209500888. Peñuelas, J., & Terradas, J. (2014). The foliar microbiome. Trends Plant Science, 19(5), 278-280. doi:10.1016/j. tplants.2013.12.007. Perazzolli, M., Dagostin, S., Ferrari, A., Elad, Y., & Pertot, I. (2008). Induction of systemic resistance against Plasmopara viticola in grapevine by Trichoderma harzianum T39 and benzothiadiazole. Biological Control, 47(2), 228-234. doi:10.1016/j. biocontrol.2008.08.008. Perazzolli, M., Moretto, M., Fontana, P., Ferrarini, A., Velasco, R., ... Pertot, I. (2012). Downy mildew resistance induced by Trichoderma harzianum T39 in susceptible grapevines partially mimics transcriptional changes of resistant genotypes. BMC Genomics, 13, 660. doi:10.1186/1471-2164-13-660. Perazzolli, M., Roatti, B., Bozza, E., & Pertot, I. (2011). Trichoderma harzianum T39 induces resistance against downy mildew by priming for defense without costs for grapevine. Biological Control, 58(1), 74-82. doi:10.1016/j.biocontrol.2011.04.006. Perelló, A., & Mónaco, C. (2007). Reseña de “status and progress of biological control of wheat (Triticum aestivum l.) foliar diseases in argentina”. Fitosanidad, 11(2), 85-105. Perlak, F., Kaniewski, W., Lawson, C., Vincent, M., & Feldman, J. (1994). Genetically improved potatoes: Their potential role in integrated pest management. En M. Manka (Ed.), 3th Conference of the European Foundation for Plant Pathology (efpp) (pp. 451-454). Wageningen, Holanda: efpp. Phillips, M. W. A., & McDougall, J. (2012). Crop protection market trends and opportunities for new active ingredients. En American Chemical Society, Abstracts of Papers of the American Chemical Society (p. 244). Washington, EE. UU.: American Chemical Society. Piggot, P. J., & Hilbert, D. W. (2004). Sporulation of bacillus subtilis. Current Opinion in Microbiology, 7(6). 579-586. doi:10.1016/j.mib.2004.10.001. Pintye, A., Bereczky, Z., Kovács, G. M., Nagy, L. G., Xu, X., ... Kiss, L. (2012). No indication of strict host associations in a widespread mycoparasite: Grapevine powdery mildew (Erysiphe necator) is attacked by phylogenetically distant ampelomyces strains in the field. Phytopathology, 102(7), 707- 716. doi:10.1094/PHYTO-10-11-0270. Prabhakaran, N., Prameeladevi, T., Sathiyabama, M., & Kamil, D. (2015). Screening of different Trichoderma species against agriculturally important foliar plant pathogens. Journal of Environmental Biology, 36(1), 191. Prins, M., Laimer, M., Noris, E., Schubert, J., Wassenegger, M., & Tepfer, M. (2008). Strategies for antiviral resistance in transgenic plants. Molecular Plant Pathology, 9(1), 73-83. doi:10.1111/j.1364- 3703.2007.00447.x. Prusky, D. (1996). Pathogen quiescence in postharvest diseases. Annual Review of Phytopathology, 34(1), 413-434. doi:10.1146/annurev.phyto.34.1.413. Punja, Z. K., & Utkhede, R. S. (2003). Using fungi and yeasts to manage vegetable crop diseases. Trends Biotechnology, 21(9), 400-407. doi:10.1016/S0167- 7799(03)00193-8. Pusey, P. L., Stockwell, V. O., & Mazzola, M. (2009). Epiphytic bacteria and yeasts on apple blossoms and their potential as antagonists of Erwinia amylovora. Phytopathology, 99(5), 571-581. doi:10.1094/PHY TO-99-5-0571. Rabindran, R., & Vidhyasekaran, P. (1996). Development of a formulation of Pseudomonas fluorescens PfALR2 for management of rice sheath blight. Crop Protection, 15(8), 715-721. doi:10.1016/ S0261-2194(96)00045-2. Ramarathnam, R., Fernando, W. G. D., & de Kievit, T. (2011). The role of antibiosis and induced systemic resistance, mediated by strains of Pseudomonas chlororaphis, Bacillus cereus and B. amyloliquefaciens, in controlling blackleg disease of canola. BioControl, 56(2), 225-235. doi:10.1007/s10526-010-9324-8. Ramesh, S., & Mathivanan, N. (2009). Screening of marine actinomycetes isolated from the Bay of Bengal, India for antimicrobial activity and industrial enzymes. World Journal of Microbiology and Biotechnology, 25(12),2103-2111. doi:10.1007/ s11274-009-0113-4. Redford, A. J., & Fierer, N. (2009). Bacterial succession on the leaf surface: A novel system for studying successional dynamics. Microbial Ecology, 58(1), 189- 198. doi:10.1007/s00248-009-9495-y. Redmond, J., Marois, J., & MacDonald, J. (1987). Biological control of Botrytis cinerea on roses with epiphytic microorganisms. Plant Disease, 71(9), 799- 802. doi:10.1094/PD-71-0799. Robiglio, A., Sosa, M. C., Lutz, M. C., Lopes, C. A., & Sangorrín, M. P. (2011). Yeast biocontrol of fungal spoilage of pears stored at low temperature. International Journal of Food Microbiology, 147(3), 211-216. doi:10.1016/j.ijfoodmicro.2011.04.007. Rodríguez-Palenzuela, P., Matas, I. M., Murillo, J., López-Solanilla, E., Bardaji, L., Pérez-Martínez, I., ... Ramos, C. (2010). Annotation and overview of the Pseudomonas savastanoi pv. savastanoi ncppb 3335 draft genome reveals the virulence gene complement of a tumour-inducing pathogen of woody hosts. Environmental Microbiology, 12(6), 1604-1620. doi:10.1111/j.1462-2920.2010.02207.x. Romero, D., de Vicente, A., Rakotoaly, R. H., Dufour, S. E., Veening, J. W., ... Pérez-García, A. (2007a). The iturin and fengycin families of lipopeptides are key factors in antagonism of Bacillus subtilis toward Podosphaera fusca. Molecular Plant-Microbe Interactions Journal, 20(4), 430-440. doi:10.1094/ mpmi-20-4-0430. Romero, D., De Vicente, A., Zeriouh, H., Cazorla, F. M., Fernández-Ortuño, D., ... Pérez-García, A. (2007b). Evaluation of biological control agents for managing cucurbit powdery mildew on greenhouse-grown melon. Plant Pathology, 56(6), 976-986. doi:10.1111/ j.1365-3059.2007.01684.x. Romero, D., Rivera, M. E., Cazorla, F. M., De Vicente, A., & Pérez-García, A. (2003). Effect of mycoparasitic fungi on the development of Sphaerotheca fusca in melon leaves. Mycological Research, 107(1), 64-71. doi:10.1017/S0953756202006974. Roossinck, M. J., Sleat, D., & Palukaitis, P. (1992). Satellite RNAs of plant viruses: structures and biological effects. Microbiological Reviews, 56(2), 265-279. Ruanjan, P., Kertbundit, S., & Juříček, M. (2007). Posttranscriptional gene silencing is involved in resistance of transgenic papayas to papaya ringspot virus. Biologia Plantarum, 51(3), 517-520. doi:10.1007/ s10535-007-0110-0. Ruberson, J. R. (1999). Handbook of pest management. Nueva York, EE. UU.: CRC Press. Rückert, C., Blom, J., Chen, X., Reva, O., & Borriss, R. (2011). Genome sequence of B. amyloliquefaciens type strain DSM7T reveals differences to plantassociated B. amyloliquefaciens FZB42. Journal of Biotechnology, 155(1), 78-85. doi:10.1016/j. jbiotec.2011.01.006 Ruinen, J. (1956). Occurrence of Beijerinckia species in the “Phyllosphere”. Nature, 177, 220-221. doi:10.1038/177220a0. Saha, D., Kumar, R., Ghosh, S., Kumari, M., & Saha, A. (2012). Control of foliar diseases of tea with Xanthium strumarium leaf extract. Industrial crops and products, 37(1), 376-382. doi:10.1016/j.indcrop.2011.12.030. Saligkarias, I. D., Gravanis, F. T., & Epton, H. A. S. (2002). Biological control of Botrytis cinerea on tomato plants by the use of epiphytic yeasts Candida guilliermondii strains 101 and US 7 and Candida oleophila strain I-182: II. a study on mode of action. Biological Control, 25(2), 151-161. doi:10.1016/ S1049-9644(02)00052-X. Samac, D. A., Willert, A. M., McBride, M. J., & Kinkel, L. L. (2003). Effects of antibiotic-producing Streptomyces on nodulation and leaf spot in alfalfa. Applied Soil Ecology, 22(1), 55-66. doi:10.1016/S0929- 1393(02)00109-9. Samuels, G. J. (1996). Trichoderma: a review of biology and systematics of the genus. Mycological Research, 100(8), 923-935. doi:10.1016/S0953- 7562(96)80043-8. Sanders, P. R., Sammons, B., Kaniewski, W., Haley, L., Layton, J., ... Tumer, N. (1992). Field resistance of transgenic tomatoes expressing the tobacco mosaic virus or tomato mosaic virus coat protein genes. Phytopathology, 82(6), 683-690. doi:10.1094/ Phyto-82-683. Sansone, G., Rezza, I., Fernández, G., Calvente, V., Benuzzi, D., & Sanz, M. I. (2011). Inhibitors of polygalacturonase and laccase of Botrytis cinerea and their application to the control of this fungus. International Biodeterioration and Biodegradation, 65(1), 243-247. doi:10.1016/j.ibiod.2010.09.010. Saravanakumar, D., Spadaro, D., Garibaldi, A., & Gullino, M. L. (2009). Detection of enzymatic activity and partial sequence of a chitinase gene in Metschnikowia pulcherrima strain MACH1 used as post-harvest biocontrol agent. European Journal of Plant Pathology, 123(2), 183-193. doi:10.1007/ s10658-008-9355-5. Sawant, I. S. (2014). Trichoderma-foliar pathogen interactions. The Open Mycology Journal, 8, 58-70. do i:10.2174/1874437001408010058. Sawant, I. S., Rajguru, Y. R., Salunkhe, V. P., & Wadkar, P. N. (2012). Evaluation and selection of efficient Trichoderma species and isolates from diverse locations in India for biological control of anthracnose disease of grapes. Journal of Biological Control, 26, 144-154. Sawant, I. S., Rajguru, Y. R., Salunkhe, V. P., & Wadkar, P. N. (2012). Evaluation and selection of efficient Trichoderma species and isolates from diverse locations in India for biological control of anthracnose disease of grapes. Journal of Biological Control, 26, 144-154. Scarselletti, R., & Faull, J. L. (1994). In vitro activity of 6-pentyl--pyrone, a metabolite of Trichoderma harzianum, in the inhibition of Rhizoctonia solani and Fusarium oxysporum f. sp. lycopersici. Mycology Research, 98(10), 1207-1209. doi:10.1016/S0953- 7562(09)80206-2. Schirmböck, M., Lorito, M., Wang, Y. L., Hayes, C. K., Arisan-Atac, I., ... Kubicek, C. P. (1994). Parallel formation and synergism of hydrolytic enzymes and peptaibol antibiotics, molecular mechanisms involved in the antagonistic action of Trichoderma harzianum against phytopathogenic fungi. Applied and Environmental Microbiology, 60(12), 4364-4370. Scherm, H., Ngugi, H. K., Savelle, A. T., & Edwards, J. R. (2004). Biological control of infection of blueberry flowers caused by Monilinia vaccinii-corymbosi. Biological Control, 29(2), 199-206. doi:10.1016/S10 49-9644(03)00154-3. Scholthof, K. B. Adkins, S., Czosnek, H., Palukaitis, P., Jacquot, E., Hohn, T., … Foster, G. D. (2011). Top 10 plant viruses in molecular plant pathology. Molecular Plant Pathology 12(9), 938-954. doi: 10.1111/j.1364- 3703.2011.00752.x. Schoonbeek, H.-J., Jacquat-Bovet, A.-C., Mascher, F., & Métraux, J.-P. (2007). Oxalate-degrading bacteria can protect Arabidopsis thaliana and crop plants against Botrytis cinerea. Molecular Plant-Microbe Interactions, 20(12), 1535-1544. doi:10.1094/MPMI-20- 12-1535. Schuster, A., & Schmoll, M. (2010). Biology and biotechnology of Trichoderma. Applied and Microbiological Biotechnology, 87(3), 787-799. doi:10. 1007/s00253-010-2632-1. Ser, H.-L., Law, J. W.-F., Chaiyakunapruk, N., Jacob, S. A., Palanisamy, U. D., ... Lee, L.-H. (2016). Fermentation conditions that affect clavulanic acid production in Streptomyces clavuligerus: A systematic review. Frontiers in Microbiology, 7, 522. doi:10.3389/ fmicb.2016.00522. Serrano, L., Manker, D., Brandi, F., & Cali, T. (2013). The use of Bacillus subtilis qst 713 and Bacillus pumilus qst 2808 as protectant fungicides in conventional application programs for black leaf streak control. Acta Horticulturae, 986. pp. 149-155. doi: 10.17660/ ActaHortic.2013.986.15. Shade, A., Jacques, M. A., & Barret, M. (2017). Ecological patterns of seed microbiome diversity, transmission, and assembly. Current Opinion in Microbiology, 37, 15-22. doi:10.1016/j.mib.2017.03.010. Shafir, S., Dag, A., Bilu, A., Abu-Toamy, M., & Elad, Y. (2006). Honey bee dispersal of the biocontrol agent Trichoderma harzianum T39: effectiveness in suppressing Botrytis cinerea on strawberry under field conditions. European Journal of Plant Pathology, 116(2), 119-128. doi:10.1007/s10658- 006-9047-y. Sharma, R. R., Singh, D., & Singh, R. (2009). Biological control of postharvest diseases of fruits and vegetables by microbial antagonists: A review. Biological Control, 50(3), 205-221. doi:10.1016/j. biocontrol.2009.05.001. Shigetou, N., Kaishu, L., Gonsalves, C., Gonsalves, D., & Slightom, J. L. (1991). Expression of the gene encoding the coat protein of cucumber mosaic virus (cmv) strain wl appears to provide protection to tobacco plants against infection by several different cmv strains. Gene, 107(2), 181-188. doi:10.1016/0378-1119(91)90317-5. Shoresh, M., Harman, G. E., & Mastouri, F. (2010). Induced systemic resistance and plant responses to fungal biocontrol agents. Annual Review of Phytopathology, 48, 21-43. doi:10.1146/annurevphyto- 073009-114450. Shtienberg, D., & Elad, Y. (1997). Incorporation of weather forecasting in integrated, biological-chemical management of Botrytis cinerea. Phytopathology, 87(3), 332-340. doi:10.1094/PHYTO.1997.87.3.332. Singh, D., Verma, N., & Varma, A. (2008). The fungal transmitted viruses. En A. Varma (Ed.), Mycorrhiza: State of the art, genetics and molecular biology, ecofunction, biotechnology, eco-physiology, structure and systematics (pp. 485-503). Berlín, Alemania. Springer. doi:10.1007/978-3-540-78826-3_24. Sivasithamparam, K., & Ghisalberti, E. (1998). Secondary metabolism in Trichoderma and Gliocladium. En G. E. Harman & C. P. Kubicek (Eds.), Trichoderma and Gliocladium (pp. 139-191). Londres, Reino Unido: Taylor & Francis Ltd. Smith, A., Beltrán, C. A., Kusunoki, M., Cotes, A. M., Motohashi, K., ... Deguchi, M. (2013). Diversity of soil-dwelling Trichoderma in Colombia and their potential as biocontrol agents against the phytopathogenic fungus Sclerotinia sclerotiorum (Lib.) de Bary. Journal of General Plant Pathology, 79(1), 74-85. doi:10.1007/s10327-012-0419-1. Smits, T. H. M., Rezzonico, F., Kamber, T., Goesmann, A., Ishimaru, C. A., ... Duffy, B., (2010). Genome sequence of the biocontrol agent Pantoea vagans strain C9-1. Journal of Bacteriology, 192(24), 6486- 6487. doi:10.1128/jb.01122-10. Sreenivasulu, C., & Aparna, Y. (2001). Bioremediation of methylparathion by free and immobilized cells of Bacillus sp. isolated from soil. Bulletin of Environmental Contamination and Toxicology, 67(1), 98-105. doi:10.1007/s001280096. Stefanova, M., Leiva, A., Larrinaga, L., & Coronado, M. (1999). Metabolic activity of Trichoderma spp. isolates for a control of soilborne phytopathogenic fungi. Revista de la Facultad de Agronomía Universidad de Zulia, 16, 509-516. Stein, T. (2005). Bacillus subtilis antibiotics: structures, syntheses and specific functions. Molecular Microbiology, 56(4), 845-857. doi:10.1111/j.1365- 2958.2005.04587.x. Stein, T. (2005). Bacillus subtilis antibiotics: structures, syntheses and specific functions. Molecular Microbiology, 56(4), 845-857. doi:10.1111/j.1365- 2958.2005.04587.x. Stirpe, F., Williams, D. G., Onyon, L. J., Legg, R. F., & Stevens, W. A. (1981). Dianthins, ribosomedamaging proteins with anti-viral properties from Dianthus caryophyllus L. (carnation). The Biochemcal Journal, 195(2), 399-405. Sultan, M. (2012). Biological control of leaf pathogens of tomato plants by Bacillus subtilis (strain FZB24): antagonistic effects and induced plant resistance. Bonn, Alemania: University of Bonn. Sundheim, L., & Krekling, T. (1982). Host-parasite relationships of the hyperparasite Ampelomyces quisqualis and its powdery mildew host Sphaerotheca fuliginea. Journal of Phytopathology, 104(3), 202-210. doi:10.1111/j.1439-0434.1982.tb00527.x. Sutton, J., & Peng, G. (1993a). Biocontrol of Botrytis cinerea in strawberry leaves. Phytopathology, 83(6), 615-621. doi:10.1094/Phyto-83-615. Sutton, J. C., & Peng, G. (1993b). Manipulation and vectoring of biocontrol organisms to manage foliage and fruit diseases in cropping systems. Annual Review of Phytopathology, 31(1), 473-493. doi:10.1146/ annurev.py.31.090193.002353. Swings, J., Van den Mooter, M., Vauterin, L., Hoste, B., Gillis, M., ... Kersters, K. (1990). Reclassification of the causal agents of bacterial blight (Xanthomonas campestris pv. oryzae) and bacterial leaf streak (Xanthomonas campestris pv. oryzicola) of rice as pathovars of Xanthomonas oryzae (ex ishiyama 1922) sp. nov., nom. rev. International Journal of Systematic and Evolutionary Microbiology, 40(3), 309-311. doi:10. 1099/00207713-40-3-309. Szentiványi, O., & Kiss, L. (2003). Overwintering of Ampelomyces mycoparasites on apple trees and other plants infected with powdery mildews. Plant Pathology, 52(6), 737-746. doi:10.1111/j.1365- 3059.2003.00937.x. Tahvonen, R., & Avikainen, H. (1987). The biological control of seed-borne Alternaria brassicicola of cruciferous plants with a powdery preparation of Streptomyces sp. Journal of Agricultural Science in Finland, 59, 199-208. Takamatsu, S. (2004). Phylogeny and evolution of the powdery mildew fungi (Erysiphales, Ascomycota) inferred from nuclear ribosomal dna sequences. Mycoscience, 45(2), 147-157. doi:10.1007/S10267- 003-0159-3. Teng, P. (1994). Epidemiological basis for blast management. En R. S. Zeigler, S. A. Leong & P. S. Teng (Eds.), Rice blast disease (pp. 409-433). Wallingford, EE. UU.: CAB International. Thapa, S., Prasanna, R., Ranjan, K., Velmourougane, K., & Ramakrishnan, B. (2017). Nutrients and host attributes modulate the abundance and functional traits of phyllosphere microbiome in rice. Microbiology Research, 204, 55-64. doi:10.1016/j. micres.2017.07.007. Thresh, J. M., & Cooter, R. J. (2005). Strategies for controlling cassava mosaic virus disease in Africa. Plant Pathology, 54(5), 587-614. doi:10.1111/j.1365- 3059.2005.01282.x. Torres, D. E., Rojas-Martínez, R. I., Zavaleta-Mejía, E., Guevara-Fefer, P., Márquez-Guzmán, G. J., & Pérez- Martínez, C. (2017). Cladosporium cladosporioides and Cladosporium pseudocladosporioides as potential new fungal antagonists of Puccinia horiana Henn., the causal agent of chrysanthemum white rust. PLoS ONE, 12(1), e0170782. doi:10.1371/journal. pone.0170782. Tronsmo, A., & Dennis, C. (1977). The use of Trichoderma species to control strawberry fruit rots. Netherlands Journal of Plant Pathology, 83, 449. doi:10.1007/bf03041462. Truchado, P., Gil, M. I., Reboleiro, P., Rodelas, B., & Allende, A. (2017). Impact of solar radiation exposure on phyllosphere bacterial community of red-pigmented baby leaf lettuce. Food Microbiology, 66, 77-85. doi:10.1016/j.fm.2017.03.018. Tsay, J. G., & Tung, B. (1991). Ampelomyces quisqualis ces. Ex schilecht., a hyper-parasite of the asparagus bean powdery mildew pathogen Erysiphe polygoni in Taiwan. Transactions of the Mycological Society of Republic of China, 6(2), 55-58. doi:10.7099/ TMSRC.199106.0055. Tucker, S. L., & Talbot, N. J. (2001). Surface attachment and pre-penetration stage development by plant pathogenic fungi. Annual Review of Phytopathology, 39, 385-417. doi:10.1146/annurev.phyto.39.1.385. Tuohimetsä, S., Hietaranta, T., Uosukainen, M., Kukkonen, S., & Karhu, S. (2014). Fruit development in artificially self- and cross-pollinated strawberries (Fragaria × ananassa) and raspberries (Rubus idaeus). Acta Agriculturae Scandinavica, Section B — Soil & Plant Science, 64(5), 408-415. doi:10.1080/090647 10.2014.919348. Tuon, F. F., & Costa, S. F. (2008). Rhodotorula infection. A systematic review of 128 cases from literature. Revista Iberoamericana de Micología, 25(3), 135-140. Turnbull, P. C. (1996). Bacillus. En S. Baron (Ed.), Barron's Medical Microbiology Medical Branch. Texas, EE. UU.: University of Texas. Umesha, S., Dharmesh, S. M., Shetty, S. A., Krishnappa, M., & Shetty, H.S. (1998). Biocontrol of downy mildew disease of pearl millet using Pseudomonas fluorescens. Crop Protection, 17(5), 387-392. doi:10.1016/S0261-2194(98)00014-3. Urbasch, I. (1983). On the genesis and germination of chlamydospores of Botrytis cinerea. Phytopathologische Zeitschrift, 108(1), 54-60. Vali, G. (1995). Principles of ice nucleation. En R. E. Lee, G. J. Warren, L.V. Gusta (Eds.), Biological ice nucleation and its applications (pp. 1-28). Saint Paul, EE. UU.: The American Phytopathological Society (aps). aps). Van Baarlen, P., Woltering, E. J., Staats, M., & Van Kan, J. A. L. (2007). Histochemical and genetic analysis of host and non-host interactions of Arabidopsis with three Botrytis species: an important role for cell death control. Molecular Plant Pathology, 8(1), 41-54. doi:10.1111/j.1364-3703.2006.00367.x. Van Damme, E. J. M., Barre, A., Barbieri, L., Valbonesi, P., Rouge, P., ... Peumans, W. J. (1997). Type 1 ribosome-inactivating proteins are the most abundant proteins in iris (Iris hollandica var. Professor Blaauw) bulbs: characterization and molecular cloning. The Biochemical Journal, 324(Pt. 3), 963. Van Kan, J. A. L., Shaw, M. W., & Grant-Downton, R. T. (2014). Botrytis species: relentless necrotrophic thugs or endophytes gone rogue? Molecular Plant Pathology, 15(9), 957-961. doi:10.1111/ mpp.12148. Verdier, V., Restrepo, S., Mosquera, G., Jorge, V., & López, C. (2004). Recent progress in the characterization of molecular determinants in the Xanthomonas axonopodis pv. manihotis–cassava interaction. Plant Molecular Biology, 56(4), 573-584. doi:10.1007/ s11103-004-5044-8. Verger, P. J. P., & Boobis, A. R. (2013). Reevaluate pesticides for food security and safety. Science, 341(6147), 717-718. doi:10.1126/science.1241572. Verma, H. N. (1994). Induction of durable resistance by primed Clerodendrum aculeatum leaf extract. Indian Phytopathology, 47(1), 19-22. Verma, H. N. (1994). Induction of durable resistance by primed Clerodendrum aculeatum leaf extract. Indian Phytopathology, 47(1), 19-22. Verma, H. N., & Awasthi, L. P. (1980). Occurrence of a highly antiviral agent in plants treated with Boerhaavia diffusa inhibitor. Canadian Journal of Botany, 58(20), 2141-2144. doi:10.1139/b80-246. Verma, H. N., & Dwivedi, S. D. (1984). Properties of a virus inhibiting agent, isolated from plants which have been treated with leaf extracts from Bougainvillea spectabilis. Physiological Plant Pathology, 25(1), 93- 101. doi:10.1016/0048-4059(84)90020-1. Vidhyasekaran, P., Rabindran, R., Muthamilan, M., Nayar, K., Rajappan, K., ... Vasumathi, K. (1997). Development of a powder formulation of Pseudomonas fluorescens for control of rice blast. Plant Pathology, 46(3), 291-297. doi:10.1046/j.1365-3059.1997. d01-27.x. Voegele, R. T., & Mendgen, K. W. (2011). Nutrient uptake in rust fungi: how sweet is parasitic life? Euphytica, 179(1), 41-55. doi:10.1007/s10681-011- 0358-5. Völksch, B., & May, R. (2001). Biological control of Pseudomonas syringae pv. glycinea by epiphytic bacteria under field conditions. Microbial Ecololy, 41(2), 132- 139. doi:10.1007/s002480000078. Vorholt, J. A. (2012). Microbial life in the phyllosphere. Nature reviews. Microbiology, 10(12), 828. doi:10.1038/nrmicro2910. Walker, A. S., Micoud, A., Rémuson, F., Grosman, J., Gredt, M., & Leroux, P. (2013). French vineyards provide information that opens ways for effective resistance management of Botrytis cinerea (grey mould). Pest Management Science, 69(6), 667-678. doi:10.1002/ps.3506. Wang, Q.-M., & Bai, F.-Y. (2004). Four new yeast species of the genus Sporobolomyces from plant leaves. fems Yeast Research, 4(6), 579-586. doi:10.1016/j. femsyr.2003.11.002. Wang, Q.-M., & Bai, F.-Y. (2004). Four new yeast species of the genus Sporobolomyces from plant leaves. fems Yeast Research, 4(6), 579-586. doi:10.1016/j. femsyr.2003.11.002. Wang, X., Xue, Y., Han, M., Bu, Y., & Liu, C. (2014). The ecological roles of Bacillus thuringiensis within phyllosphere environments. Chemosphere, 108, 258- 264. doi:10.1016/j.chemosphere.2014.01.050. Wasik, A. A., & Schiller, H. B. (2017). Functional proteomics of cellular mechanosensing mechanisms. Seminars in Cell and Developmental Biology, 71, 118- 128. doi:10.1016/j.semcdb.2017.06.019. Wheeler, G. S., & Madeira, P. T. (2017). Phylogeny within the Anacardiaceae predicts host range of potential biological control agents of Brazilian peppertree. Biological Control, 108, 22-29. doi:10.1016/j. biocontrol.2017.01.017. Whipps, J. M., Hand, P., Pink, D., & Bending, G. D. (2008). Phyllosphere microbiology with special reference to diversity and plant genotype. Journal of Applied Microbiology, 105(6), 1744-1755. doi:10.1111/j.1365-2672.2008.03906.x. Whipps, J. M., McQuilken, M. P., & Budge, S. P. (1993). Use of fungal antagonists for biocontrol of dampingoff and sclerotinia diseases. Pestic Management Science, 37(4), 309-313. doi:10.1002/ps.2780370402. Williamson, B., Tudzynski, B., Tudzynski, P., & Van Kan, J. A. L. (2007). Botrytis cinerea: the cause of grey mould disease. Molecular Plant Pathology, 8(5), 561- 580. doi:10.1111/j.1364-3703.2007.00417.x. Woo, S. L., Ruocco, M., Vinale, F., Nigro, M., Marra, R., ... Lorito, M. (2014). Trichoderma-based products and their widespread use in agriculture. The Open Mycology Journal, 8, 71-126. doi:10.2174/18744370 01408010071. Wood, R. K. S. (1951). The control of diseases of lettuce by the use of antagonistic organisms I. The control of Botrytis cinerea pers. Annals of Applied Biology, 38(1), 203-216. doi:10.1111/j.1744-7348.1951.tb07797.x. Wu, M., Zhang, J., Yang, L., & Li, G. (2016). rna mycoviruses and their role in Botrytis biology. En S. Fillinger & Y. Elad (Eds.), Botrytis – the fungus, the pathogen and its management in agricultural systems (pp. 71-90). Cham, Alemania: Springer International Publishing. doi:10.1007/978-3-319-23371-0_5. Wu, M., Zhang, J., Yang, L., & Li, G. (2016). rna mycoviruses and their role in Botrytis biology. En S. Fillinger & Y. Elad (Eds.), Botrytis – the fungus, the pathogen and its management in agricultural systems (pp. 71-90). Cham, Alemania: Springer International Publishing. doi:10.1007/978-3-319-23371-0_5. Wyand, R. A., & Brown, J. K. M. (2003). Genetic and forma specialis diversity in Blumeria graminis of cereals and its implications for host-pathogen coevolution. Molecular Plant Pathology, 4(3), 187-198. doi:10.1046/j.1364-3703.2003.00167.x. Yang, C.-H., Crowley, D. E., Borneman, J., & Keen, N. T. (2001). Microbial phyllosphere populations are more complex than previously realized. Proceedings of the National Academy of Sciences, 98(7), 3889-3894. doi:10.1073/pnas.051633898. Yang, H.-H., Yang, S. L., Peng, K.-C., Lo, C.-T., & Liu, S.-Y. (2009). Induced proteome of Trichoderma harzianum by Botrytis cinerea. Mycological Research, 113(Pt. 9), 924-932. doi:10.1016/jmycres.200 9.04.004. Yoshida, K., Goto, T., & Iizuka, N. (1985). Attenuated isolates of Cucumber Mosaic Virus produced by satellite RNA and cross protection between attenuated isolates and Virulent Ones. Japanese Journal of Phytopathology, 51(2), 238-242. doi:10.3186/jjphytopath.51.238. Yoshida, S., Hiradate, S., Koitabashi, M., Kamo, T., & Tsushima, S. (2017). Phyllosphere methylobacterium bacteria contain UVA-absorbing compounds. Journal of Photochemestry and Photobiology. B: Biology, 167: 168-175. doi:10.1016/j.jphotobiol.2016.12.019 Young, C., & Andrews, J. (1990). Inhibition of pseudothecial development of Venturia inaequalis by the basidiomycete Athelia bombacina in apple leaf litter. Phytopathology, 80(6), 536-542. doi:10.1094/ Phyto-80-536. Young, J. M., Bradbury, J. F., Davis, R. E., Dickey, R. S., Ercolani, G. L., ... Vidaver, A. K. (1991). Nomenclatural revisions of plant pathogenic bacteria and list of names 1980-1988. Review of Plant Pathology, 70(4), 211-221. Young, J. M., Park, D. C., Shearman, H. M., & Fargier, E. (2008). A multilocus sequence analysis of the genus Xanthomonas. Systematic and Applied Microbiology, 31(5), 366-377. doi:10.1016/j.syapm.2008.06.004. Zapata, J., Acosta, C., Díaz, A., Villamizar, L., & Cotes, A. (2011). Characterization of Rhodotorula glutinis and Pichia onychis Isolates with Potential as Biopesticides for Controlling Botrytis cinerea. International Symposium on Biological Control of Postharvest Diseases: Challenges and Opportunities, 905, 155-160. doi:10.17660/ActaHortic.2011.905.16. Zapata, J., Villamizar, L., Díaz, L., Uribe, L., Bolaños, C., ... Cotes, A. M. (2013a). Biological control of Rhizoctonia solani and growth promotion activity of Trichoderma koningiopsis Th003 and Trichoderma asperellum Th034 formulations in potato (Solanum tuberosum). IOBC Bulletin, 86, 223-227. Zapata, J., Villamizar, L., Díaz, L., Uribe, L., Bolaños, C., Gómez, M., & Cotes, A. M. (2013b). Development of a biopesticide prototype based on the yeast Rhodotorula glutinis Lv316 for controlling Botrytis cinerea in blackberry. IOBC Bulletin, 86, 263-269. Zapata, J. A., & Cotes, A. M. (2013). Eficacia de dos prototipos de bioplaguicida a base de R. glutinis cepa LvCo7 y un bioplaguicida a base de T. koningiopsis Zapata, J. A., & Cotes, A. M. (2013). Eficacia de dos prototipos de bioplaguicida a base de R. glutinis cepa LvCo7 y un bioplaguicida a base de T. koningiopsis cepa Th003 en el control de B. cinerea en cultivos de mora. En J. Zapata, (Ed.), LvCo7 para el control de Botrytis cinerea en cultivos de mora (pp. 73-79). Mosquera, Colombia: Corporación Colombiana de Investigación Agropecuaria (Corpoica). Zapata, Y., Díaz, A., Grijalba, E., Rodríguez, F., Elad, Y., & Cotes, A. M. (2016). Phyllosphere yeasts with potential for biological control of Botrytis cinerea in rose. Leuven, Bélgica: International Society for Horticultural Science (ishs). Zhan, G., Tian, Y., Wang, F., Chen, X., Guo, J., ... Kang, Z. (2014). A novel fungal hyperparasite of Puccinia striiformis f. sp. tritici, the causal agent of wheat stripe rust. PLoS ONE, 9(11), e111484. doi:10.1371/ journal.pone.0111484. Zhang, B., Zhang, H., Jin, B., Tang, L., Yang, J., ... Bai, Z. (2008a). Effect of cypermethrin insecticide on the microbial community in cucumber phyllosphere. Journal of Environmental Sciences, 20(11), 1356-1362. doi:10.1016/S1001-0742(08)62233-0. Zhang, H., Ma, L., Jiang, S., Lin, H., Zhang, X., ... Xu, Z. (2010). Enhancement of biocontrol efficacy of Rhodotorula glutinis by salicyclic acid against gray mold spoilage of strawberries. International Journal of Food Microbiology, 141(1-2), 122-125. doi:10.1016/j. ijfoodmicro.2010.04.022. Zhang, H., Ma, L., Wang, L., Jiang, S., Dong, Y., & Zheng, X. (2008b). Biocontrol of gray mold decay in peach fruit by integration of antagonistic yeast with salicylic acid and their effects on postharvest quality parameters. Biological Control, 47(1), 60-65. doi:10.1016/j.biocontrol.2008.06.012. Zhang, H., Wang, L., Dong, Y., Jiang, S., Cao, J., & Meng, R. (2007). Postharvest biological control of gray mold decay of strawberry with Rhodotorula glutinis. Biological Control, 40(2), 287-292. doi:10.1016/j. biocontrol.2006.10.008. Zhang, H., Wang, L., Ma, L., Dong, Y., Jiang, S., ... Zheng, X. (2009). Biocontrol of major postharvest pathogens on apple using Rhodotorula glutinis and its effects on postharvest quality parameters. Biological Control, 48(1), 79-83. doi:10.1016/j.biocontrol.2008.09.004. Zimand, G., Elad, Y., & Chet, I. (1996). Effect of Trichoderma harzianum on Botrytis cinerea pathogenicity. Phytopathology, 86(11), 1255-1260. doi:10.1094/Phyto-86-1255. Abawi, G. S., & Grogan, R. G. (1979). Epidemiology of diseases caused by Sclerotinia species. Phytopathology, 69(8), 899-904. Abawi, G. S., & Widmer, T. L. (2000). Impact of soil health management practices on soilborne pathogens, nematodes and root diseases of vegetable crops. Applied Soil Ecology, 15(1), 37-47. doi:10.1016/S0929-1393(00)00070-6. Adams, P., & Ayers, W. (1979). Ecology of Sclerotinia species. Phytopathology, 69(8), 896-899. Adams, P. B., & Tate, C. J. (1976). Mycelial germination of sclerotia of Sclerotinia sclerotiorum on soil. Plant Disease Reporter, 60, 515-518. Agrios, G. N. (2015). Plant pathology (5.a ed.). Londres, Reino Unido: Elsevier. Agrofit. (2017). Sistema de agrotóxicos fitossanitários. Recuperado de http://agrofit.agricultura.gov.br/agrofit_cons/ principal_agrofit_cons. Ahmad, J. S., & Baker, R. (1987). Rhizosphere competence of Trichoderma harzianum. Phytopathology, 77(2), 182-189. doi:10.1094/Phyto-77-182. Akpa, E., Jacques, P., Wathelet, B., Paquot, M., Fuchs, R., Budzikiewicz, H., & Thonart, P. (2001). Influence of culture conditions on lipopeptide production by Bacillus subtilis. Applied Biochemistry and Biotechnology, 91(1-9), 551-561. doi:10.1385/abab:91-93:1-9:551. Al-Rawahi, A. K. & Hancock, J. G. (1998). Parasitism and biological control of Verticillium dahliae by Pythium oligandrum. Plant Disease, 82(10), 1100-1106. doi:10.1094/PDIS.1998.82.10.1100. Alabouvette, C. (1986). Fusarium-wilt suppressive soils from the Châteaurenard region: review of a 10-year study. Agronomie, 6(3), 273-284. doi:10.1051/agro:19860307. Alabouvette, C., Olivain, C., Migheli, Q., & Steinberg, C. (2009). Microbiological control of soil-borne phytopathogenic fungi with special emphasis on wiltinducing Fusarium oxysporum. New Phytologist, 184(3), 529-544. doi:10.1111/j.1469-8137.2009.03014.x. Alabouvette, C., Schippers, B., Lemanceau, P., & Bakker, P. (1998). Biological control of Fusarium wilts toward development of commercial products. En G. J. Boalnd & L. D. Kuykendall (Eds.), Plant microbe interactions and biological control (pp. 15-36). Nueva York, EE. UU.: Marcel Dekker Inc. Aliferis, K. A., & Jabaji, S. (2010). Metabolite composition and bioactivity of Rhizoctonia solani sclerotial exudates. Journal of Agricultural and Food Chemistry, 58(13), 7604- 7615. doi:10.1021/jf101029a. Amellal, N., Burtin, G., Bartoli, F., & Heulin, T. (1998). Colonization of wheat roots by an exopolysaccharideproducing Pantoea agglomerans strain and its effect on rhizosphere soil aggregation. Applied and Environmental Microbiology, 64(10), 3740-3747. Aluko, M. O., & Hering, T. F. (1970). The mechanisms associated with the antagonistic relationship between Corticium solani and Gliocladium virens. Transactions of the British Mycological Society, 55(2), 173-179. doi:10.1016/ S0007-1536(70)80001-8. Anderson, J. A., Staley, J., Challender, M., & Heuton, J. (2018). Safety of Pseudomonas chlororaphis as a gene source for genetically modified crops. Transgenic Research, 27(1), 103-113. doi:10.1007/s11248-018-0061-6. Atanasova, L., Druzhinina, I., & Jaklitsch, W. M. (2013). Two hundred Trichoderma species recognized on the basis of molecular phylogeny. En P. K. Mukherjee, B. A. Horwitz, U. S. Singh, M. Mukherjee, & M. Schmoll (Eds.), Trichoderma: biology and applications (pp. 10-42). Oxfordshire, Reino Unido: CAB International. Ávila, C., & Velandia, J. (1992). Enfermedades de algunas especies hortícolas y su manejo. En Primer curso nacional de hortalizas de clima frío (Vol. 18) [Conferencias]. Mosquera, Colombia: Instituto Colombiana Agropecuario (ica). Bae, H., Roberts, D. P., Lim, H.-S., Strem, M. D., Park, S.-C., Ryu, C.-M., ... Bailey, B. A. (2010). Endophytic Trichoderma isolates from tropical environments delay disease onset and induce resistance against Phytophthora capsici in hot pepper using multiple mechanisms. Molecular Plant-Microbe Interactions, 24(3), 336-351. doi:10.1094/MPMI-09-10-0221. Bais, H. P., Fall, R., & Vivanco, J. M. (2004). Biocontrol of Bacillus subtilis against Infection of arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production. Plant Physiology, 134(1), 307- 319. doi:10.1104/pp.103.028712. Bais, H. P., Weir, T. L., Perry, L. G., Gilroy, S., & Vivanco, J. M. (2006). The role of root exudates in rhizosphere interactions with plants and other organisms. Annual Review of Plant Biology, 57, 233-266. doi:10.1146/ annurev.arplant.57.032905.105159. Baker, K. F. (1987). Evolving concepts of biological control of plant pathogens. Annual Review Phytopathology, 25(1), 67-85. doi:10.1146/annurev.py.25.090187.000435. Banat, I. M., Makkar, R. S., & Cameotra, S. S. (2000). Potential commercial applications of microbial surfactants. Applied Microbiology and Biotechnology, 53(5), 495-508. doi:10.1007/s002530051648. Banville, G. J. (1989). Yield losses and damage to potato plants caused by Rhizoctonia solani Kuhn. American Potato Journal, 66(12), 821-834. doi:10.1007/BF02853963. Bautista, G., Mendoza, H., & Uribe, D. (2007). Biocontrol of Rhizoctonia solani in native potato (Solanum phureja) plants using native Pseudomonas fluorescens. Acta Biológica Colombiana, 12(1), 19-32. BccResearch. (2017). Global markets for biopesticides. Recuperado de https://www.bccresearch.com/marketresearch/ chemicals/biopesticides-global-markets-reportchm029f. html. BccResearch. (2017). Global markets for biopesticides. Recuperado de https://www.bccresearch.com/marketresearch/ chemicals/biopesticides-global-markets-reportchm029f. html. Beckerich, A., & Hauduroy, P. (1922). Le bactériophage dans le traitement de la fièvre typhoïde. Comptes Rendus Biologies, 86, 168-170. Beckman, C. H. (1987). The nature of wilt diseases of plants. Saint Paul, EE. UU.: APS Press. Beltrán-Acosta, C. R. (2004). Selección de aislamientos de Trichoderma spp. con potencial biocontrolador de Rhizoctonia solani Kühn en papa bajo condiciones de casa de malla (trabajo de pregrado). Universidad Nacional de Colombia, Bogotá, Colombia. Beltrán-Acosta, C. R., Moreno-Velandia, C. A., Blanco, P., Villamizar, L., & Cotes, A. M. (2010). Biological control of Rhizoctonia solani and growth promotion activity of Trichoderma koningiopsis Th003 and Trichoderma asperellum Th034 formulations in potato (Solanum tuberosum). IOBC/WPRS Bulletin, 78, 223-227. Beltrán Acosta, C., Cotes, A. M., & Becerra, A. P. (2007). Selection of isolates of Trichoderma spp. with biocontrol activity over Rhizoctonia solani in potato. IOBC WPRS Bulletin, 30, 55-58. Benhamou, N., Le Floch, G., Vallance, J., Gerbore, J., Grizard, D., & Rey, P. (2012). Pythium oligandrum: an example of opportunistic success. Microbiology, 158(Pt. 11), 2679- 2694. doi:10.1099/mic.0.061457-0. Benhamou, N., Rey, P., Chérif, M., Hockenhull, J., & Tirilly, Y. (1997). Treatment with the mycoparasite Pythium oligandrum triggers induction of defense-related reactions in tomato roots when challenged with Fusarium oxysporum f. sp. radicis-lycopersici. Phytopathology, 87(1), 108-122. doi:10.1094/PHYTO.1997.87.1.108. Benhamou, N., Rey, P., Chérif, M., Hockenhull, J., & Tirilly, Y. (1997). Treatment with the mycoparasite Pythium oligandrum triggers induction of defense-related reactions in tomato roots when challenged with Fusarium oxysporum f. sp. radicis-lycopersici. Phytopathology, 87(1), 108-122. doi:10.1094/PHYTO.1997.87.1.108. Benhamou, N., Rey, P., Picard, K., & Tirilly, Y. (1999). Ultrastructural and cytochemical aspects of the interaction between the mycoparasite Pythium oligandrum and soilborne plant pathogens. Phytopathology, 89(6), 506-517. doi:10.1094/PHYTO.1999.89.6.506. Benítez, T., Rincón, A. M., Limón, M. C., & Codón, A. C. (2004). Biocontrol mechanisms of Trichoderma strains. International Microbiology, 7(4), 249-260. Benizri, E., Baudoin, E., & Guckert, A. (2001). Root colonization by inoculated plant growth-promoting rhizobacteria. Biocontrol Science and Technology, 11(5), 557-574. doi:10.1080/09583150120076120. Berg, G., Opelt, K., Zachow, C., Lottmann, J., Götz, M., Costa, R., & Smalla, K. (2006). The rhizosphere effect on bacteria antagonistic towards the pathogenic fungus Verticillium differs depending on plant species and site. FEMS Microbiology Ecology, 56(2), 250-261. doi:10.1111/j.1574-6941.2005.00025.x. Berg, G., & Smalla, K. (2009). Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiology Ecology, 68(1), 1-13. doi:10.1111/j.1574- 6941.2009.00654.x. Berg, G., Zachow, C., Lottmann, J., Götz, M., Costa, R., & Smalla, K. (2005). Impact of plant species and site on rhizosphere-associated fungi antagonistic to Verticillium dahliae Kleb. Applied Environmental Microbiology, 71(8), 4203-4213. doi:10.1128/aem.71.8.4203-4213.2005. Bertin, C., Yang, X., & Weston, L. A. (2003). The role of root exudates and allelochemicals in the rhizosphere. Plant Soil, 256(1), 67-83. doi:10.1023/a:1026290508166. Biraghi, A. (1951). Caratteri di resistenza in Castanea sativa nei confronti di Endothia parasitica. Bolletino della Staz Patologia Vegetale, 8, 167-171. Bliss, D. E. (1951). The destruction of Armillaria mellea in citrus soils. Phytopathology, 41, 665-683. Blum, B., Nicot, P. C., Köhl, J., & Ruocco, M. (2011). Chapter 7: Identified difficulties and conditions for field success of biocontrol. 3. Economic aspects: cost analysis. En P. C. Nicot (Ed.), Classical and augmentative biological control against diseases and pests: critical status analysis and review of factors influencing their success (pp. 58-61). Zürich, Suiza: International Organisation for Biological anda Integrated Control (iobc)/West Palaearctic Regional Section (wprs). Bonmatin, J.-M., Laprevote, O., & Peypoux, F. (2003). Diversity among microbial cyclic lipopeptides: Iturins and surfactins. Activity-structure relationships to design new bioactive agents. Combinatorial Chemistry and High Throughput Screening, 6(6), 541-556. doi:10.2174/ 138620703106298716. Borráez, A. (2011, octubre 7). Detectan exceso de químicos en cultivos de papa. Unperiodico. Recuperado de http:// agenciadenoticias.unal.edu.co/detalle/article/detectanexceso- de-quimicos-en-cultivos-de-papa.html. Borriss, R. (2011). Use of plant-associated Bacillus strains as biofertilizers and biocontrol agents in agriculture. En D. K. Maheshwari (Ed.), Bacteria in agrobiology: Plant growth responses (pp. 41-76). Berlín, Alemania: Springer Berlin. doi:10.1007/978-3-642-20332-9_3. Borriss, R. (2015). Bacillus, a plant-beneficial bacterium. En B. Lugtenberg (Ed.), Principles of plant-microbe interactions: Microbes for sustainable agriculture (pp. 379-391). Nueva York, EE. UU.: Springer International Publishing. doi:10.1007/978-3-319-08575-3_40. Bradshaw-Smith, R. P., Whalley, W. M., & Craig, G. D. (1991). Interactions between Pythium oligandrum and the fungal footrot pathogens of peas. Mycological Research, 95(7), 861-865. doi:10.1016/S0953-7562(09)80050-6. Bravo-Ruiz, G., Ruiz-Roldán, C., & Roncero, M. I. G. (2013). Lipolytic system of the tomato pathogen Fusarium oxysporum f. sp. lycopersici. Molecular Plant-Microbe Interactions, 26(9), 1054-1067. doi:10.1094/MPMI-03- 13-0082-R. Brewer, M. T., & Larkin, R. P. (2005). Efficacy of several potential biocontrol organisms against Rhizoctonia solani on potato. Crop Protection, 24(11), 939-950. doi:10.10 16/j.cropro.2005.01.012. Broadbent, P., & Baker, K. (1974). Behaviour of Phytophthora cinnamomi in soils suppressive and conducive to root rot. Australian Journal of Agricultural Research, 25(1), 121- 137. doi:10.1071/AR9740121. Brown, J. F., & Ogle, H. J. (Eds.). (1997). Plant pathogens and plant diseases. Armidale, Autralia: Rockvale Publications. Brunner, K., Omann, M., Pucher, M. E., Delic, M., Lehner, S. M., Domnanich, P., ... Zeilinger, S. (2008). Trichoderma G protein-coupled receptors: functional characterisation of a cAMP receptor-like protein from Trichoderma atroviride. Current Genetics, 54(6), 283-299. doi:10.1007/ s00294-008-0217-7. Brunoghe, R., & Maisin, J. (1921). Essais de therapeutique au moyen du bacteriophage du staphylocoque. Comptes Rendus des Seances de la Societe de Biologie, 85, 1029-1121. Burke, D. (1965). Fusarium root rot of beans and behavior of the pathogen in different soils. Phytopathology, 55(10), 122-121. Campion, C., Chatot, C., Perraton, B., & Andrivon, D. (2003). Anastomosis groups, pathogenicity and sensitivity to fungicides of Rhizoctonia solani isolates collected on potato crops in France. European Journal of Plant Pathology, 109(9), 983-992. doi:10.1023/B:EJPP.0 000003829.83671.8f. Carling, D. E., Baird, R. E., Gitaitis, R. D., Brainard, K. A., & Kuninaga, S. (2002). Characterization of AG-13, a newly reported anastomosis group of Rhizoctonia solani. Phytopathology, 92(8), 893-899. doi:10.1094/ PHYTO.2002.92.8.893. Carrillo, C., Teruel, J. A., Aranda, F. J., & Ortiz, A. (2003). Molecular mechanism of membrane permeabilization by the peptide antibiotic surfactin. Biochimica et Biophysica Acta (bba) - Biomembranes, 1611(1-2), 91-97. doi:10.1016/S0005-2736(03)00029-4. Cawoy, H., Bettiol, W., Fickers, P., & Ongena, M. (2011). Bacillus-based biological control of plant diseases. En InTech (Ed.), Pesticides in the modern world-pesticides use and management (pp. 273-302). doi:10.5772/17184. Cawoy, H., Debois, D., Franzil, L., De Pauw, E., Thonart, P., & Ongena, M. (2015). Lipopeptides as main ingredients for inhibition of fungal phytopathogens by Bacillus subtilis/ amyloliquefaciens. Microbial biotechnology, 8(2), 281-295. doi:10.1111/1751-7915.12238. Cawoy, H., Mariutto, M., Henry, G., Fisher, C., Vasilyeva, N., Thonart, P., ... Ongena, M. (2013). Plant defense stimulation by natural isolates of Bacillus depends on efficient surfactin production. Molecular Plant-Microbe Interactions, 27(2), 87-100. doi:10.1094/MPMI-09-13- 0262-R. Centro Internacional de la Papá (cip). (1996). Principales enfermedades, nematodos e insectos de la papa. Lima, Perú: cip. Ceresini, P. C., Shew, H. D., Vilgalys, R. J., & Cubeta, M. A. (2002). Genetic diversity of Rhizoctonia solani AG-3 from potato and tobacco in North Carolina. Mycologia, 94(3), 437-449. doi:10.1080/15572536.2003.11833209. Chandler, D., Bailey, A. S., Tatchell, G. M., Davidson, G., Greaves, J., & Grant, W. P. (2011). The development, regulation and use of biopesticides for integrated pest management. Philosophical Transactions of the Royal Society B: Biological Sciences, 366(1573), 1987-1998. Chavarro, E., & Ángel, J. E. (2011). Caracterización molecular y análisis de la variabilidad genética de R. solani. En C. R. Beltrán Acosta, C. A. Moreno Velandia, & A. M. Cotes Prado (Eds.), Trichoderma koningiopsis Th003, alternativa biológica para el control de Rhizoctonia solani en el cultivo de papa (pp. 16-31). Mosquera, Colombia: Corporación Colombiana de Investigación Agropecuaria (Corpoica). Chaverri, P., & Samuels Gary, J. (2013). Evolution of habitat preference and nutrition mode in a cosmopolitan fungal genus with evidence of interkingdom host jumps and major shifts in ecology. Evolution, 67(10), 2823-2837. doi:10.1111/evo.12169. Chet, I. (1987). Trichoderma: application, mode of action, and potential as a biocontrol agent of soilborne plant pathogenic fungi. En I. Chet (Ed.), Innovative approaches to plant disease control (pp. 137-160). Nueva York, EE. UU: John Wiley and Sons Press. Chet, I., & Baker, R. (1981). Isolation and biocontrol potential of Trichoderma hamatum from soil naturally suppressive to Rhizoctonia solani. Phytopathology, 71(3), 286-290. doi:10.1094/Phyto-71-286. Chet, I., & Henis, Y. (1975). Sclerotial morphogenesis in fungi. Annual Review of Phytopathology, 13(1), 169-192. doi:10.1146/annurev.py.13.090175.001125. Chin-A-Woeng, T. F. C., Bloemberg, G. V., Mulders, I. H. M., Dekkers, L. C., & Lugtenberg, B. J. J. (2000). Root colonization by phenazine-1-carboxamide-producing bacterium Pseudomonas chlororaphis PCL1391 Is essential for biocontrol of tomato foot and root rot. Molecular Plant- Microbe Interactions, 13(12), 1340-1345. doi:10.1094/ MPMI.2000.13.12.1340. Chitarra, G. S., Breeuwer, P., Nout, M. J. R., Van Aelst, A. C., Rombouts, F. M., & Abee, T. (2003). An antifungal compound produced by Bacillus subtilis YM 10–20 inhibits germination of Penicillium roqueforti conidiospores. Journal of Applied Microbiology, 94(2), 159-166. doi:10.1046/j.1365-2672.2003.01819.x. Chowdhury, S. P., Hartmann, A., Gao, X. W., & Borriss, R. (2015). Biocontrol mechanism by root-associated Bacillus amyloliquefaciens FZB42 – a review. Frontiers in Microbiology, 6, 780. doi: 10.3389/fmicb.2015.00780 Clavijo, A., & Cotes, A. (1998). Evaluación de la actividad quitinasa en procesos de control biológico de Rhizoctonia solani y Fusarium oxysporum f. sp. lycopersici en tomate, mediante fitoinvigorización de semillas en presencia de Trichoderma koningii. Revista Colombiana de Biotecnología, 1(2), 58-66. doi:10.15446/rev.colomb.biote. Cochrane, S. A., & Vederas, J. C. (2016). Lipopeptides from Bacillus and Paenibacillus spp.: A gold mine of antibiotic candidates. Medicinal Research Reviews, 36(1), 4-31. doi:10.1002/med.21321. Companhia Nacional de Abastecimento (Conab). (2016). Acompanhamento da safra brasileira: safra (Vol. 3). Recuperado de https://goo.gl/zDqvos. Compant, S., Clément, C., & Sessitsch, A. (2010). Plant growth-promoting bacteria in the rhizo- and endosphere of plants: Their role, colonization, mechanisms involved and prospects for utilization. Soil Biology and Biochemistry, 42(5), 669-678. doi:10.1016/j.soilbio.2009.11.024. Compant, S., Duffy, B., Nowak, J., Clément, C., & Barka, E. A. (2005). Use of plant growth-promoting bacteria for biocontrol of plant diseases: Principles, mechanisms of action, and future prospects. Applied Environmental Microbiology, 71(9), 4951-4959. doi:10.1128/ aem.71.9.4951-4959.2005. Cook, J. R. (1993). Making greater use of introduced microorganisms for biological control of plant pathogens. Annual Review of Phytopathology, 31, 53-80. doi:10.1146/ annurev.py.31.090193.000413. Coons, G. H., & Kotila, J. E. (1925). The transmissible lytic principle (bacteriophage) in relation to plant pathogens. Phytopathology, 15, 357-370. Cotes, A., Cárdenas, A., & Pinzón, H. (2001). Effect of seed priming in the presence of Trichoderma koningii on seed and seedling disease induced in tomato by Rhizoctonia solani and Fusarium oxysporum f. sp. lycopersici. IOBC WPRS Bulletin, 24, 259-264. Cotes, A. M. (1993). Study of common bean protection against damping- off by treatment of seeds with Trichoderma koningii Oudemans (tesis de grado). Universidad de Gembloux, Gembloux, Bélgica. Cotes, A. M. (2011). Registry and regulation of biocontrol agents on food commodities in South America. Acta Horticulurae, 905, 301-306. doi:10.17660/ ActaHortic.2011.905.33. Cotes, A. M., Lepoivre, P., & Semal, J. (1996). Correlation between hydrolytic enzyme activities measured in bean seedlings after Trichoderma koningii treatment combined with pregermination and the protective effect against Pythium splendens. European Journal of Plant Pathology, 102(5), 497-506. doi:10.1007/BF01877144. Cotes, A. M., Thonart, P., & Lepoivre, P. (1994). Relationship between the protective activities of several strains of Trichoderma against damping-off agents and their ability to produce hydrolytic enzymes activities in soil or in synthetic media. Mededelingen van de Faculteit landbouwwetenschappen - Rijksuniversiteit Gent, 59, 931-941. Couillerot, O., Prigent-Combaret, C., Caballero-Mellado, J., & Moënne-Loccoz, Y. (2009). Pseudomonas fluorescens and closely-related fluorescent pseudomonads as biocontrol agents of soil-borne phytopathogens. Letters in Applied Microbiology, 48(5), 505-512. doi:10.1111/ j.1472-765X.2009.02566.x. Czarnes, S., Hallett, P. D., Bengough, A. G., & Young, I. M. (2000). Root- and microbial-derived mucilages affect soil structure and water transport. European Journal of Soil Science, 51(3), 435-443. doi:10.1046/j.1365- 2389.2000.00327.x. Darrah, P. R. (1993). The rhizosphere and plant nutrition: a quantitative approach. Plant and Soil, 155(1), 1-20. doi:10.1007/bf00024980. Davis, R. M. (2001). Plagas y enfermedades de la lechuga. Madrid, España: Mundi-Prensa. Debois, D., Fernandez, O., Franzil, L., Jourdan, E., de Brogniez, A., Willems, L., ... Ongena, M. (2015). Plant polysaccharides initiate underground crosstalk with bacilli by inducing synthesis of the immunogenic lipopeptide surfactin. Environmental Microbiology Reports, 7(3), 570- 582. doi:10.1111/1758-2229.12286. De Weger, L. A., Van der Bij, A. J., Dekkers, L. C., Simons, M., Wijffelman, C. A., & Lugtenberg, B. J. J. (1995). Colonization of the rhizosphere of crop plants by plant-beneficial pseudomonads. FEMS Microbiology Ecology, 17(4), 221-227. doi:10.1111/j.1574-6941.1995. tb00146.x. Debois, D., Jourdan, E., Smargiasso, N., Thonart, P., De Pauw, E., & Ongena, M. (2014). Spatiotemporal monitoring of the antibiome secreted by Bacillus biofilms on plant roots using maldi mass spectrometry imaging. Analytical Chemistry, 86(9), 4431-4438. doi:10.1021/ac500290s. Degenkolb, T., Fog Nielsen, K., Dieckmann, R., Branco- Rocha, F., Chaverri, P., Samuels Gary, J., ... Brückner, H. (2015). Peptaibol, secondary-metabolite, and hydrophobin pattern of commercial biocontrol agents formulated with species of the Trichoderma harzianum complex. Chemistry and Biodiversity, 12(4), 662-684. doi:10.1002/cbdv.201400300. Delgado-Sánchez, P., Ortega-Amaro, M. A., Jiménez-Bremont, J. F., & Flores, J. (2010). Are fungi important for breaking seed dormancy in desert species? Experimental evidence in Opuntia streptacantha (Cactaceae). Plant Biology, 13(1), 154-159. doi:10.1111/j.1438-8677.2010.00333.x. DeZwaan, T. M., Carroll, A. M., Valent, B., & Sweigard, J. A. (1999). Magnaporthe grisea Pth11p is a novel plasma membrane protein that mediates appressorium differentiation in response to inductive substrate cues. The Plant Cell, 11(10), 2013-2030. doi:10.1105/ tpc.11.10.2013. Di Pietro, A., Lorito, M., Hayes, C., Broadway, R., & Harman, G. (1993). Endochitinase from Gliocladium virens: isolation, characterization, and synergistic antifungal activity in combination with gliotoxin. Phytopathology, 83(3), 308-313. Dijksterhuis, J., Veenhuis, M., Harder, W., & Nordbring- Hertz, B. (1994). Nematophagous fungi: Physiological aspects and structure–function relationships. Advances in Microbial Physiology, 36, 111-143. doi:10.1016/S0065- 2911(08)60178-2. Ding, Z., Li, M., Sun, F., Xi, P., Sun, L., Zhang, L., & Jiang, Z. (2015). Mitogen-activated protein kinases are associated with the regulation of physiological traits and virulence in Fusarium oxysporum f. sp. cubense. PLoS One, 10(4), e0122634. doi:10.1371/journal.pone.0122634. Domsch, K. H., Gams, W., & Anderson, T. H. (1980). Compendium of soil fungi (Vol. 1). Londres, Reino Unido: Academic Press. Druzhinina, I. S., & Kubicek, C. P. (2014). Ecological genomics of Trichoderma. En F. Martin (Ed.), The ecological genomics of fungi (pp. 89-116). Hoboken, EE. UU.: Wiley Blackwell. doi:10.1002/9781118735893.ch5. Druzhinina, I. S., Seidl-Seiboth, V., Herrera-Estrella, A., Horwitz, B. A., Kenerley, C. M., Monte, E., ... Kubicek, C. P. (2011). Trichoderma: the genomics of opportunistic success. Nature Reviews Microbiology, 9(10), 749. doi:10. 1038/nrmicro2637. Elad, Y., Chet, I., & Henis, Y. (1982a). Degradation of plant pathogenic fungi by Trichoderma harzianum. Canadian journal of microbiology, 28(7), 719-725. doi:10.1139/ m82-110. Egamberdieva, D. (2016). Bacillus spp.: A potential plant growth stimulator and biocontrol agent under hostile environmental conditions. En M. T. Islam, M. Rahman, P. Pandey, C. K. Jha, & A. Aeron (Eds.), Bacilli and agrobiotechnology (pp. 91-111). Cham, Suiza: Springer International Publishing. doi:10.1007/978-3-319-44409-3_5. Elad, Y., Kalfon, A., & Chet, I. (1982b). Control of Rhizoctonia solani in cotton by seed-coating with Trichoderma spp. spores. Plant Soil, 66(2), 279-281. doi:10.1007/ bf02183987. Emmert, E. A. B. & Handelsman, J. (2006). Biocontrol of plant disease: a (Gram-) positive perspective. FEMS Microbiology Letters, 171(1), 1-9. doi:10.1111/j.1574-6968.1999. tb13405.x. Environmental Protection Agency (epa). (1999a). Bacillus subtilis GBO3 (129068) Fact Sheet. Recuperado de https://www3.epa.gov/pesticides/chem_search/reg_ actions/registration/fs_PC-129068_01-Nov-99.pdf. Environmental Protection Agency (epa). (1999b). Bacillus subtilis mbi 600 (129082) Fact Sheet. Recuperado de https://www3.epa.gov/pesticides/chem_search/reg_ actions/registration/fs_PC-129082_01-Nov-99.pdf. Environmental Protection Agency (epa). (2000). Bacillus subtilis var. amyloliquefaciens strain FZB24 (006480) Fact Sheet. Recuperado de https://www3.epa.gov/ pesticides/chem_search/reg_actions/registration/fs_ PC-006480_01-May-00.pdf. Environmental Protection Agency (epa). (2001a). Pseudomonas chlororaphis strain 63-28 (006478) Fact sheet. Recuperado de https://www3.epa.gov/pesticides/chem_ search/reg_actions/registration/fs_PC-006478_01- Apr-01.pdf. Environmental Protection Agency (epa). (2001b). Bacillus licheniformis strain SB3086 (pc Code 006492). Recuperado de https://www3.epa.gov/pesticides/chem_search/reg_ actions/registration/decision_PC-006492_1-Feb-01.pdf. Environmental Protection Agency (epa). (2002). Gliocladium catenulatum strain J1446 (pc Code 021009). Recuperado de https://www3.epa.gov/pesticides/chem_search/ reg_actions/registration/decision_PC-021009_12- Nov-02.pdf. Environmental Protection Agency (epa). (2004). Bacillus pumilus strain QST 2808 (pc Code 006485). Recuperado de https://www3.epa.gov/pesticides/chem_search/ reg_actions/registration/decision_PC-006485_16- Nov-04.pdf. Environmental Protection Agency (epa). (2005). Streptomyces lydicus strain WYEC108 (pc Code 006327). Recuperado de https://www3.epa.gov/pesticides/chem_search/ reg_actions/registration/decision_PC-006327_15- Feb-05.pdf. Environmental Protection Agency (epa). (2006). Bacillus subtilis strain QST 713 (pc Code 006479). Recuperado de https://www3.epa.gov/pesticides/chem_search/ reg_actions/registration/decision_PC-006479_9- Aug-06.pdf Environmental Protection Agency (epa). (2006). Bacillus subtilis strain QST 713 (pc Code 006479). Recuperado de https://www3.epa.gov/pesticides/chem_search/ reg_actions/registration/decision_PC-006479_9- Aug-06.pdf Environmental Protection Agency (epa). (2010b). Trichoderma gamsii strain icc 080 pc Code: 119207. Recuperado de https://www3.epa.gov/pesticides/ chem_search/reg_actions/registration/decision_PC- 119207_4-Mar-10.pdf. Environmental Protection Agency (epa). (2010c). Trichoderma hamatum isolate 382. Recuperado de https://www3.epa. gov/pesticides/chem_search/reg_actions/registration /fs_PC-119205_13-Jul-10.pdf. Environmental Protection Agency (epa). (2010d). Streptomyces Strain K61 proposed registration review decision. Recuperado de https://www.regulations.gov/ document?D=EPA-HQ-OPP-2009-0509-0005. Environmental Protection Agency (epa). (2011a). Trichoderma asperellum strain T34 pc Code: 119209. Recuperado de https://www3.epa.gov/pesticides/ chem_search/reg_actions/registration/decision_PC- 119209_14-Oct-11.pdf. Environmental Protection Agency (epa). (2011b). Bacillus amyloliquefaciens strain D747 Pesticide chemical (pc) Code: 016482. Recuperado de https://www3.epa.gov/ pesticides/chem_search/reg_actions/registration/ decision_PC-016482_08-Dec-11.pdf. Environmental Protection Agency (epa). (2016). Pesticide product registration; receipt of applications for new active ingredients. Recuperado de https://www.federalregister. gov/documents/2016/05/25/2016-12359/pesticideproduct- registration-receipt-of-applications-for-newactive- ingredients. Environmental Protection Agency (epa). (2017). Pesticides. Recuperado de https://www.epa.gov/pesticides. Environmental Protection Agency (epa). (2018). Biopesticide active ingredients and products containing them. Recuperado de http://www.epa.gov/pesticides/biopesticides/ product_lists. Errampalli, D., Peters, R. D., MacIsaac, K., Darrach, D., & Boswall, P. (2006). Effect of a combination of chlorine dioxide and thiophanate-methyl pre-planting seed tubertreatment on the control of black scurf of potatoes. Crop Protection, 25(12), 1231-1237. doi:10.1016/j. cropro.2006.03.002. European Commission (eu). (2017). Healt and food safety. Recuperado de http://ec.europa.eu/food/plant/pesticides /eu-pesticides-database/public/?event=activesubstance. selection&language=EN. European Food Safety Authority (efsa). (2012a). Conclusion on the peer review of the pesticide risk assessment of the active substance Pseudomonas sp. strain dsmz 13134. EFSA Journal, 10(12), 2954. doi:10.2903/j. efsa.2012.2954. European Food Safety Authority (efsa). (2012b). Conclusion on the peer review of the pesticide risk assessment of the active substance Trichoderma asperellum strain T34. EFSA Journal, 10(5), 2666. doi:10.2903/j.efsa.2017.4668. European Food Safety Authority (efsa). (2013a). Conclusion on the peer review of the pesticide risk assessment of the active substance Streptomyces lydicus WYEC 108. EFSA Journal, 11(11), 3425. doi:10.2903/j.efsa.2013.3425. European Food Safety Authority (efsa). (2013b). Conclusion on the peer review of the pesticide risk assessment of the active substance Streptomyces K61 (formerly Streptomyces griseoviridis). EFSA Journal, 11(1), 3061. doi:10.2903/j. efsa.2013.3061. European Food Safety Authority (efsa). (2013c). Conclusion on the peer review of the pesticide risk assessment of the active substance Trichoderma asperellum strains ICC012, T25 and TV1. EFSA Journal, 11(1), 3036. doi:10.2903/j. efsa.2013.3036. European Food Safety Authority (efsa). (2013d). Conclusion on the peer review of the pesticide risk assessment of the active substance Trichoderma gamsii ICC080. EFSA Journal, 11(1), 3062. doi:10.2903/j.efsa.2013.3062. European Food Safety Authority (efsa). (2013e). Conclusion on the peer review of the pesticide risk assessment of the active substance Trichoderma harzianum Rifai strains T-22 and ITEM-908. EFSA Journal, 11(10), 3055. doi:10.2903/j.efsa.2013.3055. European Food Safety Authority (efsa). (2014a). Streptomyces lydicus strain WYEC 108 SANCO/11427/2014. Recuperado de http://ec.europa. eu/food/plant/pesticides/eu-pesticides-database/ public/?event=activesubstance.detail&language=EN&se lectedID=2256. European Food Safety Authority (efsa). (2014b). Trichoderma asperellum (formerly T. harzianum) ICC012 SANCO/1842/08. Recuperado de http://ec.europa.eu/ food/plant/pesticides/eu-pesticides-database/public/? event=activesubstance.detail&language=EN&selected ID=1979. European Food Safety Authority (efsa). (2016). Bacillus amyloliquefaciens strain mbi 600 sante/10008/2016. Recuperado de http://ec.europa.eu/food/plant/pesti cides/eu-pesticides-database/public/?event=active substance.detail&language=EN&selectedID=2325. European Food Safety Authority (efsa). (2017a). Bacillus amyloliquefaciens strain FZB24 sante/12037/2016. Recuperado de http://ec.europa.eu/food/plant/pesti cides/eu-pesticides-database/public/?event=active substance.detail&language=EN&selectedID=2324. European Food Safety Authority (efsa). (2017a). Bacillus amyloliquefaciens strain FZB24 sante/12037/2016. Recuperado de http://ec.europa.eu/food/plant/pesti cides/eu-pesticides-database/public/?event=active substance.detail&language=EN&selectedID=2324. European Food Safety Authority (efsa). (2017b). Conclusion on the peer review of the pesticide risk assessment of the active substance Clonostachys rosea strain J1446 (approved in Regulation (eu) No 540/2011 as Gliocladium catenulatum strain J1446). EFSA Journal, 15(7), 4905. doi:10.2903/j.efsa.2017.4905. European Food Safety Authority (efsa). (2017b). Conclusion on the peer review of the pesticide risk assessment of the active substance Clonostachys rosea strain J1446 (approved in Regulation (eu) No 540/2011 as Gliocladium catenulatum strain J1446). EFSA Journal, 15(7), 4905. doi:10.2903/j.efsa.2017.4905. European Food Safety Authority (efsa). (2017c). Conclusion on the peer review of the pesticide risk assessment of the active substance Pseudomonas chlororaphis strain ma 342. EFSA Journal, 15(1), 4668. doi:10.2903/j.efsa. 2017.4668. Faure, D., Vereecke, D., & Leveau, J. H. J. (2009). Molecular communication in the rhizosphere. Plant and Soil, 321(1- 2), 279-303. doi:10.1007/s11104-008-9839-2. Ferreira, S. A., & Boley, R. A. (1992). Sclerotinia sclerotiorum. Recuperado de http://www.extento.hawaii.edu/KBASE/ crop/type/s_scler.htm. Ferrucho, R. L., Cifuentes, J. M., Ceresini, P., & García- Domínguez, C. (2012). Rhizoctonia solani AG-3PT is the major pathogen associated with potato stem canker and black scurf in Colombia. Agronomía Colombiana, 30(2), 204-213. Flores, A., Chet, I., & Herrera-Estrella, A. (1997). Improved biocontrol activity of Trichoderma harzianum by overexpression of the proteinase-encoding gene prb1. Current Genetics, 31(1), 30-37. doi:10.1007/s002940050173. Foley, M. F., & Deacon, J. W. (1985). Isolation of Pythium oligandrum and other necrotrophic mycoparasites from soil. Transactions of the British Mycological Society, 85(4), 631-639. doi:10.1016/S0007-1536(85)80257-6. Fravel, D. (1999). Commercial biocontrol products for use against soilborne crop diseases. Recuperado de http://www. barc.usda.gov/psi/bpdl/bpdlprod/bioprod.html. Fravel, D. R. (2005). Commercialization and implementation of biocontrol. Annual Review of Phytopathology, 43, 337- 359. doi:10.1146/annurev.phyto.43.032904.092924. Frey, P., Prior, P., Marie, C., Kotoujansky, A., Trigalet-Demery, D., & Trigalet, A. (1994). Hrp- Mutants of Pseudomonas solanacearum as potential biocontrol agents of tomato bacterial wilt. Applied and Environmental Microbiology, 60(9), 3175-3181. Friedl, M. A., & Druzhinina, I. S. (2012). Taxon-specific metagenomics of Trichoderma reveals a narrow communityof opportunistic species that regulate each other’s development. Microbiology, 158(Pt. 1), 69-83. doi:10.1099/mic.0.052555-0. Friedl, M. A., & Druzhinina, I. S. (2012). Taxon-specific metagenomics of Trichoderma reveals a narrow communityof opportunistic species that regulate each other’s development. Microbiology, 158(Pt. 1), 69-83. doi:10.1099/mic.0.052555-0. García, A. M. (2017). Inicia investigación oficial sobre Dumping en importaciones de papa congelada. Recuperado de http://fedepapa.com/inicia-investigacion-oficial-sobredumping- en-importaciones-de-papa-congelada-2-2/. Gerbore, J., Benhamou, N., Vallance, J., Le Floch, G., Grizard, D., Regnault-Roger, C., & Rey, P. (2014). Biological control of plant pathogens: advantages and limitations seen through the case study of Pythium oligandrum. Environmental Science and Pollution Research, 21(7), 4847- 4860. doi:10.1007/s11356-013-1807-6. Cotes, A. M. (2010). Compatibilidad de Trichoderma koningiopsis Th003 con plaguicidas químicos. En C. A. Moreno-Velandia, & A. M. Cotes (Eds.), Desarrollo de un bioplaguicida a base de Trichoderma koningiopsis Th003 y uso en el cultivo de lechuga para el control del moho blanco (Sclerotinia sclerotiorum y Sclerotinia minor) (pp. 55-60). Bogotá, Colombia: Corporación Colombiana de Investigación Agropecuaria (Corpoica). Giczey, G., Kerényi, Z., Fülöp, L., & Hornok, L. (2001). Expression of cmg1, an exo--1,3-glucanase gene from Coniothyrium minitans, increases during sclerotial parasitism. Applied and Environmental Microbiology, 67(2), 865-871. doi:10.1128/aem.67.2.865-871.2001. Gong, X., Fu, Y., Jiang, D., Li, G., Yi, X., & Peng, Y. (2007). l-Arginine is essential for conidiation in the filamentous fungus Coniothyrium minitans. Fungal Genetics and Biology, 44(12), 1368-1379. doi:10.1016/j.fgb.2007.07.007. Gordon, T. R., & Martyn, R. D. (1997). The evolutionary biology of Fusarium oxysporum. Annual Review of Phytopathology, 35, 111-128. doi:10.1146/annurev.phyto.35.1.111. Gorgen, C. A., Da Silveira Neto, A. N., Carneiro, L. C., Ragagnin, V., & Junior, M. L. (2010). Controle do mofobranco com palhada e Trichoderma harzianum 1306 em soja. Pesquisa Agropecuária Brasileira, 44(12), 1583-1590. doi:10.1590/S0100-204X2009001200004. Government Publishing Office (gpo). (2016). Federal register. Recuperado de https://www.federalregister.gov/ agencies/government-publishing-office. Grady, E. N., MacDonald, J., Liu, L., Richman, A., & Yuan, Z.-C. (2016). Current knowledge and perspectives of Paenibacillus: a review. Microbial Cell Factories, 15(1), 203. doi:10.1186/s12934-016-0603-7. Grayston, S. J., & Campbell, C. D. (1996). Functional biodiversity of microbial communities in the rhizospheres of hybrid larch (Larix eurolepis) and Sitka spruce (Picea sitchensis). Tree physiology, 16(11-12), 1031-1038. doi:10.1093/treephys/16.11-12.1031. Grossbard, E. (1945). Control of plant diseases by microbial antagonism. Rep. exp. Res. Sta. Cheshunt, 31, 55. Grossbard, E. (1946). The control of plant diseases by microbial antagonism. Rep. exp. Res. Sta. Cheshunt, 32, 41. Grossbard, E. (1947). The control of plant diseases by microbial antagonism. Rep. exp. Res. Sta. Cheshunt, 33, 29. Grossbard, E. (1948a). Investigations on microbial antagonism and antibiotic substances. Rep. exp. Res. Sta. Cheshunt, 34, 37. Grossbard, E. (1948b). Production of an antibiotic substance on wheat straw and other organic materials and in soil. Nature, 161(4094), 614. doi:10.1038/161614a0. Grossbard, E. (1949). Investigations on microbial antagonism and antibiotic substances. Rep. exp. Res. Sta. Cheshunt, 35, 38. Grossbard, E. (1952). Antibiotic production by fungi on organic manures and in soil. Journal of General Microbiology, 6(3-4), 295-310. doi:10.1099/00221287- 6-3-4-295. Haas, D., & Défago, G. (2005). Biological control of soil-borne pathogens by fluorescent Pseudomonads. Nature Reviews. Microbiology, 3(4), 307. doi:10.1038/nrmicro1129. Hadar, Y., Harman, G., & Taylor, A. (1984). Evaluation of Trichoderma koningii and T. harzianum from New York soils for biological control of seed rot caused by Pythium spp. Phytopathology, 74(1), 106-110. doi:10.1094/ Phyto-74-106. Haichar, F. Z., Marol, C., Berge, O., Rangel-Castro, J. I., Prosser, J. I., Balesdent, J., ... Achouak, W. (2008). Plant host habitat and root exudates shape soil bacterial community structure. The Isme Journal, 2(12), 1221. doi:10.1038/ismej.2008.80. Han, Q., Wu, F., Wang, X., Qi, H., Shi, L., Ren, A., ... Tang, C. (2015). The bacterial lipopeptide iturins induce Verticillium dahliae cell death by affecting fungal signalling pathways and mediate plant defence responses involved in pathogen-associated molecular pattern-triggered immunity. Environmental Microbiology, 17(4), 1166-1188. doi:10.1111/1462-2920.12538. Hanson, L. E., & Howell, C. R. (2004). Elicitors of plant defense responses from biocontrol strains of Trichoderma virens. Phytopathology, 94(2), 171-176. doi:10.1094/ PHYTO.2004.94.2.171. Harman, G., Chet, I., & Baker, R. (1980). Trichoderma hamatum effects on seed and seedling disease induced in radish and pea by Pythium spp. or Rhizoctonia solani. Phytopathology, 70(12), 1167-1172. doi:10.1094/Phyto-70-1167. Harman, G. E. (2000). Myths and dogmas of biocontrol changes in perceptions derived from research on Trichoderma harzinum T-22. Plant Disease, 84(4), 377- 393. doi:10.1094/PDIS.2000.84.4.377. Harman, G. E., Chet, I., & Baker, R. (1981). Factors affecting Trichoderma hamatum applied to seeds as a biocontrol agent. Phytopathology, 71(6), 569-572. doi:10.1094/ Phyto-71-569. Harman, G. E., Howell, C. R., Viterbo, A., Chet, I., & Lorito, M. (2004). Trichoderma species — opportunistic, avirulent plant symbionts. Nature Reviews. Microbiology, 2(1), 43. doi:10.1038/nrmicro797. Hartley, C. (1921). Damping-off in forest nurseries (Vol. 934). Washington, EE. UU.: US Department of Agriculture. Hartmann, A., Rothballer, M., & Schmid, M. (2008). Lorenz Hiltner, a pioneer in rhizosphere microbial ecology and soil bacteriology research. Plant and Soil, 312(1), 7-14. doi:10.1007/s11104-007-9514-z. Henry, A. W. (1931). The natural microflora of the soil in relation to the foot-rot problem of wheat. Canadian Journal of Research, 4(1), 69-77. doi:10.1139/cjr31-006. Henry, G., Deleu, M., Jourdan, E., Thonart, P., & Ongena, M. (2011). The bacterial lipopeptide surfactin targets the lipid fraction of the plant plasma membrane to trigger immune-related defence responses. Cellular Microbiology, 13(11), 1824-1837. doi:10.1111/j.1462- 5822.2011.01664.x. Hermosa, R., Cardoza, R. E., Rubio, M. B., Gutiérrez, S., & Monte, E. (2014). Chapter 10 - Secondary metabolism and antimicrobial metabolites of Trichoderma. En M. S. Herrera- Estrella, R. S. U. Druzhinina, & M. G. Tuohy (Eds.), Biotechnology and biology of Trichoderma (pp. 125- 137). Amsterdam, Holanda: Elsevier. doi:10.1016/B978- 0-444-59576-8.00010-2. Hiltner, L. (1904). Über neuere Erfahrungen und Probleme auf dem Gebiet der Bodenbakteriologie und unter besonderer Berücksichtigung der Gründüngung und Brache. Arbeiten der Deutschen Landwirtschafts Gesellschaft, 98, 59-78. Hinsinger, P. (1998). How do plant roots acquire mineral nutrients? Chemical processes involved in the rhizosphere. Advances in Agronomy, 64, 225-265. Hinsinger, P. (2001). Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: a review. Plant and Soil, 237(2), 173-195. doi:10.1023/a:1013351617532. Hinsinger, P., Plassard, C., & Jaillard, B. (2006). Rhizosphere: A new frontier for soil biogeochemistry. Journal of Geochemical Exploration, 88(1-3), 210-213. doi:10.1016/j. gexplo.2005.08.041. Hinsinger, P., Gobran, G. R., Gregory, P. J., & Wenzel, W. W. (2005). Rhizosphere geometry and heterogeneity arising from root-mediated physical and chemical processes. The New Phytologist, 168(2), 293-303. doi:10.1111/j.1469- 8137.2005.01512.x. Hinsinger, P., Plassard, C., Tang, C., & Jaillard, B. (2003). Origins of root-mediated pH changes in the rhizosphere and their responses to environmental constraints: A review. Plant and Soil, 248(1), 43-59. doi:10.1023/a:1022371130939. Hoitink, H., & Boehm, M. (1999). Biocontrol within the context of soil microbial communities: a substratedependent phenomenon. Annual Review of Phytopathology, 37, 427-446. doi:10.1146/annurev.phyto.37.1.427. Hoitink, H. A. J., Madden, L. V., & Dorrance, A. E. (2006). Systemic resistance induced by Trichoderma spp.: Interactions between the host, the pathogen, the biocontrol agent, and soil organic matter quality. Phytopathology, 96(2), 186-189. doi:10.1094/PHYTO-96-0186. Hornby, D. (1983). Suppressive soils. Annual Review of Phytopatholgy, 21(1), 65-85. doi:10.1146/annurev. py.21.090183.000433. Howell, C. (1982). Effect of Gliocladium virens on Pythium ultimum, Rhizoctonia solani, and damping-off of cotton seedlings. Phytopathology, 72(5), 496-498. doi:10.1094/ Phyto-72-496. Howell, C. R. (2003). Mechanisms employed by Trichoderma species in the biological control of plant diseases: The history and evolution of current concepts. Plant Disease, 87(1), 4-10. doi:10.1094/PDIS.2003.87.1.4. Howell, C. R. (2006). Understanding the mechanisms employed by Trichoderma virens to effect biological control of cotton diseases. Phytopathology, 96(2), 178- 180. doi:10.1094/PHYTO-96-0178. Howell, C. R., & Puckhaber, L. S. (2005). A study of the characteristics of “P” and “Q” strains of Trichoderma virens to account for differences in biological control efficacy against cotton seedling diseases. Biological Control, 33(2), 217-222. doi:10.1016/j.biocontrol.2005.02.003. Hoyos, L., Galvis, F., & Rodríguez, D. (2012). Aislamientos nativos y foráneos de Trichoderma para el control de Rizoctoniasis en papa criolla. Revista de Ciencias Agrícolas, 29(1), 5-15. Humphris, S. N., Bengough, A. G., Griffiths, B. S., Kilham, K., Rodger, S., Stubbs, V., ... Young, I. M. (2005). Root cap influences root colonisation by Pseudomonas fluorescens SBW25 on maize. FEMS Microbiology Ecology, 54(1), 123-130. doi:10.1016/j.femsec.2005.03.005. Hutchinson, C. M. (1999). Trichoderma virens-Inoculated composted chicken manure for biological weed control. Biological Control, 16(2), 217-222. doi:10.1006/ bcon.1999.0759. Ihrmark, K., Asmail, N., Ubhayasekera, W., Melin, P., Stenlid, J., & Karlsson, M. (2010). Comparative molecular evolution of Trichoderma chitinases in response to mycoparasitic interactions. Evolutionary Bioinformatics, 6, EBO.S4198. doi:10.4137/EBO.S4198. Ikeda, S., Shimizu, A., Shimizu, M., Takahashi, H., & Takenaka, S. (2012). Biocontrol of black scurf on potato by seed tuber treatment with Pythium oligandrum. Biological Control, 60(3), 297-304. doi:10.1016/j. biocontrol.2011.10.016. Inbar, J., & Chet, I. (1996). The role of lectins in recognition and adhesion of the mycoparasitic fungus Trichoderma spp. To its host. En I. Kahane, & I. Ofek (Eds.), Toward anti-adhesion therapy for microbial diseases (pp. 229-231). Boston, EE. UU.: Springer us. doi:10.1007/978-1-4613- 0415-9_27. Inderbitzin, P., Bostock, R. M., Davis, R. M., Usami, T., Platt, H. W., & Subbarao, K. V. (2011). Phylogenetics and taxonomy of the fungal vascular wilt pathogen Verticillium, with the descriptions of five new species. PLoS One, 6(12), e28341. doi:10.1371/journal.pone.0028341. Inès, M., & Dhouha, G. (2015). Lipopeptide surfactants: Production, recovery and pore forming capacity. Peptides, 71, 100-112. doi:10.1016/j.peptides.2015.07.006. Instituto Colombiano Agropecuario (ica). (2018a). Productos registrados bioinsumos abril de 2018. Recuperado de http://www.ica.gov.co/getdoc/2ad9e987-8f69-4358- b8a9-e6ee6dcc8132/PRODUCTOSBIOINSUMOSMAYO- 13-DE-2008.aspx. Instituto Colombiano Agropecuario (ica). (2018b). Empresas registradas bioinsumos - abril de 2018. Recuperado de http:// www.ica.gov.co/Areas/Agricola/Servicios/Fertilizantesy- Bio-insumos-Agricolas/Listado-de-Bioinsumos/2009/ EMPRESAS-REGISTRADAS-BIOINSUMOSJULIO- 8-DE-2008.aspx. Iriarte, F. B., Obradović, A., Wernsing, M. H., Jackson, L. E., Balogh, B., Hong, J. A., ... Vallad, G. E. (2012). Soil-based systemic delivery and phyllosphere in vivo propagation of bacteriophages. Bacteriophage, 2(4) 215–224. doi:10. 4161/bact.23530. Jacqmin, B., Cotes, A., Lepoivre, P., & Semal, J. (1993). Effect of the combination of seed priming and Trichoderma treatment on incidence of damping-off agents. Mededelingen van de Faculteit Landbouwkundige en Toegepaste Biologische Wetenschappen (Rijksuniversiteit te Gent), 58(3b), 1321-1328. Jagnow, G., Höflich, G., & Hoffmann, K.-H. (1991). Inoculation of non-symbiotic rhizosphere bacteria: possibilities of increasing and stabilizing yields. Journal of applied botany = Angewandte Botanik, 65(26), 97-126. Jaklitsch, W. M. (2011). European species of Hypocrea part II: species with hyaline ascospores. Fungal Diversity, 48(1), 1-250. doi:10.1007/s13225-011-0088-y. Javaid, A., & Ali, S. (2011). Herbicidal activity of culture filtrates of Trichoderma spp. against two problematic weeds of wheat. Natural Product Research, 25(7), 730-740. doi:10.1080/14786419.2010.528757. Ji, P., Campbell, H. L., Kloepper, J. W., Jones, J. B., Suslow, T. V., & Wilson, M. (2006). Integrated biological control of bacterial speck and spot of tomato under field conditions using foliar biological control agents and plant growthpromoting rhizobacteria. Biological Control, 36(3), 358- 367. doi:10.1016/j.biocontrol.2005.09.003. Ji, P., Campbell, H. L., Kloepper, J. W., Jones, J. B., Suslow, T. V., & Wilson, M. (2006). Integrated biological control of bacterial speck and spot of tomato under field conditions using foliar biological control agents and plant growthpromoting rhizobacteria. Biological Control, 36(3), 358- 367. doi:10.1016/j.biocontrol.2005.09.003. Jones, R. W., & Hancock, J. G. (1987). Conversion of viridin to viridiol by viridin-producing fungi. Canadian Journal of Microbiology, 33(11), 963-966. doi:10.1139/m87-169. Jones, R. W., & Hancock, J. G. (1987). Conversion of viridin to viridiol by viridin-producing fungi. Canadian Journal of Microbiology, 33(11), 963-966. doi:10.1139/m87-169. Jourdan, E., Henry, G., Duby, F., Dommes, J., Barthélemy, J. P., Thonart, P., & Ongena, M. (2009). Insights into the defense-related events occurring in plant cells following perception of surfactin-type lipopeptide from Bacillus subtilis. Molecular Plant-Microbe Interactions, 22(4), 456- 468. doi:10.1094/MPMI-22-4-0456. Justesen, A. F., Yohalem, D., Bay, A., & Nicolaisen, M. (2004). Genetic diversity in potato field populations of Thanatephorus cucumeris AG-3, revealed by its polymorphism and rapd markers. Mycological Research, 107(11), 1323-1331. doi:10.1017/S0953756203008517. Kamilova, F., Kravchenko, L. V., Shaposhnikov, A. I., Makarova, N., & Lugtenberg, B. (2006). Effects of the tomato pathogen Fusarium oxysporum f. sp. radicis-lycopersici and of the biocontrol bacterium Pseudomonas fluorescens WCS365 on the composition of organic acids and sugars in tomato root exudate. Molecular Plant-Microbe Interactions, 19(10), 1121-1126. doi:10.1094/MPMI-19-1121. Kao, C. W., & Ko, W. H. (1986). The role of calcium and micro-organisms in suppression of cucumber damping-off caused by Pythium splendens in a Hawaiian soil. Phytopathology, 76(2), 221-225. doi:10.1094/ Phyto-76-221. Karaca, G., Tepedelen, G., Belghouthi, A., & Paul, B. (2008). A new mycoparasite, Pythium lycopersicum, isolated in Isparta, Turkey: morphology, molecular characteristics, and its antagonism with phytopathogenic fungi. FEMS Microbiology Letters, 288( Keijer, J. (1996). The initial steps of the infection process in Rhizoctonia solani. En B. Sneh, S. Jabaji-Hare, S. Neate, & G. Dijst (Eds.), Rhizoctonia species: Taxonomy, molecular biology, ecology, pathology and disease control (pp. 149- 162). Dordrecht, Holanda: Springer. doi:10.1007/978- 94-017-2901-7_13. Karaca, G., Tepedelen, G., Belghouthi, A., & Paul, B. (2008). A new mycoparasite, Pythium lycopersicum, isolated in Isparta, Turkey: morphology, molecular characteristics, and its antagonism with phytopathogenic fungi. FEMS Microbiology Letters, 288(2), 163-170. doi:10.1111/ j.1574-6968.2008.01334.x. Kembel, S. W., O’Connor, T. K., Arnold, H. K., Hubbell, S. P., Wright, S. J., & Green, J. L. (2014). Relationships between phyllosphere bacterial communities and plant functional traits in a neotropical forest. Proceedings of the National Academy of Sciences, 111(38), 13715-13720. doi:10.1073/pnas.1216057111. Kerr, A. (1974). Soil microbiological studies on Agrobacterium radiobacter and biological control of crown gall. Soil Science, 118, 168-172. doi:10.1097/00010694- 197409000-00006. Kerr, A., & Htay, K. (1974). Biological control of crown gall through bacteriocin production. Physiological Plant Pathology, 4(1), 37-44. doi:10.1016/0048- 4059(74)90042-3. Kloepper, J. W. (1993). Plant growth promoting rhizobacteria as biological control agents. En B. F. Metting (Ed.), Soil microbial ecology-applications in agricultural and environmental management (pp. 255-274). Nueva York, EE. UU.: DRD Press. Kloepper, J. W., Leong, J., Teintze, M., & Schroth, M. N. (1980). Enhanced plant growth by siderophores produced by plant growth-promoting rhizobacteria. Nature, 286, 885-886. doi:10.1038/286885a0. Kloepper, J. W., & Schroth, M. N. (1978). Plant growthpromoting rhizobacteria on radishes. En Institut National de la Recherche Agronomique (inra) (Ed.), Proceedings of the 4th International Conference on Plant Pathogenic Bacteria (Vol. 2, pp. 879-882). Angers, Francia: inra Klosterman, S. J., Atallah, Z. K., Vallad, G. E., & Subbarao, K. V. (2009). Diversity, pathogenicity, and management of Verticillium species. Annual Review of Phytopathology, 47(1), 39-62. doi:10.1146/annurev-phyto-080508-081748. Knudsen, I. M. B., Hockenhull, J., Jensen, D. F., Gerhardson, B., Hökeberg, M., Tahvonen, R., ... Henriksen, B. (1997). Selection of biological control agents for controlling soil and seed-borne diseases in the field. European Journal of Plant Pathology, 103(9), 775-784. doi:10.1023/a:1008662313042. Kotila, J., & Coons, G. (1925). Investigations on the blackleg disease of potato. Michigan Agricultural Experimental Station Technical Bulletin, 67, 3-29. Kratka, J., Bergmanova, E., & Kudelova, A. (1994). Effect of Pythium oligandrum and Pythium ultimum on biochemical changes in cucumber (Cucumis sativus L.). Journal of Plant Diseases and Protection, 101(4), 406-413. Kubicek, C. P., Herrera-Estrella, A., Seidl-Seiboth, V., Martinez, D. A., Druzhinina, I. S., Thon, M., ... Grigoriev, I. V. (2011). Comparative genome sequence analysis underscores mycoparasitism as the ancestral life style of Trichoderma. Genome Biology, 12(4), R40. doi:10.1186/gb-2011-12-4-r40. Kumar, A., & Johri, B. N. (2012). Antimicrobial lipopeptides of Bacillus: Natural weapons for biocontrol of plant pathogens. En T. Satyanarayana, & B. N. Johri (Eds.), Microorganisms in sustainable agriculture and biotechnology (pp. 91-111). Dordrecht, Holanda: Springer. doi:10.100 7/978-94-007-2214-9_6. Kulkarni, R. D., Thon, M. R., Pan, H., & Dean, R. A. (2005). Novel G-protein-coupled receptor-like proteins in the plant pathogenic fungus Magnaporthe grisea. Genome Biology, 6(3), R24. doi:10.1186/gb-2005-6-3-r24. Kumar, A., Saini, S., Wray, V., Nimtz, M., Prakash, A., & Johri, B. N. (2012). Characterization of an antifungal compound produced by Bacillus sp. strain A5F that inhibits Sclerotinia sclerotiorum. Journal of Basic Microbiology, 52(6), 670-678. doi:10.1002/jobm.201100463. Larkin, R., Hopkins, D., & Martin, F. (1993). Effect of successive watermelon plantings on Fusarium oxysporum and other microorganisms in soils suppressive and conducive. Phytopathology, 83(10), 1097-1105. doi:10.1094/Phyto- 83-1097 Kurzawińska, H., & Mazur, S. (2008). Biological control of potato against Rhizoctonia solani (Kühn). Sodininkystė ir Daržininkystė, 27(2), 419-425. Latgé, J. P. (2007). The cell wall: a carbohydrate armour for the fungal cell. Molecular Microbiology, 66(2), 279-290. doi:10.1111/j.1365-2958.2007.05872.x. Le Floch, G., Rey, P., Benizri, E., Benhamou, N., & Tirilly, Y. (2003). Impact of auxin-compounds produced by the antagonistic fungus Pythium oligandrum or the minor pathogen Pythium group F on plant growth. Plant and Soil, 257(2), 459-470. doi:10.1023/A:1027330024834. Lazarovits, G., Turnbull, A., & Johnston-Monje, D. (2014). Plant health management: Biological control of plant pathogens a2. En N. K. V. Alfen (Ed.), Encyclopedia of Agriculture and Food Systems (pp. 388-399). Oxford, Reino Unido: Academic Press. doi:10.1016/B978-0-444-52512-3.00177-7. Le Floch, G., Rey, P., Benizri, E., Benhamou, N., & Tirilly, Y. (2003). Impact of auxin-compounds produced by the antagonistic fungus Pythium oligandrum or the minor pathogen Pythium group F on plant growth. Plant and Soil, 257(2), 459-470. doi:10.1023/A:1027330024834. Lehner, M. S., Pethybridge, S. J., Meyer, M. C., & Del Ponte, E. M. (2017). Meta-analytic modelling of the incidence– yield and incidence–sclerotial production relationships in soybean white mould epidemics. Plant Pathology, 66(3), 460-468. doi:10.1111/ppa.12590. Lehtonen, M. J., Somervuo, P., & Valkonen, J. P. T. (2008). Infection with Rhizoctonia solani induces defense genes and systemic resistance in potato sprouts grown without light. Phytopathology, 98(11), 1190-1198. doi:10.1094/ PHYTO-98-11-1190. Leslie, J. F., & Summerell, B. A. (2008). Fusarium oxysporum Schlechtendahl emend. Snyder & Hansen. En The Fusarium laboratory manual (pp. 212-218). Ames, EE. UU.: Blackwell Publishing. Li, B., Fu, Y., Jiang, D., Xie, J., Cheng, J., Li, G., ... Yi, X. (2010). Cyclic gmp as a second messenger in the nitric oxidemediated conidiation of the mycoparasite Coniothyrium minitans. Applied and Environmental Microbiology, 76(9), 2830-2836. doi:10.1128/aem.02214-09. Li, L., Mo, M., Qu, Q., Luo, H., & Zhang, K. (2007). Compounds inhibitory to nematophagous fungi produced by Bacillus sp. strain H6 isolated from fungistatic soil. European Journal of Plant Pathology, 117(4), 329-340. doi:10.1007/s10658-007-9101-4. Lifshitz, R., Dupler, M., Elad, Y., & Baker, R. (1984a). Hyphal interactions between a mycoparasite, Pythium nunn, and several soil fungi. Canadian Journal of Microbiology, 30(12), 1482-1487. doi:10.1139/m84-236. Lifshitz, R., Stanghellini, M. E., & Baker, R. (1984b). A new species of Pythium isolated from soil in Colorado. Mycotaxon, 20(2), 373-379. Lifshitz, R., Windham, M., & Baker, R. (1986). Mechanism of biological control of preemergence damping-off of pea by seed treatment with Trichoderma spp. Phytopathology, 76(7), 720-725. Limón, M. C., Chacón, M. R., Mejías, R., Delgado-Jarana, J., Rincón, A. M., Codón, A. C., & Benítez, T. (2004). Increased antifungal and chitinase specific activities of Trichoderma harzianum cect 2413 by addition of a cellulose binding domain. Applied Microbiology and Biotechnology, 64(5), 675-685. doi:10.1007/s00253-003-1538-6. Lindberg, G. D. (1959). A transmissible disease of Helminthosporium victoriae. Phytopathology, 49, 29-32. Lochhead, A. G. (1940). Qualitative studies of soil microorganisms: III. Influence of plant growth on the character of the bacterial flora. Canadian Journal of Research, 18c(2), 42-53. doi:10.1139/cjr40c-007. Lochhead, A. G., & Chase, F. E. (1943). Qualitative studies of soil microorganisms: V. Nutritional requirements of the predominant bacterial flora. Soil Science, 55(2), 185-196. Liu, S.-D., & Baker, R. (1980). Mechanism of biological control in soil suppressive to Rhizoctonia solani. Phytopathology, 70(5), 404-412. Lodha, B. C., & Webster, J. (1990). Pythium acanthophoron, a mycoparasite, rediscovered in India and Britain. Mycological Research, 94(7), 1006-1008. doi:10.1016/S0953- 7562(09)81323-3. Lorito, M., Farkas, V., Rebuffat, S., Bodo, B., & Kubicek, C. P. (1996). Cell wall synthesis is a major target of mycoparasitic antagonism by Trichoderma harzianum. Journal of Bacteriology, 178(21), 6382-6385. doi:10.1128/ jb.178.21.6382-6385.1996. Lorito, M., & Woo, S. L. (2015). Trichoderma: A multi-purpose tool for integrated pest management. En B. Lugtenberg (Ed.), Principles of plant-microbe interactions: Microbes for sustainable agriculture (pp. 345-353). Cham, Alemania: Springer International Publishing. doi:10.1007/978-3-319-08575-3_36. Lugtenberg, B. (2015). Introduction to plant-microbe interactions. En B. Lugtenberg (Ed.), Principles of plant-microbe interactions: Microbes for sustainable agriculture (pp. 1-2). Cham, Alemania: Springer International Publishing. doi:10.1007/978-3-319-08575-3_1. Lorito, M., Woo, S. L., Harman, G. E., & Monte, E. (2010). Translational research on Trichoderma: from omics to the field. Annual Review of Phytopathology, 48, 395-417. doi:10.1146/annurev-phyto-073009-114314. Lugtenberg, B. J. J., Dekkers, L., & Bloemberg, G. V. (2001). Molecular determinants of rhizosphere colonization by Pseudomonas. Annual Review of Phytopathology, 39, 461- 490. doi:10.1146/annurev.phyto.39.1.461. Lugtenberg, B. , & Kamilova , F. (2009). Plant - growth-promoting rhizobacteria. Annual Review of Microbiology, 63, 541-556. doi:10.1146/annurev.micro. 62.081307.162918. Lumsden, R., Locke, J., Adkins, S., Walter, J., & Ridout, C. (1992). Isolation and localization of the antibiotics gliotoxin produced by Gliocladium virens from alginate prill in soil and soilless media. Phytopathology, 82(2), 230- 235. doi:10.1094/Phyto-82-230. Luo, Y., Zhang, D.-D., Dong, X.-W., Zhao, P.-B., Chen, L.- L., Song, X.-Y., ... Zhang, Y.-Z. (2010). Antimicrobial peptaibols induce defense responses and systemic resistance in tobacco against tobacco mosaic virus. FEMS Microbiology Letters, 313(2), 120-126. doi:10.1111/ j.1574-6968.2010.02135.x. Lynch, J. M. (1990). Introduction: some consequences of microbial rhizosphere competence for plant and soil. En The rhizosphere (pp. 1-10). Chichester, Inglaterra: John Wiley and Sons Ltd. Ma, Z., Hua, G. K. H., Ongena, M., & Höfte, M. (2016). Role of phenazines and cyclic lipopeptides produced by Pseudomonas sp. CMR12a in induced systemic resistance on rice and bean. Environmental Microbiology Reports, 8(5), 896-904. doi:10.1111/1758-2229.12454. Maget-Dana, R., & Peypoux, F. (1994). Iturins, a special class of pore-forming lipopeptides: biological and physicochemical properties. Toxicology, 87(1-3), 151-174. doi:10.1016/0300-483X(94)90159-7. Malamud, O. S. (1989). Research progress on Verticillium dahliae Kleb. En Centro Internacional de la Papa (cip), Fungal Diseases of the Potato. Report of planning conference on fungal diseases of the potato (pp. 139-157). Lima, Perú: cip. Malfanova, N., Franzil, L., Lugtenberg, B., Chebotar, V., & Ongena, M. (2012). Cyclic lipopeptide profile of the plant-beneficial endophytic bacterium Bacillus subtilis HC8. Archives of Microbiology, 194(11), 893-899. doi:10.1007/s00203-012-0823-0. Maloy, O. C., & Lang, K. J. (2003). Carl Freiherr Von Tubeuf: Pioneer in biological control of plant diseases. Annual Review of Phytopatholgy, 41(1), 41-52. doi:10.1146/ annurev.phyto.41.052002.095444. Mallmann, W., & Hemstreet, C. (1924). Isolation of an inhibitory substance from plants. Agricultural Research, 28(6), 599-602. Mandimba, G., Heulin, T., Bally, R., Guckert, A., & Balandreau, J. (1986). Chemotaxis of free-living nitrogenfixing bacteria towards maize mucilage. Plant and Soil, 90(1-3), 129-139. doi:10.1007/bf02277392. Marcum, D. B., Grogan, R. G., & Greathead, A. S. (1977). Fungicide control of lettuce drop caused by Sclerotinia sclerotiorum 'minor'. Plant Disease Reporter, 61, 555-559. Marschner, H. (1995). Mineral nutrition of higher plants (2.a ed.). Londres, Reino Unido: Academic Press. doi:10.1111/ j.1365-3040.1988.tb01130.x. Marshall, D. (1982). Effect of Trichoderma harzianum seed treatment and Rhizoctonia solani inoculum concentration on damping-off of snap bean in acidic soils. Plant Disease, 66(9), 788-789. doi:10.1094/PD-66-788. Martin, F., & Hancock, J. (1986). Association of chemical and biological factors in soils suppressive to Pythium ultimum. Phytopathology, 76(11), 1221-1231. doi:10.1094/Phyto- 76-1221. Mastouri, F., Björkman, T., & Harman, G. E. (2010). Seed treatment with Trichoderma harzianum alleviates biotic, abiotic, and physiological stresses in germinating seeds and seedlings. Phytopathology, 100(11), 1213-1221. doi:10.1094/PHYTO-03-10-0091. Mavrodi, D. V., Parejko, J. A., Mavrodi, O. V., Kwak, Y.-S., Weller, D. M., Blankenfeldt, W., & Thomashow, L. S. (2013). Recent insights into the diversity, frequency and ecological roles of phenazines in fluorescent Pseudomonas spp. Environmental Microbiology, 15(3), 675-686. doi:10.1111/ j.1462-2920.2012.02846.x. Mazzola, M. (1998). The potential of natural and genetically engineered fluorescent Pseudomonas spp. as biological control agents. En N. S. Subba & Y. R. Dommergues (Eds.), Microbial Interactions in agriculture and forestry (Vol. 1, pp. 193-217). Enfield, EE. UU.: Science Publishers, Inc. McClure, T. T. (1951). Fusarium foot rot of sweet potato sprouts. Phytopathology, 41, 72-77. McKinney, H. H. (1929). Mosaic diseases in the Canary Islands, West Africa and Gibraltar. Journal of Agricultural Research, 39(8), 577-578. McQuilken, M. P., Gemmell, J., Hill, R. A., & Whipps, J. M. (2003). Production of macrosphelide A by the mycoparasite Coniothyrium minitans. FEMS Microbiology Letters, 219(1), 27-31. doi:10.1016/S0378-1097(02) 01180-1. Mendes, R., Kruijt, M., de Bruijn, I., Dekkers, E., Van der Voort, M., Schneider, J. H., ... Raaijmakers, J. M. (2011). Deciphering the rhizosphere microbiome for diseasesuppressive bacteria. Science, 332(6033), 1097-1100. doi:10.1126/science.1203980. Mendgen, K., Hahn, M., & Deising, H. (1996). Morphogenesis and mechanisms of penetration by plant pathogenic fungi. Annual Review of Phytopathology, 34(1), 367-386. doi:10.1146/annurev.phyto.34.1.367. Menzies, J. D. (1959). Occurrence and transfer of a biological factor in soil that suppresses potato scab. Phytopathology, 49, 648-652. Meyer, M., Campos, H., Godoy, C., & Utiamada, C. (2016). Ensaios cooperativos de controle biológico de mofo branco na cultura da soja - safras 2012 a 2015. Documentos, 368, 19-46. doi:10.13140/RG.2.1.3074.9842. Meyer, M., Campos, H., Godoy, C., Utiamada, C., Silva, L. H. C. P., Goussain, M., ... Juliatti, F. C. (2017). Ensaios cooperativos de controle biológico de Sclerotinia sclerotiorum na cultura da soja: resultados sumarizados da safra 2015/2016. Circular Técnica, 124, 1-5. Meyer, M. C., Campos, H. D., Godoy, C. V., & Utiamada, C. M. (2014). Ensaios cooperativos de controle químico de mofo branco na cultura da soja: safras 2009 a 2012. Documentos, 345, 1-101. Meyer, M. C., Campos, H. D., Henning, A. A., Machado, A. Q., Utiamada, C. M., Pimenta, C. B., ... Venancio,W. S. (2015). Eficiência de fungicidas para controle de mofo branco (Sclerotinia sclerotiorum) em soja, na safra 2009/2010 – resultados sumarizados e individuais dos ensaios cooperativos. Circular Técnica, 109, 1-24. Mezui, J. C., Cotes, A. M., Lepoivre, P., & Semal, J. (1994). Evaluation of seed priming and Trichoderma treatment for the biological control of damping-off agents. En Institut National de la Recherche Agronomique (inra) (Ed.), Diseases and insects in forest nurseries (Vol. 68, pp. 189-196). Dijon, Francia: inra. Millard, W. A., & Taylor, C. B. (1927). Antagonism of microorganisms as the controlling factor in the: Inhibition of scab by green-manuring. Annals of Applied Biology, 14(2), 202-216. doi:10.1111/j.1744-7348.1927.tb07076.x. Mohamed, N., Lherminier, J., Farmer, M. J., Fromentin, J., Béno, N., Houot, V., ... Blein, J. P. (2007). Defense responses in grapevine leaves against Botrytis cinerea induced by application of a Pythium oligandrum strain or its elicitin, oligandrin, to roots. Phytopathology, 97(5), 611-620. doi:10.1094/PHYTO-97-5-0611. Monaci, L., Quintieri, L., Caputo, L., Visconti, A., & Baruzzi, F. (2016). Rapid profiling of antimicrobial compounds characterising B. subtilis TR50 cell-free filtrate by high-performance liquid chromatography coupled to high-resolution Orbitrap™ mass spectrometry. Rapid Communications in Mass Spectrometry, 30(1), 45-53. doi:10.1002/rcm.7408. Mongkolthanaruk, W. (2012). Classification of Bacillus beneficial substances related to plants, humans and animals. Journal of Microbiology and Biotechnology, 22(12), 1597-1604. Monteiro, F. P., Ferreira, L. C., Pacheco, L. P., & Souza, P. E. (2013). Antagonism of Bacillus subtilis against Sclerotinia sclerotiorum on Lactuca sativa. Journal of Agricultural Science, 5(4), 214-223. doi:10.5539/jas.v5n4p214. Montero, M., Sanz, L., Rey, M., Llobell, A., & Monte, E. (2007). Cloning and characterization of bgn16·3, coding for a -1,6-glucanase expressed during Trichoderma harzianum mycoparasitism. Journal of Applied Microbiology, 103(4), 1291-1300. doi:10.1111/j.1365-2672.2007.03371.x. Moore, E. S. (1926). D’Herelle’s bacteriophage in relation to plant parasites. South African Journal of Science, 23(12), 306. Moreno-Velandia, C. A. (2017). Interactions between Bacillus amyloliquefaciens Bs006, Fusarium oxysporum Map5 and cape gooseberry (Physalis peruviana) (tesis doctoral). Universidad Nacional, Bogotá, Colombia. Moreno, C., Castillo, F., González, A., Bernal, D., Jaimes, Y., Chaparro, M., ... Cotes, A. (2009). Biological and molecular characterization of the response of tomato plants treated with Trichoderma koningiopsis. Physiological and Molecular Plant Pathology, 74(2), 111-120. doi:10.1016/j.pmpp.2009.10.001. Moreno, C. A., Cotes, A. M., Smith, A., Beltrán, C., Villamizar, L., Gómez, M., ... Santos, A. (2010). Desarrollo de un bioplaguicida a base de Trichoderma koningiopsis Th003 y uso en el cultivo de lechuga para el control del moho blanco Sclerotinia sclerotiorum y Sclerotinia minor. Bogotá, Colombia: Corporación Colombiana de Investigación Agropecuaria (Corpoica). Moszczyńska, E., Pytlarz-Kozicka, M., & Grzeszczuk, J. (2015). The impact of applying biological treatment on the infection of potato tubers by the fungus Rhizoctonia solani and the bacterium Streptomyces scabiei. Journal of Research and Applications in Agricultural Engineering, 60(4), 46-50. Mukherjee, M., Horwitz, B. A., Sherkhane, P. D., Hadar, R., & Mukherjee, P. K. (2006). A secondary metabolite biosynthesis cluster in Trichoderma virens: evidence from analysis of genes underexpressed in a mutant defective in morphogenesis and antibiotic production. Current Genetics, 50(3), 193-202. doi:10.1007/s00294-006-0075-0. Mukherjee, P. K., Horwitz, B. A., & Kenerley, C. M. (2012). Secondary metabolism in Trichoderma – A genomic perspective. Microbiology, 158(Pt 1), 35-45. doi:10.1099/ mic.0.053629-0. Mukherjee, P. K., Horwitz, B. A., Singh, U. S., Mukherjee, M., & Schmoll, M. (2013). Trichoderma in agriculture, industry and medicine: an overview. En P. K. Mukherjee, B. A. Horwitz, U. Singh, M. Mukherjee, & M. Schmoll (Eds.), Trichoderma biology and applications (pp. 1-9). Nagpur, India: CAB International. Mukherjee, P. K., Latha, J., Hadar, R., & Horwitz, B. A. (2003). TmkA, a mitogen-activated protein kinase of Trichoderma virens, is involved in biocontrol properties and repression of conidiation in the dark. Eukaryotic Cell, 2(3), 446-455. doi:10.1128/ec.2.3.446-455.2003. Nihorimbere, V., Cawoy, H., Seyer, A., Brunelle, A., Thonart, P., & Ongena, M. (2012). Impact of rhizosphere factors on cyclic lipopeptide signature from the plant beneficial strain Bacillus amyloliquefaciens S499. FEMS Microbiology Ecology, 79(1), 176-191. doi:10.1111/j.1574-6941.2011.01208.x. Nogués, S., Cotxarrera, L., Alegre, L., & Trillas, M. I. (2002). Limitations to photosynthesis in tomato leaves induced by Fusarium wilt. New Phytologist, 154(2), 461-470. doi:10.1046/j.1469-8137.2002.00379.x. Notenboom, V., Boraston, A. B., Williams, S. J., Kilburn, D. G., & Rose, D. R. (2002). High-resolution crystal structures of the lectin-like xylan binding domain from Streptomyces lividans xylanase 10a with bound substrates reveal a novel mode of xylan binding. Biochemistry, 41(13), 4246-4254. doi:10.1021/bi015865j. Ogoshi, A. (1987). Ecology and pathogenicity of anastomosis and intraspecific groups of Rhizoctonia solani Kuhn. Annual Review of Phytopathology, 25(1), 125-143. doi:10.1146/annurev.py.25.090187.001013. Omann, M., & Zeilinger, S. (2010). How a mycoparasite employs G-protein signaling: Using the example of Trichoderma. Journal of Signal Transduction, 2010, 123- 126. doi:10.1155/2010/123126. Omann, M. R., Lehner, S., Escobar Rodríguez, C., Brunner, K., & Zeilinger, S. (2012). The seven-transmembrane receptor Gpr1 governs processes relevant for the antagonistic interaction of Trichoderma atroviride with its host. Microbiology, 158(Pt 1), 107-118. doi:10.1099/ mic.0.052035-0. Ongena, M., Henry, G., & Thonart, P. (2009). The roles of cyclic lipopeptides in the biocontrol activity of Bacillus subtilis. En U. Gisi, I. Chet, & M. L. Gullino (Eds.), Recent developments in management of plant diseases (pp. 59-69). Dordrecht, Holanda: Springer. doi:10.1007/978-1-4020-8804-9_5. Ongena, M., & Jacques, P. (2008). Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends in Microbiology, 16(3), 115-125. doi:10.1016/j.tim.2007. 12.009. Pal, K. K., & Gardener, B. M. (2006). Biological control of plant pathogens. The Plant Health Instructor, 2, 1117- 1142. doi:10.1094/PHI-A-2006-1117-02. Papapostolou, I., & Georgiou, C. D. (2010). Superoxide radical induces sclerotial differentiation in filamentous phytopathogenic fungi: a superoxide dismutase mimetics study. Microbiology, 156(Pt 3), 960-966. doi:10.1099/ mic.0.034579-0. Papavizas, G., Lewis, J., & Moity, T. (1982). Evaluation of new biotypes of Trichoderma harzianum for tolerance to benomyl and enhanced biocontrol capabilities. Phytopathology, 72(1), 126-132. Patel, H., Tscheka, C., Edwards, K., Karlsson, G., & Heerklotz, H. (2011). All-or-none membrane permeabilization by fengycin-type lipopeptides from Bacillus subtilis QST713. Biochimica et Biophysica Acta, 1808(8), 2000-2008. doi:https://doi:org/10.1016/j.bbamem.2011.04.008. Pennock, D., & McKenzie, N. (2016). Estado mundial del recurso suelo. Recuperado de http://www.fao.org/3/a-i5126s.pdf. Pérez-García, A., Romero, D., & De Vicente, A. (2011). Plant protection and growth stimulation by microorganisms: biotechnological applications of Bacilli in agriculture. Current Opinion in Biotechnology, 22(2), 187-193. doi:10.1016/j.copbio.2010.12.003. Pérez, S. L., Piedrahíta, W., & Arbeláez, G. (2011). Patogénesis de la pudrición blanda de la lechuga (Lactuca sativa L.) en la sabana de Bogotá causada por Sclerotinia sclerotiorum (Lib.) de Bary y Sclerotinia minor Jagger. Una revisión. Revista Colombiana de Ciencias Hortícolas, 3(2), 262-274. doi:10.17584/rcch.2009v3i2.1217. Pertot, I., Puopolo, G., Hosni, T., Pedrotti, L., Jourdan, E., & Ongena, M. (2013). Limited impact of abiotic stress on surfactin production in planta and on disease resistance induced by Bacillus amyloliquefaciens S499 in tomato and bean. FEMS Microbiology Ecology, 86(3), 505-519. doi:10.1111/1574-6941.12177. Picard, K., Ponchet, M., Blein, J.-P., Rey, P., Tirilly, Y., & Benhamou, N. (2000). Oligandrin. A proteinaceous molecule produced by the mycoparasite Pythium oligandrum induces resistance to Phytophthora parasitica infection in tomato plants. Plant Physiology, 124(1), 379- 396. doi:10.1104/pp.124.1.379. Pierson, E. A., & Weller, D. M. (1994). Use of mixtures of fluorescent Pseudomonads to suppress take-all and improve the growth of wheat. Phytopathology, 84(9), 940-947. Pieterse, C. M. J., Van Pelt, J. A., Verhagen, B. W., Ton, J., Van Wees, A. C. M., Léon-Kloosterziel, K. M., & Van Loon, L. C. (2003). Induced systemic resistance by plant growthpromoting rhizobacteria. Symbiosis, 35(1-3), 39-54. Pietro, A. D., Madrid, M. P., Caracuel, Z., Delgado-Jarana, J., & Roncero, M. I. G. (2003). Fusarium oxysporum: exploring the molecular arsenal of a vascular wilt fungus. Molecular Plant Pathology, 4(5), 315-325. doi:10.1046/ j.1364-3703.2003.00180.x. Purdy, L. H. (1979). Sclerotinia sclerotiorum: History, diseases and symptomatology, host range, geographic distribution, and impact. Phytopathology, 69(8), 875-880. doi:10.1094/ Phyto-69-875. Raaijmakers, J. M., De Bruijn, I., Nybroe, O., & Ongena, M. (2010). Natural functions of lipopeptides from Bacillus and Pseudomonas: more than surfactants and antibiotics. FEMS Microbiology Reviews, 34(6), 1037-1062. doi:10.1111/j.1574-6976.2010.00221.x. Raaijmakers, J. M., Paulitz, T. C., Steinberg, C., Alabouvette, C., & Moënne-Loccoz, Y. (2009). The rhizosphere: a playground and battlefield for soilborne pathogens and beneficial microorganisms. Plant and Soil, 321(1-2), 341- 361. doi:10.1007/s11104-008-9568-6. Raaijmakers, J. M., Van der Sluis, L., Bakker, P. A. H. M., Schippers, B., Koster, M., & Weisbeek, P. J. (1995). Utilization of heterologous siderophores and rhizosphere competence of fluorescent Pseudomonas spp. Canadian Journal Raaijmakers, J. M., Van der Sluis, L., Bakker, P. A. H. M., Schippers, B., Koster, M., & Weisbeek, P. J. (1995). Utilization of heterologous siderophores and rhizosphere competence of fluorescent Pseudomonas spp. Canadian Journal of Microbiology, 41(2), 126-135. doi:10.1139/m95-017. Raaijmakers, J. M., & Weller, D. M. (1998). Natural plant protection by 2,4-Diacetylphloroglucinol-producing Pseudomonas spp. in take-all decline soils. Molecular Plant-Microbe Interactions, 11(2), 144-152. doi:10.1094 MPMI.1998.11.2.144. Rahman, M. M. E., Hossain, D. M., Suzuki, K., Shiiya, A., Suzuki, K., Dey, T. K., ... Harada, N. (2016). Suppressive effects of Bacillus spp. on mycelia, apothecia and sclerotia formation of Sclerotinia sclerotiorum and potential as biological control of white mold on mustard. Australasian Plant Pathology, 45(1), 103-117. doi:10.1007/s13313-016-0397-4. Ravensberg, W. J. (2015). Commercialisation of microbes: Present situation and future prospects. En: B. Lugtenberg (Ed.), Principles of plant-microbe interactions: Microbes for sustainable agriculture (pp. 309-317). Cham, Alemania: Springer International Publishing. doi:10.1007/978-3- 319-08575-3_32. Reino, J. L., Guerrero, R. F., Hernández-Galán, R., & Collado, I. G. (2008). Secondary metabolites from species of the biocontrol agent Trichoderma. Phytochemistry Reviews, 7(1), 89-123. doi:10.1007/s11101-006-9032-2. Reinking, O. A., & Manns, M. M. (1933). Parasitic and other fusaria counted in tropical soils. Zeitschrift für Parasitenkunde, 6(1), 23-75. doi:10.1007/bf02121421. Reithner, B., Ibarra-Laclette, E., Mach, R. L., & Herrera- Estrella, A. (2011). Identification of mycoparasitism-related genes in Trichoderma atroviride. Applied and Environmental Microbiology, 77(13), 4361-4370. doi:10.1128/aem.00129-11. Ren, L., Li, G., Han, Y. C., Jiang, D. H., & Huang, H.-C. (2007). Degradation of oxalic acid by Coniothyrium minitans and its effects on production and activity of -1,3-glucanase of this mycoparasite. Biological Control, 43(1), 1-11. doi:10.1016/j.biocontrol.2007.06.006. Rey, P., Le Floch, G., Benhamou, N., & Tirilly, Y. (2008). Pythium oligandrum biocontrol: its relationships with fungi and plants. En E. Ait Barka, & C. Clément (Ed.), Plant-Microbe Interactions (pp. 43-57). Kerala, India: Research Signpost. Romão-Dumaresq, A. S., De Araújo, W. L., Talbot, N. J., & Thornton, C. R. (2012). rna interference of endochitinases in the sugarcane endophyte Trichoderma virens 223 reduces its fitness as a biocontrol agent of pineapple disease. PLoS One, 7(10), e47888. doi:10.1371/ journal.pone.0047888. Roberts, W. (1873). Studies on biogenesis. Proceedings of the Royal Society of London, 22(148-155), 289-291. doi:10.1098/rspl.1873.0045. Romero, D., De Vicente, A., Olmos, J. L., Dávila, J. C., & Pérez-García, A. (2007). Effect of lipopeptides of antagonistic strains of Bacillus subtilis on the morphology and ultrastructure of the cucurbit fungal pathogen Podosphaera fusca. Journal of Applied Microbiology, 103(4), 969-976. doi:10.1111/j.1365-2672.2007.03323.x. Rotblat, B., Enshell-Seijffers, D., Gershoni Jonathan, M., Schuster, S., & Avni, A. (2002). Identification of an essential component of the elicitation active site of the eix protein elicitor. The Plant Journal, 32(6), 1049-1055. doi:10.1046/j.1365-313X.2002.01490.x. Rovira, A. D. (1956). Plant root excretions in relation to the rhizosphere effect. Plant and Soil, 7(2), 178-194. doi:10.1007/BF01343726. Ruocco, M., Lanzuise, S., Vinale, F., Marra, R., Turrà, D., Woo, S. L., & Lorito, M. (2009). Identification of a new biocontrol gene in Trichoderma atroviride: The role of an abc transporter membrane pump in the interaction with different plant-pathogenic fungi. Molecular Plant-Microbe Interactions, 22(3), 291-301. doi:10.1094/MPMI-22-3-0291. Ryan, P. R., Delhaize, E., & Jones, D. L. (2001). Function and mechanism of organic anion exudation from plant roots. Annual Review of Plant Physiology and Plant Molecular Biology, 52, 527-560. doi:10.1146/annurev.arplant.52.1.527. Sammer, U. F., Reiher, K., Spiteller, D., Wensing, A., & Völksch, B. (2012). Assessment of the relevance of the antibiotic 2-amino-3-(oxirane-2,3-dicarboxamido)- propanoyl-valine from Pantoea agglomerans biological control strains against bacterial plant pathogens. MicrobiologyOpen, 1(4), 438-449. doi:10.1002/mbo3.43. Ryu, C.-M., Farag, M. A., Hu, C.-H., Reddy, M. S., Wei, H.-X., Paré, P. W., & Kloepper, J. W. (2003). Bacterial volatiles promote growth in Arabidopsis. Proceedings of the National Academy of Sciences, 100(8), 4927-4932. doi:10.1073/pnas.0730845100. Sanford, G. B., & Broadfoot, W. C. (1931). Studies of the effects of other soil-inhabiting micro-organisms on the virulence of Ophiobolus graminis Sacc. Scientific Agriculture, 11(8): 512-528. doi:10.4141/sa-1931-0056. Santos, A., Beltrán, C., García, M., Cotes, A. M., & Villamizar, L. (2011). Control de Rhizoctonia solani en semilla de papa criolla con T. koningiopsis (Th003) y T. asperellum (Th034). En C. R. Beltrán Acosta, C. A. Moreno Velandia, & A. M. Cotes (Eds.), Trichoderma koningiopsis Th003, alternativa biológica para el control de Rhizoctonia solani en el cultivo de papa (pp. 32-42). Mosquera, Colombia: Corporación Colombiana de Investigación Agropecuaria (Corpoica). Schäfer, T., & Adams, T. (2015). The importance of microbiology in sustainable agriculture. En B. Lugtenberg (Ed.), Principles of plant-microbe interactions: Microbes for sustainable agriculture (pp. 5-6). Cham, Alemania: Springer International Publishing. doi:10.1007/978-3- 319-08575-3_2. Scher, F. M., & Baker, R. (1980). Mechanism of biological control in a Fusarium-suppressive soil. Phytopathology, 70(5), 412-417. doi:10.1094/Phyto-70-412. Schirmböck, M., Lorito, M., Wang, Y. L., Hayes, C. K., Arisan-Atac, I., Scala, F., ... Kubicek, C. P. (1994). Parallel formation and synergism of hydrolytic enzymes and peptaibol antibiotics, molecular mechanisms involved in the antagonistic action of Trichoderma harzianum against phytopathogenic fungi. Applied and Environmental Microbiology, 60(12), 4364-4370. Seidl, V. (2008). Chitinases of filamentous fungi: a large group of diverse proteins with multiple physiological functions. Fungal Biology Reviews, 22(1), 36-42. doi:10.1016/j. fbr.2008.03.002. Seidl, V., Song, L., Lindquist, E., Gruber, S., Koptchinskiy, A., Zeilinger, S., ... Kubicek, C. P. (2009). Transcriptomic response of the mycoparasitic fungus Trichoderma atroviride to the presence of a fungal prey. BMC Genomics, 10, 567. doi:10.1186/1471-2164-10-567. Serrano-Carreon, L., Hathout, Y., Bensoussan, M., & Belin, J.-M. (1993). Metabolism of linoleic acid or mevalonate and 6-pentyl--pyrone biosynthesis by Trichoderma species. Applied and Environmental Microbiology, 59(9), 2945-2950. Sharon, E., Bar-Eyal, M., Chet, I., Herrera-Estrella, A., Kleifeld, O., & Spiegel, Y. (2001). Biological control of the root-knot nematode meloidogyne javanica by Trichoderma harzianum. Phytopathology, 91(7), 687-693. doi:10.1094/PHYTO.2001.91.7.687. Sharon, M., Sneh, B., Kuninaga, S., & Hyakumachi, M. (2006). The advancing identification and classification of Rhizoctonia spp. using molecular and biotechnological methods compared with the classical anastomosis grouping. Mycoscience, 47(6), 299-316. doi:10.1007/S10267-006-0320-X. Shipton, P. J. (1977). Monoculture and soilborne plant pathogens. Annual Review of Phytopathology, 15(1), 387- 407. doi:10.1146/annurev.py.15.090177.002131. Shoresh, M., Harman, G. E., & Mastouri, F. (2010). Induced systemic resistance and plant responses to fungal biocontrol agents. Annual Review of Phytopathology, 48, 21-43. doi:10.1146/annurev-phyto-073009-114450. Sindhu, S. S., Suneja, S., Goel, A. K., Parmar, N., & Dadarwal, K. R. (2002). Plant growth promoting effects of Pseudomonas sp. on coinoculation with Mesorhizobium sp. Cicer strain under sterile and “wilt sick” soil conditions. Applied Soil Ecology, 19(1), 57-64. doi:10.1016/S0929- 1393(01)00176-7. Singh, P., & Cameotra, S. S. (2004). Enhancement of metal bioremediation by use of microbial surfactants. Biochemical and Biophysical Research Communications, 319(2), 291-297. doi:10.1016/j.bbrc.2004.04.155. Sivasithamparam, K., & Ghisalberti, E. (1998). Secondary metabolism in Trichoderma and Gliocladium. En C. P. Kubicek & G. E. Harman (Eds.), Trichoderma and Gliocladium basic biology taxonomy and genetics (Vol. 1, pp. 139-191). Londres, Reino Unido: Taylor and Francis Ltd. Smalla, K., Sessitsch, A., & Hartmann, A. (2006). The Rhizosphere: ‘soil compartment influenced by the root’. FEMS Microbiology Ecology, 56(2), 165-165. doi:10.1111/j.1574-6941.2006.00148.x. Srivastava, S., Sinha, V., Vaishnavi, A., Kunwar, T., & Tigga, R. S. (2012). Regulation of antibiotics production in biocontrol strains of Pseudomonas spp. En T. Satyanarayana & B. N. Johri (Eds.), Microorganisms in sustainable agriculture and biotechnology (pp. 197-225). Dordrecht, Holanda: Springer. doi:10.1007/978-94-007-2214-9_11. Steinberg, C., Whipps, J. M., Wood, D., Fenlon, J., & Alabouvette, C. (1999). Mycelial development of Fusarium oxysporum in the vicinity of tomato roots. Mycological Research, 103(6), 769-778. doi:10.1017/ S0953756298007710. Steinkellner, S., Mammerler, R., & Vierheilig, H. (2005). Microconidia germination of the tomato pathogen Fusarium oxysporum in the presence of root exudates. Journal of Plant Interactions, 1(1), 23-30. doi:10.1080/17429140500134334. Stotzky, G., & Rem, L. T. (1966). Influence of clay minerals on microorganisms: I. Montmorillonite and kaolinite on bacteria. Canadian Journal of Microbiology, 12(3), 547- 563. doi:10.1139/m66-078. Stotzky, G., & Torrence Martin, R. (1963). Soil mineralogy in relation to the spread of Fusarium wilt of banana in central America. Plant and Soil, 18(3), 317-337. doi:10.1007/bf01347232. Subbarao, K. V. (1998). Progress toward integrated management of lettuce drop. Plant Disease, 82(10), 1068- 1078. doi:10.1094/PDIS.1998.82.10.1068. Summers, W. C. (2005). Bacteriophage research: early history. En E. Kutter & A. Sulakvelidze (Eds.), Bacteriophages: Biology and applications (pp. 5-27). Boca Ratón, EE. UU.: CRC Press. Szabó, M., Csepregi, K., Gálber, M., Virányi, F., & Fekete, C. (2012). Control plant-parasitic nematodes with Trichoderma species and nematode-trapping fungi: The role of chi18-5 and chi18-12 genes in nematode egg-parasitism. Biological Control, 63(2), 121-128. doi:10.1016/j.biocontrol.2012.06.013. Szekeres, A., Leitgeb, B., Kredics, L., Antal, Z., Hatvani, L., Manczinger, L., & Vágvölgyi, C. (2005). Peptaibols and related peptaibiotics of Trichoderma. Acta Microbiologica et Immunologica Hungarica, 52(2), 137-168. doi:10.1556/ AMicr.52.2005.2.2. Takenaka, S., Nakamura, Y., Kono, T., Sekiguchi, H., Masunaka, A., & Takahashi, H. (2006). Novel elicitinlike proteins isolated from the cell wall of the biocontrol agent Pythium oligandrum induce defence-related genes in sugar beet. Molecular Plant Pathology, 7(5), 325-339. doi:10.1111/j.1364-3703.2006.00340.x. Takenaka, S., Sekiguchi, H., Nakaho, K., Tojo, M., Masunaka, A., & Takahashi, H. (2008). Colonization of Pythium oligandrum in the tomato rhizosphere for biological control of bacterial wilt disease analyzed by real-time PCR and confocal laser-scanning microscopy. Phytopathology, 98(2), 187-195. doi:10.1094/PHYTO-98-2-0187. Thomas, R. C. (1935). A bacteriophage in relation to Stewart’s disease of corn. Phytopathology, 25(3), 371-372. Tijerino, A., Elena Cardoza, R., Moraga, J., Malmierca, M. G., Vicente, F., Aleu, J., ... Hermosa, R. (2011). Overexpression of the trichodiene synthase gene tri5 increases trichodermin production and antimicrobial activity in Trichoderma brevicompactum. Fungal Genetics and Biology, 48(3), 285- 296. doi:10.1016/j.fgb.2010.11.012. Tisdale, S. L., Havlin, J., Beaton, J., & Nelson, W. L. (1975). Soil fertility and fertilizers. Nueva York, EE. UU.: Pearson Education. doi:10.2307/1292062. Tomprefa, N., Hill, R., Whipps, J., & McQuilken, M. (2011). Some environmental factors affect growth and antibiotic production by the mycoparasite Coniothyrium minitans. Biocontrol Science and Technology, 21(6), 721-731. doi:10. 1080/09583157.2011.575211. Tomprefa, N., McQuilken, M. P., Hill, R. A., & Whipps, J. M. (2009). Antimicrobial activity of Coniothyrium minitans and its macrolide antibiotic macrosphelide A. Journal of Applied Microbiology, 106(6), 2048-2056. doi:10.1111/ j.1365-2672.2009.04174.x. Torkewitz, R. (2008). Chronology of fungicides. Recuperado de https://www.apsnet.org/about/history/Documents/ Chronology_of_Fungicides.pdf. Torres, H. (2002). Manual de las enfermedades mas importantes de la papa en el Perú. Lima, Perú: Centro Internacional de la Papa (cip). Torres, M. J., Brandan, C. P., Petroselli, G., Erra-Balsells, R., & Audisio, M. C. (2016). Antagonistic effects of Bacillus subtilis subsp. subtilis and B. amyloliquefaciens against Macrophomina phaseolina: sem study of fungal changes and uv-maldi-tof ms analysis of their bioactive compounds. Microbiological Research, 182, 31-39. doi:10.1016/j. micres.2015.09.005. Tsror, L. (2010). Biology, epidemiology and management of Rhizoctonia solani on potato. Journal of Phytopathology, 158(10), 649-658. doi:10.1111/j.1439- 0434.2010.01671.x. Tsror, L., Barak, R., & Sneh, B. (2001). Biological control of black scurf on potato under organic management. Crop Protection, 20(2), 145-150. doi:10.1016/S0261- 2194(00)00124-1. Tsror, L., & Peretz-Alon, I. (2005). The influence of the inoculum source of Rhizoctonia solani on development of black scurf on potato. Journal of Phytopathology, 153(4), 240-244. doi:10.1111/j.1439-0434.2005.00962.x. Twort, F. W. (1915). An investigation on the nature of ultramicroscopic viruses. The Lancet, 186(4814), 1241-1243. doi:10.1016/S0140-6736(01)20383-3. Uribe, D., Ortiz, E., Portillo, M., Bautista, G., & Cerón, J. (1999). Diversidad de Pseudomonas fluorescentes en cultivos de papa de la region cundiboyacense y su actividad antagonista in vitro sobre Rhizoctonia solani. Revista Colombiana Biotecnología, 2(1), 50-58. Van Breemen, N., Driscoll, C. T., & Mulder, J. (1984). Acidic deposition and internal proton sources in acidification of soils and waters. Nature, 307, 599-604. doi:10.1038/307599a0. Van Elsas, J. D., & Heijnen, C. E. (1990). Methods for the introduction of bacteria into soil: A review. Biology and Fertility of Soils, 10(2), 127-133. doi:10.1007/BF00336248. Van Lenteren, J. C., Bolckmans, K., Köhl, J., Ravensberg, W. J., & Urbaneja, A. (2018). Biological control using invertebrates and microorganisms: plenty of new opportunities. BioControl, 63(1), 39-59. doi:10.1007/ s10526-017-9801-4. Van Veen, J. A., Van Overbeek, L. S., & Van Elsas, J. D. (1997). Fate and activity of microorganisms introduced into soil. Microbiology and Molecular Biology Reviews, 61(2), 121-135. Vanittanakom, N., Loeffler, W., Koch, U., & Jung, G. (1986). Fengycin-a novel antifungal lipopeptide antibiotic produced by Bacillus subtilis F-29-3. The Journal of Antibiotics, 39(7), 888-901. Velivelli, S. L. S., De Vos, P., Kromann, P., Declerck, S., & Prestwich, B. D. (2014). Biological control agents: from field to market, problems, and challenges. Trends in Biotechnology, 32(10), 493-496. doi:10.1016/j. tibtech.2014.07.002. Verma, M., Brar, S. K., Tyagi, R. D., Surampalli, R. Y., & Valéro, J. R. (2007). Antagonistic fungi, Trichoderma spp.: Panoply of biological control. Biochemical Engineering Journal, 37(1), 1-20. doi:10.1016/j.bej.2007.05.012. Vinale, F., Sivasithamparam, K., Ghisalberti, E. L., Marra, R., Woo, S. L., & Lorito, M. (2008). Trichoderma–plant– pathogen interactions. Soil Biology and Biochemistry, 40(1), 1-10. doi:10.1016/j.soilbio.2007.07.002. Vinodkumar, S., Nakkeeran, S., Renukadevi, P., & Malathi, V. G. (2017). Biocontrol potentials of antimicrobial peptide producing Bacillus species: Multifaceted antagonists for the management of stem rot of carnation caused by Sclerotinia sclerotiorum. Frontiers in Microbiology, 8, 446. doi:10.3389/ fmicb.2017.00446. Viterbo, A., & Horwitz, B. A. (2010). Mycoparasitism. En K. Borkovich & D. J. Ebbole (Eds.), Cellular and molecular biology of filamentous fungi (pp. 676-693). Washington, EE. UU.: American Society of Microbiology. doi:10.1128/ 9781555816636.ch42. Walker, J. C., & Snyder, W. C. (1933). Pea wilt and root rots. Madison, EE. UU.: University of Wisconsin Wang, M., Zhang, M., Li, L., Dong, Y., Jiang, Y., Liu, K., ... Fang, X. (2017). Role of Trichoderma reesei mitogen-activated protein kinases (MAPKs) in cellulase formation. Biotechnology for Biofuels, 10, 99. doi:10.1186/s13068-017-0789-x. Wasson, D. L. (2017). Virgil. Recuperado de https://www. ancient.eu/virgil/. Watson, R. T., Albritton, D. T., Anderson, S. O., & Lee- Bapty, S. (1992). Methyl Bromide: Its Atmospheric Science, Technology and Economics. Nairobi, Kenya: United Nations Environmental Program. Wei, W., Zhu, W., Cheng, J., Xie, J., Jiang, D., Li, G., ... Fu, Y. (2016). Nox complex signal and MAPK cascade pathway are cross-linked and essential for pathogenicity and conidiation of mycoparasite Coniothyrium minitans. Scientific Reports, 6, 24325. doi:10.1038/srep24325. Weindling, R. (1932). Trichoderma lignorum as a parasite of other soil fungi. Phytopahtology, 22, 837-845. Weindling, R. (1934). Studies on a lethal principle effective in the parasitic action of Trichoderma lignorum on Rhizoctonia solani and other soil fungi. Phytopathology, 24(11), 1153-1179. Weindling, R. (1941). Experimental consideration of the mold toxins of Gliocladium and Trichoderma. Phytopathology, 31(11), 991-1003. Weindling, R., & Emerson, O. (1936). The isolation of a toxic substance from the culture filtrate of Trichoderma. Phytopathology, 26, 1068-1070. Welbaum, G. E., Sturz, A. V., Dong, Z., & Nowak, J. (2004). Managing soil microorganisms to improve productivity of agro-ecosystems. Critical Reviews in Plant Sciences, 23(2), 175-193. doi:10.1080/07352680490433295. Weller, D. M. (1988). Biological control of soilborne plant pathogens in the rhizosphere with bacteria. Annual Review of Phytopathology, 26(1), 379-407. doi:10.1146/ annurev.py.26.090188.002115. Weller, D. M. (2007). Pseudomonas biocontrol agents of soilborne pathogens: Looking back over 30 years. Phytopathology, 97(2), 250-256. doi:10.1094/ PHYTO-97-2-0250. Weller, D. M. (2015). Take-All Decline and Beneficial Pseudomonads. En B. Lugtenberg (Ed.), Principles of plantmicrobe interactions (pp. 363-370). Cham, Suiza: Springer. doi:10.1007/978-3-319-08575-3_38. Weller, D. M., & Cook, R. J. (1983). Suppression of take-all of wheat by seed treatments with fluorescent Pseudomonads. Phytopathology, 73(3), 463-469. doi:10.1094/Phyto-73-463. Weller, D. M., Raaijmakers, J. M., Gardener, B. B., & Thomashow, L. S. (2002). Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annual Review of Phytopathology, 40, 309-348. doi:10.1146/annurev.phyto.40.030402.110010. Weller, D. M., & Thomashow, L. (2016). Contribution of biocontrol agents to sustainable agriculture: Do insights from microbiome research and bca “omics” pay off. iobc Bulletin, 117, 2-6. Wells, H. D., Bel, B. K., & Jaworski, C. A. (1972). Efficacy of Trichoderma harzianun as a biocontrol for Sclerotium rolfsii. Phytopathology, 62, 442-447. doi:10.1094/Phyto-62-442. Whilhite, S., Lumsden, R., & Straney, D. (1994). Mutational analysis of gliotoxin production by the biocontrol fungus Gliocladium virens in relation to suppression of Pythium damping-off. Phytopathology, 84(8), 816-821. Whipps, J. M. (2001). Microbial interactions and biocontrol in the rhizosphere. Journal of Experimental Botany, 52(Suppl. 1): 487-511. doi:10.1093/jexbot/52.suppl_1.487. Whipps, J. M., & Gerlagh, M. (1992). Biology of Coniothyrium minitans and its potential for use in disease biocontrol. Mycological Research, 96(11), 897-907. doi:10.1016/ S0953-7562(09)80588-1. Whipps, J. M., Hand, P., Pink, D., & Bending, G. D. (2008). Phyllosphere microbiology with special reference to diversity and plant genotype. Journal of Applied Microbiology, 105(6), 1744-1755. doi:10.1111/j.1365- 2672.2008.03906.x. Wilson, P. S., Ahvenniemi, P. M., Lehtonen, M. J., Kukkonen, M., Rita, H., & Valkonen, J. P. T. (2008). Biological and chemical control and their combined use to control different stages of the Rhizoctonia disease complex on potato through the growing season. Annals of Applied Biology, 153(3), 307-320. doi:10.1111/j.1744- 7348.2008.00292.x. Wilson, P. S., Ketola, E. O., Ahvenniemi, P. M., Lehtonen, M. J., & Valkonen, J. P. T. (2007). Dynamics of soilborne Rhizoctonia solani in the presence of Trichoderma harzianum: effects on stem canker, black scurf and progeny tubers of potato. Plant Pathology, 57(1), 152-161. doi:10.1111/j.1365-3059.2007.01706.x. Wise, C., Falardeau, J., Hagberg, I., & Avis, T. J. (2014). Cellular lipid composition affects sensitivity of plant pathogens to fengycin, an antifungal compound produced by Bacillus subtilis strain CU12. Phytopathology, 104(10), 1036-1041. doi:10.1094/PHYTO-12-13-0336-R. Wood, R. K. S., & Tveit, M. (1955). Control of plant diseases by use of antagonistic organisms. Botanical Review, 21(8), 441-492. Wrather, J. A., Anderson, T. R., Arsyad, D. M., Tan, Y., Ploper, L. D., Porta-Puglia, A., ... Yorinori, J. T. (2001). Soybean disease loss estimates for the top ten soybean-producing counries in 1998. Canadian Journal of Plant Pathology, 23(2), 115-121. doi:10.1080/07060660109506918. Wright, J. M. (1954). The production of antibiotics in soil. Annals of Applied Biology, 41(2), 280-289. doi:10.1111/j.1744-7348.1954.tb01121.x. Wright, J. M. (1956). The production of antibiotics in soil. Annals of Applied Biology, 44(4), 461-466. doi:10.1111/ j.1744-7348.1956.tb02140.x. Yeaman, M. R., & Yount, N. Y. (2003). Mechanisms of antimicrobial peptide action and resistance. Pharmacological Reviews, 55(1), 27. Yedidia, I., Benhamou, N., & Chet, I. (1999). Induction of defense responses in cucumber plants (Cucumis sativus L.) by the biocontrol agent Trichoderma harzianum. Applied and Environmental Microbiology, 65(3), 1061-1070. Yedidia, I., Shoresh, M., Kerem, Z., Benhamou, N., Kapulnik, Y., & Chet, I. (2003). Concomitant induction of systemic resistance to Pseudomonas syringae pv. lachrymans in cucumber by Trichoderma asperellum (T-203) and accumulation of phytoalexins. Applied and Environmental Microbiology, 69(12), 7343-7353. doi:10.1128/aem.69.12.7343-7353.2003. Zeilinger, S., Gruber, S., Bansal, R., & Mukherjee, P. K. (2016). Secondary metabolism in Trichoderma – chemistry meets genomics. Fungal Biology Reviews, 30(2), 74-90. doi:10.1016/j.fbr.2016.05.001. Zeng, F., Gong, X., Hamid, M. I., Fu, Y., Jiatao, X., Cheng, J., ... Jiang, D. (2012). A fungal cell wall integrity-associated map kinase cascade in Coniothyrium minitans is required for conidiation and mycoparasitism. Fungal Genetics and Biology, 49(5), 347-357. doi:10.1016/j.fgb.2012.02.008. Zeng, L. M., Zhang, J., Han, Y. C., Yang, L., Wu, M.d., Jiang, D. H., ... Li, G. Q. (2014). Degradation of oxalic acid by the mycoparasite Coniothyrium minitans plays an important role in interacting with Sclerotinia sclerotiorum. Environmental Microbiology, 16(8), 2591-2610. doi:10.1111/1462- 2920.12409. Zhang, B., Dong, C., Shang, Q., Han, Y., & Li, P. (2013). New insights into membrane-active action in plasma membrane of fungal hyphae by the lipopeptide antibiotic bacillomycin L. Biochimica et Biophysica Acta, 1828(9), 2230-2237. doi:10.1016/j.bbamem.2013.05.033. Zhang, J., Howell, C. R., & Starr, J. L. (1996). Suppression of Fusarium colonization of cotton roots and Fusarium wilt by seed treatments with Gliocladium virens and Bacillus subtilis. Biocontrol Science and Technology, 6(2), 175-188. doi:10.1080/09583159650039377. Adikaram, N., Karunanayake, C., & Abayasekara, C. (2010). The role of pre-formed antifungal substances in the resistance of fruits to postharvest pathogens. En D. Prusky & M. L. Gullino (Eds.), Postharvest pathology (pp. 1-11). Dordrecht, Holanda: Springer. Abdelfattah, A., Li Destri-Nicosia, M. G., Cacciola, S. O., Droby, S., & Schena, L. (2015). Metabarcoding analysis of fungal diversity in the phyllosphere and carposphere of olive (Olea europaea). Plos One, 10(7), 1-19. doi:10.1371/ journal.pone.0131069. Andersen, B., Smedsgaard, J., & Frisvad, J. (2004). Penicillium expansum: Consistent production of patulin, chaetoglobosins, and other secondary metabolites in culture and their natural occurrence in fruit products. Journal of Agricultural and Food Chemistry, 52(8), 2421- 2428. doi:10.102/jf035406k. Andrews, J. H., & Harris, R. F. (2000). The ecology and biogeography of microorganisms on plant surfaces. Annual Review of Phytopathology, 38, 145-180. doi:10.1146/ annurev.phyto.38.1.145. Arras, G., De Cicco, V., Arru, S., & Lima, G. (1998). Biocontrol by yeasts of blue mould of citrus fruits and the mode of action of an isolate of Pichia guilliermondii. Journal of Horticultureal Science and Biotechnology, 73(3), 413-418. doi:10.1080/14620316.1998.11510993. Arras, G. (1996). Mode of action of an isolate of Candida famata in biological control of Penicillium digitatum in orange fruits. Postharvest Biology and Technology, 8(3), 191-198. doi:10.1016/0925-5214(95)00071-2. Arrebola, E., Jacobs, R., & Korsten, L. (2009). Iturin A is the principal inhibitor in the biocontrol activity of Bacillus amyloliquefaciens PPCB004 against postharvest fungal pathogens. Journal of Applied Microbiology, 108(2), 386- 395. doi:10.1111/j.1365-2672.2009.04438.x. Arrebola, E., Sivakumar, D., Bacigalupo, R., & Korsten, L. (2010). Combined application of antagonist Bacillus amyloliquefaciens and essential oils for the control of peach postharvest diseases. Crop Protection, 29(4), 369-377. doi:10.1016/j.cropro.2009.08.001. Barkai-Golan, R. (2001). Postharvest diseases of fruits and vegetables: development and control. Amsterdam, Holanda: Elsevier. Bastiaanse, H., De Lapeyre de Bellaire, L., Lassois, L., Misson, C., & Jijakli, M. H. (2010). Integrated control of crown rot of banana with Candida oleophila strain O, calcium chloride and modified atmosphere packaging. Biological Control, 53(1), 100-107. doi:10.1016/j. biocontrol.2009.10.012. Batta, Y. A. (2007). Control of postharvest diseases of fruit with an invert emulsion formulation of Trichoderma harzianum Rifai. Postharvest Biology and Technology, 43(1), 143-150. doi:10.1016/j.postharvbio.2006.07.010. Begum, M., Hocking, A. D., & Miskelly, D. (2009). Inactivation of food spoilage fungi by ultra violet (uvc) irradiation. International Journal of Food Microbiology, 129(1), 74-77. doi:10.1016/j.ijfoodmicro.2008.11.020. Bencheqroun, S. K., Bajji, M., Massart, S., Labhilili, M., Jaafari, S. E., & Jijakli M. H. (2007). In vitro and in situ study of postharvest apple blue mold biocontrol by Aureobasidium pullulans: Evidence for the involvement of competition for nutrients. Postharvest Biology Technology, 46(2), 128-135. doi:10.1016/j.postharvbio.2007.05.005. Breinig, F., Tipper, D. J., & Schmitt, M. J. (2002). Kre1p, the plasma membrane receptor for the yeast K1 viral toxin. Cell, 108(3), 395-405. doi:10.1016/S0092- 8674(02)00634-7. Bleve, G., Grieco, F., Cozzi, G., Logrieco, A., & Visconti, A. (2006). Isolation of epiphytic yeasts with potential for biocontrol of Aspergillus carbonarius and A. niger on grape. International Journal of Food Microbiology, 108(2), 204-209. doi:10.1016/j.ijfoodmicro.2005.12.004. Bryk, H. (1999). The study on the infection of apple fruits by Botrytis cinerea Pers. after harvest. Acta Agrobotanica, 52(1-2), 19-29. Bull, C. T., Wadsworth, M. L., Sorensen, K. N., Takemoto, J. Y., Austin, R. K.,... Smilanick, J. L. (1998). Syringomycin E produced by biological control agents controls green mold on lemons. Biological Control, 12(2), 89-95. doi:10.1006/ bcon.1998.0622. Caiazzo, R., Kim, Y., & Xiao, C. L. (2014). Occurrence and Phenotypes of Pyrimethanil Resistance in Penicillium expansum from Apple in Washington State. Plant Disease, 98(7), 924-928. doi:10.1094/PDIS-07-13-0721RE. Calvente, V., Benuzzi, D., & De Tosetti, M. I. S. (1999). Antagonistic action of siderophores from Rhodotorula glutinis upon the postharvest pathogen Penicillium expansum, International Biodeterioration and Bioegradation, 43(4), 167-172. doi:10.1016/S0964-8305(99)00046-3. Calvo, J., Calvente, V., De Orellano, M. E., Benuzzi, D., & Sanz de Tosetti M. I. (2003). Improvement in the biocontrol of postharvest diseases of apples with the use of yeast mixtures. Biocontrol, 48(5), 579-593. doi:10.1023/A:1025738811204. Canamas, T. P., Viñas, I., Usall, J., Torres, R., Anguera, M., & Teixidó, N. (2008). Control of postharvest diseases on citrus fruit by preharvest applications of biocontrol agent Pantoea agglomerans CPA-2: Part II. Effectiveness of different cell formulations. Postharvest Biology and Technology, 49(1), 96-106. doi:10.1016/j. postharvbio.2007.12.005. Calvo, J., Calvente, V., de Orellano, M. E., Benuzzi, D., & Sanz de Tosetti, M. (2007). Biological control of postharvest spoilage caused by Penicillium expansum and Botrytis cinerea in apple by using the bacterium Rahnella aquatilis. International Journal of Food Microbiology, 113(3), 251- 257. doi:10.1016/j.ijfoodmicro.2006.07.003. Capdeville, G., Souza, M. T., Santos, J. R. P., Miranda, S. P., Caetano A. R, & Torres, F. A. G. (2007). Selection and testing of epiphytic yeasts to control anthracnose in postharvest of papaya fruit. Scientia Horticulturae, 111(2), 179-185. doi:10.1016/j.scienta.2006.10.003. Cao, S., Zheng, Y., Tang, S., & Wang, K. (2008). Improved control of anthracnose rot in loquat fruit by a combination treatment of Pichia membranifaciens with CaCl2. International Journal of Food Microbiology, 126(1-2), 216- 220. doi:10.1016/j.ijfoodmicro.2008.05.026. Carisse, O. (2016). Epidemiology and aerobiology of Botrytis spp. En: S. Fillinger & Y. Elad, Y. (Eds.), Botrytis – the Fungus, the pathogen and its management in agricultural systems (pp. 127-148). Cham, Suiza: Springer International. Coates, L. M., & Johnson, G. I. (1997). Postharvest pathology of fruit and vegetables. En J. Brown & H. Ogle, (Eds.), Plant Pathogens and Plant Diseases (pp. 533- 547). Armidale, Australia: Rockvale. Castoria, R., De Curtis, F., Lima, G., Caputo, L., Pacifico, S., & De Cicco, V. (2001). Aureobasidium pullulans (LS-30) an antagonist of postharvest pathogens of fruits: study on its modes of action. Postharvest Biology and Technology, 22(1), 7-17. doi:10.1016/S0925-5214(00)00186-1. Conway, W. S., Sams, C. E., & Hickey, K. D. (2002). Pre- and postharvest calcium treatment of apple fruit and its effect on quality. Acta Horticulture, 594, 413-419. doi:10.17660/ ActaHortic.2002.594.53. Çorbacı, C., & Uçar, F. B. (2017). Production and optimization of killer toxin in Debaryomyces hansenii strains. Brazilian Archives of Biology and Technology, 60, e17160339. doi:10.1590/1678-4324-2017160339. Chalutz, E., & Wilson, C. (1990). Postharvest biocontrol of green and blue mold and sour rot of citrus fruit by Debaryomyces hansenii. Plant Diseases, 74, 134-137. doi:10.1094/PD-74-0134. Chanchaichaovivat, A., Ruenwongsa, P., & Panijpan, B. (2007). Screening and identification of yeast strains from fruit and vegetables: potential for biological control of postharvest chilli anthracnose (Colletotrichum capsici). Biological Control, 42, 326-335. doi:10.1016/j. biocontrol.2007.05.016. Choudhary, A. K., & Kumari, P. (2010). Management of mycotoxin contamination in preharvest and post harvest crops: present status and future prospects. Journal of Phytology, 2(7), 37-52. Departamento Nacional de Planeación (dnp). (2016). Pérdida y desperdicio de alimentos en Colombia, estudio de la dirección de seguimiento y evaluación de políticas públicas. Bogotá, Colombia: dnp. Droby, S., Chalutz, E., Wilson, C. L., & Wisniewski, M. E. (1992). Biological control of postharvest diseases: a promising alternative to the use of synthetic fungicides. Phytoparasitica, 20(Supl. 1), S149-S153. doi:10.1007/ bf02980427. Droby, S., Vinokur, V., Weiss, B., Cohen, L., Daus, A., Goldschmidt, E. E., & Porat, R. (2002). Induction of resistance to Penicillium digitatum in grapefruit by the yeast biocontrol agent Candida oleophila. Phytopathology, 92(4), 393-399. doi:10.1094/PHYTO.2002.92.4.393. Droby, S., Wisniewski, M., Macarisin, D., & Wilson, C. (2009). Twenty years of postharvest biocontrol research: Is it time for a new paradigm? Postharvest Biology and Technology, 52(2), 137-145. doi:10.1016/j.postharvbio.2008.11.009. Droby, S., Wisniewski, M., Teixidó, N., Spadaro, D., & Jijakli, M. H. (2016). The science, development, and commercialization of postharvest biocontrol products. Postharvest Biology and Technology, 122, 22-29. doi:10.1016/j.postharvbio.2016.04.006. Du Plooy, W., Regnier, T., & Combrinck, S. (2009). Essential oil amended coatings as alternatives to synthetic fungicides in citrus postharvest management. Postharvest Biology and Technology, 53(3), 117-122. doi:10.1016/j. postharvbio.2009.04.005. El-Ghaouth, A., Smilanick, J. L., & Wilson, C. L. (2000). Enhancement of the performance of Candida saitoana by the addition of glycolchitosan for the control of postharvest decay of apple and citrus fruit. Postharvest citrus fruit in Morocco. Communications in agricultural and applied biological sciences, 69(4), 601-609. Lassois, L., de Bellaire, L., & Jijakli, M. H. (2008). Biological control of crown rot of bananas with Pichia anomala strain K and Candida oleophila strain O. Biological Control, 45(3), 410-418. doi:10.1016/j.biocontrol.2008.01.013. Lavalard, M. (2017). Agrauxine and Syngenta start a partnership to launch Nexy®. Recuperado de https://www.agrauxine. com/es/2017/05/12/agrauxine-syngenta-nexy/. Lima, G., Curtis, F. D., Piedimonte, D., Spina, A. M., & De Cicco, V. (2006). Integration of biocontrol yeast and thiabendazole protects stored apples from fungicide sensitive and resistant isolates of Botrytis cinerea. Postharvest Biology and Technology, 40(3), 301-307. doi:10.1016/j.postharvbio.2006.01.017. Liu, J., Sui, Y., Wisniewski, M., Droby, S., & Liu, Y. (2013). Review: Utilization of antagonistic yeasts to manage postharvest fungal diseases of fruit. International Journal of Food Microbiology, 167(2), 153-160. doi:10.1016/j. ijfoodmicro.2013.09.004. Long, C. A., Deng, B. X., & Deng, X. (2006). Pilot testing of Kloeckera apiculata for the biological control of postharvest diseases of citrus. Annals of Microbiology, 56(1), 13-17. doi:10.1007/BF03174963. Long, C. A., Deng, B. X., & Deng, X. (2007). Commercial testing of Kloeckera apiculata, isolate 34-9, for biological control of postharvest diseases of citrus fruit. Annals of Microbiology, 57(2), 203-207. doi:10.1007/BF03175208. Magan, N., Medina, A., & Aldred, D. (2011). Possible climate-change effects on mycotoxin contamination of food crops pre- and postharvest. Plant Pathology, 60(1), 150-163. doi:10.1111/j.1365-3059.2010.02412.x. Mari, M., Neri, F., & Bertolini, P. (2007). Novel approaches to prevent and control postharvest diseases of fruits. Stewart Postharvest Review, 3(6), 4 doi:10.2212/spr.2007.6.4. Marquina, D., Santos, A., & Peinado, J. (2002). Biology of killer yeasts. International Microbiology, 5(2), 65-71. doi:10.1007/s10123-002-0066-z. Martins, G., Vallance, J., Mercier, A., Albertin, W., Stamatopoulos, P., Rey, P., … Masneuf-Pomarède, I. (2014). Influence of the farming system on the epiphytic yeasts and yeast-like fungi colonizing grape berries during the ripening process. International Journal of Food Microbiology, 177, 21-28. doi:10.1016/j. ijfoodmicro.2014.02.002. Mason, D., & Dennis, C. (1978). Post-harvest spoilage of Scottish raspberries in relation to pre-harvest fungicide sprays. Londres, Reino Unido: Horticultural Research. Massart, S., Martinez-Medina, M., & Jijakli, M. H. (2015). Biological control in the microbiome era: Challenges and opportunities. Biological Control, 89, 98-108. doi:10.1016/ j.biocontrol.2015.06.003. Mikani, A., Etebarian, H. R., Sholberg, P. L., Gorman, D. T., Stokes, S., & Alizadeh, A. (2008). Biological control of apple gray mold caused by Botrytis mali with Pseudomonas fluorescens strains. Postharvest Biology and Technology, 48(1), 107-112. doi:10.1016/j.posthar vbio.2007.09.020. Montesinos-Herrero, C., del Río, M.Á., Pastor, C., Brunetti, O., & Palou, L. (2009). Evaluation of brief potassium sorbate dips to control postharvest Penicillium decay on major citrus species and cultivars. Postharvest Biology and Technology, 52(1), 117-125. doi:10.1016/j. postharvbio.2008.09.012. Morales, H., Sanchis, V., Usall, J., Ramos, A. J., & Marín, S. (2008). Effect of biocontrol agents Candida sake and Pantoea agglomerans on Penicillium expansum growth and patulin accumulation in apples. International Journal of Food Microbiology, 122(1-2), 61-67. doi:10.1016/j. ijfoodmicro.2007.11.056. National Research Council (nrc). (1987). Management of technology: The hidden competitive advantage. Washington, EE. UU.: National Research Council, The National Academies Press. Nunes, C., Teixido, N., Usall, J., & Viñas, I. (2001). Biological control of major postharvest diseases on pear fruit with antagonistic bacteria Pantoea agglomerans (CPA-2). Acta Horticulturae, 553, 403-404. doi:10.17660/Acta Hortic.2001.553.92. Nunes, C., Usall, J., Teixidó, N., Fons, E., & Viñas, I. (2002). Postharvest biological control by Pantoea agglomerans (CPA-2) on Golden Delicious apples. Journal Applied Microbiology, 92(2), 247-255. doi:10.1046/j.1365- 2672.2002.01524.x. Nunes, C., Usall, J., Teixidó, N., Fons, E., & Viñas, I. (2002). Postharvest biological control by Pantoea agglomerans (CPA-2) on Golden Delicious apples. Journal Applied Microbiology, 92(2), 247-255. doi:10.1046/j.1365- 2672.2002.01524.x. Nunes, C., Usall, J., Manso, T., Torres, R., Olmo, M., & García, J. M. (2007). Effect of high temperature treatments on growth of Penicillium spp. and their development on ‘Valencia’ oranges. Food Science and Technology International, 13(1), 63- 68. doi:10.1177/1082013207075601. Nunes, C. A. (2012). Biological control of postharvest diseases of fruit. European Journal of Plant Pathology, 133(1), 181-196. doi:10.1007/s10658-011-9919-7. Organización de las Naciones Unidas para la Alimentación y la Agricultura (fao). (2015a). Iniciativa mundial sobre la reducción de la pérdida y el desperdicio de alimentos. Recuperado de http://www.fao.org/3/a-i4068s.pdf. Janisiewicz, W., Yourman, L., Roitman, J., & Mahoney, N. (1991). Postharvest control of blue mould and gray mould of apples and pears by dip treatment with pyrrolnitrin, a metabolite of Pseudomonas cepacia. Plant Disease, 75(5), 490-494. doi:10.1094/PD-75-0490. Janisiewicz, W. J., & Conway, W. S. (2010). Combining biological control with physical and chemical treatments to control fruit decay after harvest. Stewart Postharvest Review 6(1), article 3. doi.10.2212/spr.2010.1.3. Janisiewicz, W. J., & Korsten, L. (2002). Biological control of postharvest diseases of fruits. Annual Review of Phytopathology, 40, 411-441. doi:10.1146/annurev. phyto.40.120401.130158. Janisiewicz, W. J., Bastos Pereira, I., Almeida, M. S., Roberts, D. P., Wisniewski, M., & Kurtenbach, E. (2008). Improved biocontrol of fruit decay fungi with Pichia pastoris recombinant strains expressing Psd1 antifungal peptide. Postharvest Biology and Technology, 47(2), 218- 225. doi:10.1016/j.postharvbio.2007.06.010. Jarvis, W. R. (1991). Latent infections in the pre- and postharvest environment. HortScience, 26(6), 801. Jijakli, M., Lepoivre, P., Tossut, P., & Thonard, P. (1993). Biological control of Botrytis cinerea and Penicillium sp. on post-harvest apples by two antagonistic yeasts. Mededelingen van de Faculteit Landbouwkundige en Toegepaste Biologische Wetenschappen (Rijksuniversiteit te Gent), 58(3b), 1349-1358. Jijakli, M.H., Lepoivre, P., & Grevesse, C. (1999). Yeast species for biocontrol of apple postharvest diseases: An encouraging case of study for practical use. En K. G. Mukerji, B. P. Chamola, & R. K. Upadhyay (Eds.), Biotechnological approaches in biocontrol of plant pathogens (pp. 31-49). Boston, EE. UU.: Springer. Helbig, J. (2002). Ability of the antagonistic yeast Cryptococcus albidus to control Botrytis cinerea in strawberry. Biocontrol, 47(1), 85-99. doi:10.1023/A:1014466903941. Karabulut, O. A., & Baykal, N. (2003). Biological control of postharvest diseases of peaches and nectarines by yeasts. Journal of Phytopathology, 151(3), 130-134. doi:10.1046/ j.1439-0434.2003.00690.x. Karabulut, O. A., & Baykal, N. (2004). Integrated control of postharvest diseases of peaches with a yeast antagonist, hot water and modified atmosphere packaging. Crop Protection, 23(5), 431-435. doi:10.1016/j.cropro.2003.09.012. Karabulut, O. A., Arslan, U., Kadir, I., & Gul, K. (2005). Integrated control of post harvest diseases of sweet cherry with yeast antagonist and sodium bicarbonate applications within a hydrocooler. Postharvest Biology and Technology, 37(2), 135-141. doi:10.1016/j.postharvbio.2005.03.003. Kecskemeti, E., Berkelmann-Lohnertz, B., & Reineke, A. (2016). Are epiphytic microbial communities in the carposphere of ripening grape clusters (Vitis vinifera l.) different between conventional, organic, and biodynamic grapes? PLoS One, 11, e0160852. doi:10.1371/journal. pone.0160852. Kefialew, Y., & Ayalew, A. (2008). Postharvest biological control of anthracnose (Colletotrichum gloeosporioides) on mango (Mangifera indica). Postharvest Biology and Technology, 50(1), 8-11. doi:10.1016/j.postharvbio.2008.03.007. Kim, Y. K., Saito, S., & Xiao, C. L. (2015). Occurrence of Fludioxonil resistance in Penicillium digitatum from citrus in california. Plant Diseases, 99(10), 1447. doi:10.1094/ PDIS-02-15-0226-PDN. Kinay, P., & Yildiz, M. (2008). The shelf life and effectiveness of granular formulations of Metschnikowia pulcherrima and Pichia guilliermondii yeast isolates that control postharvest decay of citrus fruit. Biological Control, 45(3), 433-440. doi:10.1016/j.biocontrol.2008.03.001. Koomen, I., & Jeffrics, P. (1993). Effects of antagonistic microorganisms on the postharvest development of Colletotrichum gloeosporioides on mango. Plant Pathology, 42(2), 230-237. doi:10.1111/j.1365-3059.1993. tb01495.x. Kota, V. R., Kulkarni, S., & Hegde, Y. R. (2006). Postharvest diseases of mango and their biological management. Journal of Plant Disease Science, 1(2), 186-188. Krishnamurthy, S., & Kushalappa, C. G. (1985). Studies on the shelf life and quality of Robusta bananas as affected by post-harvest treatments. Journal of Horticultural Science, 60(4), 549-556. doi: 10.1080/14620316.1985.11515663. Lacroix, C. (2010). Protective cultures, antimicrobial metabolites and bacteriophages for food and beverage biopreservation. Cambridge, Inglaterra: Elsevier. Lahlali, R., Serrhini, M. N., & Jijakli, M. H. (2004). Efficacy assessment of Candida oleophila (strain O) and Pichia anomala (strain K) against major postharvest diseases of citrus fruits in Morocco. Communations in Agriculture Applied Biological Sciences, 69(4), 601-609. Lahlali, R., Raffaele, B., & Jijakli, M. H. (2011). UV protectants for Candida oleophila (strain O), a biocontrol agent of postharvest fruit diseases. Plant Pathology, 60(2), 288-295. doi:10.1111/j.1365-3059.2010.02368.x. Lahlali, R., Serrhini, M. N., & Jijakli, M. H. (2005a). Development of a biological control method against postharvest diseases of citrus fruits. Communications in Agriculture Applied Biological Sciences, 70(3), 47-58. Lahlali, R., Serrhini, M. N., & Jijakli, M. H. (2005b). Studying and modelling the combined effect of temperature and water activity on the growth rate of P. expansum. International Journal of Food Microbiology, 103(3), 315- 322. doi:10.1016/j.ijfoodmicro.2005.02.002. Lahlali, R., Serrhini, M. N., & Jijakli, M. H. (2004). Efficacy assessment of Candida oleophila (strain O) and Pichia anomala (strain K) against major postharvest diseases of Biology and Technology, 19(1), 103-110. doi:10.1016/ S0925-5214(00)00076-4. El-Ghaouth, A., & Wilson, C. (2002). Patente EUA 6419922B1. Candida saitoana compositions for biocontrol of plant postharvest decay. Washington, EE. UU.: Oficina de Patentes y Marcas de EUA. El-Ghaouth, A., Wilson, C., & Wisniewski, M. (2003). Control of postharvest decay of apple fruit with Candida saitoana and induction of defense responses. Phytopathology, 93(3), 344-348. doi:10.1094/PHYTO.2003.93.3.344. Ghaouth, A., Wilson, C., & Wisniewski, M. (2004). Biologically-based alternatives to synthetic fungicides for the control of postharvest diseases of fruit and vegetables. En S. A. M. H. Naqvi (Ed.), Diseases of fruit and vegetables (pp. 511-535). Dordrecht, Holanda: Springer. El-Ghaouth, A., Wilson, C. L., & Wisniewski, M. (1998). Ultrastructural and cytochemical aspects of the biological Control of Botrytis cinerea by Candida saitoana in apple fruit. Phytopathology, 88(4), 282-291. doi:10.1094/ PHYTO.1998.88.4.282. El-Neshawy, S. M., & Wilson, C. L. (1997). Nisin enhancement of biocontrol of postharvest diseases of apple with Candida oleophila. Postharvest Biology and Technology, 10(1), 9-14. doi:10.1016/S0925-5214(96)00053-1. Environmental Protection Agency (epa). (2016). What are Biopesticides? Recuperado de https://www.epa. gov/ingredients-used-pesticide-products/what-arebiopesticides. Faisal, M., Prema, R., Nagendran, K., Karthikeyan, G., Raguchander, T., & Prabakar, K. (2013). Development and evaluation of water in oil based emulsion formulation of Pseudomonas fluorescens (FP7) against Colletotrichum musae incitant of anthracnose disease in banana. Euroepan Journal of Plant Pathology, 138(1), 167-180. doi:10.1007/ s10658-013-0320-6. Fan, Q., & Tian, S. P. (2001). Postharvest biological control of grey mold and blue mold on apple by Cryptococcus albidus (Saito) Skinner. Postharvest Biology and Technology, 21(3), 341-350. doi:10.1016/S0925-5214(00)00182-4. Filonow, A. B. (2001). Butyl acetate and yeasts interact in adhesion and germination of Botrytis cinerea conidia in vitro and in fungal decay of golden delicious apple. Journal of Chemical Ecology, 27(4), 831-844. doi:10.1023/A:1010314305461. Fourie, J. F., & Holz, G. (1998). Effects of fruit and pollen exudates on growth of Botrytis cinerea and infection of plum and nectarine fruit. Plant Disease, 82(2), 165-170. doi:10.1094/PDIS.1998.82.2.165. Fuentes, O. E, García, P. G, & Cotes, A. M. (2002). Evaluation of potential agents for postharvest biocontrol of Alternaria alternata in tomato. Bulletin OILB/SROP, 25(10), 403-406. Gamagae, S. U., Sivakumar, D., Wilson Wijeratnam, R. S., & Wijesundra R. L. C. (2003). Use of sodium bicarbonate and Candida oleophila to control anthracnose in papaya during storage. Crop Protection, 22(5), 775-779. doi:10.1016/S0261-2194(03)00046-2. García, G., & Cotes, A. M. (2001). Searching alternatives for biological control of Rhizopus stolonifer in tomato postharvest. Fitopatología colombiana, 25, 39-47. García G., Jiménez, Y., Neisa, A., & Cotes, A. M. (2001). Selection of native yeasts for biological control of post-harvest rots caused by Botrytis allii in onion and Rhizopus stolonifer in tomato. Bulletin OILB/SROP, 24(3), 181-184. Gomes, A., Queiroz, M., & Pereira, O. (2015). Mycofumigation for the biological control of postharvest diseases in fruits and vegetables: A review.Bioengineering. Austin Journal of Biotechnology & Bioengineering, 2(4), 1051. Govender, V., Korsten, L., & Sivakumar, D. (2005). Semicommercial evaluation of Bacillus licheniformis to control mango postharvest diseases in South Africa. Postharvest Biology and Technology, 38(1), 57-65. doi:10.1016/j. postharvbio.2005.04.005. Grevesse, C., Jijakli, H., Duterme, O., Colinet, D., & Lepoivre, P. (1998). Preliminary study of exo-b-1, 3-Glucanase encoding genes in relation to the protective activity of Pichia anomala (strain K) against Botrytis cinerea on postharvest apples. Bulletin OILB/SROP = IOBC/ WPRS Bulletin, 21(9), 81-89. Gueldner, R. C., Reilly, C. C., Pusey, P. L., Costello, C. E., Arrendale, R. F., Cox, R. H., Himmelsbach, D. S., et al. (1988). Isolation and identification of iturins as antifungal peptides in biological control of peach brown rot with Bacillus subtilis. Journal of Agriculture and Food Chemistry, 36(2), 366-370. doi:10.1021/jf00080a031. Ippolito, A., El-Ghaouth, A., Wilson, C. L., & Wisniewski, M. (2000). Control of postharvest decay of apple fruit by Aureobasidium pullulans and induction of defense responses. Postharvest Biology and Technology, 19(3), 265- 272. doi:10.1016/S0925-5214(00)00104-6. Guijarro, B., Melgarejo, P., Torres, R., Lamarca, N., Usall, J., & De Cal, A. (2007). Effects of different biological formulations of Penicillium frequentans on brown rot of peaches. Biological Control, 42(1), 86-96. doi:10.1016/j. biocontrol.2007.03.014. Ippolito, A., & Nigro, F. (2000). Impact of preharvest application of biological control agents on postharvest diseases of fresh fruits and vegetables. Crop Protection, 19(8), 715-723. doi:10.1016/S0261-2194(00)00095-8. Janisiewicz, W. J. (1987). Postharvest biological control of blue mold on apple. Phytopathology, 77, 481-485. Janisiewicz, W., & Roitman, J. (1988). Biological control of blue mold and gray mold on apple and pear with Pseudomonas cepacia. Phytopathology, 78(12), 1697-1700. Organización de las Naciones Unidas para la Alimentación y la Agricultura (fao). (2015b). Pérdidas y desperdicios de alimentos en América Latina y el Caribe. Recuperado de http://www.fao.org/3/a-i5504s.pdf. Palou, L. (2011). Control integrado no contaminante de enfermedades de poscosecha (cincep): nuevo paradigma para el sector español de los cítricos. Levante Agrícola, (406), 173-183. Palou, L., Smilanick, J., & Droby, S. (2008). Alternatives to conventional fungicides for the control of citrus postharvest green and blue molds. Stewart Postharvest Review, 4(2), 1-16. Park, M. H., & Kim, J. G. (2015). Low-dose UV-C irradiation reduces the microbial population and preserves antioxidant levels in peeled garlic (Allium sativum L.) during storage. Postharvest Biology and Technology, 100, 109-112. doi:10.1016/j.postharvbio.2014.09.013. Perez, M. F., Contreras, L., Garnica, N. M., Fernández-Zenoff, M. V., Farías, M. E., Sepulveda, M., … Dib, J. R. (2016). Native killer yeasts as biocontrol agents of postharvest fungal diseases in lemons. PLoS ONE, 11(10), e0165590. doi:10.1371/journal.pone.0165590. Prusky, D., Alkan, N., Mengiste, T., & Fluhr, R. (2013). Quiescent and necrotrophic lifestyle choice during postharvest disease development. Annual Review of Phytopathology, 51, 155-176. doi:10.1146/annurevphyto- 082712-102349. Pusey, P. L. (1989). Use of Bacillus subtilis and related organisms as biofungicides. Pesticide Science, 27(2), 133- 140. doi:10.1002/ps.2780270204. Pusey, P. L., & Wilson, C. L. (1984). Postharvest biological control of stone fruit brown rot by Bacillus subtilis. Plant Diseases, 68(9), 753-756. doi:10.1094/PD-69-753. Qin, G. Z., & Tian, S. P. (2004). Biocontrol of postharvest diseases of jujube fruit by Cryptococcus laurentii combined with a low doses of fungicides under different storage conditions. Plant Disease, 88(5), 497-501. Ray, R. C., Swain, M. R., Panda, S. H., & Lata. (2011). Microbial control of postharvest diseases of fruits, vegetables, roots, and tubers. En A. Singh, N. Parmar, & R. C. Kuhad (Eds.), Bioaugmentation, Biostimulation and Biocontrol (pp. 311-355). Berlín, Alemania: Springer. doi:10.1007/978-3-642-19769-7_13. Saravanakumar, D., Spadaro, D., Garibaldi, A., & Gullino, M. L. (2009). Detection of enzymatic activity and partial sequence of a chitinase gene in Metschnikowia pulcherrima strain MACH1 used as post-harvest biocontrol agent. European Journal of Plant Pathology, 123(2), 183-193. doi:10.1007/s10658-008-9355-5. Schena, L., Nigro, F., Pentimone, I., Ligorio, A., & Ippolito, A. (2003). Control of postharvest rots of sweet cherries and table grapes with endophytic isolates of Aureobasidium Schena, L., Nigro, F., Pentimone, I., Ligorio, A., & Ippolito, A. (2003). Control of postharvest rots of sweet cherries and table grapes with endophytic isolates of Aureobasidium pullulans. Postharvest Biology Technology, 30(3), 209-220. doi:10.1016/S0925-5214(03)00111-X. Seethapathy, P., Gurudevan, T., Subramanian, K. S., & Kuppusamy, P. (2016). Bacterial antagonists and hexanalinduced systemic resistance of mango fruits against Lasiodiplodia theobromae causing stem-end rot. Journal of Plant Interactions, 11(1), 158-166. doi:10.1080/17429 145.2016.1252068. Selitrennikoff, C. P. (2001). Antifungal Proteins. Applied Environmental Microbiology, 67(7), 2883-2894. doi:10.1128/aem.67.7.2883-2894.2001. Sharma, R. R., Singh, D., & Singh, R. (2009). Biological control of postharvest diseases of fruits and vegetables by microbial antagonists: A review. Biological Control, 50(3), 205-221. doi:10.1016/j.biocontrol.2009.05.001. Sivakumar, D., Wilson Wijeratnam R. S., Marikar, F. M. M. T., Abeyesekere M., & Wijesundera R. L. C. (2001). Antagonistic effect of Trichoderma harzianum on post harvest pathogens of rambutans. Acta Horticulturae, 553, 389-392. doi:10.17660/ActaHortic.2001.553.88. Sivakumar, D., Wilson Wijeratnam, R. S., Abeyesekere, M., & Wijesundera R. L. C. (2002). Combined effect of generally regarded as safe (gras) compounds and Trichoderma harzianum on the control of postharvest diseases of rambutan. Phytoparasitica, 30(1), 43-51. doi:10.1007/BF02983969. Sivakumar, D, Wilson Wijeratnam, R. S., Wijesundera, R. L. C., Marikar, F. M. T., & Abeyesekere, M. (2000). Antagonistic effect of Trichoderma harzianum on postharvest pathogens of rambutan (Nephelium lappaceum). Phytoparasitica, 28(3), 240-247. doi:10.1007/ BF02981802. Smilanick, J. L., & Denis-Arrue, R. (1992). Control of green mold of lemons with Pseudomonas species. Plant Disease, 76(5), 481-485. doi:10.1094/PD-76-0481. Spadaro, D., & Droby, S. (2016). Development of biocontrol products for postharvest diseases of fruit: The importance of elucidating the mechanisms of action of yeast antagonists. Trends in Food Science & Technology, 47, 39- 49. doi:10.1016/j.tifs.2015.11.003. Spadaro, D., Vola, R., Piano, S., & Gullino, M. L. (2002). Mechanisms of action and efficacy of four isolates of the yeast Metschnikowia pulcherrima active against postharvest pathogens on apples. Postharvest Biology and Technology, 24(2), 123-134. doi:10.1016/S0925-5214(01)00172-7. Spadaro, D., & Gullino, M. L. (2004). State of the art and future prospects of the biological control of postharvest fruit diseases. International Journal of Food Microbiology, 91(2), 185-194. doi:10.1016/s0168-1605(03)00380-5. Spadaro, D., Garibaldi, A., & Gullino, M. L. (2004). Control of Penicillium expansum and Botrytis cinerea on apple combining a biocontrol agent with hot water dipping and acibenzolar-S-methyl, baking soda, or ethanol application. Postharvest Biology and Technology, 33(2), 141-151. doi:10.1016/j.postharvbio.2004.02.002. Syamaladevi, R. M., Lupien, S. L., Bhunia, K., Sablani, S. S., Dugan, F., Rasco, B., Killinger, et al. (2014). UV-C light inactivation kinetics of Penicillium expansum on pear surfaces: Influence on physicochemical and sensory quality during storage. Postharvest Biology and Technology, 87, 27-32. doi:10.1016/j.postharvbio.2013.08.005. Takesako, K., Ikai, K., Haruna, F., Endo, M., Shimanaka, K., Sono, E., Nakamura, T., et al. (1991). Aureobasidins, new antifungal antibiotics. Taxonomy, fermentation, isolation, and properties. The Journal of Antibiotics (Tokyo), 44(9), 919-924. doi:10.7164/antibiotics.44.919. Terao, D., De Carvalho Campos, J. S., Benato, E. A., & Hashimoto, J. M. (2015). Alternative strategy on control of postharvest diseases of mango (Mangifera indica L.) by use of low dose of ultraviolet-c irradiation. Food Engineering Reviews, 7(2), 171-175. doi:10.1007/s12393- 014-9089-4. Tian, S., Fan, Q, Xu, Y, & Liu H. (2002). Biocontrol efficacy of antagonist yeasts to gray mold and blue mold on apples and pears in controlled atmospheres. Plant Disease, 86(8), 848-853. doi:10.1094/PDIS.2002.86.8.848. Tian, S., Qin, G., & Xu, Y. (2005). Synergistic effects of combining biocontrol agents with silicon against postharvest diseases of jujube fruit. Journal of Food Protection, 68(3), 544-550. Tronsmo, A., & Dennis, C. (1977). The use of Trichoderma species to control strawberry fruit rots. Netherlands journal of plant pathology, 83(Supl. 1), 449. doi:10.1007/ bf03041462. Torres, R., Teixidó, N., Viñas, I., Mari, M., Casalini, L., Giraud, M., & Usall J. (2006). Efficacy of andida sake CPA-1 formulation for controlling Penicillium expansum decay on pome fruit from different Mediterranean regions. Journal of Food Protection, 69(11), 2703-2711. doi:10.4315/0362-028X-69.11.2703. Usall, J., Teixido, N., Torres, R., Ochoa de Eribe, X., & Viñas I. (2001). Pilot tests of Candida sake (CPA-1) applications to control postharvest blue mold on apple fruit. Postharvest Biology and Technology, 21(2), 147-156. doi:10.1016/S0925-5214(00)00131-9. Valencia-Chamorro, S. A., Palou, L., Del Rio, M. A., & Perez-Gago, M. B., (2011). Antimicrobial edible films and coatings for fresh and minimally processed fruits and vegetables: a review. Critical Review in Food Science and Nutrition, 51(9), 872-900. doi:10.1080/10408398.2010. 485705. Wang, X., Li, G., Jiang, D., & Huang, H. C. (2009). Screening of plant epiphytic yeasts for biocontrol of bacterial fruit blotch (Acidovorax avenae subsp. citrulli) of hami melon. Biological Control, 50(2), 164-171. doi:10.1016/j. biocontrol.2009.03.009. Weir, B. S., Johnston, P. R., & Damm, U. (2012). The Colletotrichum gloeosporioides species complex. Studies in Mycology, 73(1), 115-180. doi:10.3114/sim0011. Wilson, C. L., & El-Ghaouth, A. (2002). Patent EUA 6423310. Biological coating with a protective and curative effect for the control of postharvest decay. Washington, EE. UU.: Oficina de Patentes y Marcas de EUA. Wilson, C. L., & Pusey, P. (1985). Potential for biological control of postharvest plant diseases. Plant Diseases, 69(5), 375-378. doi:10.1094/PD-69-375. Wilson, C. L., & Wisniewski, M. E. (1989). Biological control of postharvest diseases of fruits and vegetables: An emerging technology. Annual Review of Phytopathology, 27, 425-441. doi:10.1146/annurev.py.27.090189.002233. Wilson, C. L., & Wisniewski, M. E. (1994). Biological control of postharvest diseases: theory and practice. Madison, EE. UU.: CRC Press. Wilson, C. L. Wisniewski, M. E., Droby, S., & Chalutz, E. (1993). A selection strategy for microbial antagonists to control postharvest diseases of fruits and vegetables. Scientia Horticulturae, 53(3), 183-189. doi:10.1016/0304- 4238(93)90066-Y. Wisniewski, M., Biles, C., Droby, S., McLaughlin, R., Wilson, C., & Chalutz, E. (1991). Mode of action of the postharvest biocontrol yeast, Pichia guilliermondii. I. Characterization of attachment to Botrytis cinerea. Physiological and Molecular Plant Pathology, 39(4), 245- 258. doi:10.1016/0885-5765(91)90033-E. Wisniewski, M., Droby, S., Norelli, J., Liu, J., & Schena, L. (2016). Alternative management technologies for postharvest disease control: The journey from simplicity to complexity. Postharvest Biology and Technology, 122, 3-10. doi:10.1016/j.postharvbio.2016.05.012. Wisniewski, M., Wilson, C., Droby, S., Chalutz, E., El- Ghaouth, A., & Stevens, C. (2007). Postharvest biocontrol: new concepts and applications. En C. Vincent, M. S. Goettel, & L. George (Eds.), Biological control: a global perspective: case studies from around the world (p. 262-273). Boca Ratón, EE. UU.: CAB International. Wisniewski, M., Wilson, C., & Hershberger, W., (1989). Characterization of inhibition of Rhizopus stolonifer germination and growth by Enterobacter cloacae. Canadian Journal of Botany, 67(8), 2317-2323. doi:10.1139/ b89-296. Wu, F., & Khlangwiset, P. (2010). Health economic impacts and cost-effectiveness of aflatoxin-reduction strategies in Africa: case studies in biocontrol and post-harvest interventions. Food additives and contaminants Part A, 27(4), 496-509. doi:10.1080/19440040903437865. Yang, D. M., Bi, Y., Chen, X. R, Ge, Y. H, & Zhao, J. (2006). Biological control of postharvest diseases with Bacillus subtilis (B1 strain) on muskmelons (Cucumis melo L. cv. Yindi). Acta Horticulturae, 712, 735-740. doi:10.17660/ ActaHortic.2006.712.94. Yao, H. J., & Tian, S. P. (2005). Effects of a biocontrol agent and methyl jasmonate on postharvest diseases of peach fruit and the possible mechanisms involved. Journal of Applied Microbiology, 98(4), 941-950. doi:10.1111/ j.1365-2672.2004.02531.x. Zhang, H., Zheng, X., Fu, C., & Xi, Y. (2003). Biological control of blue mold rot of pear by Cryptococcus laurentii. Journal of Horticultural Science and Biotechnology, 78(6), 888-893. doi:10.1080/14620316.2003.11511714. Zhang, H., Zheng, X., Fu, C., & Xi, Y. (2005). Postharvest biological control of gray mold rot of pear with Cryptococcus laurentii. Postharvest Biology and Technology, 35(1), 79-86. doi:10.1016/j.postharvbio.2004.03.011. Zhang, H., Wang, L., Dong, Y., Jiang, S., Cao, J., & Meng, R. (2007). Postharvest biological control of gray mold decay of strawberry with Rhodotorula glutinis. Biological Control, 40(2), 287-292. doi:10.1016/j. biocontrol.2006.10.008. Zhang, H., Zheng, X., Wang, L., Li, S., & Liu, R. (2007). Effect of antagonist in combination with hot water dips on postharvest Rhizopus rot of strawberries. Journal of Food Engineering, 78(1), 281-287. doi:10.1016/j. jfoodeng.2005.09.027. Zhang, H., Zheng, X., & Yu, T. (2007). Biological control of postharvest diseases of peach with Cryptococcus laurentii. Food Control, 18(4), 287-291. doi:10.1016/j. foodcont.2005.10.007. Zhang H, Ma, L., Wang, L., Jiang, S., Dong, Y., & Zheng X. (2008) Biocontrol of gray mold decay in peach fruit by integration of antagonistic yeast with salicylic acid and their effects on postharvest quality parameters. Biological Control, 47(1), 60-65. doi:10.1016/j. biocontrol.2008.06.012. Zhang, H., Wang, L., Ma, L., Dong, Y., Jiang, S., Xu, B., & Zheng, X. (2009). Biocontrol of major postharvest pathogens on apple using Rhodotorula glutinis and its effects on postharvest quality parameters. Biological Control, 48(1), 79-83. doi:10.1016/j. biocontrol.2008.09.004. Zhao, Y., Shao, X. F, Tu, K., & Chen, J. K. (2007). Inhibitory effect of Bacillus subtilis B10 on the diseases of postharvest strawberry. International Journal of Fruit Science, 24(3), 339-343. Zhou, T., Northover, J., & Schneider, K. E. (1999). Biological control of postharvest diseases of peach with phyllosphere isolates of Pseudomonas syringae. Canadian Journal of Plant Pathology, 21(4), 375-381. doi:10.1080/07060669909501174. Abdelfattah, A., Wisniewski, M., Droby, S., & Schena, L. (2016). Spatial and compositional variation in the fungal communities of organic and conventionally grown apple fruit at the consumer point-of-purchase. Horticulture Research, 3, 16047. doi:10.1038/hortres.2016.47. Adesemoye, A. O., Torbert, H. A., & Kloepper, J. W. (2009). Plant growth-promoting rhizobacteria allow reduced application rates of chemical fertilizers. Microbial Ecology, 58(4), 921-929. doi:10.1007/s00248-009-9531-y. Agler, M. T., Ruhe, J., Kroll, S., Morhenn, C., Kim, S.- T., Weigel, D., & Kemen, E. M. (2016). Microbial hub taxa link host and abiotic factors to plant microbiome variation. PLoS Biology, 14(1), 1002352. doi:10. 1371/journal.pbio.1002352. Alavi, P., Starcher, M. R., Thallinger, G. G., Zachow, C., Muller, H., & Berg, G. (2014). Stenotrophomonas comparative genomics reveals genes and functions that differentiate beneficial and pathogenic bacteria. BMC Genomics, 15, 482. doi:10.1186/1471-2164 -15-482. Alavi, P., Starcher, M. R., Zachow, C., Müller, H., & Berg, G. (2013). Root-microbe systems: the effect and mode of interaction of Stress Protecting Agent (spa) Stenotrophomonas rhizophila DSM14405(T). Frontiers in Plant Science, 4, 141. doi:10.3389/fpls.2013.00141. Alivisatos, A. P., Blaser, M. J., Brodie, E. L., Chun, M., Dangl, J. L., Donohue, T. J., ... Taha, S. A. (2015). A unified initiative to harness Earth’s microbiomes. Science 350(6260), 507-508. doi:10.1126/science.aac8480. Aliye, N., Fininsa, C., & Hiskias, Y. (2008). Evaluation of rhizosphere bacterial antagonists for their potential to bioprotect potato (Solanum tuberosum) against bacterial wilt (Ralstonia solanacearum). Biological Control Andrews, J. H. (1992). Biological control in the phyllosphere. Annual Review of Phytopathology, 30, 603-635. doi:10. 1146/annurev.py.30.090192.003131. Arias, F., Gómez, L., Suárez, E., & Rendón, S. (2015). Inteligencia de mercados para la cadena de uchuva colombiana (Physalis peruviana). Revista Oidles, 9(18). Recuperado de http://www.eumed.net/rev/oidles/18/uchuva.html. Armstrong, G., & Armstrong, J. K. (1981). Formae speciales and races of Fusarium oxysporum causing wilt diseases. In P. E. Nelson, T. A. Toussoun, & R. J. Cook (Eds.), Fusarium: diseases, biology, and taxonomy (pp. 391-399). Pensilvania: Penn State University Press. Badri, D. V., & Vivanco, J. M. (2009). Regulation and function of root exudates. Plant, Cell & Environment, 32(6), 666- 681. doi:10.1111/j.1365-3040.2008.01926.x. Bakken, L. R. (1997). Culturable and nonculturable bacteria in soil. En J. D. Van Elsas, J. T. Trevors, & E. M. H. Wellington (Eds.), Modern soil microbiology (pp. 47-61). Nueva York, EE. UU.: CRC Press. Bakker, M. G., Manter, D. K., Sheflin, A. M., Weir, T. L., & Vivanco, J. M. (2012). Harnessing the rhizosphere microbiome through plant breeding and agricultural management. Plant and Soil, 360(1-2), 1-13. doi:10.1007/ s11104-012-1361-x. Balaguera, L. H. E., Ramírez, L. V., & Herrera, A. (2014). Fisiología y bioquímica del fruto de uchuva (Physalis peruviana L.) durante la maduración y poscosecha. En C. P. Pássaro Carvalho & D. A. Moreno (Eds.), Physalis peruviana L.: fruta andina para el mundo (pp. 113-131). Murcia, España: Cebas - csic. Barak, J. D., & Schroeder, B. K. (2012). Interrelationships of food safety and plant pathology: the life cycle of human pathogens in plants. Annual Review of Phytopathology, 50, 241-266. doi:10.1146/annurev-phyto-081211-172936. Barnard, R. L., Osborne, C. A., & Firestone, M. K. (2013). Responses of soil bacterial and fungal communities to extreme desiccation and rewetting. The ISME Journal, 7(11), 2229-2241. doi:10.1038/ismej.2013.104. Beckman, C. H. (1987). The nature of wilt diseases of plants. Maryland, EE. UU.: APS Press. Berendsen, R. L., Pieterse, C. M. J., & Bakker, P. A. (2012). The rhizosphere microbiome and plant health. Trends in Plant Science, 17(8), 478-486. doi10.1016/j. tplants.2012.04.001. Berendsen, R. L., Pieterse, C. M. J., & Bakker, P. A. (2012). The rhizosphere microbiome and plant health. Trends in Plant Science, 17(8), 478-486. doi10.1016/j. tplants.2012.04.001. Berg, G. (2009). Plant–microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Applied Microbiology and Biotechnology, 84(1), 11-18. doi:10.1007/s00253-009- 2092-7. Berg, G., Erlacher, A., Smalla, K., & Krause, R. (2014a). Vegetable microbiomes: is there a connection among opportunistic infections, human health and our ‘gut feeling’? Microbial Biotechnology, 7(6), 487-495. doi:10.1111 /1751-7915.12159. Berg, G., Eberl, L., & Hartmann, A. (2005). The rhizosphere as a reservoir for opportunistic human pathogenic bacteria. Environmental Microbiology, 7(11), 1673-1685. doi:10.1111/j.1462-2920.2005.00891.x. Berg, G., Grube, M., Schloter, M., & Smalla, K. (2014c). Unraveling the plant microbiome: looking back and future perspectives. Frontiers in Microbiology, 5, 148. doi:10.3389/fmicb.2014.00148. Berg, G., Grube, M., Schloter, M., & Smalla, K. (2014b). The plant microbiome and its importance for plant and human health. Frontiers in Microbiology, 5, 491. doi:10.3389/ fmicb.2014.00491. Berg, G., Hartenberger, K., Liebminger, S., & Zachow, C. (2012). Antagonistic endophytes from mistletoes as bioresource to control plant as well as clean room pathogens. IOBC/wprs Bulletin, 78, 29-32. Recuperado de https:// goo.gl/QSKqM1. Berg, G., Rybakova, D., Grube, M., & Köberl, M. (2016). The plant microbiome explored: implications for experimental botany. Journal of Experimental Botany, 67(4), 995-1002. doi:10.1093/jxb/erv466. Berg, G., Zachow, C., Müller, H., Philipps, J., & Tilcher, R. (2013). Next-generation bio-products sowing the seeds of success for sustainable agriculture. Agronomy, 3(4), 648. doi:10.3390/agronomy3040648. Berg, G., & Smalla, K. (2009). Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiology Ecology, 68(1), 1-13. doi:10.1111/j.1574- 6941.2009.00654.x. Bernal, P. (10 de junio de 2016). Microbioma: el ‘nuevo órgano’ del cuerpo humano que compartimos con la mayoría de seres. El Diario. Recuperado de https://goo.gl/xVVLRw. Bhatti, K. H., Ahmed, N.-u.-D., Shah, A., Iqbal, M., Iqbal, T., & Jiahe, W. (2011). Transgenic tobacco with rice zincfinger gene OsLOL2 exhibits an enhanced resistance against bacterial-wilt. Australasian Plant Pathology, 40(2), 133-140. doi:10.1007/s13313-010-0022-x. Blaser, M., Bork, P., Fraser, C., Knight, R., & Wang, J. (2013). The microbiome explored: recent insights and future challenges. Nature Reviews Microbiology, 11(3), 213-217. doi:10.1038/nrmicro2973. Bulgarelli, D., Rott, M., Schlaeppi, K., Ver Loren van Themaat, E., Ahmadinejad, N., Assenza, F., ... Schulze- Lefert, P. (2012). Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature, 488(7409), 91-95. doi:10.1038/nature11336. Bloemberg, G. V., & Lugtenberg, B. J. J. (2001). Molecular basis of plant growth promotion and biocontrol by rhizobacteria. Current Opinion in Plant Biology, 4(4), 343- 350. doi:10.1016/S1369-5266(00)00183-7. Bulgarelli, D., Schlaeppi, K., Spaepen, S., Ver Loren van Themaat, E., & Schulze-Lefert, P. (2013). Structure and functions of the bacterial microbiota of plants. Annual Review of Plant Biology, 64, 807-838. doi:10.1146/ annurev-arplant-050312-120106. Busby, P. E., Peay, K. G., & Newcombe, G. (2016). Common foliar fungi of Populus trichocarpa modify Melampsora rust disease severity. New Phytologist, 209(4), 1681-1692. doi:10.1111/nph.13742. Busby, P. E., Soman, C., Wagner, M. R., Friesen, M. L., Kremer, J., Bennett, A., ... Dangl, J. L. (2017). Research priorities for harnessing plant microbiomes in sustainable agriculture. PLoS Biology, 15(3), e2001793. doi:10.1371/ journal.pbio.2001793. Caitilyn, A., Prior, P., & Hayward, A. C. (Eds.). (2005). Bacterial wilt disease and the Ralstonia solanacearum species complex. Saint Paul, EE. UU.: American Phytopathological Society. Camatti-Sartori, V., Da Silva-Ribeiro, R. T., Valdebenito- Sanhueza, R. M., Pagnocca, F. C., Echeverrigaray, S., & Azevedo, J. L. (2005). Endophytic yeasts and filamentous fungi associated with southern Brazilian apple (Malus domestica) orchards subjected to conventional, integrated or organic cultivation. Journal of Basic Microbiology, 45(5), 397-402. doi:10.1002/jobm.200410547. Cardenas, P. A., Cooper, P. J., Cox, M. J., Chico, M., Arias, C., Moffatt, M. F., & Cookson, W. O. (2012). Upper airways microbiota in antibiotic-naïve wheezing and healthy infants from the tropics of rural Ecuador. PLoS One, 7(10), e46803. doi:10.1371/journal.pone.0046803. Cellier, G., & Prior, P. (2010). Deciphering phenotypic diversity of Ralstonia solanacearum strains pathogenic to potato. Phytopathology, 100(11), 1250-1261. doi:10.1094/ PHYTO-02-10-0059. Cook, R. J. (2007). Tell me again what it is that you do. Annual Review of Phytopathology, 45, 1-23. doi:10.1146/ annurev.phyto.45.062806.094415. Copeland, J. K., Yuan, L., Layeghifard, M., Wang, P. W., & Guttman, D. S. (2015). Seasonal community succession of the phyllosphere microbiome. Molecular Plant-Microbe Interactions Journal, 28(3), 274-285. doi:10.1094/MPMI- 10-14-0331-FI. Corporación Colombia Internacional. (2007). Sistema de inteligencia de mercados (Perfil producto N°. 34). Recuperado de http://bibliotecadigital.agronet.gov.co/ bitstream/11348/5287/2/2006327162612_uchuva_ CCI_actualizaci %C3 %B3n.pdf. González, C., & Barrero, M. (Eds.). (2011). Estudio de la marchitez vascular de la uchuva para el mejoramiento genético del cultivo. Bogotá: Corporación Colombiana de Investigación Agropecuaria (Corpoica) y Cámara de Comercio de Bogotá. Google Académico. (s. f.). Estadisticas. Recuperado de https://scholar.google.com/citations?view_op=metrics_ intro&hl=es#d=gs_hdr_drw&p=&u=. Obregón, D., Lancheros, O., Forero de La-Rotta, M.C., Miranda, D., & Chavez, B. (2007). Efecto de los tratamientos químicos y biológicos sobre el marchitamiento vascular de la uchuva (Physalis peruviana L.), ocasionada por el hongo Fusarium oxysporum Schlecht. Ponencia presentada en 2.° Congreso Colombiano de Horticultura. Bogotá, Colombia. Redacción Economía (4 de febrero de 2016). Frutas que ProColombia ofrecerá a los alemanes. El Espectador. Recuperado de https://goo.gl/X5q4so. Instituto Colombiano Agropecuario (ica). (2017). Productos registrados bioinsumos. Recu perado de http://www.ica. gov.co/getdoc/2ad9e987-8f69-4358b8a9e6ee6dcc 8132/PRODUCTOSBIOINSUMOS-MAYO-13- DE-2008.aspx. Alatorre-Rosas, R. (2007). Hongos entomopatógenos. En L. A. Rodríguez-del-Bosque & H. Arredondo-Bernal (Eds.), Teoría y aplicación del control biológico (pp. 127- 143). Ciudad de México, México: Sociedad Mexicana de Control Biológico. Antía, O. P., Posada, F. J., Bustillo, A. E., & González, M. T. (1992). Producción en finca del hongo Beauveria bassiana para el control de la broca del café (Avances técnicos N.º 182). Chinchiná, Colombia: Centro Nacional de Investigaciones de Café (Cenicafé). Anderson, P., & Morales, F. (2005). Whitefly and Whiteflyborne Viruses in the Tropics: Building a Knowledge Base for Global Action. Cali, Colombia: Centro Internacional de Agricultura Tropical (ciat). Bustillo, A. E. (1995). El uso del hongo Beauveria bassiana como un componente en un programa de manejo integrado de la broca del café, Hypothenemus hampei. En Sociedad Colombiana de Entomología (Socolen), Memorias del xxii Congreso de la Sociedad Colombiana de Entomología (Socolen) (pp. 79-85). Bogotá, Colombia: Socolen. Bustillo, A. E., Cárdenas, R., Villalba, D., Benavides, P., Orozco, J., & Posada, F. J. (1998). Manejo integrado de la broca del café, Hypothenemus hampei (Ferrari) en Colombia. Chinchiná, Colombia: Cenicafé. Cadena, G. (2005). Desarrollos científicos de Cenicafé en la última década. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 1(30), 89-100. Corporación Colombiana de Investigación Agropecuaria (Corpoica). (2011). Evaluación y validación de bioplaguicidas a base de hongos entomopatógenos para el manejo de mosca blanca Bemisia tabaci en algodón, tabaco y berenjena en Tolima, Córdoba y Huila (Informe técnico). Bogotá, Colombia: Corpoica. Corporación Colombiana de Investigación Agropecuaria (Corpoica). (2016). Registro N.º 00004565. Bogotá, Colombia: ica Cruz, M. (2014). Desarrollo de un proceso de fermentación sólida para el hongo Trichoderma asperellum th204 en un fermentador de lecho fijo (tesis de maestría). Universidad Nacional de Colombia, Bogotá, Colombia. Ebratt, E., Espinel, C., & Cotes, A. (1998). Observaciones sobre el comportamiento, biología y ecología de Rhammatocerus schistocercoides (Orthoptera: Acrididae) en la altillanura colombiana. Revista Colombiana de Entomología, 24(3-4), 75-81. Ebratt, E., Espinel, C., & Cotes, A. (2000). Estudio de la teoría de fases en Rhammatocerus schistocercoides (Orthoptera: Acrididae) en los llanos orientales de Colombia. Revista Colombiana de Entomología, 26(3-4), 83-88. Ebratt, E. E., Espinel, C., Gómez, M. I., Villamizar, L. F., Cotes, A. M., Gutiérrez, J. C. … León, G. (2000). La langosta llanera en Colombia (Boletín técnico). Bogotá, Colombia: Corporación Colombiana de Investigación Agropecuaria (Corpoica). Espinel, C., Ebratt, E., & Cotes, A. (1998). Evaluación de cepas nativas de Metarhizium anisopliae para el control biológico de Rhammatocerus schistoscercoides (Orthoptera: Acrididae). Revista Colombiana de Entomología, 24(1-2), 1-5. Espinel, C., Lozano, M. D., Cotes, A. M., & López-Ávila, A. (2006). Eficacia de los productos bajo condiciones de campo. En C. Espinel, M. D. Lozano, A. M. Cotes & A. López-Ávila (Eds.), Desarrollo de un bioplaguicida para el control de la mosca blanca Bemisia tabaci (Boletín técnico). Bogotá, Colombia: Corporación Colombiana de Investigación Agropecuaria (Corpoica). Espinel, C., Torres, L., González, V., & Cotes, A. M. (2006). Selección de hongos entomopatógenos para el control de la mosca blanca Bemisia tabaci. Bogotá, Colombia: Corporación Colombiana de Investigación Agropecuaria (Corpoica). Espinel, C., Zuluaga, M. V., Jiménez, N., & Gómez, M. (2012). Uso del bioplaguicida a base de Lecanicillium lecanii para el control de Bemisia tabaci en el cultivo de berenjena. En M. Gómez, L. Villamizar, C. Espinel, E. Varón, N. Jiménez, M. V. Zuluaga & A. López (Eds.), Uso de Lecanicillium lecanii para el control de la mosca blanca Bemisia tabaci en algodón y berenjena (pp. 45-58). Bogotá, Colombia: Corporación Colombiana de Invetigación Agropecuaria (Corpoica). García, J., & López-Ávila, A. (2006). Evaluación de cepas nativas de Lecanicillium lecanii (Zimm). Viegas en el control de la mosca blanca de los invernaderos Trialeurodes vaporariorum (Westwood). En A. Cotes, A. López-Ávila, L. Villamizar, A. Díaz, C. Espinel, L. Torres & J. García (Eds.), Resumen de investigaciones en el control biológico de las moscas blancas Bemisa tabaci y Trialeurodes vaporariorum. Bogotá, Colombia: Corporación Colombiana de Invetigación Agropecuaria (Corpoica). Garzón, I., Villamizar, L., Cotes, A., García, J., & LópezÁvila, A. (2006). Evaluación de Lecanicillium lecanii para el control de Trialeurodes vaporariorum (Westwood) en tomate. En A. Cotes, A. López-Ávila, L. Villamizar, A. Díaz, C. Espinel, L. Torres & J. García (Eds.), Resumen de investigaciones en el control biológico de las moscas blancas Bemisia tabaci y Trialeurodes vaporariorum. Bogotá, Colombia: Corporación Colombiana de Invetigación Agropecuaria (Corpoica). Gómez, M., Villamizar, L., & Cotes, A. M. (1997). Producción masiva y preformulación de Metarhizium spp. para el control biológico de la langosta llanera. Revista Colombiana de Entomología, 23(3-4), 119-124. González, G. (1994). Evaluación de la patogenicidad de diferentes aislamientos de Beauveria bassiana de la colección de entomopatógenos (Informe anual de labores). Chinchiná, Colombia: Centro Nacional de Investigaciones de Café (Cenicafé). González, M. T., Posada, F. J., & Bustillo, A. E. (1993). Desarrollo de un bioensayo para evaluar la patogenicidad de Beauveria bassiana sobre Hypothenemus hampei. Revista Cenicafé, 44(3), 93-102. Grijalba, E., Villamizar, L., & Cotes, A. (2009). Evaluación de la estabilidad de Paecilomyces sp. y Beauveria bassiana frente a la radiación ultravioleta. Revista Colombiana de Entomología, 35(1), 1-6. Instituto Colombiano Agropecuario (ica). (2016). Listado de productos bioinsumos registrados. Recuperado de https://www.ica.gov.co/Areas/Agricola/Servicios/ Fertilizantes-y-Bio-insumos-Agricolas/Listado-de- Bioinsumos/2009/PRODUCTOS-BIOINSUMOSMAYO- 13-DE-2008.aspx. Instituto Colombiano Agropecuario (ica). (2017). Listado de empresas de bioinsumos registradas, diciembre de 2017. Recuperado de http://www.ica.gov.co/Areas/ Agricola/Servicios/Fertilizantes-y-Bio-insumos- Agricolas/Listado-de-Bioinsumos/2009/EMPRESASREGISTRADAS- BIOINSUMOS - JULIO-8- DE-2008.aspx. Jiménez, L., García, J., Villamizar, L., & Cotes, A. M. (2006). Evaluación de técnicas de aplicación de un bioplaguicida para el control de la mosca blanca de los invernaderos Trialeurodes vaporariorum (Westwood) en habichuela. En A. Cotes, A. López-Ávila, L. Villamizar, A. Díaz, C. Espinel, L. Torres & J. García (Eds.), Resumen de investigaciones en el control biológico de las moscas blancas Bemisia tabaci y Trialeurodes vaporariorum. Bogotá, Colombia: Corporación Colombiana de Investigación Agropecuaria (Corpoica). Lacayo, L., Barrios, M., Jiménez, C., & Sandino, V. (1994). El uso de hongos entomopatógenos para el manejo de la broca del café (Hypothenemus hampei) en Nicaragua. Documento presentado en Reunión Informativa sobre Avances de Investigación. Managua, Nicaragua. López, A., & García, J. (2000). Manejo integrado sostenible de moscas blancas como plaga y vectores de virus en los trópicos: Reconocimiento, diagnóstico y caracterización de especies de mosca blanca como plagas en el trópico alto de América Latina (Informe final del convenio entre la Agencia Danesa de Desarrollo Internacional [Danida], Corpoica y ciat). Bogotá, Colombia: Corporación Colombiana de Investigación Agropecuaria (Corpoica). Mariño, P., Villamizar, L., Espinel, C., & Cotes, A. (2004). Caracterización de prototipos de bioplaguicidas granulados a base de Metarhizium anisopliae para el control de Ancognatha scarabaeoides (Coleoptera: Melolonthidae). Revista Colombiana de Entomología, 30(1), 43-49. Morales, E., Cruz, F., Ocampo, A., Rivera, G., & Morales, B. (1991). Una aplicación de la biotecnología para el control de la broca del café. Documento presentado en Colloque Scientifique International sur le Café. París, Francia. Organización de las Naciones Unidas para la Alimentación y la Agricultura (fao). (2002). Expert Consultation and Risk Assessment on the Importation and Large-Scale Use of Mycopesticides against Locusts. Recuperado de http:// www.fao.org/ag/locusts/oldsite/PDFs/meetings/Myco pestE.pdf. Ortiz-Catón, M., Alatorre-Rosas, R., Valdivia-Bernal, R., Ortiz-Catón, A., Medina-Torres, R., & Alejo-Santiago, G. (2011). Efecto de la temperatura y humedad relativa sobre el desarrollo de los hongos entomopatógenos. Revista BioCiencias, 1(2), 42-53. Peña, Z. P. (2011). Fotoestabilidad de dos formulaciones de bioplaguicidas a base de Lecanicillium lecanii Vl026 y Trichoderma koningiopsis Th003 (tesis de pregrado). Pontificia Universidad Javeriana, Bogotá, Colombia. Posada, F., & Bustillo, A. (1994). El hongo Beauveria bassiana y su impacto en la caficultura colombiana. Agricultura Tropical, 31(3), 97-106. Posada, F. J. (1993). Control biológico de la broca del café, Hypothenemus hampei (Ferrari) con hongos. En Sociedad Colombiana de Entomología (Socolen), Memorias Congreso de la Sociedad Colombiana de Entomología (Socolen). Cali, Colombia: Socolen. Ribera, M., & Paradelo, C. (1997). El sol y la piel. Fotoprotección y filtros solares. Medicina Integral, 30(2), 64-71. Rivera, H. F., & Zuluaga, M. V. (2012). Uso del bioplaguicida a base de Lecanicillium lecanii para el control de Bemisia tabaci en el cultivo de algodón. En M. Gómez, L. Villamizar, C. Espinel, E. Varón, N. Jiménez, M. V. Zuluaga & A. López-Ávila (Eds.), Uso de Lecanicillium lecanii para el control de la mosca blanca Bemisia tabaci en algodón y berenjena. Bogotá, Colombia: Corporación Colombiana de Investigación Agropecuaria (Corpoica). Rodríguez, I. V., Bueno, J. M., Cardona, C. M., & Morales, H. M. (2012). Biotipo B de Bemisia tabaci (Hemiptera: Aleyrodidae): plaga de pimentón en el Valle del Cauca, Colombia. Revista Colombiana de Entomología, 38(1), 14. Santos, A. M., De Brito-Brandão, P. F., & Rivero, L. F. V. (2017). Efecto del estrés térmico y la radiación ultravioleta durante la producción masiva de Nomuraea rileyi. Revista Colombiana de Biotecnología, 19(1), 82-91. Santos, A. M., Uribe, L. A., Zuluaga, M. V., & Villamizar, L. F. (2012). Estabilidad de un bioplaguicida a base de Lecanicillium lecanii formulado como un granulado dispersable (wg). En M. Gómez, L. Villamizar, C. Espinel, E. Varón, N. Jiménez, M. V. Zuluaga … A. López-Ávila. (Eds.), Uso de Lecanicillium lecanii para el control de la mosca blanca Bemisia tabaci en algodón y berenjena. Bogotá, Colombia: Corporación Colombiana de Investigación Agropecuaria (Corpoica). Sponagel, K. W. (1994). La broca del café Hypothenemus hampei en plantaciones de café robusta en la amazonía ecuatoriana. Giessen, Alemania: Wissenschaftlicher Fachverlag. Tobar, S., Vélez, P., & Montoya, E. (1996). Selección de aislamientos patogénicos de Beauveria bassiana y Metarhizium anisopliae por resistencia a la luz ultravioleta. Documento presentado en Congreso de la Sociedad Colombiana de Entomología (Socolen). Cartagena, Colombia. Valdés-Gutiérrez, S., Escobar-López, L., Córdoba-Castro, L., & Góngora-Botero, C. (2014). Efecto de la luz ultravioleta sobre Beauveria bassiana y su virulencia a la broca. Revista Cenicafé, 62(2), 58-68. Vélez, P., & Montoya, E. (1993). Supervivencia del hongo Beauveria bassiana bajo radiación solar en condiciones de laboratorio y campo. Revista Cenicafé, 44(3), 111-122. Vélez, P. E., Posada, F., Marín, P., González, M., Osorio, E., & Bustillo, A. (1997). Técnicas para el control de calidad de formulaciones de hongos entomopatógenos (Boletín técnico N.º 17). Chinchiná, Colombia: Centro Nacional de Investigaciones de Café (Cenicafé). Zárate, C., Cotes, A., & Villamizar, L. (2010). Estudio de la estabilidad en almacenamiento de tres formulaciones oleosas a base de Nomuraea rileyi. Documento presentado en xxxiii Congreso Nacional de Control Biológico. Ciudad de México, México. Alarcón, J., Arévalo, E., Díaz, A., Galindo, J., & Rosero, A. (2012). Manejo integrado de plagas enfermedades en el cultivo del caucho. Bogotá, Colombia: Instituto Colombiano Agropecuario (ica). Barrera Cubillos, G. P., Gómez, J., Cuartas, P., León, G., & Villamizar Rivero, L. F. (2014). Caracterización morfológica, biológica y genética de un aislamiento colombiano de granulovirus de Erinnyis ello (L.) (Lepidoptera: Sphingidae). Revista Colombiana de Biotecnología 16(2), 129-140. doi:10.15446/rev.colomb.biote.v16n2.41663. Barrera Cubillos, G. P., Gómez, J., Cuartas, P., León, G., & Villamizar Rivero, L. F. (2014). Caracterización morfológica, biológica y genética de un aislamiento colombiano de granulovirus de Erinnyis ello (L.) (Lepidoptera: Sphingidae). Revista Colombiana de Biotecnología 16(2), 129-140. doi:10.15446/rev.colomb.biote.v16n2.41663. Bellotti, A. C., Arias, B., Reyes, J. A., Fernández, F. O., Ceballos, L. F., & Medina, L. M. (1989). Manejo integrado de Erinnyis ello (L.) (gusano cachón de la yuca), guía de estudio para ser usada como complemento de la Unidad Audiotutorial sobre el mismo tema. Recuperado de http://books.google.com. co/books?id=Rud9PMRWUrkC&printsec=frontcover &source=gbs_atb#v=onepage&q&f=false. Caballero, P., López-Feber, T. L., & Williams, T. (2001). Los baculovirus y sus aplicaciones como bioinsecticidas en el control biológico de plagas. Valencia, España: Phytoma- España. Caballero, P. W., & Williams, T. (2008). Virus entomopatógenos. En J. A. Jacas & A. Urbaneja (Eds.), Control biológico de plagas agrícolas (pp. 121-135). Valencia, España: Phytoma-España. Cuartas, P., & Villamizar, L. (2011). Interacciones de los Virus Entomopatógenos y su Efecto sobre la Actividad Biológica. Revista Facultad de Ciencias Básicas, 7(2), 220- 239. Recuperado de https://revistas.unimilitar.edu.co/ index.php/rfcb/article/viewFile/2056/1586+&cd=1&h l=es&ct=clnk&gl=co&client=firefox-b-ab. Chaparro, M., Espinel, C. C., Cotes, A. M. P., & Villamizar, L. R. (2010). Fotoestabilidad y actividad insecticida de dos formulaciones de granulovirus sobre larvas de Tecia solanivora. Revista Colombiana de Entomología, 36(1), 25- 30. Recuperado de http://www.scielo.org.co/pdf/rcen/ v36n1/v36n1a06.pdf. Del Rincón, M. (2010). Los virus entomopatógenos: una alternativa viable en el control de plagas. En: Sociedad Mexicana de Control Biológico, Memorias xxi Curso Nacional de Control Biológico (pp. 111-120). Uruapan, México: Impresos Gutiérrez. Devotto, L., & Gerding, M. (2003). Respuesta de dos aislamientos chilenos de Metarhizium anisopliae (Metschnikoff ) Sorokin a la adición de un protector solar. Agricultura Técnica, 63(4), 339-346. García, F., Mosquera, M. T., Vargas, C., & Rojas, L. A. (2002). Control biológico, microbiológico y físico de Spodoptera frugiperda (Lepidoptera: Noctuidae), plaga del maíz y otros cultivos en Colombia. Revista Colombiana de Entomología, 28(1), 53-60. Gómez-Valderrama, J., Cuartas, P., Ruiz, J., Uribe, L., Santos, A., León, G., & Villamizar, L. (2014). Estabilidad de una formulación a base de un granulovirus colombiano de Erinnyis ello (Lepidoptera:Sphingidae). Revista Hechos Microbiológicos, 5(2, suplemento 2), 128. Recuperado de http://aprendeenlinea.udea.edu.co/revistas/index.php/ hm/article/view/21416/17752. Gómez, J., Cuartas, P., Ruiz, J., Villamizar, L., & León, G. (2015). Eficacia de una formulación a base de un granulovirus colombiano de Erinnyis ello (Lepidoptera: Sphingidae). En Sociedad Colombiana de Entomología (Socolen), Resumenes xlii Congreso Colombiano de Entomología (pp. 79). Medellín, Colombia: Socolen. Gómez, J., Cuartas, P., León, G., Campos, J., Ruiz, C., Santos, A., & Villamizar, L. (2016). Granulovirus para el control de Erinniys ello (Lepidoptera: Sphingidae) en el cultivo de caucho natural. Ponencia presentada en xxiii Congreso Latinoamericano de Microbiología y xiv Congreso Argentino de Microbiología. Rosario, Argentina. Gómez, J., Villamizar, L., Espinel, C., & Cotes, A. M. (2009). Comparación de la eficacia y la productividad de tres granulovirus nativos sobre larvas de Tecia solanivora (Povolny) (Lepidoptera: Gelechiidae). Corpoica Ciencia y Tecnología Agropecuaria, 10(2), 152-158. Recuperado de http://revista.corpoica.org.co/index.php/revista/article/ download/137/140. Grison, P. (1969). Reflexiones sobre la utilizacion de Smithiavirus pityocampae Vago en la lucha microbiologica contra Thaumetopoea pityocampa Schiff. Boletín del Servicio de Plagas Forestales, 24, 105-112. Ibarra, J. E., & Del Rincón M. C. (1998). Virus entomopatógenos. En Curso Nacional de Control Biológico (pp. 90-103). Río Bravo, México: Sociedad Mexicana de Control Biológico. Instituto Colombiano Agropecuario (ica). 2017. Productos registrados bioinsumos. Recuperado de http://www.ica.gov. co/getdoc/2ad9e987-8f69-4358-b8a9-e6ee6dcc8132/ PRODUCTOSBIOINSUMOS-MAYO-13-DE-2008. aspx. Kondo, T. (2011). Notas sobre el uso correcto del término técnico para referirse a la cría masiva de insectos y otros artrópodos: cría masiva vs. cría masal y cría en masa. Boletín del Museo de Entomología de la Universidad del Valle, 12(2), 26-28. Recuperado de http://entomologia. univalle.edu.co/boletin/5Kondo2.pdf. León, M., Beltrán, G. A., Campos, J. A., & Juan, C. (2010). Enemigos naturales y manejo integrado del gusano cachón (Erinnyis ello) en el cultivo del caucho (Hevea brasiliensis). Recuperado de https://www.researchgate. net/publication/270161239_Enemigos_naturales_y_ manejo_integrado_del_gusano_cachon_Erinnyis_ello_ en_el_cultivo_del_caucho. López-Ávila, A., & Espitia-Malagón, E. (2000). Plagas y benéficos en el cultivo de la papa en Colombia. [Boletín Técnico Divulgativo Corpoica]. Bogotá, Colombia: Produmedios. Martínez, A., Tapiero, A., León, G., Arguello, O., Gutiérrez, A., García, F., … Pinzón, Y. (2013). Modelo productivo para el cultivo del árbol de caucho natural en la Orinoquía. Zonas de escape y no escape al Mal Suramericano de la hojas de Caucho. Bogotá, Colombia: Corporación Centro de Investigación en Caucho (Cenicaucho), Corporación Colombiana de Investigación Agropecuaria (Corpoica). Negrete, F., & Morales, A. (2003). El gusano cogollero del maíz (Spodoptera frugiperda. Smith). Recuperado de http://bibliotecadigital.agronet.gov.co/bitstream/ 11348/4870/2/20061127153058_El%20gusano%20 cogollero%20del%20maiz.pdf. Rodríguez-Pérez, M. A., & Beckage, N. E. (2006). Estrategias co-evolutivas de la interacción entre parasitoides y polidnavirus. Revista Latinoamericana de Microbiología, 48(1), 31-43. Romero, R. (2007). Microbiología y parasitología humana. Bases etiológicas de las enfermedades infecciosas y parasíticas (3.a ed.). Madrid, España: Editorial Médica Panamericana. Ruiz, C., Gómez-Valderrama, J., Chaparro, M., Sotelo, P., & Villamizar, L. (2015). Ajuste de las condiciones de un sistema para la producción in vivo de un nucleopoliedrovirus de Spodoptera frugiperda (Lepidoptera: Noctuidae). Biotecnología Aplicada, 32(4), 4311-4316. Schmitt, A. (1988). Uso de Baculovirus erinnyis para el control biológico del gusano cachón de la yuca. Yuca: Boletín Informativo 12(1), 1-4. Vargas, B., Rubio, S., & López-Ávila, A. (2004). Estudios de hábitos y comportamiento de la polilla guatemalteca de la papa Tecia solanivora (Lepidoptera: Gelechiidae) en papa almacenada. Revista Colombiana de Entomología, 30(2), 211-217. Villamizar, L., Zeddam, J., Espinel, C., & Cotes, A. (2005). Implementación de técnicas de control de calidad para la producción de un bioplaguicida a base del granulovirus de Phthorimaea operculella Phop GV. Revista Colombiana de Entomología, 31(2), 127-132. Villamizar, L. F. (2011). Virus entomopatógenos y cambio climático. En Sociedad Colombiana de Entomología (Socolen) (Ed.), Memorias xxxvii Congreso Socolen Cambio climático: Retos y oportunidades para la entomología (pp. 127-143). Manizales, Colombia: Socolen. Villanueva, D., & Saldamando, C. (2013). Tecia solanivora, Povolny (Lepidoptera: Gelechiidae): una revisión sobre su origen, dispersión y estrategias de control biológico. Ingeniería y Ciencia, 9(18), 197-214. Zenner, I., Arévalo, H. A., & Mejía, R. (2007). El gusano cogollero del maíz, Spodoptera frugiperda ( JE Smith) (Lepidoptera: Noctuidae) y algunas plantas transgénicas. Revista Colombiana de Ciencias Hortícolas, 1(1), 103-113. Agudelo, J. A., Santos-Amaya, O., Aguilera-Garramuño, E., & Argüelles-Cárdenas, J. (2010). Evaluación de dos marcas comerciales de la feromona sexual de Spodoptera frugiperda Smith (Lepidoptera: Noctuidade) en el Tolima, (Colombia). Revista Corpoica. Ciencia y Tecnología Agropecuaria, 11(2), 137-143. doi:10.21930/rcta.vol11_ num2_art:204. Aldana de la Torre, R. C., Aldana de la Torre, J.A., & Moya, O. M. (2011). Manejo del picudo Rhychophporus palmarum L. (Coleptera: Curculionidae). Recuperado de: https://www. ica.gov.co/getattachment/19e016c0-0d14-4412-af12- 03eecfe398f2/Manejo-del-picudo--Rhynchophoruspalmarum- L--(Cole.aspx. Arévalo-Peñaranda, E., Díaz-Niño, M. F., Castro-Ávila, A. P., Caicedo-Vallejo, A. M., & Palacino-Córdoba, J. H. (2017). Vigilancia oficial de plagas de alto impacto en sistemas productivos agrícolas de Colombia. En Sociedad Colombiana de Entomología (Socolen) (Ed.), XLIV Congreso Socolen (pp. 113-119). Bogotá, Colombia: Socolen. Barreto-Triana, N., & López-Ávila, A. (2010). Semiochemicals in Pest Management in Colombia. En Latin American Association of Chemical Ecology, I Latin American Meeting of Chemical Ecology Colonia del Sacramento (pp. 68). Colonia del Sacramento, Uruguay: Asociación Latino Americana de Ecología Química (alaeq). Castro-Ortega, L. A., & Suárez-Gómez, H. D. (1998). Eficiencia de los tubos mata picudos y de las trampas cebadas con feromona Grandlure en el control de Anthonomus grandis (Coleoptera: Curculionoidae). Corpocaribe, 3, 21-28. Corporación Centro de Investigación en Palma de Aceite (Cenipalma). (2010). Biología, hábitos y manejo de Rhynchophorus palmarum L. (Coleoptera: Curculionidae). Bogotá, Colombia: Corporación Centro de Investigación en Palma de Aceite (Cenicaña). Chinchilla, C., Menjivar, R., & Arias, E. (1990). Picudo de la palma y enfermedad del anillo rojo/hoja pequeña en una plantación comercial en Honduras. Turrialba, 40(4), 471-477. Corporación Centro de Investigación en Palma de Aceite (Cenipalma). (2017). Plegable feromona Rhynchophorol C. Bogotá, Colombia: Corporación Centro de Investigación en Palma de Aceite (Cenicaña). Cotes-Prado, A. M., López-Ávila, A., Bosa-Ochoa, C. F., Zuluaga-Mogollón, M. V., Rincón-Rueda, D. F., & Valencia, E. (2012). Uso de los compuestos volátiles de la papa en el control de la polilla guatemalteca. Mosquera, Colombia: Corporación Colombiana de Investigación Agropecuaria. Löhr, B., & Parra, P. P. (2014). Manual de trampeo del picudo negro de las palmas, Rhynchophorus palmarum, en trampas de feromona adaptadas a la situación particular de pequeños productores de la costa del Pacífico Colombiano. Cali, Colombia: Centro Internacional de Agricultura Tropical (ciat). Ministerio de Agricultura y Ganadería (mag). (2008). Informe del sector agropecuario: Algodón 2007/2008. Asunción, Paraguay: mag. Monserrat, A. (2009). La polilla del tomate “Tuta absoluta” en la región de Murcia: Bases para su control. Serie Técnica. Murcia, España: Consejería de Agua y Agricultura. Morales, J., Muñoz, L., Rodríguez, D., & Cantor, F. (2014). Acción combinada de freromona sexual y de avispas Apanteles gelechiidivoris para el control de Tuta absoluta en cultivos de tomate bajo invernadero. Acta Biológica Colombiana, 19(2), 175-184. doi:10.15446/abc. v19n2.38202. Moya-Murillo, O. M., Aldana-De la Torre, R. C., & Bustillo- Pardey, A. E. (2015). Eficacia de trampas para capturar Rhynchophorus palmarum (Coleóptera: Dryophthoridae) en plantaciones de palma de aceite. Revista Colombiana de Entomología, 41(1), 18-23. Peña, E. A., Reyes, R. & Bastidas, S. (1996). Efectividad de una feromona de agregación en dos tipos de trampas para la captura del insecto Rhynchophorus palmarum en la zona de Tumaco. En Sociedad Colombiana de Entomología (Socolen) (Ed.), Resúmenes XXIII Congreso Socolen (p. 83). Bogotá, Colombia: Socolen. Pérez, C. (2017). Alternativas de manejo ecológico de insectos en el cultivo del arroz en Colombia. En Sociedad Colombiana de Entomología (Socolen) (Ed.), XLIV Congreso Socolen (pp. 258-270) Bogotá, Colombia: Socolen. Polack, L. A., García-Sampedro, C., & Saini, E. D. (2002). Guía de monitoreo y reconocimiento de plagas y enemigos naturales de tomate y pimiento. San Pedro, Argentina: Instituto Nacional de Tecnología Agropecuaria (inta). Romero-Frías, A. (2017). Semioquímicos de picudos (Coleoptera: Curculionidae): Un aporte al desarrollo de la fruticultura en Colombia. En Sociedad Colombiana de Entomología (Socolen) (Ed.), XLIV Congreso Socolen (pp. 226-231). Bogotá, Colombia: Socolen. Romero-Frías, A., Murata, Y., Simões Bento, J. M., & Osorio, C. (2016). (1R,2S,6R)-Papayanal: a new malespecific volatile compound released by the guava weevil Conotrachelus psidii (Coleoptera: Curculionidae). Bioscience, Biotechnology and Biochemistry, 80(5), 848-855. doi:10.1080/09168451.2015.1136877. Schneider, D. (1969). Insect olfaction: deciphering system for chemical messages. Science, 163(3871), 1031-1037. Servicio Nacional de Sanidad y Calidad Agroalimentaria de Argentina (Senasa Argentina). (2015). Programa de Prevención y Erradicación del Picudo del Algodonero. Buenos Aires, Argentina: Servicio Nacional de Sanidad y Calidad Agroalimentaria (Senasa). Servicio Nacional de Sanidad y Calidad Agroalimentaria de Perú (Senasa Perú), & Servicio Nacional de Sanidad Agropecuaria e Inocuidad Alimentaria de Bolivia (Senasag). (2001). Plan de trabajo para la exportación de fibra de algodón sin cardar ni peinar, de Santa Cruz-Bolivia, al Perú. Lima: Perú: Senasa Perú y Senasag. Stadler, T., & Buteler, M. (2007). Migración y dispersión de Anthonomus grandis (Coleoptera: Curculionidae) en América del Sur. Revista de la Sociedad Entomológica Argentina, 66(3-4), 205-217. Vergara, R. (2015). Retos y posibilidades del manejo etológico de plagas en la producción agrícola (Parte I). Revista Metroflor, 68, 40-61. Vilela, E., & Della Lucia, T. M. C. (2001). Feromonios de insetos: biología, química e aplicacao (2.ª ed). Riberao Preto, Brasil: Holos Editora. Yucra-Equize, E. (2002). Densidad de trampas de feromonas para la captura de la polilla del tomate, Tuta absoluta, Meyrick (tesis de grado). Universidad Autonoma Gabriel Rene Moreno, Saipinia, Bolivia. Aldana, J., Calvache, H., & Arias, D. (2000). Programa comercial de manejo de Leptopharsa gibbicarina Froeschner (Hemiptera: Tingidae) con la hormiga Crematogaster spp., en una plantación de palma de aceite. Palmas, 21(número especial), 167-173. Aldana, J., Calvache, H., & Méndez, A. (1995). Distribución de hormigas y su efecto sobre Leptopharsa gibbicarina en una plantación de palma de aceite. Palmas, 16(3), 19-23. Aldana, R. C., Aldana, J., Calvache, H., & Arias, D. (1998). Papel de la hormiga Crematogaster sp. en el control de Leptopharsa gibbicarina en una plantación de palma de aceite. Palmas, 19(4), 25-32. Alterio, M. A. & Ramos, A. (2011). Informe de visita de diagnóstico de la situación sanitaria en el Archipiélago de San Andrés, Providencia y Santa Catalina. Recuperado de http://xn--elisleo-9za.com/index.php?option=com_ content&view=article&id=2464:la-cochinilla-ide-quese- trata&catid=41:ambiental&Itemid=83. Andrade, M. E., Briceño, J. A., Muñoz, P., & Jiménez, J. (1989). Búsqueda y reconocimiento de los enemigos naturales y hospedantes alternos de las principales plagas. En flores bajo invernadero en la sabana de Bogotá. Acta Biológica Colombiana, 1(5), 45-57. Recuperado de https://revistas. unal.edu.co/index.php/actabiol/article/view/21925. Barrios-Trilleras, C. E., Cuchimba-Triana, M. S., & Bustillo- Pardey, A. E. (2015). Parámetros poblacionales de Leptopharsa gibbicarina (Hemiptera: Tingidae) plaga de la palma de aceite. Revista Colombiana de Entomología, 41(1), 1-5. Braun, A. R., Álvarez, J. M., Cuéllar, M. E., Duque, M. C., Escobar, J. R., Franco, C., ... Zuñiga, R. R. (1993). Inventario de ácaros fitófagos y sus enemigos naturales en el cultivo de la yuca en Ecuador. En A. R. Braun (Ed.), Bases fundamentales para investigación sobre los ácaros plagas y sus enemigos naturales en el Ecuador. Documento de Trabajo No. 126 (pp. 1-51). Cali, Colombia: Centro Internacional de Agricultura Tropical (ciat). Chapin, E. A. (1964). Las especies colombianas de Cryptognatha (Coleoptera: Coccinellidae). Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 12(46), 231-234. Coronado-Blanco, J. M., Ruiz-Cancino, E., & Marín-Jarillo, A. (2000). Registro de la asociación depredadora de Zagloba beaumonti Casey (Coleoptera: Coccinellidae) con Unaspis citri (Comstock) (Homoptera: Diaspididae). Acta Zoológica Mexicana, 79, 277-278. Culik, M. P., Martins, D. S., Ventura, J. A., Peronti, A. L. B. G., Gullan, P. J., & T. Kondo. (2007). Coccidae, Pseudococcidae, Ortheziidae, and Monophlebidae (Hemiptera: Coccoidea) of Espírito Santo, Brazil. Biota Neotropica, 7(3), 1-5. doi:http://dx.doi.org/10.1590/ S1676-06032007000300006 . Departamento Administrativo Nacional de Estadística (dane). (2016). Encuesta Nacional Agropecuaria ENA 2015. Boletín técnico. Recuperado de https://www.dane. gov.co/files/investigaciones/agropecuario/enda/ena/ 2015/boletin_ena_2015.pdf. Departamento Administrativo Nacional de Estadística (dane). (2016). Encuesta Nacional Agropecuaria ENA 2015. Boletín técnico. Recuperado de https://www.dane. gov.co/files/investigaciones/agropecuario/enda/ena/ 2015/boletin_ena_2015.pdf. Evans, G., Kondo, T., Maya Álvarez, M. F., Hoyos Carvajal, L. M., Quiroz J. A., & Silva Gómez, M. (2012). First report of Anagyrus kamali Moursi and Gyranusoidea indica Shafee, Alam and Agarwal (Hymenoptera: Encyrtidae), parasitoids of the pink hibiscus mealybug Maconellicoccus hirsutus (Green) (Hemiptera: Pseudococcidae) on San Andres Island, Colombia. Corpoica Ciencia y Tecnología Agropecuaria, 13(2), 219-222. doi:10.21930/rcta.vol13_ num2_art:260. Gallego-Ropero, M., & Armbrecht, I. (2005). Depredación por hormigas sobre la broca del café Hypothenemus hampei (Curculionidae: Scolytinae) en cafetales cultivados bajo dos niveles de sombra en Colombia. Manejo Integrado de Plagas y Agroecología, (76), 32-40. González, F. C., Gómez Pacheco, M., Hernández Espinosa, D., & Rodríguez Tapia, J. (2010). Entomófagos asociados a las plagas citrícolas, Lepidosaphes gloverii Packard (Hemiptera: Diaspididae), Phyllocnistis citrella Stainton (Lepidoptera: Gracillariidae) y Diaphorina citri (Kuwayama) (Hemiptera: Psyllidae) en naranjo Valencia. Centro Agrícola, 37(4), 59-65. González, J. G., Benítez, E. R., & López-Ávila, A. (2006). Efecto de la densidad del depredador de moscas blancas Delphastus pusillus (Le Conte) (Coleoptera: Coccinellidae) sobre su eficiencia de búsqueda. Revista Colombiana de Entomología, 32(1), 10-17. Guzmán, L., Calvache, H., Aldana, J., & Méndez, A. (1997). Manejo de Leptopharsa gibbicarina Froeschner (Hemiptera: Tingidae) con la hormiga Crematogaster sp. en una plantación de palma de aceite. Palmas, 18(4), 19-26. Hilarión, A., Niño, A., Cantor, F., Rodríguez, D., & Cure, J. R. (2008). Criterios para la liberación de Phytoseiulus persimilis Athias Henriot (Parasitiformes: Phytoseiidae) en cultivo de rosa. Agronomía Colombiana, 26(1), 68-77. Imbachi, K., Mesa, C., Nora, C., Rodríguez, I. V., Gómez, I., Cuchimba, M., ... Carabalí, A. (2012). Evaluación de estrategias de control biológico de Polyphagotarsonemus latus (Banks) y Phyllocoptruta oleivora (Ashmead) en naranja Valencia. Acta Agronómica, 61(4), 364-370. doi:10.15446/acag. Instituto Colombiano Agropecuario (ica). (2010). Plan para el manejo y mitigación del riesgo ocasionado por la cochinilla rosada (Maconellicoccus hirsutus) y la chinche acanalada (Crypticerya multicicatrices) en las islas de San Andrés y Providencia (pp. 15). San Andrés, Colombia: ica. Instituto Colombiano Agropecuario (ica). (2015, diciembre). Resolución No. 00002390. Declaración el estado de emergencia fitosanitaria en el territorio nacional por la presencia de adultos de Diaphorina citri infectados con la bacteria de la enfermedad del hlb. Recuperado de https:// goo.gl/AmFBe6. Instituto Colombiano Agropecuario (ica). (2016). Productos registrados, Bioinsumos - septiembre 23 de 2016. Recuperado de https://goo.gl/urv2nL. Instituto de Hidrología, Meteorología y Estudios Ambientales (Ideam). (1995). Datos de las variables climáticas de la isla de San Andrés, Providencia y Santa Catalina (p. 70). Bogotá, Colombia: Instituto de Hidrología, Meteorología y Estudios Ambientales. Kondo, T. (2001). Las cochinillas de Colombia (Hemiptera: Coccoidea). Biota Colombiana, 2(1), 31-48. Kondo, T. (2008). Las escamas de la guanábana: Annona muricata L. Novedades Técnicas, Revista Regional, Corpoica, Centro de Investigación Palmira, 9(10), 25-29. Kondo, T., González F., G., & Guzmán-Sarmiento, Y. C. (2017). Capítulo I. Enemigos naturales de Diaphorina citri. En T. Kondo (Ed.), Protocolo de cría y liberación de Tamarixia radiata Waterston (Hymenoptera: Eulophidae) (pp. 23-32). Mosquera, Colombia: Corporación Colombiana de Investigación Agropecuaria (Corpoica). Kondo, T., Peronti, A. L., Kozár F., & Szita, E. (2012b). Capítulo 7. Los insectos escama asociados a los cítricos, con énfasis en Praelongorthezia praelonga (Douglas) (Hemiptera: Coccoidea: Ortheziidae). En C. P. Pássaro Carvalho (Ed.), Cítricos: cultivo, poscosecha e industrialización (pp. 173-189). Itagüí, Colombia: Editorial Artes y Letras S. A. S. Kondo-Rodríguez, D. T. (2009). Los insectos escama (Hemiptera: Coccoidea) del mango, Mangifera indica L. (Anacardiaceae) en Colombia. Novedades Técnicas, Revista Regional. Corpoica, Centro de Investigación Palmira, 10(13), 41-44. León, G., & Kondo, T. (2017). Insectos y ácaros de los cítricos; Guía ilustrada de especies dañinas y benéficas, con técnicas para el manejo integrado de plagas (pp. 182). Mosquera, Colombia: Corporación Colombiana de Investigación Agropecuaria (Corpoica). Migeon, A., Nouguier, E., & Dorkeld, F. (2011). Spider mites web: A comprehensive database for the Tetranychidae. En M. W. Sabelis, & J. Bruin (Eds.), Trends in Acarology. Proceedings of the 12th International Congress (pp. 557- 560). Dordrecht, Holanda: Springer. Montañez, M. L., Calvache, H., Luque, J. E., & Méndez, A. (1997). Control biológico de Leptopharsa gibbicarina (Hemiptera: Tingidae) con la hormiga Crematogaster sp. (Hymenoptera: Formicidae) en palma de aceite. Revista Palmas, 18(1), 23-30. Palomares-Pérez, M., Rodríguez-Vélez, B., Ayala-Zermeño, M. A., De la Cruz-Llanas, J. J., Mendoza-Castañeda, A. M., Sánchez-González, J.A., ... Cordoba-Urtíz, E. G. (2016). Aspectos biológicos y capacidad de depredación de Exochomus marginipennis (LeConte) (Coleoptera: Coccinellidae) sobre Diaphorina citri Kuwayama (Hemiptera: Liviidae). Chilean Journal of Agricultural & Animal Sciences, 32(2), 102-109. doi:10.4067/S0719- 38902016000200003. Quiroga, I. A., Maya, M. F., Martínez, A. S., & Hoyos, L. M. (2011). Paecilomyces sp. como alternativa de control biológico de la cochinilla acanalada (Crypticerya multicicatrices Cockerell) en San Andrés (Colombia). Boletín del Museo Entomológico Francisco Luís Gallego, 3(4), 10-17. Ramos-Portilla, A. A., & Caballero, A. (2017). Diaspididae en Citrus spp. (Rutaceae) de Colombia: Nuevos registros y una clave taxonómica para su identificación. Revista Facultad Nacional de Agronomía, Medellín, 70(2), 8139- 8154. doi:10.15446/rfna.v70n2.64519. Silva-Gómez, M., Quiroz-Gamboa, J.A., Hoyos-Carvajal, L.M., Yepes-R., F.C., Maya-A., M.F. & Santos-M., A. (2017). Coccinélidos depredadores de Crypticerya multicicatrices (Hemiptera: Monophlebidae) en San Andrés Isla, Colombia. Boletín Científico Centro de Museos Museo de Historia Natural, Universidad de Caldas, 21(1), 165-173. doi:10.17151/bccm.2017.21.1.13. Trujillo, J. (1992). Control biológico por conservación: enfoque relegado. Perspectivas de su desarrollo en Latinoamérica. Memorias del IV Congreso Internacional de Manejo de Plagas Ceiba (Honduras), 33(1A), 17-26. Valenzuela, G. (1993). Aspectos históricos del control biológico. En F. Palacios (Ed.), Control biológico en Colombia: historia, avances y proyecciones (pp. 1-8). Palmira, Colombia: Universidad Nacional de Colombia. Velásquez, V. H., Núñez, B., & García, R. F. (1992). Avances en el reconocimiento y evaluación de agentes benéficos de Orthezia praelonga Douglas. Ponencia presentada en el XIX Congreso de Socolen, Colombia, Manizales. Yaninek, J. S. & Bellotti, A. C. (1987). Exploration for natural enemies of cassava green mites based on agrometeorological criteria. En D. Rijks & G. Mathys (Eds.), Proceedings of the Sentinar on Agrometeorology and Crop Protection in the Lowly Humid and Sub-Humid Tropics, Cotonou, Benin, 7-11 July 1986 (pp. 69-75). Ginebra, Suiza: World Meteorological Organization. Amaya-Navarro, M. (1977). El Trichogramma spp en el control integrado de plagas. En ica (Ed.), Manual de control integrado de plagas (pp. 76-89). Ibagué, Colombia: ica . Amaya, N., & Zenner de Polania, M. (1976). Estudios básicos tendientes a mejorar el uso del Trichogramma spp. en el control integrado de plagas en Colombia. Revista Colombiana de Entomología, 2(1), 13-25. Arias, B., & Bellotti, A. (1977). Eficiencia del Bacillus thuringiensis, sobre el gusano cachon de la yuca Erinnyis ello, en un programa de control biologico. Revista Colombiana de Entomología, 3(3-4), 93-97. Arias, B., & Bellotti, A. (1984). Pérdidas en rendimiento (daño simulado) causadas por Erinnyis ello (L.) y niveles críticos de población en diferentes etapas de desarrollo en tres clones de yuca. Revista Colombiana de Entomología, 10(3-4), 28-35. Arias, B., & Bellotti, A. (1987). Control de Erinnyis ello (L) (Lep: Sphingidae) gusano cachón de la yuca Manihot esculenta (Crantz) con Baculovirus erinnyis ngv. Revista Colombiana de Entomología, 13, 29-35. Arias, B., & Bellotti, A. (1993). Manejo integrado de Erinnyis ello (L) gusano cachón de la yuca con énfasis en sus enemigos naturales y agentes de control microbial. En F. Palacios, I. Arciniegas, & A. Astudillo (Eds.), Control Biológico en Colombia, historia, avances, proyecciones (pp. 132-146). Palmira, Colombia: Universidad Nacional de Colombia. Aristizábal, A., Bustillo, L., Baker, A., Orozco, P., & Chaves, B. (1998). Efecto depredador del parasitoide Cephalonomia stephanoderis (Hymenoptera: Bethylidae) sobre los estados inmaduros de Hypothenemus hampei (Coleoptera: Scolytidae) en condiciones de campo. Revista Colombiana de Entomología, 24(1-2), 35-41. Aristizábal, A., Bustillo, L., Orozco, A., & Chaves, B., (1998). Efecto del parasitoide Cephalonomia stephanoderis (Hymenoptera: Bethylidae) sobre las poblaciones de Hypothenemus hampei (Coleoptera: Scolytidae) durante y después de la cosecha. Revista Colombiana de Entomología, 24(3-4), 149-155. Aristizábal, L., Orozco, J., & Baker, P. (1996). Liberación, dispersión y parasitismo de Cephalonomia stephanoderis en condiciones de campo. Chinchiná, Colombia: Centro Nacional de Investigaciones del Café (Cenicafé). Aristizábal, L., Salazar, H. M., Mejía, C. G., & Bustillo, A. E. (2004). Introducción y evaluación de Phymastichus coffea (Hymenoptera: Eulophidae) en fincas de pequeños caficultores, a través de investigación participativa. Revista Colombiana de Entomología, 30(2), 219-224. Armbrecht, I., Chacón, P., & Rojas, M. (1986). Biología de la mosca de los botones florales del maracuyá Dasiops inedulis (Diptera: Lonchaeidae) en el Valle del Cauca. Revista Colombiana de Entomología, 12(1), 16-22. Bacca-Ibarra, R. T. (1999). Efecto del parasitoide Prorops nasuta Waterston (Hymenoptera: Bethylidae) sobre poblaciones de broca del café Hypothenemus hampei (Ferrari) (Coleoptera: Scolytidae) (tesis de maestría). Universidad Nacional de Colombia, Bogotá, Colombia. Badilla, F. (2002). Un programa exitoso de control biológico de insectos plaga de la caña de azúcar en Costa Rica. Manejo Integrado de Plagas, (64), 77-87. Badilla, F., Solís-Soto, A., & Alfaro-Solís, D. (1991). Control biológico del taladrador de la caña de azúcar Diatraea sp. (Lepidoptera: Pyralidae) en Costa Rica. Manejo Integrado de Plagas, (20-21), 39-44. Basso, C., & Pintureau, B. (2004). Las especies de Trichogramma de Uruguay (Hymenoptera: Trichogrammatidae). Revista de la Sociedad Entomológica de Argentina, 63(1-2), 71-80. Bellotti, A., Reyes, J., Arias, B., Segura, P., Urias, M., & Schmitt, A. (1983). Manejo de una explosión del gusano cachón Erinnyis ello (L) (Lepidoptera: Sphingidae). En J. Reyes, (Ed.), Yuca: Control integrado de las plagas (pp. 305-312). Cali, Colombia: Programa de las Naciones Unidas para el Desarrollo (pnud) y Centro Internacional de Agricultura Tropical (ciat). Bellotti, A. C., Arias, B., & Reyes, J. A. (2002). Manejo de plagas de la yuca. La yuca en el tercer milenio. En B. Ospina (Ed.), Sistemas Modernos de Producción, Procesamiento, Utilización y Comercialización (pp. 220-233). Cali, Colombia: Centro Internacional de Agricultura Tropical (ciat). Bellotti, A. C., Arias, B., Reyes, J. A., Fernández, F. O., Ceballos, L. F., & Medina, L. M., (1989). Manejo integrado de Erinnyis ello (L.) (gusano cachón de la yuca), guía de estudio para ser usada como complemento de la Unidad Audiotutorial sobre el mismo tema. Cali, Colombia: Centro Internacional de Agricultura Tropical (ciat). Bellotti, A. C., Arias, B., Herrera, C. J., & Holguín, C. M. (2007). Manejo integrado de moscas blancas asociadas al cultivo de la yuca. Cali, Colombia: Centro Internacional de Agricultura Tropical (ciat). Bellotti, A. C., & Schoonhoven, A. V. (1978). Plagas de la yuca y su control. Cali, Colombia: Centro Internacional de Agricultura Tropical (ciat). Benavides, P., Bustillo, A., & Montoya, E. (1994). Avances sobre el uso del parasitoide Cephalonomia stephanoderis para el control de la broca del café, Hypothenemus hampei. Revista Colombiana de Entomología, 20(4), 247-253. Bustillo, A. (1991). Perspectivas de un manejo integrado de la broca del Café, Hypothenemus hampei, en Colombia. Agricultura Tropical (Colombia), 28(1), 83-93. Bustillo, A. (1995). Utilización del control biológico clásico en un programa de manejo integrado: el caso de la broca del café, Hypothenemus hampei, en Colombia. Documento presentado en Curso Internacional de Manejo Integrado de Plagas. Pasto, Colombia. Bustillo, A., Cárdenas, A., Villalba, R., Benavides, D., Orozco, P., & Posada, F. (1998). Manejo integrado de la broca del café Hypothenemus hampei (Ferrari) en Colombia. Chinchiná, Colombia: Federación Nacional de Cafeteros de Colombia y Centro Nacional de Investigaciones de Café Pedro Uribe Mejía. Bustillo, A., Orozco-Hoyos, J., Benavides-Machado, P., & Portilla-Reina, M. (1996). Producción masiva y uso de parasitoides para el control de la broca del café en Colombia. Cenicafé, 47(4), 215-230. Campos, M. (2001). Lista de los géneros de avispas parasitoides Braconidae (Hymenoptera: Ichneumonoidea) de la Región Neotropical. Biota Colombiana, 2(3), 193-232. Cano-Londoño, D. (2000). Biología, comportamiento y enemigos nativos del picudo de los cítricos Compsus n. sp coleoptera: curculionidae en la zona central cafetera. En Federación Nacional de Cafeteros de Colombia. Memorias del Seminario Nacional sobre el Picudo de los Cítricos (pp. 1-7). Pereira, Colombia: Federación Nacional de Cafeteros de Colombia. Cano, D., Cardenas, R., Bustillo, A., & Orozco, G. (2002). Biología y enemigos nativos del picudo de los cítricos Compsus n. sp. (Coleoptera: Curculionidae). Revista Colombiana de Entomología, 28(1), 43-52. Carabalí, A. (2012). Alternativas sostenibles para el manejo del picudo de los cítricos Compsus sp en Antioquia y Valle del Cauca [Informe final de proyecto]. Palmira, Colombia: Corporación Colombiana de Investigación Agropecuaria (Corpoica). Carabalí, A. (2015). Validación de estrategias de manejo de poblaciones de Compsus viridivittatus y ácaros como aporte del componente entomológico a la construcción del modelo productivo en cítricos [Informe final de proyecto]. Palmira, Colombia: Corporación Colombiana de Investigación Agropecuaria (Corpoica). Carabalí, A. (2016). Recomendaciones de manejo Compsus viridivittatus y ácaros (Polyphagotarsonemus latus y Phyllocoptruta oleivora) en cultivos de naranja y lima ácida Tahiti [Informe final]. Palmira, Colombia: Corporación Colombiana de Investigación Agropecuaria (Corpoica). Carballo, M. & Guaharay, F. (2004). Control biológico de plagas agrícolas. Managua, Nicaragua: Centro Agronómico Tropical de Investigación y Enseñanza (catie). Centro Nacional de Investigaciones del Café (Cenicafé). (1990). Manual de capacitación en control biológico. Chinchiná, Colombia: Cenicafé. Cermeli, M., Morales, P., Perozo, J., & Godoy, F. (2009). Distribución del psílido asiático de los cítricos (Diaphorina citri Kuwayama (Hemiptera, Psyllidae) y presencia de Tamarixia radiata (Waterston)(Hymenoptera, Eulophidae) en Venezuela. Entomotropica, 22(3), 181- 184. Centro Internacional de Agricultura Tropical (ciat). (1974). Informe Anual. Cali, Colombia: ciat. Centro Internacional de Agricultura Tropical (ciat). (1978). Informe Anual. Programa de Entomología de Yuca. Cali, Colombia: ciat. Departamento Administrativo Nacional de Estadística (dane). (2016). Resultados Encuesta Nacional Agropecuaria (ena). Bogotá, Colombia: dane. Cuellar, M. E., & Morales, F. J. (2006). La mosca blanca Bemisia tabaci (Gennadius) como plaga y vectora de virus en fríjol común (Phaseolus vulgaris L.). Revista Colombiana de Entomología, 32(1), 1-9. Delgado, D., & Sotomayor, I. (1990). Algunos resultados sobre la cría, adaptación y colonización de los entomógenos Prorops nasuta Waters. y Cephalonomia stephanoderis Betrem, en la regulación de poblaciones de H. hampei en el Ecuador. Miscelánea, 18, 58-95. Gallego, J. S. C., Caicedo, A. M., Carabalí, A., & Muñoz, J. E. (2012). Comportamiento alimenticio y de oviposición de Compsus viridivittatus (Coleoptera: Curculionidae) en especies de cítricos. Revista Colombiana de Entomología, 38(2), 191. García, R., & Jiménez, F. (1992). Producción y manejo de Trichogramma spp. en Colombia. ica-Informa, 26, 3-8. Gaviria, M. (1990). El control biológico de los insectos plaga de la caña de azúcar en Colombia. En Grupo de Países Latinoamericanos y del Caribe Exportadores de Azúcar (Geplacea), Memorias del III congreso de la Sociedad Colombiana de Técnicos de la Caña de Azúcar (pp. 201- 227). Cali, Colombia: Geplacea. en caña azúcar en Colombia. En Centro de Investigación de la Caña de Azúcar de Colombia (Cenicaña) (Ed.), Caña: azúcar y panela con el mejor entorno ambiental. Homenaje 21 años de Centro de Investigación de la Caña de Azúcar de Colombia - Cenicaña (1997-1998) (pp. 43-64). Cali, Colombia: Cenicaña. Gaviria, M., Belloti, J. D., & Gaviria, A. C. J. D. (1986). Manejo del Trichogramma spp. en cultivos agrícolas y de flores en Colombia. En R. Millan (Ed.), Producción y manejo de Trichogramma (pp. 30-36). Palmira, Colombia: Instituto Colombiano Agropecuario (ica). Gaviria, M., & Gaviria, J. D. (1998). Problemas entomológicos en caña azúcar en Colombia. En Centro de Investigación de la Caña de Azúcar de Colombia (Cenicaña) (Ed.), Caña: azúcar y panela con el mejor entorno ambiental. Homenaje 21 años de Centro de Investigación de la Caña de Azúcar de Colombia - Cenicaña (1997-1998) (pp. 43-64). Cali, Colombia: Cenicaña. Gerding, M., & Torres, C. (2001). Parasitoide de huevos de polillas Trichogramma: Insecto benéfico para el control de plagas. Boletín Informativo del Instituto de Investigaciones Agropecuarias, 55, 1-2. Gold, C., Altieri, M., & Bellotti, A. (1989a). Relative oviposition rates of the cassava hornworm, Erinnyis ello [lep.: Sphingidae], and accompanying parasitism by Telenomus sphingis [Hym.: Scelionidae], on upper and lower leaf surfaces of cassava. Biological Control, 34(1), 73-76. doi:10.1007/BF02372589. Gómez, L. A., Díaz, A. E., & Lastra, L. A. (1996). Reconocimiento de las especies de Trichogramma asociadas con la caña de azúcar en Colombia. Revista Colombiana de Entomología, 22(1), 1-5. González, R. (1952). Contribución al estudio de moscas Anastrepha en Colombia. Revista Facultad Nacional de Agronomía, 12, 423-549. Granadillo-Cuello, J. A., Villalobos-Moreno, A., & Villamizar-Cobos, J. (2014). Parasitoides de Trialeurodes vaporariorum Westwood, 1856 (Hemiptera: Aleyrodidae) en cultivos de fríjol en García Rovira, Santander. Respuestas, 19(2), 15-24. Guimarães, J. A., & Zucchi, R. A. (2004). Parasitism behavior of three species of Eucoilinae (Hymenoptera: Cynipoidea: Figitidae) fruit fly parasitoids (Diptera) in Brazil. Neotropical Entomology, 33(2), 217-224. doi:10.1590/ S1519-566X2004000200012. Guzmán, D. (1996). Efecto de varios insecticidas sobre el parasitoide de la broca del café Cephalonomia stephanoderis Betrem (Hymenoptera: Bethylidae). Manizales, Colombia: Universidad de Caldas. Guzmán, R. (1984). Algunos aspectos relacionados con el manejo del Trichogramma sp. En ica (Ed.), Manual de control integrado de plagas (pp. 199-207). Ibagué, Colombia: Instituto Colombiano Agropecuario (ica). Hernández, L. M., & Manzano, M. R. (2016). Efecto del viento en la dispersión a corta distancia del parasitoide Amitus fuscipennis MacGown y Nebeker (Hymenoptera: Platygastridae) en cultivos de fríjol y habichuela. Acta Agronómica, 65(1), 80-86. doi:10.15446/acag. v65n1.48816. Hernández, L. M., Otero, J. T., & Manzano, M. R. (2013). Biological control of the greenhouse whitefly by Amitus fuscipennis: Understanding the role of extrafloral nectaries from crop and non-crop vegetation. Biologial Control, 67(2), 227-234. doi:10.1016/j.biocontrol.2013.08.003. Instituto Colombiano Agropecuario (ica). (1975). Cría masiva de la avispita Trichogramma sp. En Curso Instituto Colombiano Agropecuario (pp. 78-81). Bogotá, Colombia: ica. Instituto Colombiano Agropecuario (ica). (2001). Municipios del Departamento del Tolima reportados con presencia del Picudo de los cítricos (Compsus sp.) [Boletín de Epidemiología N.° 38]. Ibagué, Colombia: ica. Instituto Colombiano Agropecuario (ica). (11 de diciembre de 2015). Por medio de la cual se declara el estado de emergencia fitosanitaria en el territorio nacional por la presencia de adultos de Diaphorina citri infectados con la bacteria de la enfermedad del hlb de los cítricos [Resolución 2390 de 2015]. DO [49.723]. Bogotá: ica. Instituto Colombiano Agropecuario (ica). (2016). Productos registrados bioinsumos. Recuperado de https://www.ica. gov.co/getdoc/2ad9e987-8f69-4358-b8a9-e6ee6dcc 8132/PRODUCTOSBIOINSUMOS-MAYO-13- DE-2008.aspx. Katiyar, K., Camacho, J., Geraud, F., & Matheus, R. (1995). Parasitoides hymenópteros de moscas de las frutas (Diptera: Tephritidae) en la región occidental de Venezuela. Revista de la Facultad de Agronomía, 12(3), 303-312. Kondo, T., Quintero, Q., Campuzano, M., Wyckhuys, K., & Heraty, J. (2012). First report of Tamarixia radiata (Waterston)(Hymenoptera: Eulophidae), a parasitoid of the Asian citrus psyllid Diaphorina citri Kuwayama (Hemiptera: Psyllidae) in the Department of Valle Del Cauca, Colombia. Boletín del Museo de Entomología de la Universidad del Valle, 13(1), 48-51. León, G. (1987). Fluctuación poblacional y manejo de Anastrepha spp. en mango y guayaba. Revista Colombiana de Entomología, 5, 42-55. León, G., Evans, G. A., & Campos, J. C. (2001). Parasitoides de plagas (Homoptera) de los cítricos en el departamento del Meta, Colombia. Revista Colombiana de Entomología, 27, 143-146. López-Ávila, A., Cardona, C., García, J., Rendón, F., & Hernández, P. (2001). Reconocimiento e identificación de enemigos naturales de moscas blancas (Homoptera: Aleyrodidae) en Colombia y Ecuador. Revista Colombiana de Entomología, 27(3-4), 137-141. Manzano, M. R., Van Lenteren, J., & Cardona, C. (2003a). Comportamiento de búsqueda de Amitus fuscipennis (Hymenoptera: Platygastridae): Tiempo de permanencia en la planta hospedera y actividad de búsqueda. Revista Colombiana de Entomología, 29, 221-226. Márquez, M., & Valencia, S. (1991). Evaluación de Encarsia formosa Gahan y Amitus fuscipennis MacGown and Nebeker, en el control de Trialeurodes vaporariorum (Westwood) en crisantemo (Chrysanthemum morifolium Rainat.) (tesis de grado). Universidad Nacional de Colombia, Medellín, Colombia. Medina, P., Saldarriaga, V., & Pérez, G. (1994). Biología del Amitus fuscipennis MacGown & Nebeker, bajo tres condiciones ecológicas en Rionegro (Antioquia). Revista Colombiana de Entomología, 20, 143-148. Melo, E. L. (2002). Potencial del control biológico en el manejo de las plagas de la yuca. En B. Ospina, H. Ceballos, E. Alvarez, A. Bellotti, L. Calvert, B. Arias, L. Cadavid … M. Cuervo (Eds.), La yuca en el Tercer Milenio: Sistemas modernos de producción, procesamiento, utilización y comercialización (pp. 234-249). Cali, Colombia: CIAT. Montoya, C. (2001). Epidemiología del picudo de los cítricos, Compsus sp. (Coleoptera: Curculionidae). En Sociedad Colombiana de Entomología (Socolen), Memorias del xxvii Congreso Socolen (p. 12). Pereira, Colombia: Socolen. Morales, J., Vásquez, C., Pérez, N. L., Valera, N., Ríos, Y., Arrieche, N., & Querino, R. B. (2007). Especies de Trichogramma (Hymenoptera: Trichogrammatidae) parasitoides de huevos de lepidópteros en el Estado Lara, Venezuela. Neotropical Entomology, 36(4), 542-546. doi:10.1590/S1519-566X2007000400011. Núñez, L., Santos, R., Guarín, G., & León, G. (2004). Moscas de las frutas (Díptera: Tephritidae) y parasitoides asociados con Psidium guajava L. y Coffea arabica L. en tres municipios de la Provincia de Vélez (Santander, Colombia). Parte 2: Identificación y evaluación de parasitoides del Orden Hymenoptera. Revista Corpoica, 5(1), 13-21. doi:10.21930/rcta.vol5_num1_art:17. |
dc.relation.references.por.fl_str_mv |
Carrer-Filho, R., Romeiro, R. S., & Garcia, F. A. O. (2008). Biocontrole de doenças de parte aérea do tomateiro por Nocardioides thermolilacinus. Tropical Plant Pathology, 33(6), 457-460. doi:10.1590/S1982-56762008000600010 Instituto Brasileiro de Geografía e Estatística (ibge). (2016). Levantamento sistemático da produção agrícola - lspa. Recuperado de https://www.ibge.gov.br/estatisticasnovoportal/ economicas/agricultura-e-pecuaria/9201- levantamento-sistematico-da-producao-agricola.html?= &t=o-que-e. Koppert Biological Systems. (2017). Mycotal. Recuperado de https://www.koppert.es/plagas/moscas-blancas/ productos-contra/mycotal/. Koppert do Brasil Holding. (2017a). Boveril®. Recuperado de http://koppert.com.br/assets/fichas/boveril.pdf. Koppert do Brasil Holding. (2017b). Metarril®. Recuperado de http://koppert.com.br/produtos/metarril/. Magalhães, B., Faria, M., & Guerra, W. (1996). Desenvolvimento de bioinsecticidas para o controle de gafanhotos no Brasil. Documentos presentados en la Reunión Técnica Regional sobre Biología y Control de la Langosta Rhammatocerus schistocercoides. Cuiabá, Brasil. Sosa-Gómez, D., Moscardi, F., Santos, B., Alves, L., & Alves, S. (2008). Produção e uso de vírus para o controle de pragas na América Latina. En S. Alves & R. Lopes (Eds.), Controle microbiano de pragas na América Latina: Avanços e desafios (pp. 49-58). Piracicaba, Brasil: Fundação de Estudos Agrários Luiz de Queiroz (fealq). Ministério da Agricultura, Pecuária e Abastecimento (mapa). (2011). Agenda estratégica: Algodāo 2010-2015. Brasília, Brasil: Ministério da Agricultura, Pecuária e Abastecimento (mapa). Bortoli, S. A., Venvenga, S. R., Gravena, S., & Miranda, J. E. (2001). Biologia de Pentilia egena Mulsant (Coleoptera: Coccinellidae) e predação sobre Chrysomphalus fícus Ashmead (Homoptera: Diaspididae). Boletín de Sanidad Vegetal Plagas, 27, 337-343. Botelho, P. S. M. (1992). Quinze anos de controle biológico da Diatraea saccharalis utilizando parasitóides. Pesquisa Agropecuária Brasileira, 27, 255-262. De Brito, S. A. (1975). Phenacoccus sp.: a nova praga que ataca as ponteiras da mandioca no Estado do Para. Belém, Brasil: Empresa Brasileira de Pesquisa Agropecuária (Embrapa). Ferreira, D. (2010). Coleta, identificação e seleção de Trichogramma spp. (Hymenoptera: Trichogrammatidae) visando ao manejo de Grapholita molesta (Busck, 1916) (Lepidoptera: Tortricidae) [tesis de maestría]. Universidade Federal do Espírito Santo, Vitória, Brasil. Lopes, E. (1982). Ocorrência da cochonilha dos brotos da mandioca (Phenacoccus herreni) no Estado da Paraíba. João Pessoa, Brasil: emepa. |
dc.relation.references.eng.fl_str_mv |
Darwin, C. (2010). Chapter I. Domestic dogs and cats. En The variation of animals and plants under domestication (pp. 15-48). Cambridge, Inglaterra: Cambridge University Press. doi:10.1017/CBO9780511709500. DeAngelis, K. M., Pold, G., Topçuoğlu, B. D., Van Diepen, L. T. A., Varney, R. M., Blanchard, J. L., ... Frey, S. D. (2015). Long-term forest soil warming alters microbial communities in temperate forest soils. Frontiers in Microbiology, 6. doi:10.3389/fmicb.2015.00104. De Carvalho, M. P., Gulotta, G., Do Amaral, M. W., Lünsdorf, H., Sasse, F., & Abraham, W.-R. (2016). Coprinuslactone protects the edible mushroom Coprinus comatus against biofilm infections by blocking both quorum-sensing and MurA. Environmental Microbiology, 18(11), 4254-4264. doi:10.1111/1462-2920.13560. Dominguez-Bello, M. G., Costello, E. K., Contreras, M., Magris, M., Hidalgo, G., Fierer, N., & Knight, R. (2010). Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proceedings of the National Academy of Sciences USA, 107(26), 11971-11975. doi:10.1073/ pnas.1002601107. Egamberdieva, D., Kucharova, Z., Davranov, K., Berg, G., Makarova, N., Azarova, T., ... Lugtenberg, B. (2011). Bacteria able to control foot and root rot and to promote growth of cucumber in salinated soils. Biology and Fertility Soils, 47(2), 197-205. doi:10.1007/s00374-010-0523-3. Doornbos, R. F., Van Loon, L. C., & Bakker, P. A. H. M. (2012). Impact of root exudates and plant defense signaling on bacterial communities in the rhizosphere. A review. Agronomy for Sustainable Development, 32(1), 227- 243. doi:10.1007/s13593-011-0028-y. Elsayed, T. R., Nour, E. H., Jacquiod, S., Sørensen, S. J., & Smalla, K. (en prensa). Deciphering the complex interaction between Ralstonia solanacearum and antagonists during tomato wilt biocontrol: rhizosphere microbiome shifts as mode of action? Frontiers in Microbiology. Elser, J. J., Bracken, M. E. S., Cleland, E. E., Gruner, D. S., Harpole, W. S., Hillebrand, H., ... Smith, J.E. (2007). Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecology Letters, 10(12), 1135-1142. doi:10.1111/j.1461-0248.2007.01113.x. Fischer, G., Almanza-Merchán, P. J., & Miranda, D. (2014). Importancia y cultivo de la uchuva (Physalis peruviana L.). Revista Brasileira de Fruticultura, 36(1), 01-15. doi:10.1590/0100-2945-441/13. Friesen, M. L., Porter, S. S., Stark, S. C., Von Wettberg, E. J., Sachs, J. L., & Martínez-Romero, E. (2011). Microbially mediated plant functional traits. Annual Review of Ecology, Evolution, and Systematics, 42, 23-46. doi:10.1146/ annurev-ecolsys-102710-145039. Fungal Barcoding. (2017). Fungal Barcoding Database. Recuperado de http://www.fungalbarcoding.org. Garibaldi, A., Gilardi, G., & Gullino, M. L. (2004). First report of Fusarium oxysporum causing vascular wilt of lamb’s lettuce (Valerianella olitoria) in italy. Plant Disease, 88(1), 83-83. doi:10.1094/PDIS.2004.88.1.83C. Gilbert, J. A., Jansson, J. K., & Knight, R. (2014). The Earth Microbiome project: successes and aspirations. BMC Biololy, 12, 69. doi:10.1186/s12915-014-0069-1. Gilbert, J. A., Meyer, F., Jansson, J., Gordon, J., Pace, N., Tiedje, ... Knight, R. (2010). The earth microbiome project: Meeting report of the “1st EMP meeting on sample selection and acquisition” at argonne national laboratory october 6(th) 2010. Standards in Genomic Sciences 3,(3), 249-253. doi:10.4056/aigs.1443528. Gordon, T. R., & Martyn, R. D. (1997). The evolutionary biology of Fusarium oxysporum. Annual Review of Phytopathology, 35, 111-128. doi:10.1146/annurev. phyto.35.1.111. Götz, M., Gomes, N. C. M., Dratwinski, A., Costa, R., Berg, G., Peixoto, ... Smalla, K. (2006). Survival of gfptagged antagonistic bacteria in the rhizosphere of tomato plants and their effects on the indigenous bacterial community. FEMS Microbiology Ecology, 56(2), 207-218. doi:10.1111/j.1574-6941.2006.00093.x. Grover, A., Azmi, W., Gadewar, A. V., Pattanayak, D., Naik, P. S., Shekhawat, G. S., & Chakrabarti, S. K. (2006). Genotypic diversity in a localized population of Ralstonia solanacearum as revealed by random amplified polymorphic dna markers. Journal of Applied Microbiology, 101(4), 798-806. doi:10.1111/j.1365- 2672.2006.02974.x. Grey, B. E., & Steck, T. R. (2001). The viable but nonculturable state of Ralstonia solanacearum may be involved in long-term survival and plant infection. Applied and Environmental Microbiology, 67(9), 3866-3872. doi:10.1128/AEM.67.9.3866-3872.2001. Grube, M., Cardinale, M., De Castro, J. V., Jr., Müller, H., & Berg, G. (2009). Species-specific structural and functional diversity of bacterial communities in lichen symbioses. The ISME journal, 3(9), 1105. doi:10.1038/ ismej.2009.63. Guo, J.-H., Qi, H.-Y., Guo, Y.-H., Ge, H.-L., Gong, L.- Y., Zhang, L.-X., & Sun, P.-H. (2004). Biocontrol of tomato wilt by plant growth-promoting rhizobacteria. Biological Control, 29(1), 66-72. doi:10.1016/S1049- 9644(03)00124-5. Haglund, W., & Kraft, J. (2001). Fusarium wilt. In J. M. Kraft, & F. L. Pfleger (Eds.), Compendium of pea diseases and pests (pp. 13-14 ). Saint Paul, EE. UU.: APS Press. Haichar, F. Z., Marol, C., Berge, O., Rangel-Castro, J. I., Prosser, J. I., Balesdent, J., ... Achouak, W. (2008). Plant host habitat and root exudates shape soil bacterial community structure. The ISME Journal, 2(12), 1221- 1230. Haiser, H. J., Gootenberg, D. B., Chatman, K., Sirasani, G., Balskus, E. P., & Turnbaugh, P. J. (2013). Predicting and manipulating cardiac drug inactivation by the human gut bacterium Eggerthella lenta. Science, 341(6143), 295-298. doi:10.1126/science.1235872. Hartmann, A., Rothballer, M., & Schmid, M. (2008). Lorenz Hiltner, a pioneer in rhizosphere microbial ecology and soil bacteriology research. Plant and Soil 312(1-2), 7-14. doi:10.1007/s11104-007-9514-z. Hashem, M., Alamri, S. A., Hesham, A. E.-L., Al-Qahtani, F. M. H., & Kilany, M. (2014). Biocontrol of apple blue mould by new yeast strains: Cryptococcus albidus KKUY0017 and Wickerhamomyces anomalus KKUY0051 and their mode of action. Biocontrol Science and Technology, 24(10), 1137-1152. doi:10.1080/09583157.2014.926857. Hayward, A. C. (1991). Biology and epidemiology of bacterial wilt caused by Pseudomonas Solanacearum. Annual Review of Phytopathology, 29, 65-87. doi:10.1146/annurev. py.29.090191.000433. Heckman, D. S., Geiser, D. M., Eidell, B. R., Stauffer, R. L., Kardos, N. L., & Hedges, S. B. (2001). Molecular evidence for the early colonization of land by fungi and plants. Science, 293(5532), 1129-1133. doi:10.1126/ science.1061457. Holden, N., Pritchard, L., & Toth, I. (2009). Colonization outwith the colon: plants as an alternative environmental reservoir for human pathogenic enterobacteria. fems Microbiology Review, 33(4), 689-703. doi:10.1111/ j.1574-6976.2008.00153.x. Hu, H. Q., Li, X. S., & He, H. (2010). Characterization of an antimicrobial material from a newly isolated Bacillus amyloliquefaciens from mangrove for biocontrol of Capsicum bacterial wilt. Biological Control, 54(3), 359- 365. doi:10.1016/j.biocontrol.2010.06.015. Human Microbiome Project Consortium. (2012). Structure, function and diversity of the healthy human microbiome. Nature, 486(7402), 207-214. doi:10.1038/nature11234. Irikiin, Y., Nishiyama, M., Otsuka, S., & Senoo, K. (2006). Rhizobacterial community-level, sole carbon source utilization pattern affects the delay in the bacterial wilt of tomato grown in rhizobacterial community model system. Applied Soil Ecology, 34(1), 27-32. doi:10.1016/j. apsoil.2005.12.003. Jackson, R. W. (Ed.). (2009). Plant pathogenic bacteria: Genomics and molecular biology. Norfolk, Reino Unido: Caister Academic Press. Jackson, R. W. (Ed.). (2009). Plant pathogenic bacteria: Genomics and molecular biology. Norfolk, Reino Unido: Caister Academic Press. Kaestli, M., Schmid, M., Mayo, M., Rothballer, M., Harrington, G., Richardson, L., ... Currie, B. J. (2012). Out of the ground: aerial and exotic habitats of the melioidosis bacterium Burkholderia pseudomallei in grasses in Australia. Environmental Microbiology, 14(8), 2058-2070. doi:10.1111/j.1462-2920.2011.02671.x. Kembel, S. W., O’Connor, T. K., Arnold, H. K., Hubbell, S. P., Wright, S. J., & Green, J. L. (2014). Relationships between phyllosphere bacterial communities and plant functional traits in a neotropical forest. Proceedings of the National Academy of Sciences, 111(38), 13715-13720. doi:10.1073/pnas.1216057111. Köberl, M., Müller, H., Ramadan, E. M., & Berg, G. (2011). Desert farming benefits from microbial potential in arid soils and promotes diversity and plant health. PLoS One, 6(9), e24452. doi:10.1371/journal.pone.0024452. Köberl, M., Schmidt, R., Ramadan, E. M., Bauer, R., & Berg, G. (2013). The microbiome of medicinal plants: diversity and importance for plant growth, quality and health. Frontiers in Microbiology, 4, 400. doi:10.3389/ fmicb.2013.00400. Kouki, S., Saidi, N., Ben Rajeb, A., Brahmi, M., Bellila, A., Fumio, M., ... Ouzari, H. (2012). Control of Fusarium wilt of tomato caused by Fusarium oxysporum F. sp. radicis-lycopersici using mixture of vegetable and Posidonia oceanica compost. Applied and Environmental Soil Science, 2012, 1-11. doi:10.1155/2012/239639. Leach, J. E., Triplett, L. R., Argueso, C. T., & Trivedi, P. (2017). Communication in the Phytobiome. Cell, 169(4), 587-596. doi:10.1016/j.cell.2017.04.025. Lebeis, S. L. (2015). Greater than the sum of their parts: characterizing plant microbiomes at the community-level. Current Opinion in Plant Biology, 24, 82-86. doi:10.1016/j. pbi.2015.02.004. Lebeis, S. L., Rott, M., Dangl, J. L., & Schulze-Lefert, P. (2012). Culturing a plant microbiome community at the cross-Rhodes. New Phytologist, 196(2), 341-344. doi:10.1111/j.1469-8137.2012.04336.x. Lehman, R., Cambardella, C., Stott, D., Acosta-Martinez, V., Manter, D., Buyer, J., ... Karlen, D. (2015). Understanding and enhancing soil biological health: The solution for reversing soil degradation. Sustainability, 7(1), 988-1027. doi:10.3390/su7010988. Leveau, J. H. J. (2007). The magic and menace of metagenomics: prospects for the study of plant growth-promoting rhizobacteria. European Journal of Plant Pathology, 119(3), 279-300. doi:10.1007/s10658-007-9186-9. Lugtenberg, B., & Kamilova, F. (2009). Plant-Growth- Promoting Rhizobacteria. Annual Review of Microbiology, 63, 541-556. doi:10.1146/annurev. micro.62.081307.162918. Lindow, S. E., & Brandl, M. T. (2003). Microbiology of the Phyllosphere. Applied and Environmental Microbiology, 69(4), 1875-1883. doi:10.1128/aem.69.4.1875-1883.2003. Lugtenberg, B. J. J., Chin-A-Woeng, T. F. C., & Bloemberg, G. V. (2002). Microbe–plant interactions: principles and mechanisms. Antonie Van Leeuwenhoek, 81(1-4), 373- 383. doi:10.1023/A:1020596903142. Lundberg, D. S., Lebeis, S. L., Paredes, S. H., Yourstone, S., Gehring, J., Malfatti, S., ... Dangl, J. L. (2012). Defining the core Arabidopsis thaliana root microbiome. Nature 488, 86-90. doi:10.1038/nature11237. Lyte, M. (2013). Microbial endocrinology in the microbiomegut- brain axis: How bacterial production and utilization of neurochemicals influence behavior. PLoS Pathogens, 9(11), e1003726. doi:10.1371/journal.ppat.1003726. Mann, C. (1991). Lynn Margulis: Science's unruly earth mother. Science, 252 (5004), 378-381. doi:10.1126/ science.252.5004.378. Mendes, L. W., Kuramae, E. E., Navarrete, A. A., Van Veen, J. A., & Tsai, S. M. (2014). Taxonomical and functional microbial community selection in soybean rhizosphere. The ISME Journal, 8(8), 1577-1587. doi:10.1038/ ismej.2014.17. Massart, S., Martínez-Medina, M., & Jijakli, M. H. (2015). Biological control in the microbiome era: Challenges and opportunities. Biological Control, 89, 98-108. doi:10.1016/j.biocontrol.2015.06.003. Mendes, L. W., Tsai, S. M., Navarrete, A. A., De Hollander, M., Van Veen, J. A., & Kuramae, E. E. (2015). Soil-borne microbiome: Linking diversity to function. Microbial Ecology, 70(1), 255-265. doi:10.1007/s00248-014-0559-2. Menzies, J. D. (1959). Occurrence and transfer of abiological factor in soil that suppresses potato scab. Phytopathology, 49, 648-652. Mendes, R., Kruijt, M., De Bruijn, I., Dekkers, E., Van der Voort, M., Schneider, J. H. M., ... Raaijmakers, J. M. (2011). Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science, 332(6033), 1097- 1100. doi:10.1126/science.1203980. Messiha, N. A. S., Van Bruggen, A. H. C., Franz, E., Janse, J. D., Schoeman-Weerdesteijn, M. E., Termorshuizen, A. J., & Van Diepeningen, A. D. (2009). Effects of soil type, management type and soil amendments on the survival of the potato brown rot bacterium Ralstonia solanacearum. Applied Soil Ecology, 43(2-3), 206-215. doi:10.1016/j. apsoil.2009.07.008. Messiha, N. A. S., Van Diepeningen, A. D., Farag, N. S., Abdallah, S. A., Janse, J. D., & Van Bruggen, A. H. C. (2007). Stenotrophomonas maltophilia: a new potential biocontrol agent of Ralstonia solanacearum, causal agent of potato brown rot. European Journal of Plant Pathology, 118(3), 211-225. doi:10.1007/s10658-007-9136-6. Michielse, C. B., & Rep, M. (2009). Pathogen profile update: Fusarium oxysporum. Molecular Plant Pathology, 10(3), 311-324. doi:10.1111/j.1364-3703.2009.00538.x. Morriën, E., Hannula, S. E., Snoek, L. B., Helmsing, N. R., Zweers, H., de Hollander, M., ... Van der Putten, W. H. (2017). Soil networks become more connected and take up more carbon as nature restoration progresses. Nature Communications, 8, 14349. doi:10.1038/ncomms14349. Mueller, U. G., & Sachs, J. L. (2015). Engineering microbiomes to improve plant and animal health. Trends in Microbiology, 23(10), 606-617. doi:10.1016/j.tim.2015.07.009. Muyzer, G., & Smalla, K. (1998). Application of denaturing gradient gel electrophoresis (dgge) and temperature gradient gel electrophoresis (tgge) in microbial ecology. Antonie Van Leeuwenhoek, 73(1), 127-141. doi:10.1023/A:1000669317571. Nakahara, H., Mori, T., Sadakari, N., Matsusaki, H., & Matsuzoe, N. (2016). Selection of effective nonpathogenic Ralstonia solanacearum as biocontrol agents against bacterial wilt in eggplant. Journal of Plant Diseases and Protection, 123(3), 119-124. doi:10.1007/s41348- 016-0019-y. ncbi. (2017). GenBank. Recuperado de https://www.ncbi. nlm.nih.gov/genbank/. Nguyen, M. T., & Ranamukhaarachchi, S. L., (2010). Soilborne antagonists for biological control of bacterial wilt disease caused by Ralstonia solanacearum in tomato and pepper. Journal of Plant Pathology, 92(2), 395-405. doi:10.4454/jpp.v92i2.183. Nion, Y. A., & Toyota, K. (2015). Recent trends in control methods for bacterial wilt diseases caused by Ralstonia solanacearum. Microbes Environments, 30(1), 1-11. doi:10.1264/jsme2.ME14144. Nogales, A., Nobre, T., Valadas, V., Ragonezi, C., Döring, M., Polidoros, A., Arnholdt-& Schmitt, B. (2016). Can functional hologenomics aid tackling current challenges in plant breeding? Briefings in Functional Genomics, 15(4), 288-297. doi:10.1093/bfgp/elv030. Ofek, M., Hadar, Y., & Minz, D. (2012). Ecology of root colonizing Massilia (Oxalobacteraceae). plos One, 7(7), e40117. doi:10.1371/journal.pone.0040117. Opelt, K., Berg, C., & Berg, G. (2007). The bryophyte genus Sphagnum is a reservoir for powerful and extraordinary antagonists and potentially facultative human pathogens. FEMS Microbiology Ecology, 61(1), 38-53. doi:10.1111/ j.1574-6941.2007.00323.x. Ortiz, N., Armada, E., Duque, E., Roldán, A., & Azcón, R. (2015). Contribution of arbuscular mycorrhizal fungi and/or bacteria to enhancing plant drought tolerance under natural soil conditions: Effectiveness of autochthonous or allochthonous strains. Journal of Plant Physiology, 174, 87-96. doi:10.1016/j.jplph.2014.08.019. Palmer, C., Bik, E. M., DiGiulio, D. B., Relman, D. A., & Brown, P. O. (2007). Development of the human infant intestinal microbiota. PLoS Biology, 5(7), e177. doi:10.1371/journal.pbio.0050177. Panke-Buisse, K., Poole, A. C., Goodrich, J. K., Ley, R. E., & Kao-Kniffin, J. (2015). Selection on soil microbiomes reveals reproducible impacts on plant function. The ISME Journal, 9(4), 980-989. doi:10.1038/ismej.2014.196. Pera, J., & Calvet, C. (1989). Suppression of Fusarium wilt of carnation in a composted pine bark and a composted olive pumice. Plant Disease, 73(8), 699-700. doi:10.1094/ PD-73-0699. Philippot, L., Hallin, S., Börjesson, G., & Baggs, E. M. (2009). Biochemical cycling in the rhizosphere having an impact on global change. Plant and Soil, 321, 61-81. doi:10.1007/ s11104-008-9796-9. Phytobiomes (2016). Phytobiomes: A roadmap for research and translation. Recuperado de https://goo.gl/haofjs. Ravel, J., Gajer, P., Abdo, Z., Schneider, G. M., Koenig, S. S. K., McCulle, S. L., ... Forney, L. J. (2011). Vaginal microbiome of reproductive-age women. Proceedings of the National Academy of Sciences of the United States of America, 108(Suppl. 1), 4680-4687. doi:10.1073/ pnas.1002611107. Ramesh, R., Joshi, A. A., & Ghanekar, M. P. (2009). Pseudomonads: major antagonistic endophytic bacteria to suppress bacterial wilt pathogen, Ralstonia solanacearum in the eggplant (Solanum melongena L.). World Journal of Microbiology and Biotechnology, 25(1), 47-55. doi:10.1007/ s11274-008-9859-3. Reuveni, M., Sheglov, D., Sheglov, N., Ben-Arie, R., & Prusky, D. (2002). Sensitivity of red delicious apple fruit at various phenologic stages to infection by Alternaria alternata and moldy-core control. European Journal of Plant Pathology, 108(5), 421-427. doi:10.1023/A:1016063626633. Reid, A., & Greene, S. E. (2013). How microbes can help feed the world. Recuperado de https://goo.gl/GpqkQD. Roder, A., Hoffmann, E., Hagemann, M., & Berg, G. (2005). Synthesis of the compatible solutes glucosylglycerol and trehalose by salt-stressed cells of Stenotrophomonas strains. FEMS Microbiology Letters, 243(1), 219-226. doi:10.1016/j.femsle.2004.12.005. Rout, M. E., & Southworth, D. (2013). The root microbiome influences scales from molecules to ecosystems: The unseen majority. American Journal of Botany, 100(9), 1689-1691. doi:10.3732/ajb.1300291. Ryan, R. P., Monchy, S., Cardinale, M., Taghavi, S., Crossman, L., Avison, M. B., ... Dow, J. M. (2009). The versatility and adaptation of bacteria from the genus Stenotrophomonas. Nature Reviews. Microbiology, 7(7), 514-525. doi:10.1038/nrmicro2163. Santhanam, R., Luu, V. T., Weinhold, A., Goldberg, J., Oh, Y., & Baldwin, I. T. (2015). Native root-associated bacteria rescue a plant from a sudden-wilt disease that emerged during continuous cropping. Proceedings of the National Academy of Sciences of the United States of America, 112(36), E5013-E5020. doi:10.1073/pnas.1505765112. Scherwinski, K., Grosch, R., & Berg, G. (2008). Effect of bacterial antagonists on lettuce: active biocontrol of Rhizoctonia solani and negligible, short-term effects on nontarget microorganisms. FEMS Microbiology Ecology, 64(1), 106-116. doi:10.1111/j.1574-6941.2007.00421.x. Schlaeppi, K., & Bulgarelli, D. (2014). The plant microbiome at work. Molecular Plant-Microbe Interactions MPMI, 28(3), 212-217. doi:10.1094/MPMI-10-14-0334-FI. Schmid, F., Moser, G., Müller, H., & Berg, G. (2011). Functional and structural microbial diversity in organic and conventional viticulture: Organic farming benefits natural biocontrol agents. Applied and Environmental Microbiology, 77(6), 2188-2191. doi:10.1128/aem.02187-10. Schönfeld, J., Gelsomino, A., Van Overbeek, L. S., Gorissen, A., Smalla, K., & Van Elsas, J. D. (2003). Effects of compost addition and simulated solarisation on the fate of Ralstonia solanacearum biovar 2 and indigenous bacteria in soil. FEMS Microbiology Ecology, 43(1), 63-74. doi:10.1111/j.1574-6941.2003.tb01046.x. Selosse, M.-A., Bessis, A., & Pozo, M. J. (2014). Microbial priming of plant and animal immunity: symbionts as developmental signals. Trends in Microbiology, 22(11), 607-613. doi:10.1016/j.tim.2014.07.003. Sender, R., Fuchs, S., & Milo, R. (2016). Revised estimates for the number of human and bacteria. Cells in the Body. PLoS Biology, 14(8), e1002533. doi:10.1371/journal. pbio.1002533. Shen, Z., Ruan, Y., Xue, C., Zhong, S., Li, R., & Shen, Q. (2015). Soils naturally suppressive to banana Fusarium wilt disease harbor unique bacterial communities. Plant and Soil, 393(1), 21-33. doi:10.1007/s11104-015-2474-9. Singh, B. K., Bardgett, R. D., Smith, P., & Reay, D. S. (2010). Microorganisms and climate change: terrestrial feedbacks and mitigation options. Nature Reviews. Microbiology, 8(11), 779-790. doi:10.1038/nrmicro2439. Soman, C., Li, D., Wander, M. M., & Kent, A. D. (2017). Long-term fertilizer and crop-rotation treatments differentially affect soil bacterial community structure. Plant and Soil, 413(1-2), 145-159. doi:10.1007/s11 104-016-3083-y. Stulberg, E., Fravel, D., Proctor, L. M., Murray, D. M., LoTempio, J., Chrisey, L., ... Records, A. (2016). An assessment of US microbiome research. Nature Microbiology, 1(1), 1-7. doi:10.1038/nmicrobiol.2015.15. Swanson, J. K., Yao, J., Tans-Kersten, J., & Allen, C. (2005). Behavior of Ralstonia solanacearum race 3 biovar 2 during latent and active infection of geranium. Phytopathology, 95(2), 136-143. doi:10.1094/PHYTO-95-0136. Szczech, M., Rondomański, W., Brzeski, M. W., Smolińska, U., & Kotowski, J. F. (1993). Suppressive effect of a commercial earthworm compost on some root infecting pathogens of cabbage and tomato. Biological Agriculture & Horticulture, 10(1), 47-52. doi:10.1080/01448765.19 93.9754650. Tan, H. M., Cao, L. X., He, Z. F., Su, G. J., Lin, B., & Zhou, S. N. (2006). Isolation of endophytic actinomycetes from different cultivars of tomato and their activities against Ralstonia solanacearum in vitro. World Journal of Microbiology and Biotechnology, 22(12), 1275-1280. doi:10.1007/s11274-006-9172-y. Tang, W. H. W., Wang, Z., Levison , B. S., Koeth , R. A., Britt , E. B., Fu, X., ... Hazen , S.L. (2013). Intestinal microbial metabolism of Phosphatidylcholine and cardiovascular risk. The New England Journal of Medicine, 368(17), 1575-1584. doi:10.1056/NEJMoa1109400. Teplitski, M., Warriner, K., Bartz, J., & Schneider, K. R. (2011). Untangling metabolic and communication networks: interactions of enterics with phytobacteria and their implications in produce safety. Trends in Microbiology, 19(3), 121-127. doi:10.1016/j.tim.2010.11.007. Theis, K. R., Dheilly, N. M., Klassen, J. L., Brucker, R. M., Baines, J. F., Bosch, T. C. G., ... Bordenstein, S. R. (2016). Getting the hologenome concept right: an ecoevolutionary framework for hosts and their microbiomes. mSystems, 1(2), e00028-16. doi:10.11 28/mSystems.00028-16. Toju, H., Tanabe, A. S., Yamamoto, S., & Sato, H. (2012). High-Coverage its primers for the dna-based identification of ascomycetes and basidiomycetes in environmental samples. PLoS One, 7(7), e40863. http:// doi.org/10.1371/journal.pone.0040863 Turnbaugh, P. J., Ley, R. E., Hamady, M., Fraser-Liggett, C., Knight, R., & Gordon, J. I. (2007). The human microbiome project: exploring the microbial part of ourselves in a changing world. Nature, 449(7164), 804- 810. doi:10.1038/nature06244. Turner, T. R., James, E. K., & Poole, P. S. (2013). The plant microbiome. Genome Biology, 14(6), 209. doi:10.1186/ gb-2013-14-6-209. Tyler, H. L., & Triplett, E. W. (2008). Plants as a habitat for beneficial and/or human pathogenic bacteria. Annual Review of Phytopathology, 46(1), 53-73. doi:10.1146/ annurev.phyto.011708.103102. Van Baarlen, P., Van Belkum, A., Summerbell, R. C., Crous, P. W., & Thomma, B. P. (2007). Molecular mechanisms of pathogenicity: how do pathogenic microorganisms develop cross-kingdom host jumps? fems Microbiology Reviews, 31(3), 239-277. doi:10.1111/j.1574-6976.2007.00065.x. Van Elsas, J. D., Kastelein, P., De Vries, P. M., & Van Overbeek, L. S. (2001). Effects of ecological factors on the survival and physiology of Ralstonia solanacearum bv. 2 in irrigation water. Canadian Journal of Microbiology, 47(9), 842-854. doi:10.1139/w01-084. Van Elsas, J. D., Chiurazzi, M., Mallon, C. A., Elhottovā, D., Krištůfek, V., & Salles, J. F. (2012). Microbial diversity determines the invasion of soil by a bacterial pathogen. Proceedings of the National Academy of Sciences of the United States of America, 109(4), 1159-1164. doi:10.1073/ pnas.1109326109. Van Overbeek, L. S., Van Doorn, J., Wichers, J. H., Van Amerongen, A., Van Roermund, H. J., & Willemsen, P. T. (2014). The arable ecosystem as battleground for emergence of new human pathogens. Frontiers in Microbiology, 5, 104. doi:10.3389/fmicb.2014.00104. Vandenkoornhuyse, P., Quaiser, A., Duhamel, M., Le Van, A., & Dufresne, A. (2015). The importance of the microbiome of the plant holobiont. The New Phytologist, 206(4), 1196-1206. doi:10.1111/nph.13312. Vorholt, J. A. (2012). Microbial life in the phyllosphere. Nature Reviews. Microbiology, 10(12), 828-840. doi:10.1038/ nrmicro2910. Wagner, M. R., Lundberg, D. S., Coleman-Derr, D., Tringe, S. G., Dangl, J. L., & Mitchell-Olds, T. (2014). Natural soil microbes alter flowering phenology and the intensity of selection on flowering time in a wild Arabidopsis relative. Ecology Letters, 17(6), 717-726. doi:10.1111/ele.12276. Wei, Z., Huang, J., Tan, S., Mei, X., Shen, Q., & Xu, Y. (2013). The congeneric strain Ralstonia pickettii QL-A6 of Ralstonia solanacearum as an effective biocontrol agent for bacterial wilt of tomato. Biological Control, 65(2), 278- 285. doi:10.1016/j.biocontrol.2012.12.010. Wei, Z., Yang, T., Friman, V.-P., Xu, Y., Shen, Q., & Jousset, A. (2015). Trophic network architecture of rootassociated bacterial communities determines pathogen invasion and plant health. Nature Communications, 6, 8413. doi:10.1038/ncomms9413. Weller, D. M., Raaijmakers, J. M., Gardener, B. B., & Thomashow, L. S. (2002). Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annual Review of Phytopathology 40, 309-348. doi:10.1146/annurev.phyto.40.030402.110010. Whitman, W. B., Coleman, D. C., & Wiebe, W. J. (1998). Prokaryotes: The unseen majority. Proceedings of the National Academy of Sciences, 95(12), 6578-6583. doi:10.1073/pnas.95.12.6578. Widder, S., Allen, R. J., Pfeiffer, T., Curtis, T. P., Wiuf, C., Sloan, W. T., ... Soyer, O. S. (2016). Challenges in microbial ecology: building predictive understanding of community function and dynamics. The ISME Journal, 10(11), 2557-2568. doi:10.1038/ismej.2016.45. Wisniewski, M., Droby, S., Norelli, J., Liu, J., & Schena, L. (2016). Alternative management technologies for postharvest disease control: The journey from simplicity to complexity. Postharvest Biology and Technology, 122, 3-10. doi:10.1016/j.postharvbio.2016.05.012. Wubs, E. R. J., Van der Putten, W. H., Bosch, M., & Bezemer, T. M. (2016). Soil inoculation steers restoration of terrestrial ecosystems. Nature Plants, 2(8), 16107. doi:10.1038/nplants.2016.107. Xue, Q.-Y., Chen, Y., Li, S.-M., Chen, L.-F., Ding, G.-C., Guo, D.-W., Guo, J.-H. (2009). Evaluation of the strains of Acinetobacter and Enterobacter as potential biocontrol agents against Ralstonia wilt of tomato. Biological Control, 48(3), 252-258. doi:10.1016/j.biocontrol.2008.11.004. Yabuuchi, E., Kosako, Y., Yano, I., Hotta, H., & Nishiuchi, Y. (1995). Transfer of two Burkholderia and an Alcaligenes species to Ralstonia gen. Microbiology and Immunology, 39(11), 897-904. doi:10.1111/j.1348-0421.1995. tb03275.x. Yatsunenko, T., Rey, F. E., Manary, M. J., Trehan, I., Dominguez-Bello, M.G., Contreras, M., ... Gordon, J. I. (2012). Human gut microbiome viewed across age and geography. Nature, 486(7402), 222-227. doi:10.1038/ nature11053. Zachow, C., Berg, C., Müller, H., Meincke, R., Komon- Zelazowska, M., Druzhinina, I. S., ... Berg, G. (2009). Fungal diversity in the rhizosphere of endemic plant species of Tenerife (Canary Islands): relationship to vegetation zones and environmental factors. The isme Journal, 3(1), 79. doi:10.1038/ismej.2008.87. Zachow, C., Berg, C., Müller, H., Meincke, R., Komon- Zelazowska, M., Druzhinina, I. S., ... Berg, G. (2009). Fungal diversity in the rhizosphere of endemic plant species of Tenerife (Canary Islands): relationship to vegetation zones and environmental factors. The isme Journal, 3(1), 79. doi:10.1038/ismej.2008.87. Zacky, F. A., & Ting, A. S. Y. (2013). Investigating the bioactivity of cells and cell-free extracts of Streptomyces griseus towards Fusarium oxysporum f. sp. cubense race 4. Biological Control, 66(3), 204-208. doi:10.1016/j. biocontrol.2013.06.001. Angus, T. A. (1954). A bacterial toxin paralysing silkworm larvae. Nature, 173, 545-546. doi:10.1038/173545a0. Adang, M. J., Crickmore, N., & Jurat-Fuentes, J. L. (2014). Chapter two - diversity of Bacillus thuringiensis crystal toxins and mechanism of action. En T. S. Dhadialla & S. S. Gill (Eds.), Advances in Insect Physiology (pp. 39-87). Vol. 47. Cambridge, Inglaterra: Academic Press. Aronson, A. I., Beckman, W., & Dunn, P. (1986). Bacillus thuringiensis and related insect pathogens. Microbiological reviews, 50(1), 1-24. Asolkar, R., Huang, H., Koivunen, M., & Marrone, P. (2015). Patente EUA 8715754 Chromobacterium bioactive compositions and metabolites, Marrone Bio Innovations, I. Washington: Oficina de Patentes y Marcas de EUA. Ballester, V., Granero, F., Tabashnik, B. E., Malvar, T., & Ferré, J. (1999). Integrative model for binding of Bacillus thuringiensis toxins in susceptible and resistant larvae of the diamondback moth (Plutella xylostella). Applied and Environmental Microbiology, 65(4), 1413-1419. Benoit, T. G., Wilson, G. R., Bull, D. L., & Aronson, A. I. (1990). Plasmid-associated sensitivity of Bacillus thuringiensis to uv light. Applied and Environmental Microbiology, 56(8), 2282-2286. Beegle, C. C., & Yamamoto, T., (1992). Invitation paper (C.P. Alexander Fund): history of Bacillus thuringiensis Berliner research and development. The Canadian Entomologist, 124(4), 587-616. doi:10.4039/Ent124587-4. Berg, G. (2009). Plant-microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Applied Microbiology and Biotechnology, 84(1), 11-18. doi:10.1007/s00253-009- 2092-7. Berry, C. (2012). The bacterium, Lysinibacillus sphaericus, as an insect pathogen. Journal of Invertebrate Pathology, 109(1), 1-10. doi:10.1016/j.jip.2011.11.008. Biostart. (2017). The safe, effective way to control nz grass grub. Recuperado de http://www.biostart.co.nz/products/bioinsecticides/ bioshield-grass-grub/. Bone, L. W., & Tinelli, R. (1987). Trichostrongylus colubriformis: larvicidal activity of toxic extracts from Bacillus sphaericus (strain 1593) spores. Experimental Parasitology, 64(3), 514-516. doi:10.1016/0014-4894(87)90066-X. Bowen, D., Rocheleau, T. A., Blackburn, M., Andreev, O., Golubeva, E., Bhartia, R., & Ffrench-Constant, R. H. (1998). Insecticidal toxins from the bacterium Photorhabdus luminescens. Science, 280(5372), 2129-2132. doi:10.1126/science.280.5372.2129. Braga, R. M., Dourado, M. N., & Araújo, W. L. (2016). Microbial interactions: ecology in a molecular perspective. Brazilian Journal Microbiology, 47(1), 86-98. doi:10.1016/j.bjm.2016.10.005. Bravo, A. (2004). Familia de proteínas inseticidas de Bacillus thuringiensis. En: Bravo, A., Cerón, J. (Eds.), Bacillus thuringiensis en el control biológico (pp 49-68). Bogotá, Colombia: Editorial Buena Semilla. Bresolin, G., Morgan, J. A. W., Ilgen, D., Scherer, S., & Fuchs, T. M. (2006). Low temperature-induced insecticidal activity of Yersinia enterocolitica. Molecular Microbiology, 59(2), 503-512. doi:10.1111/j.1365-2958.2005.04916.x. Bucher, G. (1981). Identification of bacteria found in insects. En H. D. Burges (Ed.), Microbial control of pests and plant diseases, 1970-1980 (pp. 7-33). Londres, Reino: Academic Press. Cordova-Kreylos, A. L., Fernandez, L. E., Koivunen, M., Yang, A., Flor-Weiler, & L., Marrone, P. G. (2013). Isolation and Characterization of Burkholderia rinojensis sp. nov., a Non-Burkholderia cepacia Complex Soil Bacterium with Insecticidal and Miticidal Activities. Applied and Environmental Microbiology, 79(24), 7669- 7678. doi:10.1128/aem.02365-13. Couch, T. L. (2000). Industrial fermentation and formulation of entomopathogenic bacteria. En J. F. Charles, A. Delécluse & C. N. Roux (Eds.), Entomopathogenic bacteria: From laboratory to field application (pp. 297-316). Dordrecht, Holanda: Springer. Crickmore, N., Zeigler, D. R., Feitelson, J., Schnepf, E., Van Rie, J., Lereclus, D., ... Dean, D. H. (1998). Revision of the nomenclature for the Bacillus thuringiensis pesticidal crystal proteins. Microbiology and Molecular Biology Reviews, 62(3), 807-813. Champion, O. L., Cooper, I. A., James, S. L., Ford, D., Karlyshev, A., Wren, B. W., …Titball R. W. (2009). Galleria mellonella as an alternative infection model for Yersinia pseudotuberculosis. Microbiology, 155(5), 1516- 1522. doi:10.1099/mic.0.026823-0. Chakoosari, M. M. D. (2013). Efficacy of various biological and microbial insecticides. Journal of biology and today’s world, 2, 249-254. Chandler, D., Bailey, A. S., Tatchell, G. M., Davidson, G., Greaves, J., & Grant, W. P. (2011). The development, regulation and use of biopesticides for integrated pest management. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 366(1573), 1987- 1998. doi:10.1098/rstb.2010.0390. Chattopadhyay, P., Chatterjee, S., Gorthi, S., & Sen, S. K. (2012). Exploring Agricultural Potentiality of Serratia entomophila AB2: Dual Property of Biopesticide and Biofertilizer. British Biotechnology Journal, 2(1), 1-12. doi:10.9734/BBJ/2012/778. Chattopadhyay, P., Gorthi, S., Chatterjee, S., & Sen, S. K. (2011). Characterization of bacterial isolates as natural biocontrol agents of bollworm from an epizootic pest (Heliothis armigera). Pest Technology, 5(1), 81-85. Chattopadhyay, P., Gorthi, S., Chatterjee, S., & Sen, S. K. (2011). Characterization of bacterial isolates as natural biocontrol agents of bollworm from an epizootic pest (Heliothis armigera). Pest Technology, 5(1), 81-85. d’Herelle, F., (1911). Sur une épizootie de nature bactérienne sévissant sur les sauterelles au Mexique. Comptes Rendus de l'Académie des Sciences, 152, 1413-1415. De Barjac, H., & Bonnefoi, A. (1962). Essai de classification biochimique et sérologique de 24 souches de Bacillus du type B. Thuringiensis. Entomophaga, 7(1), 5-31. doi:10.1007/BF02375988. Dacheux, D., Attree, I., Schneider, C., & Toussaint, B. (1999). Cell death of human polymorphonuclear neutrophils induced by a Pseudomonas aeruginosa cystic fibrosis isolate requires a functional Type iii secretion system. Infection and Immunity, 67(11), 6164-6167. De Maagd, R. A., Bosch, D., & Stiekema, W. (1999). Bacillus thuringiensis toxin-mediated insect resistance in plants. Trends in Plant Science, 4(1), 9-13. doi:10.1016/S1360- 1385(98)01356-9. Dodd, S. J., Hurst, M. R. H., Glare, T. R., O'Callaghan, M., & Ronson, C. W. (2006). Occurrence of sep insecticidal toxin complex genes in Serratia spp. and Yersinia frederiksenii. Applied and Environmental Microbiology, 72(10), 6584-6592. doi:10.1128/aem.00954-06. Dingman, D. W. (2009). dna fingerprinting of Paenibacillus popilliae and Paenibacillus lentimorbus using pcr-amplified 16S–23S rDNA intergenic transcribed spacer (its) regions. Journal of Invertebrate Pathology, 100(1), 16-21. doi:10.1016/j.jip.2008.09.006. Dutky, S. (1963). The milky diseases. En E. Steinhaus (Ed.), Insect Pathology: An Advanced Treatise (pp. 75-115). Nueva York , EE. UU.: Academic press. Endo, H., Azuma, M., Adegawa, S., Kikuta, S., & Sato, R. (2017). Water influx via aquaporin directly determines necrotic cell death induced by the Bacillus thuringiensis Cry toxin. FEBS Lett, 591(1), 56-64. doi:10.1002/1873- 3468.12506. Dutta, S. (2015). Biopesticides: an ecofriendly approach for pest control. World Journal of Pharmacy and Pharmaceutical Sciences, 4(6), 250-265. Environmental Protection Agency (epa). (2008). Biopesticide active ingredients and products containing them. Recuperado de http://www.epa.gov/pesticides/biopesticides/ product_lists. Fang, J., Xu, X., Wang, P., Zhao, J.-Z., Shelton, A.M., Cheng, J., … Sheng, Z. (2007). Characterization of Chimeric Bacillus thuringiensis Vip3 Toxins. Applied Environmental Microbiology, 73(3), 956-961. doi:10.1128/AEM.02079-06. Federici, B. A. (2007). Bacteria as biological control agents for insects: Economics, engineering, and environmental safety. En M. Vurro & J. Gressel (Eds.), Novel biotechnologies for biocontrol agent enhancement and management (pp. 25-51). Dordrecht, Holanda: Springer. Ferguson, C. M., Barton, D. M., Harper L. A., Swaminathan., J., Van Koten, C., & Hurst, M. R. H. (2012). Survival of Yersinia entomophaga MH96 in a pasture ecosystem and effects on pest and non-target invertebrate populations. New Zealand Plant Protection, 65: 166-173. Ferré, J., & Rie, J. V. (2002). Biochemistry and genetics of insect resistance to Bacillus thuringiensis. Annual Reviews of Entomology, 47, 501-533. doi:10.1146/annurev. ento.47.091201.145234. Ffrench-Constant, R., & Waterfield, N. (2005). An abc guide to the bacterial toxin complexes. Advances in Applied Microbiology, 58, 169-183. doi:10.1016/S0065- 2164(05)58005-5. Ffrench-Constant, R. H., Dowling, A., & Waterfield, N. R. (2007). Insecticidal toxins from Photorhabdus bacteria and their potential use in agriculture. Toxicon, 49(4), 436- 451. doi:10.1016/j.toxicon.2006.11.019. Fuchs, T. M., Bresolin, G., Marcinowski, L., Schachtner, J., & Scherer, S. (2008). Insecticidal genes of Yersinia spp.: Taxonomical distribution, contribution to toxicity towards Manduca sexta and Galleria mellonella, and evolution. BMC Microbiology, 8, 214. doi:10.1186/1471- 2180-8-214. Ge, Y., Hu, X., Zheng, D., Wu, Y., & Yuan, Z. (2011). Allelic diversity and population structure of Bacillus sphaericus as revealed by multilocus sequence typing. Applied and Environmental Microbiology, 77(15), 5553-5556. doi:10.1128/AEM.00207-11. Gómez-Garzón, C., Hernández-Santana, A., & Dussán, J. (2016). Comparative genomics reveals Lysinibacillus sphaericus group comprises a novel species. BMC Genomics, 17, 1-10. doi:10.1186/s12864-016-3056-9. Glare, T. R., Corbett, G. E., & Sadler, T. J. (1993). Association of a large plasmid with amber disease of the New Zealand grass grub, Costelytra zealandica, caused by Serratia entomophila and Serratia proteamaculans. Journal of Invertebrate Pathology, 62(2), 165-170. doi:10.1006/ jipa.1993.1091. Gómez, I., Sánchez, J., Miranda, R., Bravo, A., & Soberón, M. (2002). Cadherin-like receptor binding facilitates proteolytic cleavage of helix -1 in domain I and oligomer pre-pore formation of Bacillus thuringiensis Cry1Ab toxin. FEBS Letters, 513(2-3), 242-246. doi:10.1016/S0014- 5793(02)02321-9. Gonzalez, J. M., & Carlton, B. C. (1980). Patterns of plasmid dna in crystalliferous and acrystalliferous strains of Bacillus thuringiensis. Plasmid, 3(1), 92-98. doi:10.1016/ S0147-619X(80)90038-4. Grimont, P., & Grimont, F. (1978). The genus Serratia. Annual Review of Microbiology, 32, 221-248. doi:10.1146/ annurev.mi.32.100178.001253. Grimont, P. A. D., Jackson, T. A., Ageron, E., & Noonan, M. J. (1988). Serratia entomophila sp. nov. associated with amber disease in the New Zealand grass grub Costelytra zealandica. International Journal of Systematic and Evolutionary Microbiology, 38, 1-6. doi:10.1099/00207713-38-1-1. Grkovic, S., Glare, T. R., Jackson, T. A., & Corbett, G. E. (1995). Genes essential for amber disease in grass grubs are located on the large plasmid found in Serratia entomophila and Serratia proteamaculans. Applied and Environmental Microbiology, 61(6), 2218-2223. Gupta, B. L., Dow, J. A., Hall, T. A., & Harvey, W. R. (1985). Electron probe X-ray microanalysis of the effects of Bacillus thuringiensis var. kurstaki crystal protein insecticide on ions in an electrogenic K+-transporting epithelium of the larval midgut in the lepidopteran, Manduca sexta, in vitro. Journal of Cell Science, 74, 137-152. Haddy, R. I., Mann, B. L., Nadkarni, D. D., Cruz, R. F., Elshoff, D. J., Buendia, F. C., … Oberheu, A. M. (1996). Nosocomial infection in the community hospital: severe infection due to Serratia species. The Journal of Family Practice, 42(3), 273-278. Harrison, H., Patel, R., & Yousten, A. A. (2000). Paenibacillus associated with milky disease in Central and South American scarabs. Journal of Invertebrate Pathology, 76(3), 169-175. doi:10.1006/jipa.2000.4969. Heckel, D. G. (2012). Learning the ABCs of Bt: abc transporters and insect resistance to Bacillus thuringiensis provide clues to a crucial step in toxin mode of action. Pesticide Biochemistry and Physiology, 104(2), 103-110. doi:10.1016/j.pestbp.2012.05.007. Hejazi, A., & Falkiner, F. R. (1997). Serratia marcescens. Journal of Medical Microbiology, 46, 903-912. doi:10.1099/00222615-46-11-903. Hire, R. S., Hadapad, A. B., Vijayalakshmi, N., & Dongre, T. K. (2010). Characterization of highly toxic indigenous strains of mosquitocidal organism Bacillus sphaericus. FEMS Microbiology Letters, 305(2), 155-161. doi:10.1111/j.1574-6968.2010.01927.x. Höfte, H., & Whiteley, H. R. (1989). Insecticidal crystal proteins of Bacillus thuringiensis. Microbiological Reviews, 53(2), 242-255. Hoshino, T. (2011). Violacein and related tryptophan metabolites produced by Chromobacterium violaceum: biosynthetic mechanism and pathway for construction of violacein core. Applied Microbiology and Biotechnology, 91, 1463. doi:10.1007/s00253-011-3468-z. Hurst, M. R., Glare, T. R., & Jackson, T. A. (2004). Cloning Serratia entomophila antifeeding genes–a putative defective prophage active against the grass grub Costelytra zealandica. Journal of Bacteriology, 186(15), 5116-5128. doi: 10.1128/JB.186.15.5116-5128.2004. Hurst, M. R., Glare, T. R., Jackson, T. A., & Ronson, C. W. (2000). Plasmid-located pathogenicity determinants of Serratia entomophila, the causal agent of amber disease of grass grub, show similarity to the insecticidal toxins of Photorhabdus luminescens. Journal of Bacteriology, 182(18), 5127-5138. doi:10.1128/JB.182.18.5127-5138.2000. Hurst, M. R. H., Beattie, A. K., Jones, S. A., Hsu, P.-C., Calder, J., & Van Koten, C. (2015). Temperature-dependent Galleria mellonella mortality as a result of Yersinia entomophaga infection. Applied and Environmental Microbiology, 81(18), 6404-6414. doi:10.1128/aem.00790-15. Hurst, M. R. H., Becher, S. A., & O’Callaghan, M. (2011). Nucleotide sequence of the Serratia entomophila plasmid pADAP and the Serratia proteamaculans pU143 plasmid virulence associated region. Plasmid, 65(1), 32-41. doi:10.1016/j.plasmid.2010.10.001. Hurst, M. R. H., Becher, S. A., Young, S. D., Nelson, T. L., Glare, T. R. (2011). Yersinia entomophaga sp. nov., isolated from the New Zealand grass grub Costelytra zealandica. International Journal Systematic and Evolutionary Microbiology, 61(4), 844-849. doi:10.1099/ijs.0.024406-0. Hurst, M. R. H., Jones, S. A., Binglin, T., Harper, L. A., Jackson, T. A., & Glare, T. R., (2011). The main virulence determinant of Yersinia entomophaga MH96 is a broad host-range toxin complex active against insects. Journal of Bacteriology, 193(8), 1966-1980. doi:10.1128/JB.01 044-10. Hurst, M. R. H., Jones, S. M., Tan, B., & Jackson, T. A. (2007). Induced expression of the Serratia entomophila Sep proteins shows activity towards the larvae of the New Zealand grass grub Costelytra zealandica. FEMS Microbiology Letters, 275(1), 160-167. doi:10.1111/ j.1574-6968.2007.00886.x. Hurst, M. R. H., van Koten, C., & Jackson, T. A. (2014). Pathology of Yersinia entomophaga MH96 towards Costelytra zealandica (Coleoptera; Scarabaeidae) larvae. Journal of Invertebrate Pathology, 115, 102-107. doi:10.1016/j.jip.2013.11.004. Ibarra, J. E., & Federici, B. A. (1986). Parasporal bodies of Bacillus thuringiensis subsp. morrisoni (PG-14) and Bacillus thuringiensis subsp. israelensis are similar in protein composition and toxicity. FEMS Microbiology Letters, 34(1), 79-84. doi:10.1111/j.1574-6968.1986. tb01353.x. Inglis, G. D., & Lawrence, A. M. (2001). Effects of Serratia marcescens on the F1 generation of laboratory-reared Heliothis virescens (Lepidoptera: Noctuidae). Journal of Economic Entomology, 94(2), 362-366. doi:10.1603/0022- 0493-94.2.362. Jackson, T. A. (2007). A novel bacterium for control of grass grub. En C. Vincent, M. S. Goettel, & G. Lazarovits (Eds.), Biological control: a global perspective (pp. 160- 168). Wallingford, Inglaterra: cabi. Jackson, T. A., Boucias, D. G., & Thaler, J. O. (2001). Pathobiology of amber disease, caused by Serratia spp., in the New Zealand grass grub, Costelytra zealandica. Journal of Invertebrate Pathology, 78(4), 232-243. doi:10.1006/ jipa.2002.5078. Jackson, T. A., Huger, A. M., & Glare, T. R. (1993). Pathology of Amber Disease in the New Zealand Grass Grub Costelytra zealandica (Coleoptera: Scarabaeidae). Journal of Invertebrate Pathology, 61(2), 123-130. doi:10.1006/ jipa.1993.1024. Jackson, T. A., Pearson, J. F., O'Callaghan, M., Mahanty, H. K., & Willcocks, M. J. (1992). Pathogen to product - Development of Serratia entomophila (Enterobacteriaceae) as a commercial biological agent for the New Zealand grass grub (Costelytra zealandica). En T. A. Jackson, & T. R. Glare, (Eds.), Use of Pathogens in Scarab Pest Management (pp. 191-198). Andover, EE. UU.: Intercept. Jackson, T. A., Pearson, J. F., & Stucki, G. (1986). Control of the grass grub, Costelytra zealandica (White) (Coleoptera: Jackson, T. A., Townsend, R. J., & Barlow, N. D. (1999). Predicting grass grub populationchange in Canterbury. En: J. N. Matthiessen (Ed.) Proceedings of the 7th australasian conference on grassland invertebrate ecology. Wembley, Autralia. pp. 21-26. Jackson, T. A., & Zimmermann, G. (1996). Is there a role for Serratia spp. in the biocontrol of Melolontha spp.? Bulletin OILB/SROP, 19(2), 47-53. Jackson, T. A., & Zimmermann, G. (1996). Is there a role for Serratia spp. in the biocontrol of Melolontha spp.? Bulletin OILB/SROP, 19(2), 47-53. Jarrett, C. O., Deak, E., Isherwood, K. E., Oyston, P. C., Fischer, E. R., Whitney, A. R., … Hinnebusch, B. J. (2004). Transmission of Yersinia pestis from an infectious biofilm in the flea vector. The journal of infectious diseases, 190(4), 782-792. doi:10.1086/422695. Jisha, V. N., Smitha, R. B., & Benjamin, S. (2013). An overview on the crystal toxins from Bacillus thuringiensis. Advances in microbiology, 3, 462-472. doi:10.4236/ aim.2013.35062. Jolley, K. A., Chan, M.-S., & Maiden, M. C. (2004). mlstdbNet – distributed multi-locus sequence typing (mlst) databases. BMC Bioinformatics, 5, 86. doi:10.1186/1471- 2105-5-86. Jurat-Fuentes, J. L., & Crickmore, N., (2017). Specificity determinants for Cry insecticidal proteins: Insights from their mode of action. Journal of Invertebrate Pathology, 142, 5-10. doi:10.1016/j.jip.2016.07.018. Kain, W., & Atkinson, D. (1970). Rational approach to grass grub control. Proceedings of the 23rd NZ Weed and Pest Control Conference, pp. 180-183. Palmerston North, Nueva Zelanda: New Zealand Plant Protection Society. Kaška, M. (1976). The toxicity of extracellular proteases of the bacterium Serratia marcescens for larvae of greater wax moth, Galleria mellonella. Journal of Invertebrate Pathology, 27(2), 271. doi:10.1016/0022-2011(76)90158-0. Kellen, W. R., Clark, T. B., Lindegren, J. E., Ho, B. C., Rogoff, M. H., & Singer, S. (1965). Bacillus sphaericus Neide as a pathogen of mosquitoes. Journal of Invertebrate Pathology, 7(4), 442-448. doi:10.1016/0022-2011(65)90120-5. Kergunteuil, A., Bakhtiari, M., Formenti, L., Xiao, Z., Defossez, E., & Rasmann, S. (2016). Biological control beneath the feet: A review of crop protection against insect root herbivores. Insects, 7(4), 70. doi:10.3390/ insects7040070. Key, P. B., & Scott, G. I. (1992). Acute toxicity of the mosquito larvicide, Bacillus sphaericus, to the grass shrimp, Palaemonetes pugio, and mummichog, Fundulus heteroclitus. Bulletin of Environmental Contamination and Toxicology, 49(3), 425-430. doi:10.1007/BF01239647. Khetan, S. (2001). Microbial pest control. Nueva York, EE. UU.: Marcel Dekker. Khyami-Horani, H., Hajaij, M., & Charles, J.-F. (2003). Characterization of Bacillus thuringiensis ser. jordanica (Serotype H71), a novel serovariety isolated in Jordan. Current Microbiology, 47(1), 0026-0031. doi:10.1007/ s00284-002-3940-1. Kil, Y. J., Seo, M. J., Kang, D. K., Oh, S. N., Cho, H. S., Youn, Y. N., … Yu, Y. M. (2014). Effects of enterobacteria (Burkholderia sp.) on development of Riptortus pedestris. Journal of the Faculty of Agriculture, Kyushu University, 59(1), 77-84. Kinkel, L. L., Bakker, M. G., & Schlatter, D. C. (2011). A coevolutionary framework for managing diseasesuppressive soils. Annual Review of Phytopatholgoy, 49, 47-67. doi:10.1146/annurev-phyto-072910-095232. Klein, M. G. (1988). Pest management of soil-inhabiting insects with microorganisms. Agriculture Ecosystems & Environment. 24(1-3), 337-349. doi:10.1016/0167- 8809(88)90077-1. Klein, M. G., & Jackson, T. A. (1992). Bacterial diseases of scarabs. En J. Trevor & G. Travis (Eds.), Use of pathogens in scarab pest management (pp.43-61). Andover, EE. UU.: Intercept. Krishnan, M., Bharathiraja, C., Pandiarajan, J., Prasanna, V. A., Rajendhran, J., & Gunasekaran, P. (2014). Insect gut microbiome - An unexploited reserve for biotechnological application. Asian Pacific Journal of Tropical Biomedicine, 4(Suppl. 1), S16-S21. doi:10.12980/APJTB.4.2014C95. Kupferschmied, P., Maurhofer, M., & Keel, C. (2013). Promise for plant pest control: root-associated pseudomonads with insecticidal activities. Frontiers in Plant Science, 4, 287. doi:10.3389/fpls.2013.00287. Lacey, L. A., & Georgis, R. (2012). Entomopathogenic nematodes for control of insect pests above and below ground with comments on commercial production. Journal of Nematology, 44(2), 218-225. Lambert, B., & Peferoen, M. (1992). Insecticidal Promise of Bacillus thuringiensis: Facts and mysteries about a successful biopesticide. Bioscience, 42(2), 112-122. doi:10.2307/1311652. Lecadet, M. M., Frachon, E., Dumanoir, V. C., Ripouteau, H., Hamon, S., Laurent, P., & Thiéry, I. (1999). Updating the H-antigen classification of Bacillus thuringiensis. Journal of Applied Microbiology, 86(4), 660-672. doi:10.1046/ j.1365-2672.1999.00710.x. Lereclus, D., Lecadet, M.-M., Ribier, J., & Dedonder, R. (1982). Molecular relationships among plasmids of Bacillus thuringiensis: Conserved sequences through 11 crystalliferous strains. Molecular and general genetics mgg, 186(3), 391-398. doi:10.1007/BF00729459. LifeSci. (2017). “Bacillus thuringiensis” Toxin Nomenclature. Recuperado de http://www.lifesci.sussex.ac.uk/home/ Neil_Crickmore/Bt/. Lodish, H., Berk, A., Matsudaira, P., Kaiser, C., Krieger, M., Scott, M., … Darnell, J. (2006). Biología celular y molecular. Buenos Aires, Argentina: Editorial Médica Panamericana. Loper, J. E., Hassan, K. A., Mavrodi, D. V., Davis II, E. W., Lim, C. K., Shaffer, B. T., ... Paulsen, I. T. (2012). Comparative genomics of plant-associated Pseudomonas spp.: insights into diversity and inheritance of traits involved in multitrophic interactions. PLoS Genetics, 8(7), e1002784. doi:10.1371/journal.pgen.1002784. López-Meza, J. E., Barboza-Corona, J. E., Del Rincón- Castro, M. C., & Ibarra, J. E. (2003). Sequencing and characterization of plasmid pUIBI-1 from Bacillus thuringiensis serovar entomocidus LBIT-113. Current Microbiology, 47(5), 395-399. doi:10.1007/s00284-003- 4041-5. Lord, J. C. (2005). From metchnikoff to Monsanto and beyond: The path of microbial control. Journal of Invertebrate Pathology, 89(1), 19-29. doi:10.1016/j. jip.2005.04.006. Lysenko, O. (1976). Chitinase of Serratia marcescens and its toxicity to insects. Journal of Invertebrate Pathology, 27, 385-386. Marshall, S. D .G., Hares, M. C., Jones, S. A., Harper, L. A., Vernon, J. R., Harland, D. P., ... Hursta M. R. H. (2012). Histopathological effects of the Yen-Tc toxin complex from Yersinia entomophaga MH96 (Enterobacteriaceae) on the Costelytra zealandica (Coleoptera: Scarabaeidae) larval midgut. Applied and Environmental Microbiology, 78(14), 4835-4847. doi:10.1128/aem.00431-12. Martin, P. A., Hirose, E., & Aldrich, J. R. (2007). Toxicity of Chromobacterium subtsugae to southern green stink bug (Heteroptera: Pentatomidae) and corn rootworm (Coleoptera: Chrysomelidae). Journal of Economic Entomology, 100(3), 680-684. Martin, P. A. W., Gundersen-Rindal, D., Blackburn, M., & Buyer, J. (2007). Chromobacterium subtsugae sp. nov., a betaproteobacterium toxic to Colorado potato beetle and other insect pests. International Journal of Systematic and Evolutionary Microbiology, 57(5), 993-999. doi:10.1099/ ijs.0.64611-0. McNally, A., Cheasty, T., Fearnley, C., Dalziel, R. W., Paiba, G. A., Manning, G., Newell, D. G. (2004). Comparison of the biotypes of Yersinia enterocolitica isolated from pigs, cattle and sheep at slaughter and from humans with yersiniosis in Great Britain during 1999-2000. Letters in Applied Microbiology, 39, 103-108. doi:10.1111/j.1472- 765X.2004.01548.x. Mnif, I., & Ghribi, D. (2015). Potential of bacterial derived biopesticides in pest management. Crop Protection, 77, 52- 64. doi:10.1016/j.cropro.2015.07.017. Mizuki, E., Park, Y. S., Saitoh, H., Yamashita, S., Akao, T., Higuchi, K., Ohba, M. (2000). Parasporin, a human leukemic cell-recognizing parasporal protein of Bacillus thuringiensis. Clinical and Diagnostic Laboratory Immunology, 7(4), 625-634. Monnerat, R., De Silva, S. F., Dias, D. S., Martins, E. S., Praça, L. B., Jones, G. W., ... Berry, C. (2004). Screening of Brazilian Bacillus sphaericus strains for high toxicity against Culex quinquefasciatus and Aedes aegypti. Journal of Applied Entomology, 128(7), 469-473. doi:10.1111/ j.1439-0418.2004.00874.x. Monnerat, R., Nicolas, L., Frachon, E., & Hamon, S. (1992). Characterization and toxicity to mosquito larvae of four Bacillus sphaericus strains isolated from Brazilian soils. Journal of Invertebrte Pathology, 60(1), 10-14. doi:10.1016/0022-2011(92)90147-V. Murray, P., Rosentahl, K., & Pfaller, M., (2009). Microbiología médica. (7.ª ed.). Barcelona, España, Elsevier. Núñez-Valdez, M. E., Calderón, M. A., Aranda, E., Hernández, L., Ramírez-Gama, R. M., Lina, L., … Villalobos, F. J. (2008). Identification of a putative mexican strain of Serratia entomophila pathogenic against root-damaging larvae of Scarabaeidae (Coleoptera). Applied and Environmental Microbiology, 74(3), 802-810. doi:10.1128/AEM.01074-07. Núñez-Valdez, M. E., Calderón, M. A., Aranda, E., Hernández, L., Ramírez-Gama, R. M., Lina, L., … Villalobos, F. J. (2008). Identification of a putative mexican strain of Serratia entomophila pathogenic against root-damaging larvae of Scarabaeidae (Coleoptera). Applied and Environmental Microbiology, 74(3), 802-810. doi:10.1128/AEM.01074-07. O'Callaghan, M., Garnham, M. L., Nelson, T. L., Baird, D., & Jackson, T. A. (1996). The pathogenicity of Serratia strains to Lucilia sericata (Diptera: Calliphoridae). Journal of Invertebrate Pathology, 68(1), 22-27. doi:10.1006/ jipa.1996.0054. O'Callaghan, M., Young, S., Barlow, N., & Jackson, T. (1999). The ecology of grass grub pathogenic Serratia spp. New Zealand pastures. En J. N. Mathiessen (Ed.). Proceedings of the 7th australasian conference on grassland invertebrate ecology, (pp. 85-91). Perth, Australia: csiro Entomology. Ocelotl, J., Sánchez, J., Gómez, I., Tabashnik, B. E., Bravo, A., & Soberón, M. (2017). ABCC2 is associated with Bacillus thuringiensis Cry1Ac toxin oligomerization and membrane insertion in diamondback moth. Scientific Reports, 7, 2386. doi:10.1038/s41598-017-02545-y. Opota, O., Vallet-Gély, I., Vincentelli, R., Kellenberger, C., Iacovache, I., Gonzalez, M. R., … Lemaitre, B. (2011) Monalysin, a novel ß-pore-forming toxin from the Drosophila pathogen Pseudomonas entomophila, contributes to host intestinal damage and lethality. PLoS Pathogens, 7(9): e1002259. doi:10.1371/journal. ppat.1002259. Owuama, C. I. (2001). Entomopathogenic symbiotic bacteria, Xenorhabdus and Photorhabdus of nematodes. World journal of microbiology and biotechnology, 17(5), 505-515. doi:10.1023/A:1011916021378. Park, H.-W., Mangum, C. M., Zhong, H. E., & Hayes, S. R. (2007). Isolation of Bacillus sphaericus with improved efficacy against Culex quinquefasciatus. Journal of the American Mosquito Control Association, 23(4), 478-480. doi:10.2987/5663.1. Pechy-Tarr, M., Borel, N., Kupferschmied, P., Turner, V., Binggeli, O., Radovanovic, D., … Keel, C. (2013). Control and host-dependent activation of insect toxin expression in a root-associated biocontrol pseudomonad. Environmental Microbiology, 15(3), 736-750. doi:10.1111/1462- 2920.12050. Péchy-Tarr, M., Bruck, D. J., Maurhofer, M., Fischer, E., Vogne, C., Henkels, M. D., ... Keel, C. (2008). Molecular analysis of a novel gene cluster encoding an insect toxin in plant-associated strains of Pseudomonas fluorescens. Environmental Microbiology, 10(9), 2368-2386. doi:10.1111/j.1462-2920.2008.01662.x. Pérez-García, G., Basurto-Ríos, R., & Ibarra, J. E. (2010). Potential effect of a putative H-driven promoter on the over expression of the Cry1Ac toxin of Bacillus thuringiensis. Journal of Invertebrate Pathology, 104(2), 140-146. doi:10.1016/j.jip.2010.02.010. Pigott, C. R., & Ellar, D. J. (2007). Role of receptors in Bacillus thuringiensis crystal toxin activity. Microbiology and Molecular Biology Reviews, 71(2), 255-281. doi:10.1128/ mmbr.00034-06. Podgwaite, J. D., & Cosenza, B. J. (1976). A strain of Serratia marcescens pathogenic for larvae of Lymantria dispar: Infectivity and mechanisms of pathogenicity. Journal of Invertebrate Pathology, 27(2), 199-208. doi:10.1016/0022- 2011(76)90146-4. Poinar, G. O., Jr., Wassink, H. J., Leegwater-van der Linden, M. E., & van der Geest, L. P. (1979). Serratia marcescens as a pathogen of tsetse flies. Acta Tropica, 36(3), 223-227. Ravensberg, W. J. (2011). A roadmap to the successful development and commercialization of microbial pest control products for control of arthropods. Berlín, Alemania: Springer Science & Business Media. Raymond, B., Johnston, P. R., Nielsen-LeRoux, C., Lereclus, D., & Crickmore, N. (2010). Bacillus thuringiensis: an impotent pathogen? Trends of Microbioly, 18(5), 189-194. doi:10.1016/j.tim.2010.02.006. Reyes-Ramírez, A., & Ibarra, J. E. (2008). Plasmid patterns of Bacillus thuringiensis type strains. Applied and Environmental Microbiology, 74(1), 125-129. doi:10.1128/ AEM.02133-07. Raymond, B., Johnston, P. R., Nielsen-LeRoux, C., Lereclus, D., & Crickmore, N. (2010). Bacillus thuringiensis: an impotent pathogen? Trends of Microbioly, 18(5), 189-194. doi:10.1016/j.tim.2010.02.006. Rippere, K. E., Tran, M. T., Yousten, A. A., Hilu, K. H., & Klein, M. G. (1998). Bacillus popilliae and Bacillus lentimorbus, bacteria causing milky disease in Japanese beetles and related scarab larvae. International Journal of Systematic and Evolutionary Microbiology, 48, 395-402. doi:10.1099/00207713-48-2-395. Robert, R., Farrar, J., Phyllis, A., Martin, W., & Ridgway, R. (2001). A strain of Serratia marcescens (Enterobacteriaceae) with high virulence per os to larvae of a laboratory colony of the Corn earworm (Lepidoptera: Noctuidae). Journal of Entomological Science, 36(4), 380- 390. doi:10.18474/0749-8004-36.4.380. Robert, L. L., Perich, M. J., Schlein, Y., Jacobson, R. L., Wirtz, R. A., Lawyer, P. G., & Githure, J. I. (1997). Phlebotomine sand fly control using bait-fed adults to carry the larvicide Bacillus sphaericus to the larval habitat. Journal of the American Mosquito Control Association, 13(12), 140-144. Ruffner, B., Pechy-Tarr, M., Ryffel, F., Hoegger, P., Obrist, C., Rindlisbacher, A., ... Maurhofer, M. (2013). Oral insecticidal activity of plant-associated Pseudomonas. Environmental Microbiolgy, 15(3), 751-763. doi:10.1111/ j.1462-2920.2012.02884.x. Santos-Mendoza, M., Ibarra, J. E., Delecluse, A., & Juárez- Pérez, A. (2002). Phylogenetic relationship between the Bacillus thuringiensis type strains, based on the sequence of the flagellin gene. En J. E. Ibarra (Chair) Annual meeting of the society for invertebrate pathology (p. 110). Foz do Iguazú, Brasil: Society for Invertebrate Pathology. Saraka, D., Savin, C., Kouassi, S., Cissé, B., Koffi, E., Cabanel, N., ... Carniel, E. (2017). Yersinia enterocolitica, a neglected cause of human enteric infections in Côte d’Ivoire. PLoS Neglected Tropical Diseases, 11, e0005216. doi:10.1371/ journal.pntd.0005216. Schnepf, E., Crickmore, N., Van Rie, J., Lereclus, D., Baum, J., Feitelson, J., ... Dean, D. H. (1998). Bacillus thuringiensis and its pesticidal crystal proteins. Microbiology and Molecular Biology Reviews, 62(3), 775-806. Sergeant, M., Jarrett, P., Ousley, M., & Morgan, J. A. W. (2003). Interactions of insecticidal toxin gene products from Xenorhabdus nematophilus PMFI296. Applied, and Environmental Microbiology, 69(6), 3344-3349. doi:10.1128/aem.69.6.3344-3349.2003. Shen, X., Hu, H., Peng, H., Wang, W., & Zhang, X. (2013). Comparative genomic analysis of four representative plant growth-promoting rhizobacteria in Pseudomonas. BMC Genomics, 14, 1-20. doi:10.1186/1471-2164-14-271. Shingote, P. R., Moharil, M. P., Dhumale, D. R., Deshmukh, A. G., Jadhav, P. V., Dudhare, M. S., & Satpute, N. S. (2013). Distribution of vip genes, protein profiling and determination of entomopathogenic potential of local isolates of Bacillus thuringiensis. Bt Research, 4(3), 14-20. doi:10.5376/bt.2013.04.0003. Silva-Filha, M. H., Nielsen-LeRoux, C., & Jean-François, C. (1999). Identification of the receptor for Bacillus sphaericus crystal toxin in the brush border membrane of the mosquito Culex pipiens (Diptera: Culicidae). Insect Biochemistry and Molecular Biology, 29(8), 711-721. doi:10.1016/S0965-1748(99)00047-8. Singh, G. J. P., & Gill, S. S. (1988). An electron microscope study of the toxic action of Bacillus sphaericus in Culex quinquefasciatus larvae. Journal of Invertebrate Pathology, 52(2), 237-247. doi:10.1016/0022-2011(88)90131-0. Snitkin, E. S., & Segre, J. A. (2014). Pseudomonas aeruginosa adaptation to human hosts. Nature Genetics, 47, 2. doi:10.1038/ng.3172. Splittstoesser, C. M., Tashiro, H., Lin, S. L., Steinkraus, K. H., & Fiori, B. J. (1973). Histopathology of the European chafer, Amphimallon majalis, infected with Bacillus popilliae. Journal of Invertebrate Pathology, 22(2), 161-167. doi:10.1016/0022-2011(73)90128-6. Splittstoesser, C. M., Tashiro, H., Lin, S. L., Steinkraus, K. H., & Fiori, B. J. (1973). Histopathology of the European chafer, Amphimallon majalis, infected with Bacillus popilliae. Journal of Invertebrate Pathology, 22(2), 161-167. doi:10.1016/0022-2011(73)90128-6. Steinhaus, E. A. (1941). A study of the bacteria associated with thirty species of insects. Journal of Bacteriology, 42(6), 757-790. Steinhaus, E. A. (1975). Disease in a minor chord: being a semihistorical and semibiographical account of a period in science when one could be happily yet seriously concerned with the diseases of lowly animals without backbones, especially the insects. Columbus, EE. UU.: Ohio State University Press. Stucki, G., Jackson, T. A., & Noonan, M. J. (1984). Isolation and characterisation of Serratia strains pathogenic for larvae of the New Zealand grass grub Costelytra zealandica. New Zealand Journal of Science, 27, 255-260. Townsend, R. J., Ferguson, C. M., Proffitt, J. R., Slay, M. W. A., Swaminathan, J., Day, S., … Jackson T. A. (2004). Establishment of Serratia entomophila after application of a new formulation for grass grub control. New Zealand Plant Protection, 57, 10-12. Trought, T. E. T., Jackson, T. A., & French, R. A. (1982). Incidence and transmission of a disease of grass grub (Costelytra zealandica) in Canterbury. New Zealand Journal of Experimental Agriculture, 10(1), 79-82. doi:10 .1080/03015521.1982.10427847. Van der Pas, R., Waddington, C., & Ravensberg, W. (2000). Commercialisation of a microbial pesticide “challenges and constraints”. Bulletin IOBC/WPRS, 23(2), 15-18. Van Frankenhuyzen, K. (2009). Insecticidal activity of Bacillus thuringiensis crystal proteins. Journal of Invertebrate Pathology. 101(1), 1-16. doi:10.1016/j.jip.2009.02.009. Visnovsky, G. A., Smalley, D. J., O'Callaghan, M., & Jackson, T. A. (2008). Influence of culture medium composition, dissolved oxygen concentration and harvesting time on the production of Serratia entomophila, a microbial control agent of the New Zealand grass grub. Biocontrol Science and Technology, 18(1), 87-100. doi:10.1080/09583150701760513. Vodovar, N., Vallenet, D., Cruveiller, S., Rouy, Z., Barbe, V., Acosta, C., … Boccard, F. (2006). Complete genome sequence of the entomopathogenic and metabolically versatile soil bacterium Pseudomonas entomophila. Nature Biotechnology, 24, 673-679. doi:10.1038/nbt1212. Vodovar, N., Vinals, M., Liehl, P., Basset, A., Degrouard, J., Spellman, P., … Lemaitre, B. (2005). Drosophila host defense after oral infection by an entomopathogenic Pseudomonas species. Proceedings of the National Academy of Science of the USA, 102(32), 11414-11419. doi:10.1073/pnas.0502240102. Wahba, M. M. (2000). The influence of Bacillus sphaericus on the biology and histology of Phlebotomus papatasi. Journal of Egyptian Society of Parasitology, 30(1), 315-323. Walker, K., Mendelsohn, M., Matten, S., Alphin, M., & Ave, D. (2003). The role of microbial Bt products in U.S. Crop protection. Journal of New Seeds, 5(1), 31-51. doi:10.1300/J153v05n01_03. Waterfield, N., Hares, M., Yang, G., Dowling, A., & Ffrench-Constant, R. (2005). Potentiation and cellular phenotypes of the insecticidal Toxin complexes of Photorhabdus bacteria. Cellular Microbiology, 7(3), 373- 382. doi:10.1111/j.1462-5822.2004.00467.x. Wermelinger, E. D., Zanuncio, J. C., Rangel, E. F., Cecon, P. R., & Rabinovitch, L. (2000). Toxicity of Bacillus Species to Larvae of Lutzomyia longipalpis (L. & N.) (Diptera: Psychodidae: Phlebotominae). Anais da Sociedade Entomológica do Brasil, 29(3), 609-614. doi:10.1590/ S0301-80592000000300025. Wermelinger, E. D., Zanuncio, J. C., Rangel, E. F., Cecon, P. R., & Rabinovitch, L. (2000). Toxicity of Bacillus Species to Larvae of Lutzomyia longipalpis (L. & N.) (Diptera: Psychodidae: Phlebotominae). Anais da Sociedade Entomológica do Brasil, 29(3), 609-614. doi:10.1590/ S0301-80592000000300025. Xu, D., & Côté, J.-C. (2008). Sequence diversity of Bacillus thuringiensis flagellin (H antigen) protein at the intra-H serotype level. Applied Environmental Microbiology, 74(17), 5524-5532. doi:10.1128/aem.00951-08. Whalon, M. E., & Wingerd, B. A. (2003). Bt: Mode of action and use. Archives of Insect Biochemistry and Physiology, 54(4), 200-211. doi:10.1002/arch.10117. Yang, G., Dowling, A. J., Gerike, U., Ffrench-Constant, R. H., & Waterfield, N. R. (2006). Photorhabdus virulence cassettes confer injectable insecticidal activity against the wax moth. Journal of Bacteriology, 188(6), 2254-2261. doi:10.1128/JB.188.6.2254-2261.2006. Yu, X., Zheng, A., Zhu, J., Wang, S., Wang, L., Deng, Q., ... Li, P. (2011). Characterization of Vegetative Insecticidal Protein vip Genes of Bacillus thuringiensis from Sichuan Basin in China. Current Microbiology, 62(3), 752-757. doi:10.1007/s00284-010-9782-3. Zalunin, I. A., Elpidina, E. N., & Oppert, B. (2015). The role of proteolysis in the biological activity of Bt insecticidal crystal proteins. En M. Soberón, A. Gao & A. Bravo (Eds.), Bt Resistance: Characterization and Strategies for GM Crops Producing Bacillus thuringiensis Toxins (pp. 107-118). Wallingford, Inglaterra: Centre for Agricultural Bioscience International (cabi). doi:10.1079/9781780644370.0107. Zhang, D., De Souza, R. F., Anantharaman, V., Iyer, L. M., & Aravind, L. (2012). Polymorphic toxin systems: Comprehensive characterization of trafficking modes, processing, mechanisms of action, immunity and ecology using comparative genomics. Biology Direct, 7, 18. doi:10.1186/1745-6150-7-18. Zhang, J., Hodgman, T. C., Krieger, L., Schnetter, W., & Schairer, H. U. (1997). Cloning and analysis of the first cry gene from Bacillus popilliae. Journal of Bacteriology, 179(13), 4336-4341. doi:10.1128/jb.179.13.4336-4341. Ainsworth, G. C. (1976). Introduction to the history of mycology. Londres, Reino Unido: Cambridge University Press. Alves, R. T., Bateman, R. P., Gunn, J., Prior, C., & Leather, S. R. (2002). Effects of different formulations on viability and medium-term storage of Metarhizium anisopliae conidia. Neotropical Entomology, 31(1), 91-99. Bassi, A. (1835). Del mal del segno, calcinaccio o moscardino, malattia che affligge i bachi de seta. Recuperado de https:// archive.org/details/bub_gb_0lt4GksHzmAC Barrios, G. J., & Mejía, A. (1996). Production of secondary metabolites by solid-state fermentation. Biotechnology Annual Review, 2, 85-121. Bateman, R., Batt, D., Carey, M., Douro-Kpindou, O., Godonou, I., Jenkins, N. E., ... Paraïso, A. (1994). Progress with the development of Metarhizium flavoviridae for control of locusts and grasshoppers. Bulletin OILB SROP (France), 17(3), 23. Bellon-Maurel, V., Orliaca, O., & Christen, P. (2003). Sensors and measurements in solid state fermentation: a review. Process Biochemistry, 38(6), 881-889. Bellon-Maurel, V., Orliaca, O., & Christen, P. (2003). Sensors and measurements in solid state fermentation: a review. Process Biochemistry, 38(6), 881-889. Brancini, G., Rangel, D., & Braga, G. (2016). Exposure of Metarhizium acridum mycelium to light induces tolerance to UV-B radiation. FEMS Microbiology Letters, 363(6), fnw036. doi:10.1093/femsle/fnw036 Clarkson, J. M., & Charnley, A. K. (1996). New insights into the mechanisms of fungal pathogenesis in insects. Trends in Microbiology, 4(5), 197-203. De Crecy, E., Jaronski, S., Lyons, B., Lyons, T. J., & Keyhani, N. O. (2009). Directed evolution of a filamentous fungus for thermotolerance. bmc Biotechnology, 9(1), 74. doi:10.1186/1472-6750-9-74. De Faria, M. R., & Wraight, S. P. (2007). Mycoinsecticides and mycoacaricides: a comprehensive list with worldwide coverage and international classification of formulation types. Biological Control, 43(3), 237-256. Dos Santos, M. M., Da Rosa, A. S., Dal’Boit, S., Mitchell, D. A., & Krieger, N. (2004). Thermal denaturation: is solid-state fermentation really a good technology for the production of enzymes? Bioresource Technology, 93(3), 261-268. Ferron, P. (1978). Biological control of insect pest by entomogenous fungi. Annual Review of Entomology, 23(1), 409-442. Gillespie, A. T., & Claydon, N. (1989). The use of entomogenous fungi for pest control and the role of toxins in pathogenesis. Pest Management Science, 27(2), 123-130. Goettel, M. S., Inglis, G. D., & Wraight, S. P. (2000). Fungi. En L. A. Lacey & H. K. Kaya (Eds.), Field manual of techniques in invertebrate pathology (pp. 223-248). Dordrecht, Holanda: Springer. Hajek, A., & St. Leger, R. (1994). Interactions between fungal pathogens and insect hosts. Annual Review of Entomology, 39(1), 293-322. Hedgecock, S., Moore, D., Higgins, P. M., & Prior, C. (1995). Influence of moisture content on temperature tolerance and storage of Metarhizium flavoviride conidia in an oil formulation. Biocontrol Science and Technology, 5(3), 371-378. Jackson, M. A., Dunlap, C. A., & Jaronski, S. T. (2010). Ecological considerations in producing and formulating fungal entomopathogens for use in insect biocontrol. BioControl, 55(1), 129-145. Jaronski, S., & Jackson, M. A. (2012). Mass production of entomopathogenic hypocreales. En L. A. Lacey (Ed.), Manual of Techniques in Invertebrate Pathology (pp. 255- 284). Nueva York, EE. UU.: Academic Press. Kachatourians, G. (1991). Physiology and genetics of entomopathogenic fungi. En D. K. Arora, L. Ajello & K. G. Mukerji (Eds.), Handbook of Applied Micology: Humans, animals and insects (Vol. 2, pp. 548-611). Nueva York, EE. UU.: CRC Press. Kim, J. S., Je, Y. H., Woo, E. O., & Park, J. S. (2011). Persistence of Isaria fumosorosea (Hypocreales: Cordycipitaceae) SFP- 198 conidia in corn oil-based suspension. Mycopathologia, 171(1), 67-75. Koppert Biological Systems. (2014). Material safety data sheet. Mycotal. Recuperado de https://www.koppert.com/ fileadmin/Koppert/MSD/EN/MYCOTAL_MSDS__ EN__04Dec2013.versie_4.3.pdf. Lacey, L., Grzywacz, D., Shapiro-Ilan, D., Frutos, R., Brownbridge, M., & Goettel, M. (2015). Insect pathogens as biological control agents: back to the future. Journal of Invertebrate Pathology, 132, 1-41. Leland, J. E., Mullins, D. E., Vaughan, L. J., & Warren, H. L. (2005). Effects of media composition on submerged culture spores of the entomopathogenic fungus, Metarhizium anisopliae var. acridum. Part 2: Effects of media osmolality on cell wall characteristics, carbohydrate concentrations, drying stability, and pathogenicity. Biocontrol Science and Technology, 15(4), 393-409. Lord, J. C. (2005). From Metchnikoff to Monsanto and beyond: the path of microbial control. Journal of Invertebrate Pathology, 89(1), 19-29. Magan, N. (2007). Fungi in extreme environments. En C. Kubicek & I. S. Druzhinina (Eds.), Environmental and Microbial Relationships. The Mycota (vol. 4, pp. 85-103). Berlín, Alemania: Springer-Verlag. Manpreet, S., Sawraj, S., Sachin, D., Pankaj, S., & Banerjee, U. (2005). Influence of process parameters on the production of metabolites in solid-state fermentation. Malaysian Journal of Microbiology, 2(1), 1-9. Mitchell, D. A., Von Meien, O. F., & Krieger, N. (2003). Recent developments in modeling of solid-state fermentation: heat and mass transfer in bioreactors. Biochemical Engineering Journal, 13(2-3), 137-147. Moore, D., Higgins, P., & Lomer, C. (1996). Effects of simulated and natural sunlight on the germination of conidia of Metarhizium flavoviride Gams and Rozsypal and interactions with temperature. Biocontrol Science and Technology, 6(1), 63-76. Moore, D., Reed, M., Le Patourel, G., Abraham, Y., & Prior, C. (1992). Reduction of feeding by the desert locust, Schistocerca gregaria, after infection with Metarhizium flavoviride. Journal of Invertebrate Pathology, 60(3), 304-307. Moscardi, F. (1999). Assessment of the application of baculoviruses for control of Lepidoptera. Annual Review of Entomology, 44(1), 257-289. doi:10.1146/annurev. ento.44.1.257. Nicholson, W. L., Schuerger, A. C., & Setlow, P. (2005). The solar uv environment and bacterial spore uv resistance: considerations for Earth-to-Mars transport by natural processes and human spaceflight. Mutation Research/ Fundamental and Molecular Mechanisms of Mutagenesis, 571(1-2), 249-264. Olson, S. (2015). An analysis of the biopesticide market now and where it is going. Outlooks on Pest Management, 26(5), 203-206. doi:10.1564/v26_oct_04. Pandey, A. (1992). Recent process developments in solidstate fermentation. Process Biochemistry, 27(2), 109-117. Prabhakar, A., Krishnaiah, K., Janaun, J., & Bono, A. (2005). An overview of engineering aspects of solid state fermentation. Malaysian Journal of Microbiology, 1(2), 10- 16. Prior, C. (1995). Advances in mycopesticide formulation and application. En R. Hall (Ed.),The Biological Control of Crop Pests in the Caribbean: Report of a Workshop Held in Roseau, Dominica (pp. 17-22). Londres, Reino Unido: Commonwealth Secretariat. Rangel, D. E., Braga, G. U., Anderson, A. J., & Roberts, D. W. (2005). Variability in conidial thermotolerance of Metarhizium anisopliae isolates from different geographic origins. Journal of Invertebrate Pathology, 88(2), 116-125. Rangel, D. E., Fernandes, É. K., Braga, G. U., & Roberts, D. W. (2011). Visible light during mycelial growth and conidiation of Metarhizium robertsii produces conidia with increased stress tolerance. FEMS Microbiology Letters, 315(2), 81-86. Sabaratnam, S., & Traquair, J. A. (2002). Formulation of a Streptomyces biocontrol agent for the suppression of Rhizoctonia damping-off in tomato transplants. Biological Control, 23(3), 245-253. Saxena, D., Ben-Dov, E., Manasherob, R., Barak, Z. E., Boussiba, S., & Zaritsky, A. (2002). A uv tolerant mutant of Bacillus thuringiensis subsp. kurstaki producing melanin. Current Microbiology, 44(1), 25-30. Shahid, A. A., Rao, Q. A., Bakhsh, A., & Husnain, T. (2012). Entomopathogenic fungi as biological controllers: new insights into their virulence and pathogenicity. Archives of Biological Sciences, 64(1), 21-42. Smits, N., & Sinoquet, H. (2004). Fungal bioinsecticide survival in response to uvb in 3D digitized grapevine canopies: a simulation study. En C. Godin, J. Hanan, W. Kurt, A. Lacointe, A. Takenaka, P. Prusinkiewicz, … B. Andrieu (Eds.), Proceedings of the 4th International Workshop on Functional-Structural Plant Models (pp. 7-11). Montpellier, Francia: UMR AMAP Steinhaus, E. (1956). Microbial control —the emergence of an idea. A brief history of insect pathology through the nineteenth century. Hilgardia, 26(2), 107-160. Van Lenteren, J. C., Bolckmans, K., Köhl, J., Ravensberg, W. J., & Urbaneja, A. (2017). Biological control using invertebrates and microorganisms: plenty of new opportunities. BioControl, 62(1), 1-21. doi:10.1007/ s10526-017-9801-4. Vega, F. E., Jackson, M. A., Mercadier, G., & Poprawski, T. J. (2003). The impact of nutrition on spore yields for various fungal entomopathogens in liquid culture. World Journal of Microbiology and Biotechnology, 19(4), 363-368. Villamizar, L., Grijalba, E., Zuluaga, V., Gómez, M., & Cotes, A. M. (2009). Evaluation of some parameters influencing the activity of a fungal biocontrol agent used for Bemisia tabaci control. IOBCWPRS Bulletin, 45, 327-330. Wang, C., & Wang, S. (2017). Insect pathogenic fungi: genomics, molecular interactions and genetic improvements. Annual Review of Entomology, 62, 73-90. doi:10.1146/annurev-ento-031616-035509. Wang, S., Miao, X., Zhao, W., Huang, B., Fan, M., Li, Z., & Huang, Y. (2005). Genetic diversity and population structure among strains of the entomopathogenic fungus, Beauveria bassiana, as revealed by inter-simple sequence repeats (issr). Mycological Research, 109(12), 1364-1372. Zhang, S., & Xia, Y. (2008). Identification of genes preferentially expressed during microcycle conidiation of Metarhizium anisopliae using suppression subtractive hybridization. FEMS Microbiology Letters, 286(1), 71-77. Zhao, J., Yao, R., Wei, Y., Huang, S., Keyhani, N.O., & Huang, Z. (2016). Screening of Metarhizium anisopliae uv-induced mutants for faster growth yields a hypervirulent isolate with greater uv and thermal tolerances. Applied Microbiology and Biotechnology, 100(21), 9217-9228. Zimmermann, G. (2008). The entomopathogenic fungi Isaria farinosa (formerly Paecilomyces farinosus) and the Isaria fumosorosea species complex (formerly Paecilomyces fumosoroseus): biology, ecology and use in biological control. Biocontrol Science and Technology, 18(9), 865-901. Adamo, S. (2009). The impact of physiological state on immune function in insects. En: J. Rolff y S. E. Reynolds (Eds.), Insect Infection and Immunity: Evolution, Ecology and Mechanisms (pp. 173-186). Nueva York, EE. UU.: Oxford University Press. Andermatt Biocontrol. (s. f.). Our products. Recuperado de http://www.andermattbiocontrol.com. Arakawa, T. (2003). Chitin synthesis inhibiting antifungal agents promote nucleopolyhedrovirus infection in silkworm, Bombyx mori (Lepidoptera: Bombycidae) larvae. Journal of Invertebrate Pathology, 83(3), 261-263. Arakawa, T., Furuta, Y., Miyazawa, M., & Kato, M. (2002). Flufenoxuron, an insect growth regulator, promotes peroral infection by nucleopolyhedrovirus (BmNPV) budded particles in the silkworm, Bombyx mori L. Journal of Virological Methods, 100(1-2), 141-147. Arora, R., & Shera, P. S. (2014). Genetic improvement of biocontrol agents for sustainable pest management. En: K. Sahayaraj (Ed.), Basic and applied aspects of biopesticides (pp. 255-285). Nueva Delhi, India: Springer. Arrizubieta, M., Simón, O., Caballero, P., & Williams, T. (2015). Novel genotypes of the Helicoverpa armigera single nucleopolyhedrovirus (hearSNPV), method for the production thereof, and use of same as a biological control agent. World Intellectual Property Organization (wipo) Patent WO/2015/197900A1. Recuperado de http:// www.sumobrain.com/patents/wipo/Novel-genotypeshelicoverpa- armigera-single/WO2015197900A1.pdf. Arthurs, S., & Lacey, L. (2004). Field evaluation of commercial formulations of the codling moth granulovirus: persistence of activity and success of seasonal applications against natural infestations of codling moth in Pacific Northwest apple orchards. Biological Control, 31(3), 388-397. Recuperado de https://pubag.nal.usda.gov/ download/9802/PDF. Asser-Kaiser, S., Fritsch, E., Undorf-Spahn, K., Kienzle, J., Eberle, K., Gund, N., … Jehle, J. A. (2007). Rapid emergence of baculovirus resistance in codling moth due to dominant, sex-linked inheritance. Science, 317(5846), 1916-1918. doi:10.1126/science.1146542. Arthurs, S., Lacey, L., & Fritts R. Jr. (2005). Optimizing use of codling moth granulovirus: effects of application rate and spraying frequency on control of codling moth larvae in Pacific Northwest apple orchards. Journal of Economic Entomology, 98(5), 1459-1468. Recuperado de https:// naldc.nal.usda.gov/download/1556/PDF. Barrera, G. P. (2013). Spodoptera frugiperda nucleopolyhedrovirus: the basis for a biopesticide product in Colombia (tesis doctoral). Universidad Pública de Navarra, Pamplona, España. Recuperado de http://academica-e.unavarra.es/xmlui/bits tream/handle/2454/16983/Tesis_Barrera.pdf?sequence=4. Barrera, G. P., Belaich, M. N., Patarroyo, M. A., Villamizar, L. F., & Ghiringhelli, P. D. (2015). Evidence of recent interspecies horizontal gene transfer regarding nucleopolyhedrovirus infection of Spodoptera frugiperda. BMC Genomics, 16, 1008. doi:10.1186/s12864-015-2218-5. Barrera Cubillos, G. P., Gómez-Valderrama, J. A., & Villamizar Rivero, L. F. (2017). Efficacy of microencapsulated nucleopolyhedroviruses from Colombia as biological insecticides against Spodoptera frugiperda (Lepidoptera: Noctuidae). Acta Agronómica, 66(2), 267-274. doi:10. 15446/acag.v66n2.54354. Battu, G., Arora, R., & Dhaliwal, G. (2002). Prospects of baculoviruses in integrated pest management. In: O. Koul and G. S. Dhalival (Eds.), Microbial biopesticides (pp. 215- 238). Londres, Inglaterra: Taylor & Francis. Bassi, A. (1835). And the sign of the plaster or disease that dormice afflicts bugs daseta Part-I., Tip Terica Orcesi Lod, pp. 1-67. Bell, R. A., Owens, C. D., Shapiro, M., Tardif, J. R. (1981). Mass rearing and virus production. Development of Mass- Rearing Technology. En C. Doane and M. L. McManus (Eds.), The gypsy moth: research toward integrated pest management (pp. 599-655). Recuperado de https://naldc. nal.usda.gov/download/CAT82474520/PDF. Behle, R. W., & Popham, H. J. (2012). Laboratory and field evaluations of the efficacy of a fast-killing baculovirus isolate from Spodoptera frugiperda. Journal of Invertebrate Pathology 109(2), 194-200. doi:10.1016/j. jip.2011.11.002. Bellotti, A. C., Arias, B., & Guzmán, O. (1992). Biological control of the cassava hornworm Erinnyis ello (Lepidoptera: Sphingidae). The Florida Entomologist, 75(4), 506-515. doi:10.2307/3496132. Benz, G. A. (1986). Introduction: historical perspectives. En R. R. Granados, & B. Federici (Eds.). Biology of Baculoviruses (Vol. I; pp. 1-36). Boca Ratón, EE. UU.: crc Press. Bergold, G. H. (1947). Die isolierung des polyeder-virus und die natur der polyeder. Zeitschrift für Naturforschung, 2(3- 4), 122-143. doi:10.1515/znb-1947-3-408. Berling, M., Blachere-Lopez, C., Soubabere, O., Lery, X., Bonhomme, A., Sauphanor, B., & Lopez-Ferber, M. (2009). Cydia pomonella granulovirus genotypes overcome virus resistance in the codling moth and improve virus efficiency by selection against resistant hosts. Applied and Environmental Microbiology, 75(4), 925-930. Berling, M., Sauphanor, B., Bonhomme, A., Siegwart, M., & Lopez Ferber, M. (2013). A single sex-linked dominant gene does not fully explain the codling moth's resistance to granulovirus. Pest Management Science, 69(11), 1261- 1266. doi:10.1002/ps.3493. Bernal, A., Simón, O., Williams, T., & Caballero, P. (2014). Stage-specific insecticidal characteristics of a nucleopolyhedrovirus isolate from Chrysodeixis chalcites enhanced by optical brighteners. Pest Management Science, 70(5), 798-804. doi:10.1002/ps.3617. Bhandari, K., Sood, P., Mehta, P. K., Choudhary, A., & Prabhakar, C. S. (2009). Effect of botanical extracts on the biological activity of granulosis virus against Pieris brassicae. Phytoparasitica, 37(4), 317-322. Biedma, M. E., Salvador, R., Ferrelli, M. L., Sciocco-Cap, A., & Romanowski, V. (2015). Effect of the interaction between Anticarsia gemmatalis multiple nucleopolyhedrovirus and Epinotia aporema granulovirus, on A. gemmatalis (Lepidoptera: Noctuidae) larvae. Biological Control, 91, 17-21. doi:10.1016/j.biocontrol.2015.07.006. Bideshi, D., Bigot, Y., Federici, B., & Spears, T. (2010). Ascoviruses. En S. Asgari & K. Johnson (Eds.), Insect virology (pp. 3-34). Norfolk, Reino Unido: Caister Academic Press. Bosch, A., Pintó, R. M., & Abad, F. X. (2006). Survival and transport of enteric viruses in the environment. En S. M. Mgoyal (Ed.), Viruses in foods (pp. 151-187). Recuperado de http://www.ub.edu/virusenterics/wp-content/ uploads/2013/06/GOY6.pdf. Carballo, A., Murillo, R., Jakubowska, A., Herrero, S., Williams, T., & Caballero, P. (2017). Co-infection with iflaviruses influences the insecticidal properties of Spodoptera exigua multiple nucleopolyhedrovirus occlusion bodies: Implications for the production and biosecurity of baculovirus insecticides. Plos One 12(5), e0177301. doi:10.1371/journal.pone.0177301. Carlson, J., Suchman, E., & Buchatsky, L. (2006). Densoviruses for control and genetic manipulation of mosquitoes. Advances in Virus Research, 68, 361-392. doi:10.1016/S0065-3527(06)68010-X. Cisneros, J., Pérez, J. A., Penagos, D. I., Ruiz, J., Goulson, D., Caballero, P., … Williams, T. (2002). Formulation of a nucleopolyhedrovirus with boric acid for control of Spodoptera frugiperda (Lepidoptera: Noctuidae) in maize. Biological Control, 23(1), 87-95. doi:10.1006/ bcon.2001.0985 Combes, C. (2001). L'art d'être parasite: les associations du vivant. París, Francia: Flammarion. Coulibaly, F., Chiu, E., Ikeda, K., Gutmann, S., Haebel, P., Schulze-Briese, C., … Metcalf, P. (2007). The molecular organization of cypovirus polyhedra. Nature, 446(7131), 97-101. Cuartas, P., Villamizar, L., Espinel, C., & Cotes, A. M. (2009). Infección de granulovirus nativos sobre Tecia solanivora y Phthorimaea operculella (Lepidoptera: Gelechiidae). Revista Colombiana de Entomología, 35(2), 122-129. Recuperado de http://www.scielo.org.co/pdf/rcen/ v35n2/v35n2a03.pdf. Cheng, X. W., Carner, G. R., & Arif, B. M. (2000). A new ascovirus from Spodoptera exigua and its relatedness to the isolate from Spodoptera frugiperda. Journal of General Virology, 81, 3083-3092. Recuperado de http:// www.microbiologyresearch.org/docserver/fulltext/ jgv/81/12/0813083a.pdf?expires=1516921147&id=id &accname=guest&checksum=3F04092C76D1AAB9D C45718EC18176CA. Cherry, A., Parnell, M., Grzywacz, D., & Jones, K. (1997). The Optimization ofin VivoNuclear Polyhedrosis Virus Production in Spodoptera exempta (Walker) and Spodoptera exigua (Hübner). Journal of Invertebrate Pathology, 70(1), 50-58. Del Rincón, M., & Ibarra, J. (2011). Entomopathogenic Viruses. En: N. Rosas (Ed.), Biological Control of Insect Pests (pp. 29-64). Houston, EE. UU.: Studium Press llc. Derksen, A. C., & Granados, R. R. (1988). Alteration of a lepidopteran peritrophic membrane by baculoviruses and enhancement of viral infectivity. Virology, 167, 242-250. Dougherty, E. M., Narang, N., Loeb, M., Lynn, D. E., & Shapiro, M. (2006). Fluorescent brightener inhibits apoptosis in baculovirus-infected gypsy moth larval midgut cells in vitro. Biocontrol Science and Technology, 16(2), 157-168. Eberle, K. E., & Jehle, J. A. (2006). Field resistance of codling moth against Cydia pomonella granulovirus (CpGV) is autosomal and incompletely dominant inherited. Journal of Invertebrate Pathology, 93(3), 201-206. Ehlers, R. U. (Ed.). (2011). Regulation of Biological Control Agents. Dordrecht, Holanda: Springer. El-Far, M., Li, Y., Fédière, G., Abol-Ela, S., & Tijssen, P. (2004). Lack of infection of vertebrate cells by the densovirus from the maize worm Mythimna loreyi (MlDNV). Virus Research, 99(1), 17-24. Erez, Z., Steinberger-Levy, I., Shamir, M., Doron, S., Stokar-Avihail, A., Peleg, Y., … Albeck, S. (2017). Communication between viruses guides lysis–lysogeny decisions. Nature, 541, 488-493. Espinel-Correal, C., Léry, X., Villamizar, L., Gómez, J., Zeddam, J. L., Cotes, A. M., & López-Ferber, M. (2010). Genetic and biological analysis of Colombian Phthorimaea operculella granulovirus isolated from Tecia solanivora (Lepidoptera: Gelechiidae). Applied and Environmental Microbiology, 76(22), 7617-7625. Falcon, L. A. (1976). Problems associated with the use of arthropod viruses in pest control. Annual Review of Entomology, 21, 305-324. Federici, B. A., Bideshi, D. K., Tan, Y., Spears, T., & Bigot, Y. (2009). Ascoviruses: superb manipulators of apoptosis for viral replication and transmission. En J. L. Van Etten (Ed.). Lesser Known Large dsDNA Viruses (pp. 171-196). Berlín, Alemania: Springer. Federici, B., & Bigot, Y. (2003). Origin and evolution of polydnaviruses by symbiogenesis of insect dna viruses in endoparasitic wasps. Journal of Insect Physiology, 49(5), 419-432. Federici, B. A., & Govindarajan, R. (1990). Comparative histopathology of three ascovirus isolates in larval noctuids. Journal of Invertebrate Pathology, 56(3), 300-311. Friedberg, E. C., Walker, G. C., & Siede, W. (1995). dna repair and mutagenesis. Washington, EE. UU.: ASM Press. Federici, B. A. (1993). Viral pathobiology in relation to insect control. En N. E. Beckage, S. N. Thompson, & B. A. Federici. Parasites and pathogens of insects (Vol. 2, Pathogen, pp. 81-101). San Diego, EE. UU.: Academic Press. Fritsch, E., Undorf-Spahn, K., Kienzle, J., Zebitz, C. P., & Huber, J. (2005). Apfelwickler-granulovirus: erste Hinweise auf Unterschiede in der Empfindlichkeit lokaler Apfelwickler-populationen. Nachrichtenblatt des Deutschen Pflanzenschutzdienstes, 57(2), 29-34. Giri, L., Feiss, M. G., Bonning, B. C., & Murhammer, D. W. (2012). Production of baculovirus defective interfering particles during serial passage is delayed by removing transposon target sites in fp25k. Journal of General Virology, 93(Pt 2), 389-399. doi:10.1099/vir.0.036566-0. Gómez, J., Guevara, J., Cuartas, P., Espinel, C., & Villamizar, L. (2013). Microencapsulated Spodoptera frugiperda nucleopolyhedrovirus: insecticidal activity and effect on arthropod populations in maize. Biocontrol Science and Technology, 23(7), 829-846. Gómez, J., Moreno, C., Vega, K., Cotes, A., & Villamizar, L. (2011). Formulation effect over insecticidal activity of Phthorimaea operculella granulovirus VG003 for controlling Tecia solanivora. IOBC/WPRS Bulletin, 66, 441-445. Gómez, J. A., Barrera, G., López-Ferber, M., Belaich, M., Ghiringhelli, P., & Villamizar, L. (2017). Potential of betabaculoviruses to control the tomato leafminer Tuta absoluta (Meyrick). Journal of Applied Entomology, 142(1- 2), 67-77. Goto, C., Mukawa, S., & Mitsunaga, T. (2015). Two Year Field Study to Evaluate the Efficacy of Mamestra brassicae Nucleopolyhedrovirus Combined with Proteins Derived from Xestia c-nigrum Granulovirus. Viruses, 7(3), 1062- 1078. doi:10.3390/v7031062. Goulson, D., Martínez, A.-M., Hughes, W. O., & Williams, T. (2000). Effects of optical brighteners used in biopesticide formulations on the behavior of pollinators. Biological Control, 19(3), 232-236. Recuperado de http://citeseerx. ist.psu.edu/viewdoc/download?doi=10.1.1.418.8527&r ep=rep1&type=pdf. Grison, P., Vago, C., & Maury, R. (1959). La lutte contre la processionnaire du pin “Thaumetopoca pityocampa” Schiff dans le massif du ventoux. Essai d'utilisation pratique d'un virus spécifique. Revue Forestière Française, 5, 353- 370. Recuperado de http://hdl.handle.net/2042/27499. Gröner, A. (1986). Specificity and safety of baculoviruses. En: R. R. Granados & B. Federici (Eds.), The Biology of Baculoviruses. (Vol. I, Biological Properties and Molecular Biology, pp. 177-202). Boca Ratón, EE. UU.: CRC Press. Guo, H., Fang, J., Wang, J., Zhong, W., & Liu, B. (2007). Interaction of Xestia c-nigrum granulovirus with peritrophic matrix and Spodoptera litura nucleopolyhedrovirus in Spodoptera litura. Journal of Economic Entomology, 100(1), 20-25. Recuperado de http://ipp.jaas.ac.cn/Article/ UploadFiles/200907/2009072310303981.pdf. Hauschild, R. (2011). Facilitations in the regulation of plant protection products containing baculoviruses. En R. Ehlers (Ed.), Regulation of Biological Control Agents (pp. 259-266). Dordrecht, Holanda: Springer. Hoffmann-Campo, C. B., Moscardi, F., Corrêa-Ferreira, B. S., Oliveira, L. J., Sosa-Gómez, D. R., Panizzi, A. R., ... Oliveira, E. D. (2000). Pragas da soja no Brasil e seu manejo integrado. Recuperado de https://www.agencia.cnptia. embrapa.br/Repositorio/circtec30_000g46xpyyv02wx5o k0iuqaqkbbpq943.pdf. Hoover, K., Humphries, M. A., Gendron, A. R., & Slavicek, J. M. (2010). Impact of viral enhancin genes on potency of Lymantria dispar multiple nucleopolyhedrovirus in L. dispar following disruption of the peritrophic matrix. Journal of Invertebrate Pathology, 104(2010), 150-152. Recuperado de https://pdfs.semanticscholar.org/13d3/3cd93ea157b8f2bc278ed906fbc123d871b5.pdf. Huber, J. (1986). Use of baculoviruses in pest management programmes. En: R. R. Granados, & B. Federici (Eds.), The Biology of Baculoviruses. (Vol. ii, Practical Application for Insect Control, pp. 181-202). Boca Raton, EE. UU.: CRC Press. Hukuhara, T., & Wijonarko, A. (2001). Enhanced fusion of a nucleopolyhedrovirus with cultured cells by a virus enhancing factor from an entomopoxvirus. Journal of Invertebrate Pathology, 77(1), 62-67. Ignoffo, C. M, Hostetter, D. L., Sikorowski, P. P., Sutter, G., & Brooks, W. M. (1977). Inactivation of representative species of entomopathogenic viruses, a bacterium, fungus and protozoan by an ultraviolet light source. Environmental Entomology, 6(3), 411-415. International Committee on Taxonomy of Viruses (ictv). (2016). Virus taxonomy: 2016 Release. Recuparado de https://talk.ictvonline.org/taxonomy. Ince, I. A., Demir, I., Demirbag, Z., & Nalcacioglu, R. (2007). A cytoplasmic polyhedrosis virus isolated from the pine processionary caterpillar, Thaumetopoea pityocampa. Journal of Microbiology and Biotechnology, 17(4), 632-637. Ishimori, N. (1934). Contribution à l'étude de la grasserie du ver a soie (Bombyx mori). Comptes Rendus des Seances de la Societe de Biologie et de ses filiales, 116, 1169-1170. Jehle, J., Schulze-Bopp, S., Undorf-Spahn, K., & Fritsch, E. (2017). Evidence for a second type of resistance against Cydia pomonella Granulovirus in Field populations of codling moths. Applied and Environmental Microbiology, 83(2), e02330-02316. doi:10.1128/AEM.02330-16. Kelly, D. (1982). Baculovirus replication. Journal of General Virology, 63, 1-13. Jehle, J. A., Lange, M., Wang, H., Hu, Z., Wang, Y., & Hauschild, R. (2006). Molecular identification and phylogenetic analysis of baculoviruses from Lepidoptera. Virology, 346(1), 180-193. doi:10.1016/j.virol.2005.10.032. Kirby, W., & Spencer, W. (1826). An introduction to entomology. Londres, Inglaterra: Longman, Hurst, Rees, Orme, and Borwn. Komárek, J., & Breindl, V. (1924). Die Wipfelkrankheit der Nonne und der Erreger derselben. Journal of Applied Entomology, 10(1), 99-162. Kozuma, K., & Hukuhara, T. (1994). Fusion characteristics of a nuclear polyhedrosis virus in cultured cells: time course and effect of a synergistic factor and pH. Journal of Invertebrate Pathology, 63(1), 63-67. doi:10.1006/ jipa.1994.1010. Kruger, D., Schneck, P., & Gelderblom, H. (2000). Helmut Ruska and the visualisation of viruses. The Lancet, 355(9216), 1713-1717. Lacey, L., Grzywacz, D., Shapiro-Ilan, D., Frutos, R., Brownbridge, M., & Goettel, M. (2015). Insect pathogens as biological control agents: back to the future. Journal of Invertebrate Pathology, 132, 1-41. doi:10.1016/j. jip.2015.07.009. LeConte, J. (1874). Hints for the promotion of economic entomology. Proceedings of the American Association for the Advancement of Science, 22, 10-22. Lasa, R., Pagola, I., Ibanez, I., Belda, J. E., Williams, T., & Caballero, P. (2007). Efficacy of Spodoptera exigua multiple nucleopolyhedrovirus as a biological insecticide for beet armyworm control in greenhouses of southern Spain. Biocontrol Science and Technology, 17(3), 221-232. doi:10.1080/09583150701211335. Lepore, L. S., Roelvink, P. R., & Granados, R. R. (1996). Enhancin, the granulosis virus protein that facilitates nucleopolyhedrovirus (npv) infections, is a metalloprotease. Journal of Invertebrate Pathology, 68(2), 131-140. doi:10.1006/jipa.1996.0070. Lewis, F. (1981). Gypsy moth nuclepolyhedrosis virus. En C. Doane, & M. L. McManus (Eds.), The gypsy moth: research toward integrated pest management (pp. 454-455). Recuperado de https://naldc.nal.usda.gov/download/ CAT82474520/PDF. Linley, J., & Nielsen, H. (1968). Transmission of a mosquito iridescent virus in Aedes taeniorhynchus: I. Laboratory experiments. Journal of Invertebrate Pathology, 12(1), 7-16. Lipsont, S. M., & Stotzky, G. (1984). Effect of proteins on reovirus adsorption to clay minerals. Applied and Environmental Microbiology, 48(3), 525-530. López-Ferber, M., Simón, O., Williams, T., & Caballero, P. (2003). Defective or effective? Mutualistic interactions between virus genotypes. Proceedings of the Royal Society of London B: Biological Sciences, 270(1530), 2249-2255. doi:10.1098/rspb.2003.2498. Marina, C. F., Feliciano, J. M., Valle, J., & Williams, T. (2000). Effect of temperature, pH, ion concentration, and chloroform treatment on the stability of invertebrate iridescent virus 6. Journal of Invertebrate Pathology, 75(1), 91-94. Martínez, A. M., Simón, O., Williams, T., & Caballero, P. (2003). Effect of optical brighteners on the insecticidal activity of a nucleopolyhedrovirus in three instars of Spodoptera frugiperda. Entomologia Experimentalis et Applicata, 109(2), 139-146. Recuperado de http:// citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.485. 406&rep=rep1&type=pdf. McWilliam, A. (2006). Environmental impact of baculoviruses. Recuperado de http://www.fao.org/docs/eims/upload/ agrotech/2003/R7299_FTR_anx3.pdf. Miele, S. A. B., Garavaglia, M. J., Belaich, M. N., & Ghiringhelli, P. D. (2011). Baculovirus: molecular insights on their diversity and conservation. International Journal of Evolutionary Biology, 2011, 379424. doi:10.4061/2011/379424. Miller, L. K. (1997). The Viruses: The baculoviruses. Nueva York, EE. UU.: Plenum Press. Mitsuhashi, W. (2009). Recent advances in studies for the application of a protein produced by entomopoxviruses (poxviridae) for insect-pest control. Japan Agricultural Research Quarterly jarq, 43(4), 289-294. Recuperado de https://www.jircas.go.jp/sites/default/files/publication/ jarq/43-04-03_0.pdf. Mitsuhashi, W., & Sato, M. (2000). Enhanced infection of a nucleopolyhedrovirus in a lepidopteran pest (Spilosoma imparilis) by spindles of a coleopteran entomopoxvirus (epv) (Anomala cuprea epv). Journal of Forest Research, 5(4), 285-287. doi:10.1007/BF02767123. Morales, L., Moscardi, F., Sosa-Gómez, D. R., Paro, F. E., & Soldorio, I. L. (2001). Fluorescent brighteners improve Anticarsia gemmatalis (Lepidoptera: Noctuidae) nucleopolyhedrovirus (AgMNPV) activity on AgMNPVsusceptible and resistant strains of the insect. Biological Control, 20(3), 247-253. doi:10.1006/bcon.2000.0904. Mori, H., & Metcalf, P. (2010). Cypoviruses. En S. Asgari, & K. N. Johnson (Eds.), Insect virology (pp. 307-323). Haverhill, Reino Unido: Caister Academic Press. Moscardi, F. (1989). Use of viruses for pest control in Brazil: the case of the nuclear polyhedrosis virus of the soybean caterpillar, Anticarsia gemmatalis. Memórias do Instituto Oswaldo Cruz, 84(3), 51-56. Moscardi, F. (1999). Assessment of the application of baculoviruses for control of Lepidoptera. Annual Review of Entomology, 44, 257-289. doi:10.1146/annurev. ento.44.1.257. Moscardi, F., de Souza, M. L., de Castro, M. E. B., Moscardi, M. L., & Szewczyk, B. (2011). Baculovirus pesticides: present state and future perspectives. En I. Ahmad, F. Ahmad, & J. Pichtel (Eds.), Microbes and microbial technology (pp. 415-445). Nueva York, EE. UU.: Springer. Mukawa, S., & Goto, C. (2007). Enhancement of nucleopolyhedrovirus infectivity against Mamestra brassicae (Lepidoptera: Noctuidae) by proteins derived from granulovirus and a fluorescent brightener. Journal of Economic Entomology, 100(4), 1075-1083. Mukawa, S., & Goto, C. (2010). Mamestra brassicae nucleopolyhedrovirus infection and enhancing effect of proteins derived from Xestia c-nigrum granulovirus in larvae of Mamestra brassicae and Helicoverpa armigera (Lepidoptera: Noctuidae) on cabbage. Journal of Economic Entomology, 103(2), 257-264. Mukawa, S., & Goto, C. (2011). Enhancing effect of proteins derived from Xestia c-nigrum granulovirus on Mamestra brassicae nucleopolyhedrovirus infection in larvae of Autographa nigrisigna (Lepidoptera: Noctuidae) on cabbage. Applied Entomology and Zoology, 46(1), 55-63. Murhammer, D. W. (Ed.). (2007). Baculovirus and insect cell expression protocols. Recuperado de https://link.springer. com/book/10.1007%2F978-1-59745-457-5. Nalcacioglu, R., Muratoğlu, H., Yeşilyurt, A., Van Oers, M. M., Vlak, J. M., & Demirbağ, Z. (2016). Enhanced insecticidal activity of Chilo iridescent virus expressing an insect specific neurotoxin. Journal of Invertebrate Pathology, 138, 104-111. Nazir, J., Haumacher, R., Ike, A. C., & Marschang, R. E. (2011). Persistence of Avian Influenza Viruses in Lake Sediment, Duck Feces, and Duck Meat. Applied and Environmental Microbiology, 77(14), 4981-4985. doi:10.1128/AEM.00415-11. Nealson, K., & Hastings, J.W. (1979). Bacterial bioluminescence: its control and ecological significance. Microbiological Reviews, 43(4), 496-518. Okuno, S., Takatsuka, J., Nakai, M., Ototake, S., Masui, A., & Kunimi, Y. (2003). Viral-enhancing activity of various stilbene-derived brighteners for a Spodoptera litura (Lepidoptera: Noctuidae) nucleopolyhedrovirus. Biological Control, 26(2), 146-152. doi:10.1016/s1049- 9644(02)00122-6. Ordóñez-García, M., Ríos-Velasco, C., Berlanga-Reyes, D. I., Acosta-Muñiz, C. H., Salas-Marina, M. Á., & Cambero- Campos, O. J. (2015). Occurrence of natural enemies of Spodoptera frugiperda (Lepidoptera: Noctuidae) in Chihuahua, Mexico. The Florida Entomologist, 98(3), 843-847. doi:10.1653/024.098.0305. O’Reilly D. R., & Miller L. K. (1991) Improvement of a baculovirus pesticide by deletion of the EGT gene. Bio/ Technology 9, 1086-1089. doi:10.1038/nbt1191-1086. Paillot, A. (1926). Sur une nouvelle maladie du noyau ou grasserie des chenilles de P. brassicae et un nouveau groupe de microorganismes parasites. Comptes Rendus de l'Académie des Sciences, 182, 180-182. Perera, S., Li, Z., Pavlik, L., & Arif, B. (2010). Entomopoxviruses. Ascoviruses. En S. Asgari & K. Johnson (Eds.), Insect virology (pp. 83-102). Norfolk, Reino Unido: Caister Academic Press. Pérez, L., Puerta, M. C., Bustillo, A., & Madrigal, A. (1988). Evaluación del Baculovirus phthorimaea VG en larvas de la polilla de la papa Phthorimaea operculella (Zeller). Revista Colombiana de Entomología, 14(2), 33-40. Pesticideinfo. (2018). PANPesticides Database. Recuperado de http://www.pesticideinfo.org. Popham, H. J., Nusawardani, T., & Bonning, B. C. (2016). Introduction to the use of baculoviruses as biological insecticides. En D. W. Murhammer (Ed.), Baculovirus and insect cell expression protocols (pp. 383-392). Recuperado de https://link.springer.com/book/10.1007 %2F978-1-59745-457-5. Possee, R. D., Griffiths, C. M., Hitchman, R. B., Chambers, A., Murguia-Meca, F., Danquah, J. ... King, L. (2010). Baculoviruses: biology, replication and exploitation. En S. Asgari, & K. Johnson. Insect virology (pp. 35-57). Norfolk, Reino Unido: Caister Academic Press. Pratissoli, D., Zanúncio, J. C., Barros, R., & Oliveira, H. N. d. (2002). Leaf consumption and duration of instars of the cassava defoliator Erinnyis ello (L., 1758) (Lepidoptera, Sphingidae). Revista Brasileira de Entomologia, 46(3), 251-254. Renault, S., Stasiak, K., Federici, B., & Bigot, Y. (2005). Commensal and mutualistic relationships of reoviruses with their parasitoid wasp hosts. Journal of Insect Physiology, 51(2), 137-148. Rezapanah, M., Shojai-Estabragh, S., Huber, J., & Jehle, J. (2008). Molecular and biological characterization of new isolates of Cydia pomonella granulovirus from Iran. Journal of Pest Science, 81, 187. doi:10.1007/s10340-008-0204-2. Rodríguez, J. M., Salas, M. L., & Viñuela, E. (1992). Genes homologous to ubiquitin-conjugating proteins and eukaryotic transcription factor SII in African swine fever virus. Virology, 186(1), 40-52. Rohrmann, G. (2011). Baculovirus molecular biology. Recuperado de https://www.ncbi.nlm.nih.gov/books/ NBK49500/. Sauphanor, B., Berling, M., Toubon, J.-F., Reyes, M., Delnatte, J., & Allemoz, P. (2006). Carpocapse des pommes cas de résistance au virus de la granulose en vergers biologiques: fruits et légumes. Phytoma-La défense des végétaux, 590, 24-27. Schmutterer, H. (1990). Properties and potential of natural pesticides from the neem tree, Azadirachta indica. Annual Review of Entomology, 35, 271-297. doi:10.1146/annurev. en.35.010190.001415. Senthil, N. K., Murugan, K., & Zhang, W. (2008). Additive interaction of Helicoverpa armigera Nucleopolyhedrovirus and Azadirachtin. BioControl, 53, 869. doi:10.1007/ s10526-007-9115-z. Senthil, N. S., & Kalaivani, K. (2005). Efficacy of nucleopolyhedrovirus and azadirachtin on Spodoptera litura Fabricius (Lepidoptera: Noctuidae). Biological Control, 34(1), 93-98. doi:10.1016/j.biocontrol.2005.03.001. Shapiro, M. (2000). Enhancement in activity of homologous and heterologous baculoviruses infectious to beet armyworm (Lepidoptera: Noctuidae) by an optical brightener. Journal of Economic Entomology, 93(3), 572- 576. Shapiro, M., El Salamouny, S., & Merle Shepard, B. (2008). Green tea extracts as ultraviolet protectants for the beet armyworm, Spodoptera exigua, nucleopolyhedrovirus. Biocontrol Science and Technology, 18(6), 591-603. Shelby, K. S., & Webb, B. A. (1999). Polydnavirus-mediated suppression of insect immunity. Journal of Insect Physiology, 45(5), 507-514. Smith, K. M., & Wyckoff, R. W. G. (1950). Structure within polyhedra associated with insect virus diseases. Nature, 166, 861-862 Slavicek, J. M. (2012). Baculovirus enhancins and their role in viral pathogenicity. En M. P. Adoga (Ed.), Molecular virology (pp. 147-168). Recuperado de https://www.nrs. fs.fed.us/pubs/jrnl/2012/nrs_2012_slavicek_001.pdf. Simón, O., Williams, T., López-Ferber, M., & Caballero, P. (2005). Functional importance of deletion mutant genotypes in an insect nucleopolyhedrovirus population. Applied and Environmental Microbiology, 71(8), 4254-4262. Song, J., Wang, X., Hou, D., Huang, H., Liu, X., Deng, F., … & Wang, M. (2016). The host specificities of baculovirus per os infectivity factors. PloS One, 11(7), e0159862. doi:10.1371/journal.pone.0159862. Steinhaus, E.A. (1949). Principles of Insect Pathology. Nueva York, EE. UU.: McGraw-Hill. Stewart, L. M., Hirst, M., López Ferber, M., Merryweather, A. T., Cayley, P. J., & Posses, R. D. (1991): Construction of an improved baculovirus insecticide containing an insect specific toxin gene. Nature, 352(6330), 85-88. Strand, M. (2010). Polydnaviruses. En S. Asgari & K. Johnson (Eds.), Insect virology (pp. 171-197). Norfolk, Reino Unido: Caister Academic Press. Sun, X. (2015). History and current status of development and use of viral insecticides in China. Viruses, 7(1), 306-319. Szewczyk, B., Hoyos-Carvajal, L., Paluszek, M., Skrzecz, I., & De Souza, M. L. (2006). Baculoviruses—re-emerging biopesticides. Biotechnology Advances, 24(2), 143-160. Tanada, Y. (1959a). Descriptions and characteristics of a nuclear polyhedrosis virus and a granulosis virus of the armyworm, Pseudaletia unipuncta (Haworth) (Lepidoptera, Noctuidae). Journal of Insect Pathology, 1, 197-214 Szewczyk, B., Rabalski, L., Krol, E., Sihler, W., & Lobo de Souza, M. (2009). Baculovirus biopesticides–a safe alternative to chemical protection of plants. Journal of Biopesticides, 2(2), 209-216. Tanada, Y. (1959b). Synergism between two viruses of the armyworm, Pseudaletia unipuncta (Haworth) (Lepidoptera, Noctuidae). Journal of Insect Pathology, 1, 215-231. Tijssen, P., & Bergoin, M. (1995). Densonucleosis viruses constitute an increasingly diversified subfamily among the parvoviruses. Seminars in Virology, 6(5), 347-355. doi:10.1006/smvy.1995.0041. Tomalski, M. D., & Miller, L. K. (1991). Insect paralysis by baculovirus-mediated expression of a mite neurotoxin gene. Nature, 352(6330), 82-85. Universität Mannheim. (s. f.). Vida, Marco Girolamo (c. 1485- 1566). Recuperado de http://www.uni-mannheim.de/ mateo/itali/autoren/vida_itali.html. Valicente, F., Tuelher, E., Pena, R., Andreazza, R., & Guimarães, M. (2013). Cannibalism and virus production in Spodoptera frugiperda ( JE Smith) (Lepidoptera: Noctuidae) larvae fed with two leaf substrates inoculated with baculovirus spodoptera. Neotropical Entomology, 42(2), 191-199. Valicente, F. H., Tuelher, E. d. S., Paiva, C., Gumaraes, M., Macedo, C., & Wolff, J. (2008). A new baculovirus isolate that does not cause the liquefaction of the integument in Spodoptera frugiperda dead larvae. Revista Brasileira de Milho e Sorgo, 7(1), 77-82. Van Beek, N., & Davis, D.C. (2016). Baculovirus Insecticide Production in Insect Larvae. Methods in Molecular Biology, 1350, 393-405. doi:10.1007/978-1-4939-3043-2_20. Villamizar, L., Barrera, G., Cotes, A. M. & Martínez, F. (2010). Eudragit S100 microparticles containing Spodoptera frugiperda nucleopolyehedrovirus: physicochemical characterization, photostability and in vitro virus release. Journal of Microencapsulation, 27(4), 314-324. Von Tubeuf, C. (1892). Die Krankheiten der Nonne. Naturwissenschaften Z, 1, 34-47. Williams, T., Barbosa-Solomieu, V., & Chinchar, V. G. (2005). A decade of advances in iridovirus research. Advances in Virus Research, 65, 173-248. Williams, T., & Ward, V. (2010). Iridoviruses. En S. Asgari & K. Johnson (Eds.), Insect virology (pp. 123-152). Norfolk, Reino Unido: Caister Academic Press. Xeros, N. (1952). Cytoplasmic polyhedral virus diseases. Nature, 170, 1073. doi:10.1038/1701073a0. Xu, J., & Hukuhara, T. (1992). Enhanced infection of a nuclear polyhedrosis virus in larvae of the armyworm, Pseudaletia separata, by a factor in the spheroids of an entomopoxvirus. Journal of Invertebrate Pathology, 60(3), 259-264. Zhu, R., Liu, K., Peng, J., Yang, H., & Hong, H. (2007). Optical brightener M2R destroys the peritrophic membrane of Spodoptera exigua (Lepidoptera: Noctuidae) larvae. Pest Management Science, 63(3), 296-300. Anton, S., & Homberg, U. (1999). Antennal lobe structure. Berlín, Heidelberg, Alemania: Springer. doi:10.1007/978- 3-662-07911-9_5. Aragón, S., Cotes-Prado, A. M., Borrero-Echeverry, F., Rivera, F., & Barreto-Triana, N. (2011). Optimización y validación de estrategias de manejo en campo de la polilla Guatemalteca de la papa Tecia solanivora mediante el uso de su feromona sexual [Informe técnico final]. Mosquera, Colombia: Corporación Colombiana de Investigación Agropecuaria (Corpoica). Arn, H., Städler, E., & Rauscher, S. (1975). The electroantennographic detector—a selective and sensitive tool in the gas chromatographic analysis of insect pheromones. Zeitschrift für Naturforschung C – A Journal of Biosciences, 30, 722-725. doi:10.1515/znc-1975- 11-1204. Auer, T. O., & Benton, R. (2016). Sexual circuitry in Drosophila. Current Opinion in Neurobiology, 38, 18-26. doi:10.1016/j.conb.2016.01.004. Batista-Pereira, L. G., Stein, K., De Paula, A. F., Moreira, J. A., Cruz, I., Figueiredo, M. de L., … Correa, A. G. (2006). Isolation, identification, synthesis, and field evaluation of the sex pheromone of the Brazilian population of Spodoptera frugiperda. Journal of Chemical Ecology, 32(5), 1085-1099. doi:10.1007/s10886-006-9048-5. Becerra, L., & Corredor, D. (2001). Application of an insecticidal bait to control adults of Tecia solanivora (Povolny) (Lepidoptera: Gelechiidae) in potato. Agronomía Colombiana, 18(1-3), 97-103. Bell, W. J., Parsons, C., & Martinko, E. A. (1972). Cockroach aggregation pheromones: Analysis of aggregation tendency and species specificity (Orthoptera: Blattidae). Journal of Kansas Entomological Society, 45(4), 414-421. Bell, W. J., Parsons, C., & Martinko, E. A. (1972). Cockroach aggregation pheromones: Analysis of aggregation tendency and species specificity (Orthoptera: Blattidae). Journal of Kansas Entomological Society, 45(4), 414-421. Bento, J. M., Parra, J. R., de Miranda, S. H., Adami, A. C., Vilela, E. F., & Leal, W. S. (2016). How much is a pheromone worth? F1000 Research, 5, 1763. doi:10.12688/f1000research.9195.1. Bergmann, J., González, A., & Zarbin, P. H. (2009). Insect pheromone research in South America. Journal of the Brazilian Chemical Society, 20(7), 1206-1219. doi:10.1590/S0103-50532009000700003. Berger, K. G., & Martin, S. M. (2000). Palm Oil. Nueva York, EE. UU.: Cambridge University. Binyameen, M., Anderson, P., Ignell, R., Seada, M. A., Hansson, B. S., & Schlyter, F. (2012). Spatial organization of antennal olfactory sensory neurons in the female Spodoptera littoralis moth: Differences in sensitivity and temporal characteristics. Chemical Senses, 37(7), 613- 629. doi:10.1093/chemse/bjs043. Bogich, T. L., Liebhold, A. M., & Shea, K. (2008). To sample or eradicate? A cost minimization model for monitoring and managing an invasive species. Journal of Applied Ecology, 45(4), 1134-1142. doi:10.1111/j.1365- 2664.2008.01494.x. Borrero-Echeverry, F. (2016). Social and Environmental Olfactory Signals Mediate Insect Behavioral Ecology and Evolution. Lomma, Suecia: Department of Plant Protection Biology & Swedish University of Agricultural Sciences Borrero-Echeverry, F., Becher, P. G., Birgersson, G. R., Bengtsson, M., Witzgall, P., & Saveer, A. M. (2015). Flight attraction of Spodoptera littoralis (Lepidoptera, Noctuidae) to cotton headspace and synthetic volatile blends. Frontiers in Ecology and Evolution, 3, 56. doi:10.3389/fevo.2015.00056. Bosa, C. F., Cotes-Prado, A. M., Fukumoto, T., Bengtsson, M., & Witzgall, P. (2005). Pheromone-mediated communication disruption in Guatemalan potato moth, Tecia solanivora. Entomologia Experimentalis Applicata, 114(2), 137-142. doi:10.1111/j.1570-7458.2005. 00252.x. Bosa, C. F., Cotes-Prado, A. M., Fukumoto, T., Bengtsson, M., & Witzgall, P. (2006). Disruption of Pheromone Communication in Tecia solanivora (Lepidoptera: Gelechiidae): Flight Tunnel and Field Studies. Journal of Economic Entomology, 99(4), 6. Brockerhoff, E. G., Jones, D. C., Kimberley, M. O., Suckling, D. M., & Donaldson, T. (2006). Nationwide survey for invasive wood-boring and bark beetles (Coleoptera) using traps baited with pheromones and kairomones. Forest Ecology and Management, 228(1-3), 234-240. doi:10.1016/j.foreco.2006.02.046. Bruce, T. J., & Pickett, J. A. (2011). Perception of plant volatile blends by herbivorous insects–finding the right mix. Phytochemistry, 72(13), 1605-1611. doi:10.1016/j. phytochem.2011.04.011. Buck, L., & Axel, R. (1991). A novel multigene family may encode odorant receptors: A molecular basis for odor recognition. Cell, 65(1), 175-187. doi:10.1016/0092- 8674(91)90418-x. Burkholder, W. E., & Ma, M. (1985). Pheromones for monitoring and control of stored-product insects. Annual Review of Entomology, 30, 257-272. doi:10.1146/annurev. en.30.010185.001353. Butenandt, A., Beckmann, R., Stamm, D., & Hecker, E. (1959). Über den sexuallockstoff des seidenspinners Bombyx mori. Reindarstellung und konstitution. Z. Naturforsch. B, 14, 283-284. Campion, D. G., Hall, D. R., & Prevett, P. F. (2011). Use of pheromones in crop and stored products pest management: control and monitoring. International Journal of Tropical Insect Science, 8(4-5-6), 737-741. doi:10.1017/s1742758400022852. Carraher, C., Dalziel, J., Jordan, M. D., Christie, D. L., Newcomb, R. D., & Kralicek, A. V. (2015). Towards an understanding of the structural basis for insect olfaction by odorant receptors. Insect Biochemical and Molecular Biology, 66, 31-41. doi:10.1016/j.ibmb.2015.09.010. Chinchilla, C. M., González, L., & Oehlschlager, A. (1993). Management of red ring disease in oil palm through pheromone-based trapping of Rhynchophorus palmarum (L). Ponencia presentada en International Palm Oil Congress. Kuala Lumpur, Malaysia. Clyne, P. J., Warr, C. G., Freeman, M. R., Lessing, D., Kim, J. H., & Carlson, J. R. (1999). A novel family of divergent seven-transmembrane proteins: Candidate odorant receptors in Drosophila. Neuron, 22(2), 327-338. doi:10.1016/s0896-6273(00)81093-4. Cocco, A., Deliperi, S., & Delrio, G. (2011). Evaluation of the mating disruption method against the tomato borer, Tuta absoluta (Meyrick), in greenhouse tomato crops in Sardinia (Italy). Ponencia presentada en eppo/iobc/fao/neppo Joint International Symposium on Management of Tuta absoluta (tomato borer), Agadir, Marruecos. De Bruyne, M., & Baker, T. C. (2008). Odor detection in insects: Volatile codes. Journal of Chemical Ecology, 34(7), 882-897. doi:10.1007/s10886-008-9485-4. Deisig, N., Dupuy, F., Anton, S., & Renou, M. (2014). Responses to Pheromones in a Complex Odor World: Sensory Processing and Behavior. Insects, 5(2), 399-422. doi:10.3390/insects5020399. Díaz-Montilla, A. E., Suárez-Barón, H., Gallego, G., Viera-Arroyo, W. F., & Saldamando-Benjumea, C. I. (2017). Variation in the capture of Neoleucinodes elegantalis Guenée (Lepidoptera: Crambidae) males using commercial sex pheromones on three solanaceous hosts. Revista Corpoica: Ciencia y Tecnología Agropecuaria, 18(3), 583-597. doi:10.21930/rcta.vol18_num3_art:746. Dickens, J., Billings, R., & Payne, T. (1992). Green leaf volatiles interrupt aggregation pheromone response in bark beetles infesting southern pines. Cellular and Molecular Life Science, 48(5), 523-524. doi:10.1007/ BF01928180. Dickens, J., Jang, E., Light, D., & Alford, A. (1990). Enhancement of insect pheromone responses by green leaf volatiles. Naturwissenschaften, 77(1), 29-31. doi:10.1007/ BF01131792. Dowd, P. F., & Bartelt, R. J. (1991). Host-derived volatiles as attractants and pheromone synergists for dried fruit beetle Carpophilus hemipterus. Journal of Chemical Ecology, 17(2), 285-308. doi:10.1007/BF00994333. Durand, N., Carot-Sans, G., Bozzolan, F., Rosell, G., Siaussat, D., Debernard, S., … Maibeche-Coisne, M., (2011). Degradation of pheromone and plant volatile components by a same odorant-degrading enzyme in the cotton leafworm, Spodoptera littoralis. PLoS One, 6(12), e29147. doi:10.1371/journal.pone.0029147. Eisner, T., & Meinwald, J. (Eds.) (1995). Chemical Ecology: The Chemisty of Biotic Interaction. Washington, EE. UU.: National Academy Press. El-Sayed, A. (2014). The Pherobase: Database of pheromones and semiochemicals. Recuperado de http://www. pherobase.com/about. El-Sayed, A. (2017b). Pherobase: Mass Trapping–Index-List of Species. Recuperado de http://www.pherobase.net/ database/control/control-approach-Mass trappingall. php. El-Sayed, A. (2017a). Pherobase: Lure and kill–Index-List of Species. Recuperado de http://www.pherobase.net/ database/control/control-approach-Lure and kill-all.php. El-Sayed, A. (2017c). Pherobase: Mating disruption–Index- List of Species. Recuperado de http://www.pherobase.net/ database/control/control-approach-Matingdisruptionall. php El-Sayed, A., Suckling, D., Byers, J., Jang, E., & Wearing, C. (2009). Potential of “lure and kill” in long-term pest management and eradication of invasive species. Journal of Economic Entomology, 102(3), 815-835. doi:10.1603/029.102.0301. El-Sayed, A. M., Suckling, D. M., Wearing, C. H., & Byers, J. A. (2006). Potential of mass trapping for long-term pest management and eradication of invasive species. Journal of Economic Entomology, 99(5), 1550-1564. doi:10.1603/0022-0493-99.5.1550. Environmental Protection Agency (epa). (2017). Pesticides. Recuperado de https://www.epa.gov/pesticides. European and Mediterranean Plant Protection Organization (eppo). (2008). Eppo Reporting Service. Recuperado de https://www.eppo.int/PUBLICATIONS/reporting/ reporting_service.htm. Esparza-Díaz, G., Olguin, A., Carta, L. K., Skantar, A. M., & Villanueva, R. T. (2013). Detection of Rhynchophorus palmarum (Coleoptera: Curculionidae) and Identification of associated nematodes in South Texas. Florida Entomologist, 96(4), 1513-1521. doi:10.1653/024.096.0433. Faleiro, J. R., & Satarkar, V. R. (2005). Attraction of food baits for use in red palm weevil Rhynchophorus ferrugineus Olivier pheromone trap. Indian Journal of Plant Protection, 33(1), 23-25. Food and Agriculture Organization of the United Nations (fao). (2017). Crops. Recuperado de http://www.fao. org/faostat/en/#data/QC. Farský, O. (1938). Nonnenkontroll -und Vorbeugungsmethode nach Professor Forst.-Ing. Ant. Dyk. Anzeiger für Schädlingskunde, 14(6), 65-67. doi:10.1007/bf02337800. Galizia, C. G. (2014). Olfactory coding in the insect brain: data and conjectures. The European Journal of Neuroscience, 39(11), 1784-1795. doi:10.1111/ejn.12558. Gaston, L. K., Shorey, H. H., & Saario, C. A. (1967). Insect population control by the use of sex pheromones to inhibit orientation between the sexes. Nature, 213, 1155. doi:10.1038/2131155a0. Lietti, M. M. M., Botto, E., & Alzogaray, R. A. (2005). Insecticide resistance in Argentine populations of Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). Neotropical Entomology, 34(1), 113-119. doi:10.1590/ S1519-566X2005000100016. Lin, H. H., Lai, J. S. Y., Chin, A. L., Chen, Y. C., & Chiang, A. S. (2007). A map of olfactory representation in the Drosophila mushroom body. Cell, 128(6), 1205-1217. doi:10.1016/j.cell.2007.03.006. Light, D. M., Knight, A. L., Henrick, C. A., Rajapaska, D., Lingren, B., Dickens, J. C., … Roitman, J. (2001). A pear-derived kairomone with pheromonal potency that attracts male and female codling moth, Cydia pomonella (L.). Naturwissenschaften, 88(8), 333-338. Linn, C. E., Campbell, M. G., & Roelofs, W. L. (1986). Male moth sensitivity to multicomponent pheromones: Critical role of female-released blend in determining the functional role of components and active space of the pheromone. Journal of Chemical Ecology, 12(3), 659-668. doi:10.1007/bf01012100. Lobo-Pinheiro, A. (2005). Efeito de densidades de armadilhas de feromonio sexual na coleta massal de Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) em tomateiros. Lavras, Brasil: Universidade Federal de Lavras. Lobos, E., Occhionero, M., Werenitzky, D., Fernández, J., González, L. M., Rodríguez, C., … Oehlschlager, A. C. (2013). Optimization of a trap for Tuta absoluta Meyrick (Lepidoptera: Gelechiidae) and trials to determine the effectiveness of mass trapping. Neotropical Entomology, 42(5), 448-457. doi:10.1007/s13744-013-0141-5. McCormick, A. L., Karlsson, M., Ochoa, C. F., Proffit, M., Bengtsson, M., Zuluaga, M. V., … Witzgall, P. (2012). Mating Disruption of Guatemalan Potato Moth Tecia solanivora by Attractive and Non-Attractive Pheromone Blends. Journal of Chemical Ecology, 38(1), 63-70. doi:10.1007/s10886-011-0051-0. Metcalf, R. L., & Metcalf, E. R. (1992). Plant kairomones in insect ecology and control. Nueva York, EE. UU.: Chapman and Hall. Michereff-Filho, M., Vilela, E. F., Attygalle, A. B., Meinwald, J., Svatoš, A., & Jham, G. N. (2000a). Field Trapping of Tomato Moth Tuta absoluta with pheromone traps. Journal of Chemical Ecology, 26(4), 875-881. doi:10.1023/A:1005452023847. Michereff-Filho, M., Vilela, E. F., Jham, G. N., Attygalle, A., Svatos, A., & Meinwald, J. (2000b). Initial studies of mating disruption of the tomato moth, Tuta absoluta (Lepidoptera: Gelechiidae) using synthetic sex pheromone. Journal of the Brazilian Chemical Society, 11(6), 621-628. doi:10.1590/S0103-50532000000600011. Miller, J. R., & Gut, L. J. (2015). Mating disruption for the 21st century: matching technology with mechanism. Environmental Entomology, 44(3), 427-453. doi:10.1093/ ee/nvv052. Morin, J. P., Lucchini, F., Araujo, J. C. A. Ferreira, J. M. S., & Fraga, L. S. (1986). Rhynchophorus palmarum control using traps made from oil palm cubes. Oléagineux, 41(2), 57-62. Moura, J. I. L., Vilela, E. F., Brasil, G. H., & Cangucu, R. (2000). Mass trapping of Rhynchophorus palmarum using pheromone in coconut plantation in Brazil. En Empresa Brasileira de Pesquisa Agropecuária (Embrapa), XXI International Congress of Entomology (pp. 154). Foz do Iguassu, Brasil: Embrapa Münch, D., & Galizia, C. G. (2016). DoOR 2.0-Comprehensive mapping of Drosophila melanogaster odorant responses. Scientific Reports, 6, 21841. doi:10.1038/srep21841. Namiki, S., Iwabuchi, S., & Kanzaki, R. (2008). Representation of a mixture of pheromone and host plant odor by antennal lobe projection neurons of the silkmoth Bombyx mori. Journal of Comparative Physiology A-Neuroethology Sensory Neural and Behavioral Physiology, 194(5), 501-515. doi:10.1007/s00359-008-0325-3. Nesbitt, B. F., Beevor, P. S., Cork, A., Hall, D. R., Murillo, R. M., & Leal, H. R. (1985). Identification of components of the female sex pheromone of the potato tuber moth, Scrobipalpopsis solanivora. Entomologia Experimentalis et Applicata, 38(1), 81-85. doi:10.1111/j.1570-7458.1985. tb03501.x. Núñez, P., Zignago, A., Paullier, J., & Núñez, S. (2009). Feromonas sexuales para el control de la polilla del tomate Tuta absoluta (Meyrick) (Lep., Gelechiidae). Agrociencia Uruguay, 13(1), 20-27. Oehlschlager, A. C. (2016). Palm weevil pheromones – Discovery and use. Journal of Chemical Ecology, 42(7), 617-630. doi:10.1007/s10886-016-0720-0. Oehlschlager, A. (2005). Current status of trapping palm weevils and beetles. The Planter, 81(947), 123-143. Oehlschlager, A. C., Chinchilla, C. M., Castillo, G., & González, L. (2002). Control of red ring disease in oil palm by mass trapping Rhynchophorus palmarum (Colepotera: Curculionidae). Florida Entomologist, 85(3), 507-513. doi:10.1653/0015-4040(2002)085[0507:COR RDB]2.0.CO;2. Oehlschlager, A. C., Chinchilla, C. M., & González, L. M. (1993a). Optimization of a pheromone-baited trap for the American palm weevil Rhynchophorus palmarum (L). Ponencia presentada en Palm Oil Research Institute of Malaysia. International Palm Oil Congress, porim, Kuala Lumpur, Malaysia. Oehlschlager, A. C., Chinchilla, C. M., Jiron, L. F., Morgan, B., & Mexzon, R. G. (1993b). Development of an effective pheromone based trapping system for the American palm weevil, Rhynchophorus palmarum, in oil palm plantations. Journal of Economic Entomology, 86(5), 1381-1392. doi:10.1093/jee/86.5.1381. Oehlschlager, A. C., Pierce, H. D., Morgan, B., Wimalaratne, P. D. C., Slessor, K. N., King, G. G. S., … Mexzan, R. G. (1992). Chirality and field activity of Rhynchophorol, the aggregation pheromone of the American palm weevil. Naturwissenschaften, 79(3), 134-135. doi:10.1007/ BF01131543. Party, V., Hanot, C., Busser, D. S., Rochat, D., & Renou, M. (2013). Changes in odor background affect the locomotory response to pheromone in moths. PLoS One, 8, e52897. doi:10.1371/journal.pone.0052897. Pascual, A., & Préat, T. (2001). Localization of long-term memory within the Drosophila mushroom body. Science, 294(5544), 1115-1117. doi:10.1126/science.1064200. Pregitzer, P., Schubert, M., Breer, H., Hansson, B.S., Sachse, S., & Krieger, J. (2012). Plant odorants interfere with detection of sex pheromone signals by male Heliothis virescens. Frontiers in Cellular Neuroscience, 6, 42. doi:10.3389/fncel.2012.00042. Proffit, M., Khallaf, M. A., Carrasco, D., Larsson, M. C., & Anderson, P. (2015). ‘Do you remember the first time?’ Host plant preference in a moth is modulated by experiences during larval feeding and adult mating. Ecology Letter, 18(4), 365-374. doi:10.1111/ele.12419. Regnier, F. E. (1971). Semiochemicals—Structure and Function. Biology of Reproduction, 4(3), 309-326. doi:10.1093/biolreprod/4.3.309. Rochat, D., González, A. V., Mariau, D., Villanueva, A. G., & Zagatti, P. (1991). Evidence for male-produced aggregation pheromone in American palm weevil, Rhynchophorus palmarum (L.) (Coleoptera: Curculionidae). Journal of Chemical Ecology, 17(6), 1221-1230. doi:10.1007/ bf01402945. Rochat, D., González, A. V., Mariau, D., Villanueva, A. G., & Zagatti, P. (1991). Evidence for male-produced aggregation pheromone in American palm weevil, Rhynchophorus palmarum (L.) (Coleoptera: Curculionidae). Journal of Chemical Ecology, 17(6), 1221-1230. doi:10.1007/ bf01402945. Rochat, D., Malosse, C., Lettere, M., Ducrot, P. H., Zagatti, P., Renou, M., & Descoins, C. (1991). Male-produced aggregation pheromone of the american palm weevil, Rhynchophorus palmarum (L.) (Coleoptera, Curculionidae): Collection, identification, electrophysiogical activity, and laboratory bioassay. Journal of Chemical Ecology, 17(11), 2127-2141. doi:10.1007/bf00987996. Rochat, D., Ramirez-Lucas, P., Malosse, C., Aldana., R., Kakul, T., & Morin, J. P. (2000). Role of solid-phase microextraction in the identification of highly volatile pheromones of two Rhinoceros beetles Scapanes australis and Strategus aloeus (Coleoptera, Scarabaeidae, Dynastinae).885(1-2), 433-444. Romero-Frías, A., Simões-Bento, J. M., & Osorio, C. (2015). Chemical signaling between guava (Psidium guajava L., Myrtaceae) and the guava weevil (Conotrachelus psidii Marshall). Revista Facultad de Ciencias Básicas, 11(1), 102-113. Rospars, J. P., & Hildebrand, J. G. (2000). Sexually dimorphic and isomorphic glomeruli in the antennal lobes of the sphinx moth Manduca sexta. Chemical Senses, 25(2), 119- 129. doi:10.1093/chemse/25.2.119. Saveer, A. M., Becher, P. G., Birgersson, G. R., Hansson, B. S., Witzgall, P., & Bengtsson, M. (2014). Mate recognition and reproductive isolation in the sibling species Spodoptera littoralis and Spodoptera litura. Frontiers in Ecology and Evolution, 2, 18. doi:10.3389/fevo.2014.00018. Saveer, A. M., Kromann, S. H., Birgersson, G., Bengtsson, M., Lindblom, T., Balkenius, A., … Ignell, R. (2012). Floral to green: Mating switches moth olfactory coding and preference. Proceedings of the Royal Society B: Biological Sciences, 279(1737), 2314-2322. doi:10.1098/ rspb.2011.2710. Schneider, D., & Kaissling, K. E. (1957). Der bau der antenne des Seidenspinners Bombyx mori L. II. Sensillen, cuticulare bildungen und innerer bau. Zoologische Jahrbücher/Abteilung für Anatomie und Ontogenie der Tiere, 76, 224-250. Smith, R. W. (2002). Proceedings of the seminar on research and development of coconut in Latin America and the Caribbean. Kingston, Jamaica: Instituto Interamericano de Cooperación para la Agricultura (iica). Suárez-Gómez, H., & Castro-Ortega, L. A. (1990). Mass trapping of Anthonomus grandis Boheman with grandlure. Revista Colombiana de Entomología, 16(2), 62-68. doi:10.1093/jee/99.4.1245. Symonds, M. R. E., & Gitau-Clarke, C. W. (2016). The vvolution of aggregation pheromone diversity in bark beetles. Advances in Insect Physiology, 50, 195-234. doi:10.1016/bs.aiip.2015.12.003. Tinzaara, W., Dicke, M., Van Huis, A., Van Loon, J. J., & Gold, C. S. (2003). Different bioassays for investigating orientation responses of the banana weevil, Cosmopolites sordidus, show additive effects of host plant volatiles and a synthetic male-produced aggregation pheromone. Entomologia Experimentalis et Applicata, 106(3), 169-175. doi:10.1046/j.1570-7458.2003.00025.x. Tinzaara, W., Gold, C. S., Dicke, M., Van Huis, A., & Ragama, P. E. (2007). Host plant odours enhance the responses of adult banana weevil to the synthetic aggregation pheromone Cosmolure+®. International Journal of Pest Management, 53(2), 127-137. doi:10.1080/09670870 701191963. Trona, F., Casado, D., Coracini, M., Bengtsson, M., Ioriatti, C., & Witzgall, P. (2010). Flight tunnel response of codling moth Cydia pomonella to blends of codlemone, codlemone antagonists and pear ester. Physiological Entomology, 35(3), 249-254. doi:10.1111/j.1365-3032.2010.00737.x. Unbehend, M., Hanniger, S., Meagher, R. L., Heckel, D. G., & Groot, A. T. (2013). Pheromonal divergence between two strains of Spodoptera frugiperda. Journal of Chemical Ecology, 39(3), 364-376. doi:10.1007/s10886-013- 0263-6. Vander Meer, R. K., Breed, M. D., Espelie, K. E., & Winston, M. L. (1998). Pheromone communication in social insects. Boulder, EE. UU.: Westviw Press. Velásquez-Vélez, M. I., Saldamando-Benjumea, C. I., & Ríos-Diez, J. D. (2011). Reproductive isolation between two populations of Spodoptera frugiperda (Lepidoptera: Noctuidae) collected in corn and rice fields from central Colombia. Annals of the Entomological Society of America, 104(4), 826-833. doi:10.1603/an10164. Vosshall, L. B. (2008). Scent of a fly. Neuron, 59(5), 685-689. doi:10.1016/j.neuron.2008.08.014. Vosshall, L. B., Amrein, H., Morozov, P. S., Rzhetsky, A., & Axel, R. (1999). A spatial map of olfactory receptor expression in the Drosophila antenna. Cell, 96(5), 725- 736. doi:10.1016/s0092-8674(00)80582-6. Welter, S. C., Pickel, C., Millar, J. G., Cave, F., Van Steenwyk, R. A., & Dunley, J. (2005). Pheromone mating disruption offers selective management options for key pests. California Agriculture, 59(1), 16-22. doi:10.3733/ ca.v059n01p16. Wilches, D. M., Borrero-Echeverry, F., Cotes-Prado, A. M., & Aragón, S. (2011). Mating disruption in Tecia solanivora (Lepidoptera: Gelechiidae) by using pheromone dispensers in stored potatoes conditions. En Sociedad Colombiana de Entomología (Socolen) (Ed.), xxxviii Congreso de Socolen (pp. 102). Manizales, Colombia: Socolen. Witzgall, P., Kirsch, P., & Cork, A. (2010). Sex pheromones and their impact on pest management. Journal of Chemical Ecology, 36(1), 80-100. doi:10.1007/s10886-009-9737-y. Witzgall, P., Lindblom, T., Bengtsson, M., & Toth, M. (2004). The Pherolist. Recuperado de http://www.pherolist.slu. se/pherolist.php. Wood, D. L., Browne, L. E., Silverstein, R. M., & Rodin, J. O. (1966). Sex pheromones of bark beetles—I. Mass production, bio-assay, source, and isolation of the sex pheromone of Ips confusus (LeC.). Journal of Insect Physiology, 12(5), 523-536. doi:10.1016/0022- 1910(66)90091-6. Yaksi, E., & Wilson, R. I. (2010). Electrical coupling between olfactory glomeruli. Neuron, 67(6), 1034-1047. doi:10.1016/j.neuron.2010.08.041. Yew, J. Y., & Chung, H. (2015). Insect pheromones: An overview of function, form, and discovery. Progress in Lipid Research, 59, 88-105. doi:10.1016/j.plipres.2015.06.001. Zhang, Q. H., & Schlyter, F. (2003). Redundancy, synergism, and active inhibitory range of non-host volatiles in reducing pheromone attraction in European spruce bark beetle Ips typographus. Oikos, 101(2), 299-310. doi:10.1034/j.1600-0706.2003.111595.x. Adan Abrams, P. (2012). Predator-prey models. En A. Hastings & L. Gross (Eds.), Encyclopedia of Theoretical Ecology (pp. 587-594). Berkley, EE. UU.: University of California Press. Aldana, J., Aldana, R. C., & Calvache, H. (2002). Manejo de Leptopharsa gibbicarina Froeschner, insecto inductor de la Pestalotiopsis [Boletín técnico N.° 16]. Bogotá, Colombia: Cenipalma. Arias-Reverón, J. M. (1990). Notes on natural enemies attacking Lepidosaphes species [Homoptera: Diaspididae] associated with Citrus in Costa Rica. Entomophaga, 35(2), 301-303. Bacaër, N. (2011). Lotka, Volterra and the predator–prey system (1920–1926). En N. Bacaër (Ed.), A short history of mathematical population dynamics (pp. 71-76). Londres, Reino Unido: Springer London. Bartlett, B. R. (1978). Margarodidae. En C.P. Clausen (Ed.), Introduced parasites and predators of arthropod pests and weeds: a world review (pp. 132-136). Washington, D.C., EE. UU.: Agricultural Research Service, United States Department of Agriculture. Bellotti, A. C., Melo, E. L., Arias, B., Herrera, C. J., Hernández, M. P., Holguín, C. M. ... Trujillo, H. (2005, September). Biological control in the Neotropics: A selective review with emphasis on cassava. En M. S. Hoddle (Comp.), Second international symposium on biological control of arthropods (pp. 206-227). Davos, Switzerland. Bellotti, A., Herrera, C. J., Hernández, M. P., Arias, B., Guerrero, J. M., & Melo, E. L. (2011). Casssava pests in Latin America, Africa and Asia. En R. H. Howeler (Ed.), The cassava handbook, a reference manual based on the Asian regional cassava training course, held in Thailand (pp. 199-257). Cali, Colombia: Centro Internacional de Agricultura Tropical (ciat). Bergstrom, U. & Englund, G. (2004). Spatial scale, heterogeneity and functional responses. Journal of Animal Ecology, 73(3), 487-493. Berryman, A. (1999). Theoretical foundations of biological control. En B. A. Hawkins, & H. V. Cornell (Eds.), Theoretical approaches to biological control (pp. 3-21). Cambridge, Inglaterra: Cambridge University Press. Bianchi, F., Booij, C. J. H., & Tscharntke, T. (2006). Sustainable pest regulation in agricultural landscapes: A review on landscape composition, biodiversity and natural pest control. Proceedings of the Royal Society B: Biological Sciences, 273(1595), 1715-1727. Bianchi, F., Schellhorn, N. A., & Van Der Werf, W. (2009). Foraging behaviour of predators in heterogeneous landscapes: the role of perceptual ability and diet breadth. Oikos, 118(9), 1363-1372. Biobest. (2011). Biological control: Beneficial insects and mites: Delphastus-System. Recuperado de http://www.biobest. be/producten/179/3/0/0/. Bolland, H. R., Gutiérrez, J., & Flechtmann, C. H. W. (1998). World catalogue of the spider mite family (Acari: Tetranychidae). Leiden, Holanda: Brill Academic Publishers. Bueno, V. H. P. & Van Lenteren, J. C. (2002). The popularity of augmentative biological control in Latin America: history and state of affairs. Paper presented at the 1st International Symposium on Biological Control of Arthropods, Honolulu, Hawaii. Recuperado de https://www.bug wood.org/arthropod/day2/bueno.pdf. Causton, C. E. (2004). Predicting the field prey range of an introduced predator, Rodolia cardinalis Mulsant, in the Galápagos. En R. G. Van Driesche & R. Reardon (Eds.), Assessing host ranges for parasitoids and predators used for classical biological control: a guide to best practice. fhtet-2004-03 (pp. 195-223). Morgantown, EE. UU.: United States Department of Agriculture Forest Service. Chávez, Y., Chirinos, D. T., González F., G., Lemos, N., Fuentes, A., Castro, R., & Kondo, T. (2017). Tamarixia radiata (Waterston) and Cheilomenes sexmaculata (Fabricius) as biological control agents of Diaphorina citri Kuwayama in Ecuador. Chilean Journal of Agricultural Research, 77(2), 180-184. doi:10.4067/S0718- 58392017000200180. Ciomperlik, M. (2010). Crypticerya genistae scale, an invasive pest in Puerto Rico. En CPHST Biological Control Unit 2010 Annual Report (pp. 33-34). Raleigh, EE. UU.: U. S. Department of Agriculture. De Barro, P. J., Liu, S.-S., Boykin, L. M., & Dinsdale, A. B. (2011). Bemisia tabaci: A statement of species status. Annual Review of Entomology, 56, 1-19. doi:10.1146/ annurev-ento-112408-085504. Debach, P. (1946). An insecticidal check method for measuring the efficacy of entomophagous insects. Journal of Economic Entomology, 39(6), 695-697. doi:https://doi. org/10.1093/jee/39.6.695. Demite, P. R., McMurtry, J. A., & De Moraes, G. J. (2014). Phytoseiidae database: a website for taxonomic and distributional information on phytoseiid mites (Acari). Zootaxa, 3795(5), 571-577. doi:10.11646/ zootaxa.3795.5.6. De Moraes, G. J. & Mesa, N. C. (1988). Mites of the family Phytoseiidae (Acari) in Colombia, with descriptions of three new species. International Journal of Acarology, 14(2), 71-88. doi:10.1080/01647958808683790. De Vis, R., & Barrera, A. J. (1999). Use of two predators Phytoseiulus persimilis Athias-Henriot (Acari: Phytoseiidae) and Neoseiulus californicus (McGregor) (Acari: Phytoseiidae) for the biological control of Tetranychus urticae Koch (Acari: Tetranychidae) in roses in the Bogota plateau. ISHS Acta Horticulturae (International Symposium on Cut Flowers in the Tropics), 482, 259-268. doi:10.17660/ActaHortic.1999.482.38. Eilenberg, J., Hajek, A., & Lomer, C. (2001). Suggestions for unifying the terminology in biological control. Biocontrol, 46(4), 387-400. doi:10.1023/A:1014193329979. Etienne, J. & Matile-Ferrero, D. (2008). Crypticerya genistae (Hempel), nouveau danger en Guadeloupe (Hemiptera, Coccoidea, Monophlebidae). Bulletin de la Société Entomologique d’Egypte, 113(4), 517-520. Flint, M. L., Dreistadt, S. H., & Clark, J. K. (1998). Natural enemies handbook: The illustrated guide to biological pest control. UC Division of Agriculture and Natural Sciences. Berkeley EE. UU.: University of California Press. Freeman, B. E. & Smith, D. C. (1990). Variation of density-dependence with spatial scale in the leaf-mining fly Liriomyza commelinae (Diptera, Agromyzidae). Ecological Entomology, 15(3), 265-274. doi:10.1111/j.1365-2311.1990.tb00808.x. Gaimari, S. D., Quintero, E. M., & Kondo, T. (2012). First report of Syneura cocciphila (Coquillett, 1895) (Diptera: Phoridae), as a predator of the fluted scale Crypticerya multicicatrices Kondo & Unruh, 2009 (Hemiptera: Monophlebidae). Boletín del Museo de Entomología de la Universidad del Valle, 13(2), 26-28. García-Morales, M., Denno, B. D., Miller, D. R., Miller, G. L., Ben-Dov, Y., & Hardy, N. B. (2016). ScaleNet: A literature-based model of scale insect biology and systematics. Database: The Journal of Biological Databases and Curation, pii: bav118. doi:10.1093/database/bav118. Geister, J., & Díaz, J. M. (1997). A field guide to the oceanic barrier reefs and atolls of the southwest Caribbean (Archipelago of San Andres and Providencia, Colombia). En H. A. Lessios & I. G. Macintyre (Eds.), Proceedings of the 8th International Coral Reef Symposium Vol. 1 (pp. 235- 262). Ciudad de Panamá: Smithsonian Tropical Research Institute. Girling, D. J., Bennet, F. D., & Yassen, M. (1977). Biological control of the green mite Mononychellus tanajoa (Bondar) (Acarina: Tetranychidae) in Africa. En T. Brekelbaum, A. Bellotti, & J. C. Lozano (Eds.), Proceedings of the Cassava Protection Workshop, 7-12 november, 1977 (pp. 165-170). Cali, Colombia: Centro Internacional de Agricultura Tropical (ciat). González F. G., & Kondo, T. (2014). Geographical distribution and phenotypic variation of Anovia punica Gordon (Coleoptera: Coccinellidae: Noviini), a predatory ladybeetle of fluted scales (Hemiptera: Coccoidea: Monophlebidae). Insecta Mundi, 0398, 1-6. González, G., López, R., & Kondo, T. (2012). First report of Delphastus quinculus Gordon and Diomus seminulus (Mulsant) (Coleoptera: Coccinellidae) feeding on eggs and first-instar nymphs of Crypticerya multicicatrices Kondo & Unruh (Hemiptera: Monophlebidae). Insecta Mundi, 0268, 1-6. Gordon, R. D. (1972). The tribe Noviini in the new world (Coleoptera: Coccinellidae). Journal of the Washington Academy of Sciences, 62(1): 23-31. Gordon, R. D. (1985). The Coccinellidae (Coleoptera) of America north of Mexico. Journal of The New York Entomological Society, 93(1), 1-912. Harris, K. M. (1973). Aphidophagous Cecidomyiidae (Diptera): taxonomy, biology and assessments of field populations. Bulletin of Entomological Research, 63(2), 305- 325. doi:https://doi.org/10.1017/S0007485300039080. Hartnoll, R. G., Baine, M. S. P., Grandas, Y., James J., & Atkin, H. (2006). Population biology of the black land crab, Gecarcinus ruricola, in the San Andres archipelago, western Caribbean. Journal of Crustacean Biology, 26(3), 316-325. Hawkins, B. A., Mills, N. J., Jervis, M. A., & Price, P. W. (1999). Is the biological control of insects a natural phenomenon? Oikos, 86(3), 493-506. Heinz, K. M., Brazzle, J. R., Parrella, M. P., & Pickett, C. H. (1999). Field evaluations of augmentative releases of Delphastus catalinae (Horn) (Coleoptera: Coccinellidae) for suppression of Bemisia argentifolii Bellows & Perring (Homoptera: Aleyrodidae) infesting cotton. Biological Control, 16(3), 241-251. doi:10.1006/bcon.1999.0750. Heinz, K. M. & Parrella, M. P. (1994). Biological control of Bemisia argentifolii (Homoptera, Aleyrodidae) infesting Euphorbia pulcherrima - evaluations of releases of Encarsia luteola (Hymenoptera, Aphelinidae) and Delphastus pusillus (Coleoptera, Coccinellidae). Environmental Entomology, 23(5), 1346-1353. doi:https://doi.org/10.1093/ee/ 23.5.1346. Heinz, K. M. & Zalom, F. G. (1996). Performance of the predator Delphastus pusillus on Bemisia resistant and susceptible tomato lines. Entomologia Experimentalis et Applicata, 81(3), 345-352. doi:10.1046/j.1570- 7458.1996.00105.x. Hemchandra, O., Kalita, J., & Singh, K. (2010). Biodiversity of aphidophagous coccinellids and their role as bioindicators in agro-forest ecosystem. The Bioscan, 1(special issue), 115-122. Herren, H. R. (1982). Distribution and economic importance of Phenacoccus manihoti and Mononychellus tanajoa in Africa. En H. R. Herren, R. N. Hennessey, & R. Bitterli (Eds.), Biological control and host plant resistance to control the cassava mealybug and green mite in Africa. Proceeding of an International Workshop, December 6-10, 1982 (pp. 3-5). Ibadan, Nigeria: International Institute of Tropical Agriculture (iita). Hodek, I., Honek, A., & Van Emden, H. F. (Eds.). (2012). Ecology and behaviour of the ladybird beetles (Coccinellidae) (pp. 605). Oxford, Reino Unido: John Wiley & Sons. Hodges, G. S. (2008). Icerya genistae Hempel (Hemiptera: Margarodidae): an emerging pest in south Florida. En M. Branco, J. C. Franco, & C. J. Hodgson (Eds.), Proceedings of the xi International Symposium on Scale Insect Studies, Oeiras, Portugal, 24-27 September 2007 (p. 157). Lisboa, Portugal: ISA Press. Hodges, G. S. (2008). Icerya genistae Hempel (Hemiptera: Margarodidae): an emerging pest in south Florida. En M. Branco, J. C. Franco, & C. J. Hodgson (Eds.), Proceedings of the xi International Symposium on Scale Insect Studies, Oeiras, Portugal, 24-27 September 2007 (p. 157). Lisboa, Portugal: ISA Press. Hoelmer, K. A., & Pickett, C. H. (2003). Geographic origin and taxonomic history of Delphastus spp. (Coleoptera: Coccinellidae) in commercial culture. Biocontrol Science and Technology, 13(5), 529-535. doi:10.1080/09583150 31000141018. Hodges, G. S., Hodges, A. C., & Unruh, C. M. (2008). A new exotic pest for Florida’s natural areas: Crypticerya genistae (Hemiptera: Monophlebidae). Florida Entomologist, 91(2), 335-337. Holling, C. S. (1961). Principles of insect predation. Annual Review of Entomology, 6, 163-182. doi:10.1146/annurev. en.06.010161.001115. Howeler, R. H. (2011). Recent trends in production and utilization of cassava in Asia. En R. H. Howeler (Ed.), The Cassava Handbook, A Reference Manual Based on the Asian Regional Cassava Training Course, Held in Thailand (pp. 1-22). Cali, Colombia: Centro Internacional de Agricultura Tropical (ciat). Hoy, M. A. (2008). Augmentative Biological Control. En J. L. Capinera (Ed.), Encyclopedia of Entomology (pp. 327-334). Dordrecht, Holanda: Springer. Hughes-Schrader, S. & Monahan, D. F. (1966). Hermaphroditism in Icerya zeteki Cockerell, and the mechanism of gonial reduction in iceryine coccids (Coccoidea: Margarodidae Morrison). Chromosoma, 20(1), 15-31. doi:10.1007/BF00331895. Hunter, C. D. (1998). Suppliers of beneficial organisms in North America. EE. UU., Sacramento, EE. UU.: California Environmental Protection Agency. Ingram, W. R. (1982). Potential for the biocontrol of green cassava mites in Africa. En H.R. Herren, R. N. Hennessey, & R. Bitterli (Eds.), Biological control and host plant resistance to control the cassava mealybug and green mite in Africa. Proceeding of an International workshop, December 6-10, 1982 (pp.103-115). Ibadan, Nigeria: International Institute of Tropical Agriculture (iita). Ives, A. R., Kareiva, P., & Perry, R. (1993). Response of a predator to variation in prey density at 3 hierarchical scales: Lady beetles feeding on aphids. Ecology, 74(7), 1929-1938. doi:10.2307/1940836. Kondo, T., González, G., Tauber, C., Guzmán-Sarmiento, Y. C., Vinasco-Mondragon, A. F., & Forero, D. (2015). A checklist of natural enemies of Diaphorina citri Kuwayama (Hemiptera: Liviidae) in the department of Valle del Cauca, Colombia and the World. Insecta Mundi, 0457, 1-14. Kondo, T., Gullan, P. J., Peronti, A. L. B. G., Ramos-Portilla, A. A., Caballero, A., & Pretelt, N. V. (2016a). First records of the iceryine scale insects Crypticerya brasiliensis (Hempel) and Crypticerya genistae (Hempel) (Hemiptera: Monophlebidae) for Colombia. Insecta Mundi, 0480, 1-9. Kondo, T., Gullan, P. J., Watson, G. W., Bustillo Pardey, A. E., & Montes, L. G. (2015). New distribution and host records for white coconut scale, Parlagena bennetti Williams (Hemiptera: Diaspididae). Insecta Mundi, 0422, 1–6. Kondo, T., Gullan, P., & Ramos Portilla, A. A. (2012a). Report of new invasive scale insects (Hemiptera: Coccoidea), Crypticerya multicicatrices Kondo & Unruh (Monophlebidae) and Maconellicoccus hirsutus (Green) (Pseudococcidae), on the islands of San Andres and Providencia, Colombia, with an updated taxonomic key to iceryine scale insects of South America. Insecta Mundi, 0265, 1-17. Kondo, T., Gullan, P., González, G. (2014). An Overview of a fortuitous and Efficient biological control of the Colombian fluted scale, Crypticerya multicicatrices Kondo & Unruh (Hemiptera: Monophlebidae: Iceryini), on San Andres Island, Colombia. Acta Zoologica Bulgarica, supp., 6, 87-93. Kondo, T., Peronti, A.L., Kozár, F., & Szita, E. (2013). Chapter 17. The citrus orthezia, Praelongorthezia praelonga (Douglas) (Hemiptera: Ortheziidae), a potential invasive species. En J. E. Peña (Ed.), Potential invasive pests of agricultural crops (pp. 301-319). Wallingford, Reino Unido: CAB International. Kondo T., Ramos-Portilla, A. A., Peronti, A. L. B. G., & Gullan, P. J. (2016b). Known distribution and pest status of fluted scale insects (Hemiptera: Monophlebidae: Iceryini) in South America. Redia, Journal of Zoology, 99, 187-195. doi:http://dx.doi.org/10.19263/REDIA-99.16.24. Kondo, T., & Unruh, C. (2009). A new species of Crypticerya Cockerell (Hemiptera: Monophlebidae) from Colombia, with a key to species of the tribe Iceryini found in South America. Neotropical Entomology, 38(1), 92-100. doi:10.1590/S1519-566X2009000100009. Krivan, V. (2008). Dispersal dynamics: Distribution of lady beetles (Coleoptera: Coccinellidae). European Journal of Entomology, 105(3), 405-409. doi:10.14411/ eje.2008.051. Landis, D. A., Wratten, S. D., & Gurr, G. M. (2000). Habitat management to conserve natural enemies of arthropod pests in agriculture. Annual Review of Entomology, 45, 175-201. doi:10.1146/annurev.ento.45.1.175. Le Caltagirone, A., & Doutt, R. L. (1989). The history of the vedalia beetle importation to California and its impact on the development of biological control. Annual Review of Entomology, 34, 1-16. doi:10.1146/annurev. en.34.010189.000245. Legaspi, J. C., Legaspi, B. C., Simmons, A. M., & Soumare, M. (2008). Life table analysis for immatures and female adults of the predatory beetle, Delphastus catalinae, feeding on whiteflies under three constant temperatures. Journal of Insect Science, 8, 7. doi:10.1673/031.008.0701. Lima, I. M. M. (1999). Ciclo de vida de Zagloba beaumonti Casey, 1899 (Coleoptera: Coccinellidae) como predador de Diaspis echinocacti (Bouché, 1833) (Hemiptera: Diaspididae): Duração, sobrevivência e fertilidade (tesis de doctorado). Universidade Federal do Paraná, Curitiba, PR, Brasil. Lyon, W. F. (1973). A plant-feeding mite Mononychellus tanajoa (Bondar) (Acarina: Tetranychidae) new to the African continent threatens cassava (Manihot esculenta Crantz) in Uganda, East Africa. PANS Pest Articles and News Summaries, 19(1), 36-37. doi:10.1080/09670877309412727. McMurtry, J. A., De Moraes, G. J., & Sourassou, N. F. (2013). Revision of the lifestyles of phytoseiid mites (Acari: Phytoseiidae) and implications for biological control strategies. Systematic and Applied Acarology, 18(4), 297- 320. doi:10.11158/saa.18.4.1. Mead, F. W., & Fasulo, T. R. (2010). Asian citrus psyllid, Diaphorina citri Kuwayama (Insecta: Hemiptera: Psyllidae). Recuperado de http://www.crec.ifas.ufl.edu/extension/ greening/pdf/asiaticcitruspsyllid.pdf. Michaud, J. P. (2001). Numerical response of Olla v-nigrum (Coleoptera: Coccinellidae) to infestations of Asian citrus psyllid (Hemiptera: Psyllidae) in Florida. Florida Entomologist, 84(4), 608-612. doi:10.2307/3496392. Michaud, J. P. (2002). Invasion of the Florida citrus ecosystem by Harmonia axyridis (Coleoptera: Coccinellidae) and asymmetric competition with a native species, Cycloneda sanguinea. Environmental Entomology, 31(5), 827-835. doi:10.1603/0046-225X-31.5.827. Michaud, J. P. & Olsen, L. E. (2004). Suitability of Asian citrus psyllid, Diaphorina citri, as prey for ladybeetles. BioControl, 49(4), 417-431. doi:10.1023/B:BICO.0000034605. 53030.db. Muñoz, K., Manrique, M. B., Sotelo-Cardona, P., Gaimari, S. D., & Kondo, T. (2018). Notes on the morphology and biology of Syneura cocciphila (Coquillett) (Diptera: Phoridae) a predator of Crypticerya multicicatrices Kondo & Unruh (Hemiptera: Monophlebidae). Journal of Insect Science, 18(1), 1-5. doi:10.1093/jisesa/iex110. Nachman, G. (2006a). The effects of prey patchiness, predator aggregation, and mutual interference on the functional response of Phytoseiulus persimilis feeding on Tetranychus urticae (Acari: Phytoseiidae, Tetranychidae). Experimental and Applied Acarology, 38(2-3), 87-111. doi:10.1007/s10493-006-7209-4. Nachman, G. (2006b). A functional response model of a predator population foraging in a patchy habitat. Journal of Animal Ecology, 75(4), 948-958. doi:10.1111/j.1365- 2656.2006.01114.x. Nicholls, C. I., Parrella, M. P., & Altieri, M. A. (1998). Advances and perspectives in the biological control of greenhouse pests with special reference to Colombia. Integrated Pest Management Reviews, 3(2), 99-109. doi:10.1023/A:1009695730407. Parsa, S., Hazzi, N. A., Chen, Q., Lu, F., Campo, B. V. H., Yaninek, J. S., & Vásquez-Ordóñez, A. A. (2015). Potential geographic distribution of two invasive cassava green mites. Experimental and Applied Acarology, 65(2), 195-204. doi:10.1007/s10493-014-9868-x. Pérez, R., García-González, J., & Cotes, A. M. (2008). Effect of a biopesticide on the predatory activity of Delphastus pusillus (Coleoptera: Coccinellidae). Revista Colombiana de Entomología, 34(2), 176-181. Pimentel, D. (2005). Environmental and economic costs of the application of pesticides primarily in the United States. Environment, Development and Sustainability, 7(2), 229-252. doi:10.1007/s10668-005-7314-2. Pinchao, E. C., Kondo, T., & González F., G. (2015). Rodolia cardinalis (Mulsant) (Coleoptera: Coccinellidae), a new predator of Crypticerya multicicatrices Kondo and Unruh (Hemiptera: Monophlebidae). Insecta Mundi, 0431, 1-7. Pinchao, E. C., Sotelo, P., González, G., & Kondo, T. (2017). Biological data on Anovia punica Gordon (Coleoptera: Coccinellidae), a predator of Crypticerya multicicatrices Kondo & Unruh (Hemiptera: Monophlebidae). Neotropical Entomology, 1-10. doi:https://doi.org/10.1007/s13744- 017-0561-8. Pires, E., Soares, M., Nogueira, R. M., Zanuncio, J. C., Moreira, P. S., & Oliveira, M. A. (2015). Seven decades of studies with Asopinae predators in Brazil. Bioscience Journal, 31(5), 1530-1549. doi:10.14393/BJ-v31n5a2015-27335. Rice, R. A., & Greenberg, R. (2000). Cacao cultivation and the conservation of biological diversity. Ambio: A Journal of the Human Environment, 29(3), 167-173. doi:10.1579/0044-7447-29.3.167. Rincón, D. F., Cañas, L. A., & Hoy, C. W. (2016). Intraplant spatial interaction between Delphastus catalinae (Coleoptera: Coccinellidae) and Bemisia tabaci biotype B (Hemiptera: Aleyrodidae) and its effect on predation rates. Biological Control, 95, 13-22. doi:10.1016/j. biocontrol.2015.12.010. Rincón, D. F., Cañas, L. A., & Hoy, C. W. (2017). Modeling changes in predator functional response to prey across spatial scales. Theoretical Ecology, 10(4), 403-415. doi:10.1007/s12080-017-0338-z. Rincón, D. F., Hoy, C. W., & Cañas, L. (2015). Generating within-plant spatial distributions of an insect herbivore based on aggregation patterns and per-node infestation probabilities. Environmental Entomology, 44(2), 194-209. doi:10.1093/ee/nvu022. Rincón-Vitova Insectaries, Inc. (2011). Dephastus cataliane: Whitefly predator. Recuperado de http://www.rin convitova.com/bulletins_product_pdf/Delphastus_ BUL.pdf. Rodas, C. A., Serna, R., Bolaños, M. D., Granados, G. M., Wingfield, M. J., & Hurley, B. P. (2014). Biology, incidence and host susceptibility of Pineus borneri (Hemiptera: Adelgidae) in Colombian pine plantations. Southern Forests: A Journal of Forest Science, 77(3), 165-171. doi:10 .2989/20702620.2014.1001662. Rosenheim, J. A., Limburg, D. D., & Colfer, R. G. (1999). Impact of generalist predators on a biological control agent, Chrysoperla carnea: Direct observations. Ecological Applications, 9(2), 409-417. doi:10.1890/1051-0761(19 99)009[0409:IOGPOA]2.0.CO;2. Safarzoda, S., Bahlai, C. A., Fox, A. F., & Landis, D. A. (2014). The role of natural enemy foraging guilds in controlling cereal aphids in Michigan wheat. Plos One, 9(12), e114230. doi:10.1371/journal.pone.0114230. Shivankar, V. J., & Rao, C. N. (2010). Psyllids and their management. Pest Management in Horticultural Ecosystems, 16(1), 1-4. Silva-Gómez, M., Quiroz-Gamboa, J. A., Yepes, F. C., Maya, M. F., Santos, A., & Hoyos-Carvajal, L. M. (2013). Incidence evaluation of Crypticerya multicicatrices and Maconellicoccus hirsutus in Colombian Seaflower Biosphere Reserve. Agricultural Sciences, 4(12), 654-665. doi:10.4236/as.2013.412088. Smith, L. & Bellotti, A. C. (1996). Successful biocontrol projects with emphasis on the neotropics. Recuperado de http:// web.entomology.cornell.edu/shelton/cornell-biocontrolconf/ talks/bellotti.html. Sotelo, P., & Kondo, T. (2017). On the biology of the Colombian fluted scale, Crypticerya multicicatrices Kondo & Unruh (Hemiptera: Monophlebidae). Neotropical Entomology, 46(4), 433-441. doi:10.1007/s13744-016- 0463-1. Stiling, P., & Cornelissen, T. (2005). What makes a successful biocontrol agent? A meta-analysis of biological control agent performance. Biological Control, 34(3), 236-246. doi:10.1016/j.biocontrol.2005.02.017. Stiling, P., Throckmorton, A., Silvanima, J., & Strong, D. R. (1991). Does spatial scale affect the incidence of density dependence: A field-test with insect parasitoids. Ecology, 72(6), 2143-2154. doi:10.2307/1941566. Suárez-Rubio, M., & Suárez, M. F. (2004). The use of the copepod Mesocyclops longisezus as a biological control agent for Aedes aegypti in Cali, Colombia. Journal of the American Mosquito Control Association, 20(4), 401-404. Symondson, W. O. C., Sunderland, K. D., & Greenstone, M. H. (2002). Can generalist predators be effective biocontrol agents? Annual Review of Entomology, 47, 561- 594. doi:10.1146/annurev.ento.47.091201.145240. Urano, S., Shima, K., Hongo, K., & Susuki, Y. (2003). A simple criterion for successful biological control on annual crops. Population Ecology, 45(2), 97-103. doi:10.1007/ s10144-003-0142-z. Van Lenteren, J. C. (2012). The state of commercial augmentative biological control: plenty of natural enemies, but a frustrating lack of uptake. Biocontrol, 57(1), 1-20. doi:10.1007/s10526-011-9395-1. Van Lenteren, J. C., & Bueno, V. H. P. (2003). Augmentative biological control of arthropods in Latin America. Biocontrol, 48(2), 123-139. doi:10.1023/A:1022645210394. Van Lenteren, J. C., Bolckmans, K., Köhl, J., Ravensberg, W. J., & Urbaneja, A. (2018). Biological control using invertebrates and microorganisms: plenty of new opportunities. Biocontrol, 63(1), 39-59. doi:10.1007/s10526-017-9801-4. Vélez, R. (1997). Plagas agrícolas de impacto económico en Colombia: bionomía y manejo integrado. Medellín, Colombia: Editorial Universidad de Antioquia. Yaninek, J. S. & Herren, H. R. (1988). Introduction and spread of the cassava green mite, Mononychellus tanajoa (Bondar) (Acari: Tetranychidae), an exotic pest in Africa, and the search for appropriate control methods; a review. Bulletin of Entomological Research, 78(1), 1-13. Yaninek, J. S., Mégevy, B., de Moraes, G. J., Bakker, F., Braun, A., & Herren, H. R. (1991). Establishment of the neotropical predator Amblyseius idaeus (Acari: Phytoseiidae) in Benin, West Africa. Biocontrol Science and Technology, 1(4), 323- 330. doi:10.1080/09583159109355211. Yaninek, J. S., Onzo, A., & Ojo, J. B. (1993). Continent-wide releases of neotropical phytoseiids against the exotic cassava green mite in Africa. Experimental and Applied Acarology, 17(1-2), 145-160. doi:10.1007/BF00156950. Yaninek, S. (2007). Biological control of the cassava green mite in Africa: Overcoming challenges to implementation. En C. Vincent, M.S. Goettel, & G. Lazarovits (Eds.), Biological control: A global perspective (pp. 28-37). Oxfordshire, Inglaterra: CAB International. Yaninek, S. & Hanna, R. (2003). Cassava green mite in Africa–A unique example of successful classical biological control of a mite pest on a continental Scale. En P. Neuenschwander, C. Borgemeister, & J. Langewald (Eds.), Biological control in IPM systems in Africa (pp. 61- 75). Oxfordshire, Inglaterra: CAB International. Yaseen, M. (1982). Exploration for Phenacoccus manihoti and Mononychellus tanajoa natural enemies: The challenge, the achievements. Proceedings Workshop on Biological Control and Resistance Breeding to Control Cassava Mealybug (Phenacoccus manihoti) and Green Spider Mite (Mononychellus tanajoa) in Africa. Ibadan, Nigeria: International Institute of Tropical Agriculture. Yaseen, M. & Bennett, F. D. (1976). Distribution, biology and population dynamics of the green cassava mite in the Neotropics. En J. H. Cock, R. MacIntyre, & M. Graham (Eds.), Proceedings of the Fourth Symposium of the International Society for Tropical Root Crops (pp. 196-202). Cali, Colombia: Centro Internacional de Agricultura Tropical (ciat). Zanuncio, J. C., Tavares, W. S., Fernandes, B. V., Wilcken, C. F., & Zanuncio, T. V. (2014). Production and use of Heteroptera predators for the biological control of eucalyptus pests in Brazil. Ekoloji, 23(91), 98-104. doi:10.5053/ekoloji.2014.9112. Abraham, Y., Moore, D., & Godwin, G. (1990). Rearing and aspects of biology of Cephalonomia stephanoderis and Prorops nasuta (Hymenoptera: Bethylidae) parasitoids of the coffee berry borer, Hypothenemus hampei (Coleoptera: Scolytidae). Bulletin of Entomological Research, 80(2), 121- 128. doi:10.1017/S000748530001333X. Aluja, M. (1994). Bionomics and management of Anastrepha. Annual Review of Entomology, 39, 155-178. doi:10.1146/ annurev.en.39.010194.001103. Aluja, M. (1999). Fruit fly (Diptera: Tephritidae) research in Latin America: myths, realities and dreams. Anais da Sociedade Entomológica do Brasil, 28(4), 565-594. doi:10.1590/S0301-80591999000400001. Aluja, M., López, M., & Sivinski, J. (1998). Ecological evidence for Diapause in four native and one exotic species of larval-pupal fruit fly (Diptera: Tephritidae) parasitoids tropical environments. Annals of the Entomological Society of America, 91(6), 821-833. doi:10.1093/aesa/91.6.821. Aluja, M., Sivinski, J., Ovruski, S., Guillen, L., Lopez, M., Cancino, J., … Ruíz, L.(2009). Colonization and domestication of seven species of native New World hymenopterous larval-prepupal and pupal fruit fly (Diptera: Tephritidae) parasitoids. Biocontrol Science and Technology, 19(Supl. 1), 49-79. doi:10.1080/09583150802377373. Aragón, S., Rodríguez, D., & Cantor, F. (2008). Release criteria of Encarsia formosa Gahan (Hymenoptera: Aphelinidae) for the control of Trialeurodes vaporariorum (Westwood)(Hemiptera: Aleyrodidae) on tomato. Agronomía Colombiana, 26(2), 277-284. Augier, L., Gastaminza, G., Lizondo, M., Argañaraz, M., & Willink, E. (2006). Presencia de Diaphorina citri (Hemiptera: Psyllidae) en el Noroeste Argentino (noa). Revista de la Sociedad Entomológica Argentina, 65(3-4), 67-68. Bakthavatsalam, N., Tandon, P., & Bhagat, D. (2013). Trichogrammatids: Behavioural Ecology. En: S. Sithanantham, C. R. Ballal, S. K. Jalali, & N. Bakthavatsalam (Eds.), Biological Control of Insect Pests Using Egg Parasitoids (pp. 77-104). Nueva Delhi, India: Springer. doi:10.1007/978-81-322-1181-5. Baranowski, R., Glenn, H., & Sivinski, J. (1993). Biological control of the Caribbean fruit fly (Diptera: Tephritidae). Florida Entomologist, 76(2) 245-251. doi:10.2307/3495721 Barbosa, P. (1998). Agroecosystems and conservation biological control. En Conservation biological control. San Diego, EE. UU.: Academic Presss. doi:10.1016/B978- 012078147-8/50049-9. Bellotti, A., & Arias, B. (1977). Biology, ecology and biological control of the cassava hornworm (Erinnyis ello). En T. Brekelbaum, A. Bellotti, & J. C. Lozano (Eds.), Cassava Protection Workshop (1977, Cali, Colombia), Proceedings (pp. 227-232). Cali, Colombia: Centro Internacional de Agricultura Tropical (ciat). Bellotti, A. C., Arias, B., & Guzmán, O. (1992). Biological control of the cassava hornworm Erinnyis ello (Lepidoptera: Sphingidae). Florida Entomologist, 75(4), 506-515. doi:10.2307/3496132. Bellotti, A. C., Melo-Molina, E. L., Arias, V., Herrera- Fernández, C., Hernández, M., Holguín, A., … Trujillo- García, H. (2005). Biological control in the neotropics: a selective review with emphasis on cassava. En M. S. Hoddle (Ed.), Proceedings of International Symposium on Biological Control of Arthropods (2, 2005, Davos, Switzerland) (pp. 206-227). Riverside, EE. UU.: University of California. Bennett, F. (1969). Tachinid flies as biological control agents for sugarcane moth borers. En J. Williams, J. Metcalfe, R. Mungomery & R. Mathes (Eds.), Pests of Sugar Cane (pp. 117-148). Amsterdam, Holanda: Elsevier. Bento, J. M. S., De Moraes, G., Bellotti, A. C., Castillo, J., Warumby, J. F., & Lapointe, S. L. (1999). Introduction of parasitoids for the control of the cassava mealybug Phenacoccus herreni (Hemiptera: Pseudococcidae) in north-eastern Brazil. Bulletin of Entomological Research, 89(5), 403-410. doi:10.1017/S000748539900053X. Bento, J. M. S., De Moraes, G., De Matos, A., & Bellotti, A. C. (2000). Classical biological control of the mealybug Phenacoccus herreni (Hemiptera: Pseudococcidae) in northeastern Brazil. Environmental Entomology, 29(2), 355-359. doi:10.1603/0046-225X(2000)029[0355:CB COTM]2.0.CO;2. Beserra, E. B., Querino, R. B., & Parra, J. R. (2003). Occurrence of gynandromorphism in Trichogramma pretiosum Riley (Hymenoptera: Trichogrammatidae). Neotropical Entomology, 32(2), 507-509. doi:10.1590/ S1519-566X2003000300021. Betrem, J. (1961). Cephalonomia stephanoderis nov. spec. (Hym., Bethylidae). Entomologie Bergculturer, 21(10), 183-184. Boivin, G. (2009). Reproduction and immature development of egg parasitoids. En F. L. Consoli, J. R. Parra, & R. A. Zucchi (Eds.), Egg parasitoids in agroecosystems with emphasis on Trichogramma (pp. 1-23). Berlín, Alemania: Springer. Bueno, R. C. O. F., Bueno, A. F., Parra, J. R. P., Vieira, S. S., & Oliveira, L. J. (2010). Biological characteristics and parasitism capacity of Trichogramma pretiosum Riley (Hymenoptera, Trichogrammatidae) on eggs of Spodoptera frugiperda ( JE Smith) (Lepidoptera, Noctuidae). Revista Brasileira de Entomologia, 54(2), 322-327. doi:10.1590/ S0085-56262010000200016. Byrne, D., Bellows, T., & Parrella, M. (1990). Whitheflies in agricultural systems. En D. Gerling (Ed.), Whiteflies: Their bionomis, pest status and management (pp. 227-261). Andover, EE. UU.: Intercept. Cantor, F., Rodríguez, D., & Cure, J. (2011). Dispersion of Encarsia formosa (Hymenoptera: Aphelinidae) parasitizing Trialeurodes vaporariorum (Hemiptera: Aleyrodidae) on greenhouse tomato crops. Revista Colombiana de Entomología, 37(2), 210-216. Carrejo, N. S., & González, R. (1999). Parasitoids reared from species of Anastrepha (Diptera: Tephritidae) in Valle del Cauca, Colombia. Florida Entomologist, 82(1), 113-118. doi:10.2307/3495842. Carvajal-Yepes, M., Olaya, C., Lozano, I., Cuervo, M., Castano, M., & Cuellar, W. J. (2014). Unraveling complex viral infections in cassava (Manihot esculenta Crantz) from Colombia. Virus Research, 186, 76-86. doi:10.1016/j. virusres.2013.12.011. Colazza, S., Peri, E., Salerno, G., & Conti, E. (2009). Host searching by egg parasitoids: exploitation of host chemical cues. En F. Consoli, J. Parra & R. Zucchi (Eds.), Egg Parasitoids in Agroecosystems with Emphasis on Trichogramma (pp. 97-147). Dordrecht, Holanda: Springer. Cox, J. M., & Williams, D. (1981). An account of Cassava mealybugs (Hemiptera: Pseudococcidae) with a description of a new species. Bulletin of Entomological Research, 71(2), 247-258. doi:10.1017/S0007485300008270. De Vis, R., Fuentes, L., & van Lenteren, J. (2002). Life history of Amitus fuscipennis (Hym., Platygastridae) as parasitoid of the greenhouse whitefly Trialeurodes vaporariorum (Hom., Aleyrodidae) on tomato as function of temperature. Journal of Applied Entomology, 126(1), 24- 33. doi:10.1046/j.1439-0418.2002.00591.x. De Vis, R. M., & Van Lenteren, J. C. (2008). Biological control of Trialeurodes vaporariorum by Encarsia formosa on tomato in unheated greenhouses in the high altitude tropics. Bulletin Insectology, 61(1), 43-57. Díaz, F., Endersby, N. M., & Hoffmann, A. A. (2015). Genetic structure of the whitefly Bemisia tabaci populations in Colombia following a recent invasion. Insect Science, 22(4), 483-494. doi:10.1111/1744-7917.12129. Díaz, M. F., Ramírez, A., & Poveda, K. (2012). Efficiency of different egg parasitoids and increased floral diversity for the biological control of noctuid pests. Biologial Control, 60(2), 182-191. doi:10.1016/j.biocontrol.2011.11.001. Dorn, B., Mattiacci, L., Bellotti, A. C., & Dorn, S. (2003). Host specificity and daytime activity of parasitoids of the Latin American cassava mealybug, Phenacoccus herreni (Sternorrhyncha: Pseudococcidae). Bulletin de la Societé Entomologique Suisse, 76, 293-300. Duncan, R. E., Ulmer, B. J., Peña, J. E., & Lapointe, S. L. (2007). Reproductive biology of Fidiobia dominica (Hymenoptera: Platygastridae), an egg parasitoid of Diaprepes abbreviatus (Coleoptera: Curculionidae). Environmental Entomology, 36(2), 376-382. Ebratt-Ravelo, E. E., Rubio-González, L. T., Costa, V. A., Castro-Ávila, Á. P., Zambrano-Gómez, E. M., & Ángel- Díaz, J. E. (2011a). Diaphorina citri (Kuwayama, 1907) and Tamarixia radiata (Waterson, 1922) in citrus crops of Cundinamarca, Colombia. Agronomía Colombiana, 29(3), 487-493. Ebratt-Ravelo, E. E., Rubio-González, L. T., Costa, V. A., Zambrano-Gómez, E. M., Castro-Ávila, Á. P., & Santamaría-Galindo, M. Y. (2011b). Record of Tamarixia radiata (Waterston, 1922) (Hymenoptera: Eulophidae) in Colombia. Revista Facultad Nacional de Agronomía, 64(2), 6141-6146. Echeverry, O. (1999). Determinación del impacto de Phymastichus coffea La Salle (Hymenoptera: Eulophidae) sobre poblaciones de broca del café Hypothenemus hampei (Ferrari) (Coleoptera: Scolytidae), en la zona cafetera. Palmira, Colombia: Universidad Nacional de Colombia, Sede Palmira. European and Mediterranean Plant Protection Organization (eppo). (2005). Data Sheets on Quarantine Pests: Diaphorina citri. Recuperado de http://www.eppo.org/ QUARANTINE/insects/Diaphorina_citri/DIAACI_ ds.pdf . Estrada, G. D., & Soto, A. (2011). Fidiobia sp. (Hymenoptera: Platygastridae) parasitism on Compsus sp. (Coleoptera: Curculionidae). Boletín Científico. Centro de Museos. Museo de Historia Natural, 15(2), 201-205. Étienne, J., & Aubert, B. (1980). Biological control of psyllid vectors of greening disease on Reunion Island. En E. C. Calavan, S. M. Garnsey & L. W. Timmer (Eds.) Proceedings of the 8th Conference International Organization of Citrus Virologists (pp. 118-121). Riverside, EE. UU.: International Organization of Citrus Virologists. Étienne, J., Quilici, S., Marival, D., & Franck, A. (2001). Biological control of Diaphorina citri (Hemiptera: Psyllidae) in Guadeloupe by imported Tamarixia radiata (Hymenoptera: Eulophidae). Fruits, 56(5), 307-315. doi:10.1051/fruits:2001131. Evans, G. A., & Castillo, J. A. (1998). Parasites of Aleurotrachelus socialis (Homoptera: Aleyrodidae) from Colombia including descriptions of two new species (Hymenoptera: Aphelinidae: Platygastridae). The Florida Entomologist, 81(2), 171-178. doi:10.2307/3496083. Evans, G. A., & Peña, J. E. (2005). A new Fidiobia species (Hymenoptera: Platygastridae) reared from eggs of Diaprepes doublierii (Coleoptera: Curculionidae) from Dominica. Florida Entomologist, 88(1), 61-66. Geetha, N., & Balakrishnan, R. (2010). Dispersal pattern of Trichogramma chilonis Ishii in sugarcane field. Biological Control, 24(1), 1-7. Gifford, J., & Mann, G. (1967). Biology, Rearing, and A Trial Release of Apanteles flavipes in the Florida Everglades to Control the Sugarcane Borer. Journal of Economic Entomology, 60(1), 44-47. doi:10.1093/jee/60.1.44. Godfray, H. C. J. (1994). Parasitoids: behavioral and evolutionary ecology. Princeton, EE. UU.: Princeton University Press. Gold, C. S., Altieri, M. A., & Bellotti, A. C. (1989b). The effects of intercropping and mixed varieties of predators and parasitoids of cassava whiteflies (Hemiptera: Aleyrodidae) in Colombia. Bulletin of Entomological Research, 79(1), 115-121. doi:10.1017/S0007485300018629. Guimarães, J. A., & Zucchi, R. A. (2004). Parasitism behavior of three species of Eucoilinae (Hymenoptera: Cynipoidea: Figitidae) fruit fly parasitoids (Diptera) in Brazil. Neotropical Entomology, 33(2), 217-224. doi:10.1590/ S1519-566X2004000200012. Hagen, K. S., & Franz, J. M. (1973). A history of biological control. En: R. F. Smith, T. E. Mittler, C. N. Smith (Eds.), A History of Entomology (pp. 433-477). Palo Alto, EE. UU.: Annual Reviews. Halbert, S. E., & Manjunath, K. L. (2004). Asian citrus psyllids (Sternorrhyncha: Psyllidae) and greening disease of citrus: a literature review and assessment of risk in Florida. Florida Entomologist, 87(3), 330-353. doi:10.1653/0015-4040(2004)087[0330:ACPSPA]2.0. CO;2. Halbert, S. E., & Núñez, C. A. (2004). Distribution of the Asian citrus psyllid, Diaphorina citri Kuwayama (Rhynchota: Psyllidae) in the Caribbean basin. Florida Entomologist, 87(3), 401-402. doi:10.1653/0015- 4040(2004)087[0401:DOTACP]2.0.CO;2. Hargreaves, H. (1926). Notes on the coffee berry-borer (Stephanoderes hampei, Ferr.) in Uganda. Bulletin of Entomological Research, 16(4), 347-354. doi:10.1017/ S0007485300028637. Hargreaves, H. (1935). Stephanoderes hampei Ferr., coffee berry-borer, in Uganda. The East African Agricultural Journal, 1(3), 218-224. doi:10.1080/03670074.1935.11 663651. Herrera, F., & Bellotti, A. (1986). Desarrollo y comportamiento de Epidinocarsis (= Apoanagyrus) diversicornis Howard (Encyrtidae) enemigo natural de Phenacoccus herreni Cox y Williams (Pseudococcidae). Acta Agronómica, 36(4), 47-58. Hidalgo, R., Oliveira, S., Fagundes, F., Rossoni, C., Perassa, D., & Avalo, M. (2015). Parasitism and biological aspects of Tetrastichus howardi (Hymenoptera: Eulophidae) on Erinnyis ello (Lepidoptera: Sphingidae) pupae. Ciência Rural, 45(2), 185-188. doi: 10.1590/0103- 8478cr20130896. Jalali, S. (2013). Natural Occurrence, Host Range and Distribution of Trichogrammatid Egg Parasitoids. En S. Sithanantham, C. Ballal, S. Jalali & N. Bakthavatsalam (Eds.) Biological Control of Insect Pests Using Egg Parasitoids (pp.67-76). Nueva Delhi, India: Springer. doi:10.1007/978-81-322-1181-5_4. Jaramillo, J., Bustillo, A., Montoya, E., & Borgemeister, C. (2005). Biological control of the coffee berry borer Hypothenemus hampei (Coleoptera: Curculionidae) by Phymastichus coffea (Hymenoptera: Eulophidae) in Colombia. Bulletin of Entomological Research, 95(5), 467- 472. doi:10.1079/BER2005378. Jarjees, E. A., & Merritt, D. J. (2002). Development of Trichogramma australicum Girault (Hymenoptera: Trichogrammatidae) in Helicoverpa (Lepidoptera: Noctuidae) host eggs. Austral Entomology, 41(4), 310- 315. doi:10.1046/j.1440-6055.2002.00319.x. Kalyebi, A., Overholt, W., Schulthess, F., Mueke, J., Hassan, S., & Sithanantham, S. (2005). Functional response of six indigenous trichogrammatid egg parasitoids (Hymenoptera: Trichogrammatidae) in Kenya: influence of temperature and relative humidity. Biological Control, 32(1), 164-171. doi:10.1016/j.biocontrol.2004.09.006. Koch, V. J. M. (1973). Abondance de Hypothenemus hampei Ferr., scolyte des graines de cafe, en fonction de sa plantehote et de son parasite Cephalonomia stephanoderis Betrem, en Cote d'Ivoire. Wageningen, Holanda: Mededelingen Landbouwhogeschool. LaSalle, J. (1990). A new genus and species of Tetrastichinae (Hymenoptera: Eulophidae) parasitic on the coffee berry borer, Hypothenemus hampei (Ferrari) (Coleoptera: Scolytidae). Bulletin of Entomological Research, 80(1), 7-10. doi:10.1017/S0007485300045843. LaSalle, J. (1994). North American genera of Tetrastichinae (Hymenoptera: Eulophidae). Journal of Natural History, 28(1), 109-236. doi:10.1080/00222939400770091. Le Pelley, R. H. (1968). Pests of coffee. Londres, Inglaterra: Longmans, Green and Co. Löhr, B., Varela, A., & Santos, B. (1990). Exploration for natural enemies of the cassava mealybug, Phenacoccus manihoti (Homoptera: Pseudococcidae), in South America for the biological control of this introduced pest in Africa. Bulletin Entomological Research, 80(4), 417-425. doi:10.1017/S0007485300050677. López, M., Aluja, M., & Sivinski, J. (1999). Hymenopterous larval–pupal and pupal parasitoids of Anastrepha flies (Diptera: Tephritidae) in Mexico. Biological Control, 15(2), 119-129. doi:10.1006/bcon.1999.0711. López, V., Baker, P., Cock, J., & Orozco, J. (1997). Dossier on Phymastichus coffea (Hymenoptera: Eulophidae Tetrastichinae) a potential biological control agent for Hypothenemus hampei (Ferrari)(Coleoptera: Scolytidae) in Colombia. Chinchiná, Colombia: Cenicafé, cabi, iibc. Ma, C. S., & Chen, Y. W. (2006). Effects of constant temperature, exposure period, and age on diapause induction in Trichogramma dendrolimi. Biological Control, 36(3), 267-273. doi:10.1016/j.biocontrol.2005.11.013. Mann, R., & Stelinski, L. (2010). An Asian citrus psyllid parasitoid, Tamarixia radiata (Waterston) (Insecta: Hymenoptera: Eulophidae). Recuperado de https://edis. ifas.ufl.edu/pdffiles/IN/IN85800.pdf. Manzano, M. R., Martínez, M., Andrés, W., & Vélez-Mera, C.A. (2009). Bemisia tabaci biotype B in bean. Acta Agronómica, 58(4), 251-259. Manzano, M., Van Lenteren, J., & Cardona, C. (2002a). Intrinsic rate of population increase of Amitus fuscipennis MacGown and Nebeker (Hym., Platygastridae) according to climatic conditions and bean cultivar. Journal of Applied Entomology, 126(1), 34-39. doi:10.1046/j.1439- 0418.2002.00602.x. Manzano, M. R., Van Lenteren, J., & Cardona, C. (2003b). Influence of pesticide treatments on the dynamics of whiteflies and associated parasitoids in snap bean fields. Biological Control, 48(6), 685-693. doi:10.1023/A:1026350120466. Manzano, M. R., Van Lenteren, J. C., Cardona, C., & Drost, Y. C. (2000). Developmental time, sex ratio, and longevity of Amitus fuscipennis MacGown & Nebeker (Hymenoptera: Platygastridae) on the greenhouse whitefly. Biological Control, 18(2), 94-100. doi:10.1006/ bcon.2000.0826. Mejía, M., Bustillo, P., Orozco, H., & Cháves, C. (2000). Effect of four insecticides and Beauveria bassiana on Prorops nasuta (Hymenoptera: Bethylidae) parasitoid of the coffee berry borer. Revista Colombiana de Entomología, 26, 117-123. Metcalfe, J., & Brenière, J. (1969). Egg parasites (Trichogramma spp.) for control of sugar cane moth borers. En J. Williams, J. Metcalfe, R. Mungomery, & R. Mathes (Eds.), Pests of Sugar Cane (pp. 81-115). Amsterdam, Holanda: Elsevier. Michaud, J. (2004). Natural mortality of Asian citrus psyllid (Homoptera: Psyllidae) in central Florida. Biological Control, 29(2), 260-269. doi:10.1016/S1049-9644(03)00161-0. Moore, D., & Prior, C. (1988). Present status of biological control of the coffee berry borer Hypothenemus hampei. En Proceedings of Brighton Crop Protection Conference Pests and Diseases (pp. 1119-1124). Brighton, Inglaterra: British Crop Protection Council. Muirhead, K., Austin, A., & Sallam, M. (2008). The systematics and biology of Cotesia nonagriae (Olliff ) stat. rev. (Hymenoptera: Braconidae: Microgastrinae), a newly recognized member of the Cotesia flavipes species complex. Zootaxa, 1846, 35-46. Muirhead, K. A., Murphy, N. P., Sallam, N., Donnellan, S. C., & Austin, A. D. (2012). Phylogenetics and genetic diversity of the Cotesia flavipes complex of parasitoid wasps (Hymenoptera: Braconidae), biological control agents of lepidopteran stemborers. Molecular Phylogenetics and Evolution, 63(3), 904-914. doi:10.1016/j.ympev.2012.03.003. Navas-Castillo, J., López-Moya, J. J., & Aranda, M. A. (2014). Whitefly-transmitted rna viruses that affect intensive vegetable production. Annals of Applied Biology, 165,(2), 155-171. doi:10.1111/aab.12147. Neuenschwander, P., Herren, H., Harpaz, I., Badulescu, D., & Akingbohungbe, A. (1988). Biological control of the cassava mealybug, Phenacoccus manihoti, by the exotic parasitoid Epidinocarsis lopezi in Africa. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 318(1189), 319-333. doi:10.1098/ rstb.1988.0012. Nicholls, C. I., Parrella, M. P., & Altieri, M. A. (1998). Advances and perspectives in the biological control of greenhouse pests with special reference to Colombia. Integrated Pest Management Reviews, 3(2), 99-109. doi:10.1023/A:1009695730407. Norrbom, A. L., & McAlpine, J. F. (1996). A revision of the Neotropical species of Dasiops Rondani (Diptera: Lonchaeidae) attacking Passiflora (Passifloraceae). Memoirs of the Entomological Society of Washington, 18, 189-211. Noyes, J. (2011). Universal Chalcidoidea. Recuperado de http://www.nhm.ac.uk/our-science/data/chalcidoids/ database/. O’Brien, C., & Wibmer, G. (1982). Annotated checklist of the weevils (Curculionidae sensu lato) of North America, Central America, and the West Indies (Coleoptera: Curculionoidea). Memoirs of the American Entomological Institute, 34(i-ix), 1-382. O’Brien, C. W., & Peña, J. (2012). Two species of Compsus Schoenherr, new citrus pests from Colombia (Coleoptera: Curculionidae: Entiminae). Insecta Mundi, 0227, 1-13. |
dc.relation.references.fra.fl_str_mv |
Fargues, J., Maniania, N. K., Delmas, J. C., & Smits, D. (1992). Influence de la température sur la croissance in vitro d’hyphomycètes entomopathogènes. Agronomie, 12(7), 557-564. Ferchault de Réaumur, R.-A. (1734). Mémoires pour servir à l’histoire des insectes. Recuperado de http://fondosdigitales. us.es/fondos/libros/6742/16/memoires-pour-servirlhistoire- des-insectes-par-m-de-reaumur-tome-secondsuite- de-lhistoire-des-chenilles-des-papillons-etlhistoire- des-insectes-envenis-des-chenilles/. Kurstak, S., Belloncik, S., & Brailovsky, C. (1969). Transformation de cellules L de souris par un virus d'invertébrés: le virus de la densonucléose (vdn). Comptes Rendus de l'Académie des Sciences, 269, 1716-1719. Pasteur, L. (1870). Études sur la maladie des vers à soie. París, Francia: Gauthier-Villars. Fabre, J. (1879). Souvenirs entomologiques. Etudes sur l'instinct et les moeurs des insectes. París, Francias: Librairie CH. Delagrave. Mariau, D. (1968). Méthodes de lutte contre le Rhynchophore. Oléagineux, 23(7), 443-446. Borbon, M. O. (1989). Bioécologie d'un ravageur des baies de caféier, Hypothenemus hampei Ferr.(Coleoptera; Scolytidae) et de ses parasitoides au Togo [tesis de doctorado]. Université Paul Sabatier, Toulouse, Francia |
dc.rights.*.fl_str_mv |
Attribution-NonCommercial-ShareAlike 4.0 International |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ |
rights_invalid_str_mv |
Attribution-NonCommercial-ShareAlike 4.0 International http://creativecommons.org/licenses/by-nc-sa/4.0/ http://purl.org/coar/access_right/c_abf2 |
dc.format.extent.spa.fl_str_mv |
566 páginas |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.coverage.researchcenter.spa.fl_str_mv |
C.I. Tibaitatá C.I. Palmira C.I. La Libertad C.I. Caribia C.I. El Mira |
dc.coverage.country.spa.fl_str_mv |
Colombia |
dc.publisher.spa.fl_str_mv |
Corporación colombiana de investigación agropecuaria - AGROSAVIA |
dc.publisher.place.spa.fl_str_mv |
Mosquera |
institution |
Agrosavia |
bitstream.url.fl_str_mv |
https://repository.agrosavia.co/bitstream/20.500.12324/33829/2/license.txt https://repository.agrosavia.co/bitstream/20.500.12324/33829/15/Ver_documento_33829.pdf.jpg https://repository.agrosavia.co/bitstream/20.500.12324/33829/14/Ver_documento_33829.pdf |
bitstream.checksum.fl_str_mv |
8a4605be74aa9ea9d79846c1fba20a33 0cfe3c26054b83d0f123e3c697663fa7 f10a42731362cb06b2ec0679143362a5 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Agrosavia - Corporación colombiana de investigación agropecuaria |
repository.mail.fl_str_mv |
bac@agrosavia.co |
_version_ |
1814380205818511360 |
spelling |
Santos Díaz, Adriana Marcelaaf5146b8-691d-47b7-bf19-a69650a479caCotes Prado, Alba Marina6115f458-db26-448a-add3-d95652a3f390600Caro Quintero, Alejandro051c00a1-04dc-40d9-b978-09e78ebf14c0Bustillo Pardey, Alex Enrique73b64ed9-6be4-4877-9f21-b2c0635ac15f600Escobar, Alexander1eaab052-4783-4d1f-866e-99c8f2936289Díaz García, Andrés25b799bc-a666-421d-b623-a9bc50c93442Arcila Cardona, Ángela Maríae9653f52-615c-45ba-976c-034e4f250346Carabalí Muñoz, Arturo8d0fb1ca-9083-4546-893e-de4a203c2d1bVásquez Ordóñez, Aymer Andrés8cf3d1eb-2f56-4e72-a985-fe96d6e3381aLohr, Bernhard Leo33789aac-bceb-4f4c-b0f1-28d349a49d2bOehlschlager, Camebf4423e-fbc1-4e80-b92d-226298facfe8600Beltrán Acosta, Camilo Rubén4a1de6b0-5c4d-4300-9dc7-ab6c196b10ee600Moreno Velandia, Carlos Andresb73838b5-3d27-4b31-aa9f-5286d889654c600Espinel Correal, Carlos04e9d76e-c10d-46d8-b575-5143b6c472e0González Almario, Carolina05626418-76d8-4824-a4fb-e86ab27c5003Clerck, Caroline de2b1d65e4-540c-4088-8eb5-751490fb01a0Hoy, Casey W.06d25067-8ebd-4031-a38c-3e89f78bef4cNarváez Vásquez, Consuelo Alexandra0e616e06-3b2b-46a7-8876-4c2bd45ed17cLeón, Diana Marcela1b7ef8dd-911c-4010-a5d9-8cece088656aRincón Rueda, Diego Fernando00da5163-8347-4e06-9630-46be5607c803600Espitia Malagón, Eduardo María9b78bfd8-857d-4131-83ec-d74e7e0e300f600Alarcón Torres, Érika Andrea416465a0-e65b-4c98-a292-257c8bed4bb8600Grijalba, Érika Paolad3ba23ad-696e-43a6-a860-26e937c2529f600Moreno, Fabiolaa84c0da7-4ac7-4180-8920-a7ead02f4937Borrero Echeverry, Felipe5092dd24-89aa-4a0d-979e-2d3d6e3cb047Cruz Barrera, Fredy Mauriciofed73780-e7dc-4b93-b93a-ec6003cce5b1Berg, Gabriele7d9fd19b-4642-440f-ba02-dc00802c7e7b600Vargas, Germán16d87722-e794-4b67-86dc-7997dee0af2fBarrera Cubillos, Gloria Patricia4a24240d-3ed2-4873-8044-d3a77583ae69600León Martínez, Guillermo Adolfo3df7468a-6aa5-4030-b026-9a40f04402c3600González F., Guillermod450020a-a2e4-4588-8781-ff6b52ef1604Jijakil, Haissam3f03f2a0-c135-418b-a155-d10fae68e431Rivera Trujillo, Hugo Fernando7f71e6e7-29fc-4726-80eb-890a08a1a93aHernández Nopsa, John Fredy998d1d85-253e-4232-8e17-a44c5565adddIbarra, Jorgebd0acae8-09b1-41e9-9679-8f74b1a4ad0dJurat Fuentes, Juan Luis85cb0f85-0463-4d73-89af-f07b24b4d5a2Gómez Valderrama, Juliana Andrea5a798cba-6261-4f61-b256-b5d59e7f6f0f600Köhl, Jürgena0221069-34a0-4229-a8c1-7bab0d863f48600Smalla, Korneliaaa1aefd2-88d4-48a8-af23-c82f4ce6ad3fVillamizar, Laura Fernandadc47870b-ab87-4dc1-9b45-e52b443bf926600Solorzano Buitrago, Leonardo92b35c05-7071-48fb-b2b2-cd6753bb031aTorres Torres, Lissette Aracelly31039678-c9a3-497c-a18b-ceebb49fae24600Uribe Gutiérrez, Liz Alejandrae6f1c991-9f79-4920-bb12-b1a1403f69f7600Pulido, Luz Astrid16357dc8-dd7e-4aea-b675-797f223b92c7Pérez, Manuel Ricardo86a3526d-f2db-485c-9567-0ccf713c90e4Manzano Martínez, María del Rosariod9be9a6d-5234-4d10-a8e4-5334983badc0Díaz Niño, María Fernanda1fc8f773-e27b-4aeb-8cd8-6c09b5f6357bDíaz Niño, María Fernandaba99a070-6ae3-4421-a26f-6405261af925Zuluaga Mogollón, María Victoria7378b05a-aef0-401d-805d-7059575a3d29Belaich, Mariano Nicolás8ac8400a-91f2-4fb9-a69e-b2edf69b6005600Hurst, Mark9eab72ab-e302-4560-8090-7b59c43a7d82Gómez Álvarez, Martha Isabeld0c88b32-c985-46ee-ba78-1b0cb4c5c54dRodríguez, Martha Lilianad35189bb-9a84-4227-b1c3-e9022ca583bc600Wisniewski, Michaelf4cb37c7-26f3-4eeb-8c04-18c9fd64c4e7López Ferber, Migueld01f7602-e15b-451c-9b4b-9ecbd310222bBarreto Triana, Nancy del Carmena45b8fb0-6918-48e4-90c7-fe961e4a1c06600Ghiringhelli, Pablo Daniele7fb38f3-a79a-4eed-93bf-c38c06fd1e2dCuartas, Paola Emilia4bf7a6b2-83d5-4c27-9fed-d719738a66d4Betancourt, Ruth Análida5ebac824-057f-4352-a575-74fa85f42989Kobayashi, Sadao18e040bc-e2c6-455b-870e-811213ffa373600Aragón Rodríguez, Sandra Milena7300eae2-4814-429f-acb3-65e9f53a7f7e600Massart, Sébastienaeb8437d-5e04-44eb-b80d-61ea5cd90a71Lewis Mosher, Stephena4562d9e-7660-47f4-9642-247d8bae8e79Kondo Rodriguez, Demian Takumasac2888d94-2d6a-4bf0-a2da-f44316c17830600Jackson, Trevor436dff01-6d1d-42f8-a6a4-80be61a0008aBettiol, Wagner0235e459-c4b7-44ff-83d6-a555702ac5df600Fargetton, Xavierd1d80c8d-2d55-4193-ad09-14faea507177Elad, Yigalf9c63e8f-be44-4d6f-88dc-1c9bf544f84a600Zapata Narváez, Yimmy Alexander1a0815b1-b6df-490b-8047-d14a0574ce03600Martínez, Yohana Alexandra89edb4f8-8af3-4177-83a0-0533197d72a0Balbín Suárez, Aliciad875ed53-cb97-4860-859d-5a0ed619286f6002018-10-26T21:10:35Z2018-10-26T21:10:35Z2018-102018978-958-740-253-7 (e-book)http://hdl.handle.net/20.500.12324/33829https://doi.org/10.21930/agrosavia.investigation.7402537reponame:Biblioteca Digital Agropecuaria de Colombiarepourl:https://repository.agrosavia.coinstname:Corporación colombiana de investigación agropecuaria AGROSAVIAEl presente libro recoge los desarrollos más relevantes a nivel mundial, las experiencias de Corpoica (hoy AGROSAVIA) y el trabajo de décadas de los coautores nacionales e internacionales que hacen parte del mismo. La documentación sobre los avances y las perspectivas en la materia tiene la intención de acelerar los nuevos desarrollos en aspectos aún no estudiados del control biológico y estimular el progreso en su implementación. La comprensión de los aspectos científicos, tecnológicos y del mercado del control biológico, visto como un componente fundamental del manejo integrado de plagas agrícolas, es la base para el desarrollo de estrategias de protección de cultivos respetuosas con el medio ambiente, con la salud humana, con la salud animal y eficaces para el control de estas, no solo en Colombia, sino a nivel mundial. El control biológico implica el uso tanto de bacterias, hongos y virus, como de insectos benéficos para el control de fitopatógenos o de insectos plaga según el caso. Este sistema de control ofrece un enfoque amigable con el medio ambiente que se puede incluir al manejo integrado, en el cual se incorporan los controles cultural, físico, genético y al uso racional de agroquímicos, entre otros.566 páginasapplication/pdfspaCorporación colombiana de investigación agropecuaria - AGROSAVIAMosqueraColección nuevo conocimiento agropecuario Corporación Colombiana de Investigación Agropecuaria (Colombia)34057 ; El concepto de control biológico y sus premisas fundamentales34058 ; Cap: 1 Control biológico de patógenos foliares34059 ; Cap: 2 Control biológico de fitopatógenos del suelo34060 ; Cap:3 Control biológico de patógenos en poscosecha34069 ; Cap: 4 Estudios del microbioma y su aplicación en el control biológico de fitopatógenos34070 ; Cap: 5 Bacterias entomopatógenas en el control biológico de insectos34071 ; Cap: 6 Hongos entomopatógenos en el control biológico de insectos plaga34072 ; Cap: 7 Virus entomopatógenos en el control biológico de insectos34073 ; Cap: 8 Las feromonas en el control de insectos34074 ; Cap: 9 Uso de depredadores como agentes de control biológico para insectos plaga34075 ; Cap: 10 Uso de parasitoides en el control biológico de insectos plaga en ColombiaGiblin-Davis, R. M., Gries, R., Gries, G., Peña-Rojas, E., Pinzón, I., Peña, J. E., … Oehlschlager, A. C. (1997). Aggregation pheromone of palm weevil, Dynamis borassi. Journal of Chemical Ecology, 23(10), 2287-2297. doi:10.1023/B:JOEC.0000006674.64858.f2.Giblin-Davis, R. M., Oehlschlager, A. C., Perez, A., Gries, G., Gries, R., Weissling, T. J., … Gonzalez, L. M. (1996). Chemical and behavioral ecology of palm weevils (Curculionidae: Rhynchophorinae). Florida Entomologist, 79(2), 153-167. doi:10.2307/3495812.Grand View Research (2015). Research and markets: ipm pheromones market analysis by product (sex pheromones, aggregation pheromones, oviposition-deterring pheromones, alarm pheromones) and segment forecasts to 2020. Recuperado de https://www.businesswire.com/news/ home/20151030005281/en/Research-Markets-IPMPheromones- Market-Analysis-Product.Grant, G. G. (1991). Development and use of pheromones for monitoring lepidopteran forest defoliators in North America. Forest Ecology and Management, 39, 153-162. doi:10.1016/0378-1127(91)90173-s.Griffith, R. (1969). A method of controlling red ring disease of coconuts. Journal of the Agricultural Society of Trinidad & Tobago, 69(3), 827-845.Gries, R., Britton, R., Holmes, M., Zhai, H., Draper, J., & Gries, G. (2015). Bed bug aggregation pheromone finally identified. Angewandte Chemie, 54(4), 1151-1154. doi:10.1002/anie.201409890.Hansson, B. S., & Anton, S. (2000). Function and morphology of the antennal lobe: New developments. Annual Review of Entomology, 45, 203-231. doi:10.1146/ annurev.ento.45.1.203.Hagley, E. A. C. (1963). The role of the palm weevil, Rhynchophorus palmarum, as a vector of Red Ring Disease of Coconuts. I. Results of preliminary investigations. Journal of Economic Entomology, 56(3), 375-380. doi:10.1093/jee/56.3.375.Hartmann, T. (2008). The lost origin of chemical ecology in the late 19th century. Proceedings of the National Academy of Sciences of the United States of America, 105(12), 4541- 4546. doi:10.1073/pnas.0709231105.Harborne, J. B. (2001). Twenty-five years of chemical ecology. Natural Products Report, 18(4), 361-379. doi:10.1039/ b005311m.Hatano, E., Saveer, A., Borrero-Echeverry, F., Strauch, M., Zakir, A., Bengtsson, M., … Dekker, T., (2015). A herbivore-induced plant volatile interferes with host plant and mate location in moths through suppression of olfactory signaling pathways. BMC Biology, 13(1), 75. doi:10.1186/s12915-015-0188-3.Haynes, K. F., Miller, T. A., Staten, R. T., Li, W. G., & Baker, T. C. (1986). Monitoring insecticide resistance with insect pheromones. Experientia, 42(11-12), 1293-1295. doi:10.1007/bf01946429.Heisenberg, M. (2003). Mushroom body memoir: From maps to models. Nature Reviews Neuroscience, 4, 266-275. doi:10.1038/nrn1074.IndexMundi. (2016). Guatemala Palm Oil Production by Year. Recuperado de https://www.indexmundi. com/agriculture/?country=gt&commodity=palmoil& graph=production.Jacobson, M. (2012). Insect sex pheromones. Nueva York, EE. UU.: Elsevier.Jaffé, K., Sánchez, P., Cerda, H., Hernández, J. V., Jaffé, R., Urdaneta, N., … Miras, B. (1993). Chemical ecology of the palm weevil Rhynchophorus palmarum (L.) (Coleoptera: Curculionidae): Attraction to host plants and to a male-produced aggregation pheromone. Journal of Chemical Ecology, 19(8), 1703-1720. doi:10.1007/ bf00982302.Jaffé, K., Sánchez, P., Cerda, H., Hernández, J. V., Jaffé, R., Urdaneta, N., … Miras, B. (1993). Chemical ecology of the palm weevil Rhynchophorus palmarum (L.) (Coleoptera: Curculionidae): Attraction to host plants and to a male-produced aggregation pheromone. Journal of Chemical Ecology, 19(8), 1703-1720. doi:10.1007/ bf00982302.Karlson, P., & Lüscher, M. (1959). ‘Pheromones’: a new term for a class of biologically active substances. Nature, 183, 55-56. doi:10.1038/183055a0.Karlsson, M. F., Birgersson, G., Cotes-Prado, A. M., Bosa, C. F., Bengtsson, M., & Witzgall, P. (2009). Plant Odor Analysis of Potato: Response of Guatemalan Moth to Above- and Belowground Potato Volatiles. Journal of Agricultural and Food Chemical, 57(13), 5903-5909. doi:10.1021/jf803730h.Karlsson, M. F., Birgersson, G., Witzgall, P., Lekfeldt, J. D. S., Punyasiri, P. A. N., & Bengtsson, M. (2013). Guatemalan potato moth Tecia solanivora distinguish odour profiles from qualitatively, different potatoes Solanum tuberosum L. Phytochemistry, 85, 72-81. doi:10.1016/j. phytochem.2012.09.015.Karlsson, M. F., Proffit, M., & Birgersson, G. (2017). Hostplant location by the Guatemalan potato moth Tecia solanivora is assisted by floral volatiles. Chemoecology, 27(5), 187-198. doi:10.1007/s00049-017-0244-2.Kennedy, J. S., & Marsh, D. (1974). Pheromone-regulated qnemotaxis in flying moths. Science, 184(4140), 999-1001.Kohl, J., Huoviala, P., & Jefferis, G. S. (2015). Pheromone processing in Drosophila. Current Opinion in Neurobiology, 34, 149-157. doi:10.1016/j.conb.2015.06.009.Knight, A., Hilton, R., & Light, D. (2005). Monitoring codling moth (Lepidoptera: Tortricidae) in apple with blends of ethyl (E, Z)-2, 4-decadienoate and codlemone. Environmental Entomology, 34(3), 598-603. doi:10.1603/0046-225X-34.3.598.Kriticos, D. J., Potter, K. J. B., Alexander, N. S., Gibb, A. R., & Suckling, D. M. (2007). Using a pheromone lure survey to establish the native and potential distribution of an invasive Lepidopteran, Uraba lugens. Journal of Applied Ecology, 44(4), 853-863. doi:10.1111/j.1365- 2664.2007.01331.x.Kromann, S. H., Saveer, A. M., Binyameen, M., Bengtsson, M., Birgersson, G., Hansson, B. S., … Becher, P. G. (2015). Concurrent modulation of neuronal and behavioural olfactory responses to sex and host plant cues in a male moth. Proceedings of the Royal Society of London. Series B, Biological Sciences, 282(1799), 20141884. doi:10.1098/ rspb.2014.1884.Lance, D. R., Leonard, D. S., Mastro, V. C., & Walters, M. L. (2016). Mating disruption as a suppression tactic in programs targeting regulated lepidopteran pests in US. Journal of Chemical Ecology, 42(7), 590-605. doi10.1007/ s10886-016-0732-9.Larsson, M. C., Domingos, A. I., Jones, W. D., Chiappe, M. E., Amrein, H., & Vosshall, L. B. (2004). Or83b encodes a broadly expressed odorant receptor essential for Drosophila olfaction. Neuron, 43(5), 703-714. doi:10.1016/j.neuron.2004.08.019.Leahy, J., Mendelsohn, M., Kough, J., Jones, R., & Berckes, N. (2014). Biopesticide oversight and registration at the U.S. Environmental Protection Agency. Recuperado de https://www.epa.gov/sites/production/files/2015-08/ documents/biopesticide-oversight-chapter_0.pdf.Leal, W. S. (2013). Odorant reception in insects: roles of receptors, binding proteins, and degrading enzymes. Annual Review of Entomology, 58, 373-391. doi:10.1146/ annurev-ento-120811-153635.Gómez, R., Galindo, A., Mondragón, A., & Lobatón, V. (2000). Plan nacional de exclusión, supresión y erradicación económica del picudo del algodonero Anthonomus grandis Boheman (Coleoptera: Curculionidae) [Boletín de Sanidad Vegetal, N.º 10]. Bogotá, Colombia: Unidad de proyectos de prevención del Instituto Colombiano Agropecuario (ica).Instituto Colombiano Agropecuario (ica). (2009a). Boletín epidemiológico Mosca del Mediterráneo (Ceratitis capitata) en Colombia año 2008-2009. Bogotá, Colombia: ica.Instituto Colombiano Agropecuario (ica). (2009b). Plan nacional para el establecimiento, mantenimiento, declaración y reconocimiento de áreas libres y de baja prevalencia del picudo del algodonero Anthonomus grandis Boheman en Colombia. Bogotá, Colombia: ica.Instituto Colombiano Agropecuario (ica). (6 de septiembre de 2010). Por medio de la cual se establecen las plagas cuarentenarias sometidas a control oficial ausentes y presentes en el territorio nacional. [Resolución 2895 de 2010]. Recuperado de: https://www.redjurista. com/documents/resolucion_2895_de_2010_ica_-_ instituto_colombiano_agropecuario.aspx#/.Instituto Colombiano Agropecuario (ica). (2012). Boletín epidemiológico Situación actual del picudo del algodonero Anthonomus grandis Boheman (Coleoptera: Curculionidae) en Colombia. Bogotá, Colombia: ica.Instituto Colombiano Agropecuario (ica). (2012). Boletín epidemiológico Situación actual del picudo del algodonero Anthonomus grandis Boheman (Coleoptera: Curculionidae) en Colombia. Bogotá, Colombia: ica.Instituto Colombiano Agropecuario (ica). (2015). Sistema de Alerta Fitosanitaria. Actualización de la situación de la Mosca del Mediterráneo (Ceratitis capitata (Wiedemann)) en Colombia. Bogotá, Colombia: ica.Instituto Colombiano Agropecuario (ica). (2017). Productos registrados Bioinsumos. Recuperado el 27 de julio del 2017, de https://www.ica.gov.co/getdoc/2ad9e987-8f69-4358- b8a9-e6ee6dcc8132/PRODUCTOSBIOINSUMOSMAYO- 13-DE-2008.aspx.Kuratomi, N. H. (2001). Evaluación del uso de la feromona sexual “Neoelegantol” en la atracción de machos de Neoleucinodes elegantalis (Guenée) (Lep. Pyralidae) y su impacto en la reductión del daño de la plaga, en cultivos de tomate Lycopersicon esculentum. Palmira, Colombia: Universidad Nacional de Colombia.Baker, K. F., & Cook, R. J. (1974). Biological control of plant pathogens. San Francisco, EE. UU.: W. H. Freeman and Company.Baker, R. (1983, febrero). State of the art: plant diseases. Ponencia presentada en Proceedings of the National Interdisciplinary Biological Control Conference. Las Vegas, EE. UU.Bale, J. S., Van Lenteren, J. C., & Bigler, F. (2008). Biological control and sustainable food production. Philosophical Transactions of the Royal Society B, 363(1492), 761-776.Bebber, D., Holmes, T., & Gurr, S. (2014). The global spread of crop pests and pathogens. Global Ecology and Biogeography, 23(12), 1398-1407. doi: 10.1111/geb.12214.Carefoot, G. L., & Sprott, E. R. (1967). Famine on the wind: Plant diseases and human history. Chicago, EE. UU.: Rand McNally & Co.Carson, R. (1962). Silent Spring, 40th anniversary edition. Boston, EE. UU.: Houghton Mifflin.Chisholm, S. T., Coaker, G., Day, B., & Staskawicz, B. J. (2006). Host-microbe interactions: Shaping the evolution of the plant immune response. Cell, 124(4), 803-814.Cook, R. J., & Baker, K.F. (1983). The nature and practice of biological control of plants pathogens. Saint Paul, EE. UU.: The American Phytopathological Society.Culliney, T. W. (2014). Crop losses to arthropods. En D. Pimentel, & R. Peshin (Eds.), Integrated pest management (pp. 201-225). Dordrecht, Holanda: Springer.De Bach, P. (1964). Biological control of insect pests and weeds. Londres, Reino Unido: Chapman and Hall.Dhaliwal, G. S., Dhawan, A. K., & Singh, R. (2007). Biodiversity and ecological agriculture: Issues and perspectives. Indian Journal of Ecology, 34(2), 100-109.Dhaliwal, G. S., Dhawan, A. K., & Singh, R. (2007). Biodiversity and ecological agriculture: Issues and perspectives. Indian Journal of Ecology, 34(2), 100-109.Eilenberg, J. (2006). Concepts and visions of biological control. En J. Eilenberg & H. Hokkanen (Eds.), An ecological and societal approach to biological control (pp.1-11). Dordrecht, Holanda: Springer.Eilenberg, J., Hajek, A., & Lomer, C. (2001). Suggestions for unifying the terminology in biological control. BioControl, 46(4), 387-400.Food and Agriculture Organization (fao). (2017). Glosario de términos fitosanitarios. Recuperado de http://www.fao.org/docrep/W3587E/w3587e03.htm.Govorushko, S. (2012). Natural processes and human impacts: Interactions between humanity and the environment. Dordrecht, Holanda: Springer. doi:10.1007/978-94007-1423-6.Gurr, G. M., Barlow, N. D., Memmott, J., Wratten, S. D., & Greathead, D. J. (2000). A history of methodological, theoretical and empirical approaches to biological control. En G. Gurr & S. Wratten (Eds.), Biological control: measures of success (pp. 3-37). Dordrecth, Holanda: Kluwer Academic Press.Hajek, A. (2004). Natural enemies. An introduction to biological control. Cambridge, Reino Unido: Cambridge University Press.Heinrich, D., & Hergt, M. (2003). Ecology: dtv – atlas. Moscú,Rusia: Rybari.Hull, R. (2013). Plant virology (5.a Ed.). doi: 10.1016/C2010-0-64974-1.Jetter, K., & Paine, T. D. (2004). Consumer preferences and willingness to pay for biological control in the urban landscape. Biological Control, 30(2), 312-322.Krutov V. I., & Minkevich, I. I. (2002). Fungal disease of the wood species. Petrozavodsk, Rusia: Karelian Scientific Center of Russian Academy of Sciences.Letourneau, D. K. (1998). Conservation biology: lessons for conserving natural enemies. En P. Barbosa (Ed.), Conservation biological control (pp. 9-38). San Diego: Academic Press.Leung, T. L. F., & Poulin, R. (2008). Parasitism, commensalism, and mutualism: exploring the many shades of symbioses. Vie et Milieu - Life and Environment, 58(2), 107-115.Monastyrsky, O. A. (2002). A role of cultivated plants in the evolution of toxigenic fungi. En Modern mycology in Russia (pp. 262-263). Moscú, Rusia: National Academy of Mycology.Narayanasamy, P. (2013). Introduction. En P. Narayanasamy (Ed.), Biological management of diseases of crops. Progress in biological control (Vol. 16). Dordrecht, Holanda: Springer. doi: 10.1007/978-94-007-6377-7_1.Padmanabhan, S. Y. (1973). The great Bengal famine. Annual Review of Phytopathology, 11(1), 11-26.Pérez-Brocal, V., Latorre, A., & Moya, A. (2013). Symbionts and pathogens: What is the difference? En U. Dobrindt, J. H. Hacker, & C. Svanborg (Eds.) Between pathogenicity and commensalism (pp. 215-243). Berlín, Alemania: Pérez-Brocal, V., Latorre, A., & Moya, A. (2013). Symbionts and pathogens: What is the difference? En U. Dobrindt, J. H. Hacker, & C. Svanborg (Eds.) Between pathogenicity and commensalism (pp. 215-243). Berlín, Alemania: Springer.Perkins, J. H., & Garcia, R. (1999). Social and economic factors affecting research and implementation of biological control. En T. S. Bellows, & T. W. Fischer (Eds.), Handbook of biological control (pp. 993-1009). San Diego, EE. UU.: Academic Press.Pimentel, D., Wilson, C., McCullum, C., Huang, R., Dwen, P., Flack, J., … Cliff, B. (1997). Economic and environmental benefits of biodiversity. BioScience, 47(11), 747-757Pimentel, D., Bailey, O., Kim, P., Mullaney, E., Calabrese, J., Walman, F., … Yao, X. (1999). Will the limits of the Earth's resources control human populations? Environment, Development and Sustainability, 1, 19-39.Pinstrup-Andersen, P. (2000). The future world food situation and the role of plant diseases. Canadian Journal of athology, 22(4). doi: https://doi.org/10.1080/0706066 0009500451.Singh, H. (2014). Management of plant pathogens with microorganisms. Proceedings of the Indian National Science Academy, 80(2), 443-454. doi: 10.16943/ptinsa/2014/v80i2/55120.Thrall, P. H., Oakeshott, J. G., Fitt, G., Southerton, S., Burdon, J. J., Sheppard, A., ... Denison, R. F. (2011). Evolution in agriculture: the application of evolutionary approaches to the management of biotic interactions in agro-ecosystems. Evolutionary Applications, 4(2), 200 215. doi: 10.1111/j.1752-4571.2010.00179.x.Ullstrup, A. J. (1972). The impacts of the southern corn leaf blight epidemics of 1970-1971. Annual Review of Phytopathology, 10, 37-50.Van den Bosch, R., Messenger, P. S., & Gutierrez, A. P. (1982). An introduction to biological control. Nueva York, EE. UU.: Plenum Press.Waage, J. K. (2001). Indirect ecological effects in iological control: the challenge and the opportunity. En E. Wajnberg, J. K. Scott, & P. C. Quimby (Eds.), Evaluating indirect ecological effects of biological control (pp. 1-12). Wallingford, EE. UU.: CABI Publishing.Abanda-Nkpwatt, D., Krimm, U., Coiner, H. A., Schreiber, L., & Schwab, W. (2006). Plant volatiles can minimize the growth suppression of epiphytic bacteria by the phytopathogenic fungus Botrytis cinerea in co-culture experiments. Environmental and Experimental Botanic, 56(1), 108-119. doi:10.1016/j.envexpbot.2005.01.010.Abdallah, M. E., Haroun, S. A., Gomah, A. A., El- Naggar, N. E., & Badr, H. H. (2013). Application of actinomycetes as biocontrol agents in the management of onion bacterial rot diseases. Arch. Phytopathol. Plant Protection, 46(15), 1797-1808. do i:10.1080/03235408.2013.778451.Abel., P. P., Nelson. R. S., De, B., Hoffmann, N., Rogers, S. G., ... Beachy, R. N. (1986). Delay of disease development in transgenic plants that express the tobacco mosaic virus coat protein gene. Science, 232(4751), 738-744.Abriouel, H., Franz, C. M. A. P., Omar, N. B., & Gálvez, A. (2011). Diversity and applications of Bacillus bacteriocins. FEMS Microbiology Review, 35(1), 201- 232. doi:10.1111/j.1574-6976.2010.00244.x.Agencia de Protección Ambiental de Estados Unidos (epa). (2002). Pseudozyma flocculosa strain PF-A22 UL (PC Code 119196) Pseudozyma flocculosa strain PF-A22 UL (TGAI) sporodex L (ep). Recuperado de https://www3.epa.gov/pesticides/chem_search/ reg_actions/registration/decision_PC-119196_1- Sep-02.pdf.Agencia de Protección Ambiental de Estados Unidos (epa). (2009). Candida oleophila Strain O PC Code: 021010 office of pesticide programs biopesticides and pollution prevention division last updated. Recuperado de https://www3.epa.gov/pesticides/chem_search/reg_actions/registration/decision_PC-021010_15-Jul-09.pdf.Agencia de Protección Ambiental de Estados Unidos (epa). (2017). Pesticides. Recuperado de https://www.epa.gov/pesticides.Agrios, G. N. (2015). Plant pathology. Londres, Inglaterra: Elsevier.Ajith, P., & Lakshmidevi, N. (2010). Effect of volatile and non-volatile compounds from Trichoderma spp. against Colletotrichum capsici incitant of anthracnose on bell peppers. Nature and Science, 8(9), 265-269.Ajouz, S., Nicot, P. C., & Bardin, M. (2010). Adaptation to pyrrolnitrin in Botrytis cinerea and cost of resistance. Plant Pathology, 59(3), 556-566. doi:10.1111/j.13653059.2009.02230.x.Aksu, Z., & Eren, A. T. (2007). Production of carotenoids by the isolated yeast of Rhodotorula glutinis. Biochemical Engineering Journal, 35(2), 107-113. doi:10.1016/j.bej.2007.01.004.Al-Awadhi, H., Al-Mailem, D., Dashti, N., Hakam, L., Eliyas, M., & Radwan, S. (2012). The abundant occurrence of hydrocarbon utilizing bacteria in the phyllospheres of cultivated and wild plants in Kuwait. International Biodeterioration & Biodegradation, 73, 73-79. doi:10.1016/j.ibiod.2012.05.016.Albano, S., Chagnon, M., De Oliveira, D., Houle, E., Thibodeau, P., & Mexia, A. (2009). Effectiveness of Apis mellifera and bombus impatiens as dispersers of the Rootshield® biofungicide (Trichoderma harzianum, strain T-22) in a strawberry crop. Hellenic Plant Protection Journal, 2(2), 57-66.Alfonzo, A., Conigliaro, G., Torta, L., Burruano, S., & Moschetti, G. (2009). Antagonism of Bacillus subtilis strain AG1 against vine wood fungal pathogens. Phytopathologia Mediterranea, 48, 155-158. doi:10.14601/Phytopathol_Mediterr-2886.Ali, G. S., El-Sayed, A. S. A., Patel, J. S., Green, K. B., Ali, M., ... Norman, D. (2016). Ex vivo application of secreted metabolites produced by soil-inhabiting Bacillus spp. Efficiently controls foliar diseases caused by Alternaria spp. Applied and Environmental Microbiology, 82(12), 478-490. doi:10.1128/aem.02662-15.Ali, H., & Nadarajah, K. (2014). Evaluating the efficacy of Trichoderma spp. and Bacillus subtilis as biocontrol agents against Magnaporthe grisea in rice. Australian Journal of Crop Science, 8(9), 1324.Alippi, A. M., Perelló, A. E., Sisterna, N. M., Greco, N. M., & Cordo, C. A. (2000). Potential of Spore-forming bacteria as biocontrol agents of wheat foliar diseases under laboratory and greenhouse conditions. Journal of Plant Diseases and Protection, 107(2), 155-169.Allard, H. A. (1915). Distribution of the virus of the mosaic disease in capsules, filaments, anthers, and pistils of affected tobacco plants. Journal of Agricultural Research, 5(6), 251-256.Anagnostakis, S. L. (1982). Biological control of chestnut blight. Science, 215(4532), 466-471. doi:10.1126/science.215.4532.466.Andrews, J. H. (1990). Biological control in the phyllosphere: Realistic goal or false hope? Canadian Journal of Plant Pathology, 12(3), 300-307. doi:10.1080/07060669009501004.Andrews, J. H. (1992). Biological control in the phyllosphere. Annual Review of Phytopathology, 30, 603-635. doi:10.1146/annurev.py.30.090192.003131.Andrews, J. H., & Harris, R. F. (2000). The ecology and biogeography of microorganisms on plant surfaces. Annual Review of Phytopathology, 38, 145-180. doi:10.1146/annurev.phyto.38.1.145.Aoki, M., Tan, M., Fukushima, A., Hieda, T., Kubo, S., ... Mikami, Y. (1993). Antiviral substances with systemic effects produced by basidiomycetes such as fomes fomentarius. Bioscience, Biotechnology and Biochemistry, 57(2), 278-282. doi:10.1271/bbb.57.278.Ara, I., Bukhari, N. A., Aref, N., Shinwari, M. M., & Bakir, M. (2012). Antiviral activities of streptomycetes against tobacco mosaic virus (tmv) in Datura plant: Evaluation of different organic compounds in their metabolites. African Journal of Biotechnology, 11(8), 2130-2138. doi:10.5897/AJB11.3388Arguelles-Arias, A., Ongena, M., Halimi, B., Lara, Y., Brans, A., ... Fickers, P. (2009). Bacillus amyloliquefaciens GA1 as a source of potent antibiotics and other secondary metabolites for biocontrol of plant pathogens. Microbial Cell Factories, 8, 63. doi:10.1186/1475-2859-8-63.Arnold, A. E., Maynard, Z., Gilbert, G. S., Coley, P. D., & Kursar, T. A. (2000). Are tropical fungal endophytes hyperdiverse? Ecology Letters, 3(4), 267- 274. doi:10.1046/j.1461-0248.2000.00159.x.Arya, S., & Parashar, R. (2002). Biological control of cotton bacterial blight with phylloplane bacterial antagonists. Troical Agriculture, 79(1), 51-55Ashwini, N., & Srividya, S. (2014). Potentiality of Bacillus subtilis as biocontrol agent for management of anthracnose disease of chilli caused by Colletotrichum gloeosporioides OGC1. Biotechnology, 4(2), 127-136. doi:10.1007/s13205-013-0134-4Atlas, R. M., & Bartha, R. (2002). Ecología microbiana y microbiología ambiental. Madrid, España: Pearson-Addison Wesley.Audy, P., Palukaitis, P., Slack, S. A., & Zaitlin, M. (1994). Replicase-mediated resistance to potato virus Y in transgenic tobacco plants. Molecular Plant Microbe Interactions, 7(1), 15-15. doi:10.1094/MPMI-7-0015Autoridad Europea de Seguridad Alimentaria (efsa). (2004a). Ampelomyces quisqualis 4205/VI/98. Recuperado de http://ec.europa.eu/food/plant/pesticides/eu-pesticidesdatabasepublic/event=activesubstance.detail&language=EN&selectedID=959Autoridad Europea de Seguridad Alimentaria (efsa). (2004b). Gliocladium catenulatum SANCO/10383/2004. Recuperado de http://ec.europa.eu/food/plant/pesticides/eu-pesticides-database/public/event=activesubstance.detail&language=EN&selec tedID=1435Autoridad Europea de Seguridad Alimentaria (efsa). (2006). Bacillus subtilis SANCO/10184/2003. Recuperado de http://ec.europa.eu/food/plant/pesticides/eu-pesticides-database/public/?event=activesubstance.detail&language=EN&selectedID=986.Autoridad Europea de Seguridad Alimentaria (efsa). (2013a). Candida oleophila strain O SANCO/10395/2013. Recuperado de http://ec.europa.eu/food/plant/pesticides/eu-pesticides-database/public/?event=activesubstance.detail&language=E N&selectedID=1074Autoridad Europea de Seguridad Alimentaria (efsa). (2013b). Pythium oligandrum M1 SANCO/1864/08. Recuperado de http://ec.europa.eu/food/plant/pesticides/eu-pesticides-database/public/event=activesubstance.detail&language=EN&selectedID=1810Autoridad Europea de Seguridad Alimentaria (efsa). (2014a). Bacillus amyloliquefaciens subsp. plantarum strain D747.SANCO/11391/2014. Recuperado de http://ec.europa.eu/food/plant/pesticides/eu-pesticides-database/public/event=activesubstance.detail&language=EN&selectedID=2252Autoridad Europea de Seguridad Alimentaria (efsa). (2014b). Bacillus pumilus QST 2808 SANCO/12800/2013. Recuperado de http://ec.europa.eu/food/plant/pesticides/eu-pesticides-database/public/event=activesubstance.detail&language=EN&selectedID=2253Autoridad Europea de Seguridad Alimentaria (efsa). (2014c). Streptomyces K61 (formerly Streptomyces griseoviridis) SANCO/1865/08. Recuperado de http://ec.europa.eu/food/plant/pesticides/eu-pesticides-database/public/event=activesubstance.detail&language=EN&selectedID=1895Autoridad Europea de Seguridad Alimentaria (efsa). (2014d). Streptomyces lydicus strain WYEC 108SANCO/11427/2014. Recuperado de http://ec.europa.eu/food/plant/pesticides/eu-pesticides-database/public/event=activesubstance.detail&language=EN&selectedID=2256Autoridad Europea de Seguridad Alimentaria (efsa).(2014e). Trichoderma asperellum (formerly T. harzianum) ICC012 SANCO/1842/08. Recuperado de http:// ec.europa.eu/food/plant/pesticides/eu-pesticidesdatabase/public/event=activesubstance.detail&language=EN&selectedID=1979Autoridad Europea de Seguridad Alimentaria (efsa). (2014f ). Trichoderma atroviride IMI 206040 (formerly T. harzianum imi 206040) SANCO/1866/08. Recuperado de http://ec.europa.eu/food/plant/pesticides/eu-pesticides-database/public/ event=activesubstance.detail&language=EN&selectedID=1980Autoridad Europea de Seguridad Alimentaria (efsa). (2014g). Trichoderma gamsii ICC080, Trichoderma asperellum T25 and TV1, formerly Trichoderma viride strain ICC080, strain T-25 and strain TV1 SANCO/1868/08. Recuperado de http://ec.europa.eu/food/plant/pesticides/eu-pesticides-database/public/ event=activesubstance.detail&language=E N&selectedID=1982Autoridad Europea de Seguridad Alimentaria (efsa). (2014h). Trichoderma polysporum imi 206039 SANCO /1867/08. Recuperado de http://ec.europa.eu/food/plant/pesticides/eu-pesticides-database/public/ event=activesubstance.detail&language=EN&selectedID=1984Autoridad Europea de Seguridad Alimentaria (efsa). (2015). European Food Safety Authority. Conclusion on the peer review of the pesticide risk assessment of the active substance Saccharomyces cerevisiae LAS02. EFSA Journal, 13(12), 4322-4329 doi:10.2903/j.efsa.2015.4322Autoridad Europea de Seguridad Alimentaria (efsa). (2016a). Bacillus amyloliquefaciens strain mbi 600 SANTE/10008/2016. Recuperado de http://ec.europa.eu/food/plant/pesticides/eu-pesticidesdatabase/public/event=activesubstance.detail&language=EN&selectedID=2325Autoridad Europea de Seguridad Alimentaria (efsa). (2016b). Pseudomonas sp. strain DSMZ 13134 SANCO/11455/2013. Recuperado de http:// ec.europa.eu/food/plant/pesticides/eu-pesticidesdatabase/public/?event=activesubstance.detail&lan guage=EN&selectedID=1787Autoridad Europea de Seguridad Alimentaria (efsa). (2017a). Bacillus amyloliquefaciens strain FZB24 SANTE/12037/2016. Recuperado de http://ec.europa.eu/food/plant/pesticides/eu-pesticidesdatabase/public/?event=activesubstance.detail&language=EN&selectedID=2324Autoridad Europea de Seguridad Alimentaria (efsa). (2017b). Healt and food safety. Recuperado de http://ec.europa.eu/food/plant/pesticides/eupesticides-database/public/event=activesubstance. selection&language=ENAvelino, J., Cristancho, M., Georgiou, S., Imbach, P., Aguilar, L., Bornemann, G., ... Morales, C. (2015). The coffee rust crises in Colombia and Central America (2008-2013): impacts, plausible causes and proposed solutions. Food Security, 7(2), 303-321. doi:10.1007/s12571-015-0446-9Avis, T. J., & Bélanger, R. R. (2002). Mechanisms and means of detection of biocontrol activity of Pseudozyma yeasts against plant-pathogenic fungi. FEMS Yeast Research, 2(1), 5-8. doi:10.1111/j.1567-1364.2002.tb00062.xAvis, T. J., Caron, S. J., Boekhout, T., Hamelin, R. C., & Bélanger, R. R. (2001). Molecular and physiological analysis of the powdery mildew antagonist Pseudozyma flocculosa and related fungi. Phytopathology, 91(3), 249-254. doi:10.1094/PHYTO.2001.91.3.249Baker, C. J., Stavely, J. R., & Mock, N. (1985). Biocontrol of bean rust by Bacillus subtilis under field conditions. Plant Disease, 69(9), 770-772.Baker, K. F. (1987). Evolving concepts of biological control of plant pathogens. Annual Review of Phytopathology, 25, 67-85. doi:10.1146/annurev.py.25.090187.000435Barbieri, L., Battelli, M. G., & Stirpe, F. (1993). Ribosomeinactivating proteins from plants. Biochimica et Biophysica Acta, 1154(3-4), 237-282. doi:10.1016/0304-4157(93)90002-6Beachy, R. N. (1999). Coat-protein-mediated resistance to tobacco mosaic virus: discovery mechanisms and exploitation. Philosophical Transactions of the Royal Society B: Biological Sciences, 354(1383), 659-664. doi:10.1098/rstb.1999.0418Beattie, G. A., & Lindow, S. E. (1995). The secret life of foliar bacterial pathogens on leaves. Annual Review of Phytopathology, 33, 145-172. doi:10.1146/annurev.py.33.090195.001045Beever, R. E., & Weeds, P. L. (2004). Taxonomy and genetic variation of botrytis and Botryotinia. En Y. Elad, B. Williamson, P. Tudzynski, & N. Delen (Eds.), Botrytis: Biology, Pathology and Control (pp. 29-52). Dordrecht, Holanda: Springer. doi:10.1007/978-1-4020-2626-3_3Begerow, D., Bauer, R., & Boekhout, T. (2000). Phylogenetic placements of ustilaginomycetous anamorphs as deduced from nuclear LSU rDNA sequences. Mycology Research, 104(1), 5360. doi:10.1017/S0953756299001161Bélanger, R. R., Dufour, N., Caron, J., & Benhamou, N. (1995). Chronological events associated with the antagonistic properties of Trichoderma harzianum against Botrytis cinerea: Indirect evidence for sequential role of antibiosis and parasitism. Biocontrol Science and Technology, 5(1), 41-54. doi:10.1080/09583159550040006Belsare, S. W., Moniz, L., & Deo, V. B. (1980). The hyperparasite Ampelomyces quisqualis Ces. from Maharashtra State, India. Biovigyanam, 6(2), 173-176Beltrán-Acosta, C. R., & Cotes-Prado, M. A. (2009). Promoción de crecimiento en endurecimiento de plántulas de mora producidas in vitro (efecto de la aplicación de Trichoderma koningiopsis Th003). En L. S. Barrero-Meneses (Ed.), Caracterización, evaluación y producción de material limpio de mora con alto valor agregado (pp. 57-63). Bogotá, Colombia: Corporación Colombiana de Investigación Agropecuaria (Corpoica).Bhatt, D. D., & Vaughan, E. K. (1962). Preliminary investigations on biological control of grey mould (Botrytis cinerea) of strawberries. Plant Disease Reporter, 46, 342-345.Bilu, A., Dag, A., Elad, Y., & Shafir, S. (2004). Honey bee dispersal of biocontrol agents: An evaluation of dispensing devices. Biocontrol Science Technology,14(6), 607-617. doi:10.1080/09583150410001682340Bochow, H., El-Sayed, S. F., Junge, H., Stavropoulou, A., & Schmiedeknecht, G. (2001). Use of Bacillus subtilis as biocontrol agent. IV. Salt-stress tolerance induction by Bacillus subtilis FZB24 seed treatment in tropical vegetable field crops, and its mode of action. Journal of Plant Diseases and Protection, 108(1), 21-30.Boddy, L. (2016). Pathogens of Autotrophs. En S. C. Watkinson, N. Money, & L. Boddy (Ed.), The Fungi (pp. 245-292). Boston, EE. UU.: Academic Press. doi:10.1016/B978-0-12-382034-1.00008-6Boekhout, T. (1995). Pseudozyma bandoni emend. Boekhout, a genus for yeast-like anamorphs of ustilaginales. The Journal of General and Applied Microbiology, 41(4), 359-366. doi:10.2323/jgam.41.359.Boland, G. J., & Hunter, J. E. (1988). Influence of Alternaria alternata and Cladosporium cladosporioides on white mold of bean caused by Sclerotinia sclerotiorum. Canadian Journal of Plant Pathology, 10(2), 172-177. doi:10.1080/07060668809501750.Borriss, R. (2011). Use of plant-associated Bacillus strains as biofertilizers and biocontrol agents in agriculture. En: D. K. Maheshwari (Ed.), Bacteria in agrobiology: Plant growth responses (pp. 41-76). Berlin, Alemania: Springer. doi:10.1007/978-3-642-20332-9_3Bradbury, J. F. (1986). Guide to plant pathogenic bacteria. Minnesota, EE. UU: CAB International, University of Minnesota.Brederode, F. T., Taschner, P. E. M., Posthumus, E., & Bol, J. F. (1995). Replicase-mediated resistance to Alfalfa Mosaic Virus. Virology, 207(2), 467-474. doi:10.1006/viro.1995.1106Brent, K. J., & Hollomon, D. W. (2007). Fungicide resistance: the assessment of risk. Bruselas, Belgica: Global crop protection federation Brussels.Brigneti, G., Voinnet, O., Li, W. X., Ji, L.H., Ding, S. W., & Baulcombe, D. C. (1998). Retracted: Viral pathogenicity determinants are suppressors of transgene silencing in Nicotiana benthamiana. The EMBO Journal, 17(22), 6739-6746. doi:10.1093/emboj/17.22.6739Brunner, K., Zeilinger, S., Ciliento, R., Woo, S. L., Lorito, M., Kubicek, C. P., & Mach, R. L. (2005). Improvement of the fungal biocontrol agent Trichoderma atroviride to enhance both antagonism and induction of plant systemic disease resistance. Applied and Environmental Microbiology, 71(7), 3959-3965. doi:10.1128/aem.71.7.3959-3965.2005.Buck, J. W., & Andrews, J. H. (1999). Attachment of the yeast Rhodosporidium toruloides is mediated by adhesives localized at sites of bud cell development. Applied and Environmental Microbiology, 65(2), 465-471.Buck, J. W., & Burpee, L. L. (2002). The effects of fungicides on the phylloplane yeast populations of creeping bentgrass. Canadian Journal of Microbiology, 48(6), 522-529. doi:10.1139/w02-050Caffi, T., Legler, S. E., Bugiani, R., & Rossi, V. (2013). Combining sanitation and disease modelling for control of grapevine powdery mildew. European Journal of Plant Pathology, 135(4), 817-829. doi:10.1007/s10658-012-0124-0Calvente, V., Benuzzi, D., & de Tosetti, M. I. S. (1999). Antagonistic action of siderophores from Rhodotorula glutinis upon the postharvest pathogen Penicillium expansum. International Biodeterioration and Biodegradation, 43(4), 167-172. doi:10.1016/ S0964-8305(99)00046-3Campbell, R. (1989). Biological control of microbial plant pathogens. Cambridge, Reino Unido: Cambridge University. doi.10.1017/CBO9780511608612Cannon, P. F., Damm, U., Johnston, P. R., & Weir, B. S. (2012). Colletotrichum – current status and future directions. Studies in Mycology, 73, 181-213. doi:10.3114/sim0014.Cano, R., & Borucki, M. K. (1995). Revival and identification of bacterial spores in 25- to 40-million-year-old dominican amber. Science, 268(5213), 1060-1064.Carisse, O., & Rolland, D. (2004). Effect of timing of application of the biological control agent microsphaeropsis ochracea on the production and ejection pattern of ascospores by Venturia inaequalis. Phytopathology, 94(12), 1305-1314. doi:10.1094/PHYTO.2004.94.12.1305Carisse, O., Willman-Desbiens, W., Toussaint, V., & Otis, T. (1998). Preventing Black Rot. Quebec, Canadá: Agriculture and Agri-Food Canada.Collins, D. P., & Jacobsen, B. J. (2003). Optimizing a Bacillus subtilis isolate for biological control of sugar beet cercospora leaf spot. Biological Control, 26(2), 153-161. doi:10.1016/S1049-9644(02)00132-9Comité Nacional Sistema Producto Mango (Conaspromango). (2012). Plan rector nacional de sistema producto mango. Colima, México: Comite Nacional del Sistema Producto Mango.Cook, R. J. (1988). Biological control and holistic plant-health care in agriculture. American Journal of Alternative Agriculture, 3(2-3), 51-62. doi:10.1017/S0889189300002186Cooper, B., Lapidot, M., Heick, J. A., Dodds, J. A., & Beachy, R. N. (1995). Multivirus resistance in transgenic tobacco plants expressing a dysfunctional movement protein of tobacco mosaic virus. Virology, 206, 307-313.Cotes, A. M. (2001). Biocontrol of fungal plant pathogens - from the discovery of potential biocontrol agents to the implementation of formulated products. IOBC Bulletin, 24(3), 43-47.Cotes, A. M., Moreno, C. A., Molano, L. F., Villamizar, L., & Piedrahita, W. (2007). Prospects for integrated management of Sclerotinia sclerotiorum in lettuce. IOBC/WPRS Bulletin, 30(6), 391-394.Cotes, A. M., Zapata, J., Díaz, A., García, M., Medina, C., ... Uribe, D. (2011). Selección de levaduras filosféricas con potencial para el control biológico de Botrytis cinerea. Fitopatología Colombiana, 35(2), 51-56.Cuéllar-Quintero, A., Álvarez-Cabrera, E., & Castaño- Zapata, J. (2011). Evaluación de resistencia degenotipos de plátano y banano a la Sigatoka negra. Revista Facultad Nacional de Agronomía Medellín, 64(1), 5853-5865.Cullen, D., Berbee, F. M., & Andrews, J. H. (1984). Chaetomium globosum antagonizes the apple scab pathogen, Venturia inaequalis, under field conditions. Canadian Journal of Botany, 62(9), 1814-1818. doi:10.1139/b84-245.Cuppels, D. A., Higham, J., & Traquair, J. A. (2013). Efficacy of selected streptomycetes and a streptomycete+pseudomonad combination in the management of selected bacterial and fungal diseases of field tomatoes. Biological Control, 67, 361-372. doi:10.1016/j.biocontrol.2013.09.005.Chaparro, A. P., Carvajal, L. H., & Orduz, S. (2011). Fungicide tolerance of Trichoderma asperelloides and T. harzianum strains. Agricultural sciences, 2(3), 301- 307. doi:10.4236/as.2011.23040.Chen, X. H., Koumoutsi, A., Scholz, R., Schneider, K., Vater, J., ... Borriss, R. (2009). Genome analysis of Bacillus amyloliquefaciens FZB42 reveals its potential for biocontrol of plant pathogens. Journal of Biotechnology, 140(1-2): 27-37. doi:10.1016/j.jbiotec.2008.10.011Chet, I., Benhamou, N., & Haran, S. (1998). Mycoparasitism and lytic enzymes. En G. E. Harman, C. P. Kubicek (Eds.), Trichoderma and Gliocladium (pp. 153-171). Londres, Reino Unido: Taylor and Francis Ltd.Chitarra, G. S., Breeuwer, P., Nout, M. J. R., Van Aelst, A. C., ... Abee, T. (2003). An antifungal compound produced by Bacillus subtilis YM 10–20 inhibits germination of Penicillium roqueforti conidiospores. Journal Applied Microbiology, 94(2), 159-166. doi:10.1046/j.1365-2672.2003.01819.x.Daoust, R. A., & Hofstein, R. (1996). Ampelomyces quisqualis, a new biofungicide to control powdery mildew in grapes. En British Crop Protection Council (Ed.), Brighton Crop Protection Conference, Pest and Diseases (pp. 33-40). Farnham, Reino Unido: British Crop Protection Council.Dayarathne, M., Boonmee, S., Braun, U., Crous, P., Daranagama, D., ... Maharachchikumbura, S. (2016). Taxonomic utility of old names in current fungal classification and nomenclature: Conflicts, confusion & clarifications. Mycosphere, 7(11), 1622-1648. doi:10.5943/mycosphere/7/11/2.De Jong, J. C., McCormack, B. J., Smirnoff, N., & Talbot, N. J. (1997). Glycerol generates turgor in rice blast. Nature, 389, 244. doi:10.1038/38418.De Meyer, G., Bigirimana, J., Elad, Y., & Höfte, M. (1998). Induced systemic resistance in Trichoderma harzianum T39 biocontrol of Botrytis cinerea. European Journal of Plant Pathology, 104(3), 279-286. doi:10.1023/a:1008628806616Dean, R., Van Kan, J. A., Pretorius, Z.A., Hammond-Kosack, K.E., Di Pietro, A., Spanu, P.D., ... Ellis, J. (2012). The Top 10 fungal pathogens in molecular plant pathology. Molecular Plant Pathology, 13(4), 414-430. doi:10.1111/j.1364-3703.2011.00783.x.Défago, G., Berling, C. H., Burger, U., Haas, D., Kahr, G., ... Wüthrich, B. (1990). Suppression of black root rot of tobacco and other root diseases by strains of Pseudomonas fluorescens: potential applications and mechanisms. En D. Hornby (Ed.), Biological control of soil-borne plant pathogens (pp. 93-108). Wallingford, Reino Unido: CAB International.Dennis, C., & Webster, J. (1971). Antagonistic properties of species-groups of Trichoderma: II. Production of volatile antibiotics. Transactions of the British Mycological Society, 57(1), 41-IN44. doi:10.1016/S0007-1536(71)80078-5.Deom, C. M., Schubert, K. R., Wolf, S., Holt, C. A., Lucas, W. J., & Beachy, R. N. (1990). Molecular characterization and biological function of the movement protein of tobacco mosaic virus in transgenic plants. Proceedings of the National Academy of Sciences, 87(9), 3284-3288.Dewey, F. M., & Grant-Downton, R. (2016). Botrytis -Biology, Detection and Quantification. En S. Fillinger & Y., Elad (Eds.), Botrytis – the Fungus, the Pathogen and its Management in Agricultural Systems (pp. 17-34). Cham, Suiza: Springer International Publishing.Dickinson, C. H., & Preece, T. F. (1977). Microbiology of aerial plant surfaces. Londres, Inglaterra: Academic Press. doi:10.1002/jobm.19770170712.Ding, S. W., Li, W. X., & Symons, R. H. (1995). A novel naturally occurring hybrid gene encoded by a plant rna virus facilitates long distance virus movement. The EMBO Journal, 14(23), 5762-5772.Dodd, S. L., Lieckfeldt, E., & Samuels, G. J. (2003). Hypocrea atroviridis sp. nov., the teleomorph of Trichoderma atroviride. Mycologia, 95(1), 27-40. doi:10.1080/15572536.2004.11833129.Doudoroff, M., & Palleroni, N. J. (1974). Genus I. Pseudomonas migula. En R. E. Buchanan & N. E. Gibbons (Eds.), Bergey’s manual of determinative bacteriology (pp. 217-243). Baltimore, EE. UU.: Williams & Wilkins.Droby, S., Wisniewski, M., Macarisin, D., & Wilson, C. (2009). Twenty years of postharvest biocontrol research: Is it time for a new paradigm? Postharvest Biology and Technology, 52(2), 137-145. doi:10.1016/j.postharvbio.2008.11.009.Druzhinina, I. S., Kopchinskiy, A. G., & Kubicek, C. P. (2006). The first 100 Trichoderma species characterized by molecular data. Mycoscience, 47, 55-64. doi:10.1007/S10267-006-0279-7.Duan, C. G., Wang, C. H., & Guo, H. S. (2012).Application of rna silencing to plant disease resistance. Silence, 3, 5. doi:10.1186/1758-907X-3-5.Dubos, B. (1992). Biological control of Botrytis, State -of-the-art. En K. Verhoeff, N. Malathrakis, & B. Williamson (Eds.), Recent advances in Botrytis research (pp. 169-178). Wageningen, Holanda: Pudoc Scientific Publishers.Duggar, B. M., & Armstrong, J. K. (1925). The effect of treating the Virus of Tobacco Mosaic with the juices of various plants. Annals of the Missouri Botanical Garden, 12(4), 359-366. doi:10.2307/2394061.Edwards, S., & Seddon, B. (1992). Bacillus brevis as biocontrol agent against Botrytis cinerea on protected Chinese cabbage. En K. Verhoeff, N. Malathrakis, & B. Williamson (Eds.), Recent advances in Botrytis research (pp. 267-271). Wageningen, Holanda: Pudoc Scientific Publishers.Eichenlaub, R., & Gartemann, K. H. (2011). The Clavibacter michiganensis subspecies: Molecular investigation of gram-positive bacterial plant pathogens.Annual Review of Phytopathology, 49, 445-464. doi:10.1146/annurev-phyto-072910-095258.Eichenlaub, R., & Gartemann, K. H. (2011). The Clavibacter michiganensis subspecies: Molecular investigation of gram-positive bacterial plant pathogens.Annual Review of Phytopathology, 49, 445-464. doi:10.1146/annurev-phyto-072910-095258.Elad, Y. (1994). Biological control of grape grey mould by Trichoderma harzianum. Crop Protection, 13(1), 35-38. doi:10.1016/0261-2194(94)90133-3.Elad, Y. (1990). Reasons for the delay in development of biological control of foliar pathogens. Phytoparasitica, 18(2): 99-105. doi:10.1007/bf02981226.Elad, Y. (1995). Mycoparasitism. En K. Kohmoto, R. P. Singh, & U. S. Singh, (Eds.), Pathogenesis and host specificity in plant diseases: histopathological, biochemical, genetic and molecular basis (pp. 289-307). Oxford, Reino Unido: Elsevier Science Ltd.Elad, Y. (1996). Mechanisms involved in the biological control of Botrytis cinerea incited diseases. European Journal of Plant Pathology, 102(8), 719-732. doi:10.1007/bf01877146.Elad, Y. (2000a). Biological control of foliar pathogens by means of Trichoderma harzianum and potential modes of action. Crop Protection, 19(8), 709-714. doi:10.1016/S0261-2194(00)00094-6.Elad, Y. (2000b). Trichoderma harzianum T39 preparation for biocontrol of plant diseases-control of Botrytis cinerea, Sclerotinia sclerotiorum and Cladosporium fulvum. Biocontrol Science and Technology, 10(4), 499-507. doi:10.1080/09583150050115089.Elad, Y. (2001). Trichodex: commercialization ofTrichoderma harzianum T39 – a case study. Agrow report, biopesticides: Trends and opportunities. Richmond, Reino Unido: PJB Publications Ltd.Elad, Y. (2003). Biocontrol of foliar pathogens: mechanisms and application. Communications in Agricultural and Applied Biological Sciences, 68(4 pt. A), 17-24.Elad, Y., & Freeman, S. (2002). Biological control of fungal plant pathogens. En F. Kempken (Ed.), The Mycota, a comprehensive treatise on fungi as experimental systems for basic and applied research. Vol. 11 Agricultural Applications (pp. 93-109). Heidelberg, Alemania: Springer.Elad, Y., & Kapat, A. (1999). The role of Trichoderma harzianum protease in the biocontrol of Botrytis cinerea. European Journal of Plant Pathology, 105(2), 177-189. doi:10.1023/a:1008753629207.Elad, Y., Kirshner, B., Yehuda, N., & Sztejnberg, A. (1998). Management of powdery mildew and gray mold of cucumber by Trichoderma harzianum T39 and Ampelomyces quisqualis AQ10. BioControl, 43(2), 241-251. doi:10.1023/a:1009919417481.Elad, Y., Pertot, I., Cotes-Prado, A. M., & Stewart, A. (2016). Plant hosts of Botrytis spp. En S. Fillinger & Y. Elad, (Eds.), Botrytis – the fungus, the pathogen and its management in agricultural systems (pp. 413-486). Cham, Suiza: Springer International Publishing. doi:10.1007/978-3-319-23371-0_20.Elad, Y., & Shtienberg, D. (1995). Botrytis cinerea in greenhouse vegetables: chemical, cultural, physiological and biological controls and their integration. Integrated Pest Management Review, 1(1), 15-29. doi:10.1007/BF00140331.Elad, Y., & Shtienberg, D. (1997). Integrated management of foliar diseases in greenhouse vegetables according to principles of a decision support system – Greenman. IOBC WPRS Bulletin, 20(4), 71-76.Elad, Y., & Stewart, A. (2004). Microbial control of Botrytis spp. En: Y. Elad (Ed.), Botrytis: Biology, Pathology and Control (pp. 223-240). Norwell, EE. UU.: Kluwer Academic Publishers.Elad, Y., & Zimand, G. (1991). Experience in integrated chemicalbiological control of grey mould (Botrytis cinerea). WPRS Bulletin, 14, 195-199.Elad, Y., & Zimand, G. (1992). Integration of biological and chemical control for grey mould. En K. Verhoeff, N. Malathrakis, & B. Williamson (Eds.), Recent advances in Botrytis research (pp. 272-276). Wageningen, Holanda: Pudoc Scientific Publishers.Elad, Y., Zimand, G., Zaqs, Y., Zuriel, S., & Chet, I. (1993a). Biological and integrated control of cucumber grey mould (Botrytis cinerea) under commercial greenhouse condition. Plant Pathology, 42(3), 324-332. doi:10.1111/j.1365-3059.1993.tb01508.x.Elad, Y., Zimand, G., Zaqs, Y., Zuriel, S., & Chet, I. (1993b). Use of Trichoderma harzianum in combination or alternation with fungicides to control cucumber grey mould (Botrytis cinerea) under commercial greenhouse conditions. Plant Pathology, 42(3), 324-332. doi10.1111/j.1365-3059.1993.tb01508.x.Elad, Y., Köhl, J., & Fokkema, N. J. (1994a). Control of infection and sporulation of Botrytis cinerea on bean and tomato by saprophytic bacteria and fungi. European Journal Plant Pathology, 100(5), 315-336. doi:10.1007/bf01876443.Elad, Y., Köhl, J., & Fokkema, N. J. (1994b). Control of infection and sporulation of Botrytis cinerea on bean and tomato by saprophytic yeasts. Phytopathology, 84(10), 1193-1200. doi:10.1094/Phyto-84-1193.Elad, Y., Köhl, J., & Fokkema, N. J. (1994b). Control of infection and sporulation of Botrytis cinerea on bean and tomato by saprophytic yeasts. Phytopathology, 84(10), 1193-1200. doi:10.1094/Phyto-84-1193.Elmer, P. A. G., & Reglinski, T. (2006). Biosuppression of Botrytis cinerea in grapes. Plant Pathology, 55(2), 155-177. doi:10.1111/j.1365-3059.2006.01348.x.Elmer, P. A. G., & Reglinski, T. (2006). Biosuppression of Botrytis cinerea in grapes. Plant Pathology, 55(2), 155-177. doi:10.1111/j.1365-3059.2006.01348.x.Errampalli, D., & Brubacher, N. R. (2006). Biological and integrated control of postharvest blue mold (Penicillium expansum) of apples by Pseudomonas syringae and cyprodinil. Biological Control, 36(1), 49- 56. doi:10.1016/j.biocontrol.2005.07.011.Etchegaray, A., de Castro-Bueno, C., de Melo, I. S., Tsai, S. M., de Fátima-Fiore, M., ... Teschke, O., 2008. Effect of a highly concentrated lipopeptide extract of Bacillus subtilis on fungal and bacterial cells. Archives of Microbiology, 190(6), 611-622. doi:10.1007/s00203-008-0409-z.Farré-Armengol, G., Filella, I., Llusia, J., & Peñuelas, J. (2016). Bidirectional interaction between phyllospheric microbiotas and plant volatile emissions. Trends Plant Science, 21(10), 854-860. doi:10.1016/j.tplants.2016.06.005.Fenner, K., Canonica, S., Wackett, L. P., & Elsner, M. (2013). Evaluating pesticide degradation in the environment: Blind spots and emerging opportunities. Science, 341(6147), 752-758. doi:10.1126/science.1236281.Fernández, N. V., Mestre, M. C., Marchelli, P., & Fontenla, S. B. (2012). Yeast and yeast-like fungi associated with dry indehiscent fruits of Nothofagus nervosa in Patagonia, Argentina. FEMS Microbiology Ecology, 80(1), 179-192. doi:10.1111/j.1574-6941.2011.01287.x.Fernando, W. G. D., Ramarathnam, R., Krishnamoorthy, A. S., & Savchuk, S. C. (2005). Identification and use of potential bacterial organic antifungal volatiles in biocontrol. Soil Biology and iochemestry, 37(5), 955-964. doi:10.1016/j.soilbio.2004.10.021.Filonow, A. B., Vishniac, H. S., Anderson, J. A., & Janisiewicz, W. J. (1996). Biological control of Botrytis cinerea in apple by yeasts from various habitats and their putative mechanisms of antagonism. Biological Control, 7(2), 212-220. doi:10.1006/bcon.1996.0086.Fincheira, P., Parra, L., Mutis, A., Parada, M., & Quiroz, A. (2017). Volatiles emitted by Bacillus sp. BCT9 act as growth modulating agents on Lactuca sativa seedlings. Microbiologyical Research, 203, 47-56. doi:10.1016/j.micres.2017.06.007.Fitch, M. M. M., Manshardt, R. M., Gonsalves, D., Slightom, J. L., & Sanford, J. C. (1992). Virus resistant papaya plants derived from tissues bombarded with the coat protein gene of papaya ringspot virus. Bio/Technology, 10, 1466-1472. doi.10.1038/nbt1192-1466Flint, M. L. (1998). Pests of the garden and small farm: a grower's guide to using less pesticide. Oakland, EE. UU.: University of California, Agriculture and Natural Resources.Fokkema, N. J. (1993). Opportunities and problems of control of foliar pathogens with micro-organisms. Pest Management Science, 37(4), 411-416. doi:10.1002/ps.2780370416.Fravel, D. (1999). Commercial biocontrol products for use against soilborne crop diseases. Recuperado de http://www.barc.usda.gov/psi/bpdl/bpdlprod/bioprod.html.Fravel, D. R. (2005). Commercialization and implementation of biocontrol. Annual Review of Phytopathology, 43, 337-359. doi:10.1146/annurev.phyto.43.032904.092924.Freeman, S., Minz, D., Kolesnik, I., Barbul, O., Zveibil, A., Maymon, M., ... Elad, Y. (2004). Trichoderma biocontrol of Colletotrichum acutatum and Botrytis cinerea and survival in strawberry. European Journal of Plant Pathology, 110(4), 361-370. doi:10.1023/B:EJPP.0000021057.93305.d9.Fuchs, M., & Gonsalves, D. (1995). Resistance of transgenic hybrid squash zw-20 expressing the coat protein genes of zucchini yellow mosaic virus and watermelon mosaic virus 2 to mixed infections by both potyviruses. Bio/Technology, 13, 1466-1473. doi:10.1038/nbt1295-1466.Fujiwara, M., Kanamori, T., Ohki, S. T., & Osaki, T. (2001). Purification and partial characterization of figaren, an RNase-like novel antiviral protein from Cucumis figarei. Journal of General Plant Pathology, 67(2), 152-158. doi:10.1007/PL00013002.Fulcher, M. R., Cummings, J. A., & Bergstrom, G. C. (2017). First report of an Alternaria leaf spot of wheat in the U.S.A. Plant Disease, 101(7), 1326- 1326. doi:10.1094/PDIS-10-16-1541-PDN.Fulcher, M. R., Cummings, J. A., & Bergstrom, G. C. (2017). First report of an Alternaria leaf spot of wheat in the U.S.A. Plant Disease, 101(7), 1326- 1326. doi:10.1094/PDIS-10-16-1541-PDN.Gafni, A., Calderon, C. E., Harris, R., Buxdorf, K., Dafa-Berger, A., ... Levy, M. (2015). Biological control of the cucurbit powdery mildew pathogen Podosphaera xanthii by means of the epiphytic fungus Pseudozyma aphidis and parasitism as a mode of action. Frontiers in Plant Science, 6, 132. doi:10.3389/fpls.2015.00132.Galindo, E., Serrano-Carreón, L., Gutiérrez, C. R., Balderas-Ruíz, K. A., Muñoz-Celaya, A. L., ... Arroyo- Colín, J. (2015). Desarrollo histórico y los retos tecnológicos y legales para comercializar Fungifree AB®, el primer biofungicida 100 % mexicano. tip. Revista Especializada en Ciencias Químico-Biológicas, 18(1), 52-60.Gao, Y.-R., Han, Y.-T., Zhao, F.-L., Li, Y.-J., Cheng, Y.,... Wen, Y.-Q. (2016). Identification and utilization of a new Erysiphe necator isolate NAFU1 to quickly evaluate powdery mildew resistance in wild Chinese grapevine species using detached leaves. Plant Physiology and Biochemestry, 98, 12-24. doi:10.1016/j.plaphy.2015.11.003.Garibaldi, L. A., Bartomeus, I., Bommarco, R., Klein, A. M., Cunningham, S. A., ... Woyciechowski, M. (2015). Editor's choice: Review: Trait matching of flower visitors and crops predicts fruit set better than trait diversity. Journal of Applied Ecology, 52(6), 1436-1444. doi:10.1111/1365-2664.12530.Garry, G., Forbes, G., Salas, A., Santa-Cruz, M., Pérez, W., & Nelson, R. J. (2005). Genetic diversity and host differentiation among isolates of Phytophthora infestans from cultivated potato and wild solanaceous hosts in Peru. Plant Pathology, 54(6), 740-748. doi:10.1111/j.1365-3059.2005.01250.x.Ghabrial, S. A., & Suzuki, N. (2009). Viruses of plant pathogenic fungi. Annual Review of Phytopathology, 47, 353-384. doi:10.1146/annurevphyto-080508-081932.Goldman, G. H., Temmerman, W., Jacobs, D., Contreras, R., Van Montagu, M., & Herrera-Estrella, A. (1993). A nucleotide substitution in one of the -tubulin genes of Trichoderma viride confers resistance to the antimitotic drug methyl benzimidazole-2-ylcarbamate. Molecular and General Genetics, 240(1), 73-80. doi:10.1007/bf00276886.Golemboski, D. B., Lomonossoff, G. P., & Zaitlin, M. (1990). Plants transformed with a tobacco mosaic virus nonstructural gene sequence are resistant to the virus. Proceedings of the National Academy of Sciences, 87(16), 6311-6315. doi:10.1073/pnas.87.16.6311.Gómez-Expósito, R., Postma, J., Raaijmakers, J. M., & De Bruijn, I. (2015). Diversity and activity of Lysobacter species from disease suppressive soils. Frontiers in Microbiology, 6, 1243. doi:10.3389/fmicb.2015.01243.Goodwin, S. B., Cohen, B. A., & Fry, W. E. (1994). Pan global distribution of a single clonal lineage of the Irish potato famine fungus. Proceedings of the National Academy of Sciences of the United States of America, 91(24), 11591-11595.Grant, T. J., & Costa, A. S. (1951). A mild strain of the tristeza virus of citrus. Phytopathology, 41, 114-122.Guamán-Burneo, C., & Carvajal-Barriga, J. (2009). Caracterización e identificación de aislados de levaduras carotenogénicas de varias zonas naturales del Ecuador. Universitas Scientiarum, 14(2-3), 11. doi:10.11144/javeriana.SC14-2-3.ceid.Guetsky, R., Shtienberg, D., Elad, Y., & Dinoor, A. (2001). Combining biocontrol agents to reduce the variability of biological control. Phytopathology, 91(7), 621-627. doi:10.1094/PHYTO.2001.91.7.621.Guetskyl, R., Shtienberg, D., Dinoor, A., & Elad, Y. (2002). Establishment, survival and activity of the biocontrol agents Pichia guilliermondii and Bacillus mycoides applied as a mixture on strawberry plants. Biocontrol Science and Technology, 12(6), 705-714. do i:10.1080/0958315021000039888.Gupta, B. M., Chandra, K., Verma, H. N., & Verma, G. S. (1974). Induction of antiviral resistance in Nicotiana glutinosa plants by treatment with Trichothecium polysaccharide and its reversal by actinomycin d. Journal of General Virology, 24(1), 211-213. doi:10.1099/0022-1317-24-1-211.Hahn, M. (2014). The rising threat of fungicide resistance in plant pathogenic fungi: Botrytis as a case study. Journal of Chemical Biology, 7(4), 133-141. doi:10.1007/s12154-014-0113-1.Hajlaoui, M. R., & Bélanger, R. R. (1991). Comparative effects of temperature and humidity on the activity of three potential antagonists of rose powdery mildew. Netherlands Journal of Plant Pathology, 97(4), 203-208. doi:10.1007/bf01989818.Hajlaoui, M. R., & Bélanger, R. R. (1993). Antagonism of the yeast-like phylloplane fungus Sporothrix flocculosa against Erysiphe graminis var tritici. Biocontrol Science and Technology, 3(4), 427-434. doi:10.1080/09583159309355297.Hammami, W., Castro, C. Q., Rémus-Borel, W., Labbé, C., & Bélanger, R. R. (2011). Ecological basis of the interaction between Pseudozyma flocculosa and powdery mildew fungi. Applied and Environmental Microbiology, 77(3), 926-933. doi:10.1128/aem.01255-10.Harel, Y. M., Mehari, Z. H., Rav-David, D., & Elad, Y. (2014). Induced systemic resistance against gray mold in tomato (Solanum lycopersicum) by benzothiadiazole and Trichoderma harzianum T39. Phytopathology, 104(2), 150-157. doi:10.1094/PHYTO-02-13-0043-R.Harman, G. E. (2000). Myths and dogmas of biocontrol changes in perceptions derived from research on Trichoderma harzianum T-22. Plant Disase, 84(4), 377-393. doi:10.1094/PDIS.2000.84.4.377.Harman, G. E., Howell, C. R., Viterbo, A., Chet, I., & Lorito, M. (2004). Trichoderma species — opportunistic, avirulent plant symbionts. Nature Reviews Microbiology, 2, 43-56. doi:10.1038/nrmicro797.Hashioka, Y., & Nakai, Y. (1980). Ultrastructure of pycnidial development and mycoparasitism of Ampelomyces quisqualis parasitic on Erysiphales. Transactions of the Mycological Society of Japan, 21(3), 329-338.Heath, M. C., Howard, R. J., Valent, B., & Chumley, F. G. (1992). Ultrastructural interactions of one strain of Magnaporthe grisea with goosegrass and weeping lovegrass. Canadian Journal of Botany, 70(4), 779-787. doi:10.1139/b92-099.Hellwald, K.-H., & Palukaitis, P. (1995). Viral rna as a potential target for two independent mechanisms of replicase-mediated resistance against cucumber mosaic virus. Cell, 83(6), 937-946. doi:10.1016/0092-8674(95)90209-0.Hemenway, C., Fang, R.-X., Kaniewski, W. K., Chua, N.-H., & Tumer, N. E. (1988). Analysis of the mechanism of protection in transgenic plants expressing the potato virus X coat protein or its antisense rna. The EMBO Journal, 7(5), 1273-1280.Heydari, A., & Pessarakli, M. (2010). A review on biological control of fungal plant pathogens using microbial antagonists. Journal of Biological Sciences, 10(4), 273-290. doi:10.3923/jbs.2010. 273.290.Heye, C. C. (1982). Biological control of the perfect stage of the apple scab pathogen, Venturia inaequalis (Cke.) Wint. Madison, Wisconsin, EE. UU.: University of Wisconsin.Hijwegen, T., & Buchenauer, H. (1984). Isolation and identification of hyperparasitic fungi associated with Erysiphaceae. Netherlands Journal of Plant Pathology, 90(2), 79-83. doi:10.1007/bf01999956.Hiltunen, L. H., Ojanpera, T., Kortemaa, H., Richter, E., Lehtonen, M. J., & Valkonen, J. P. T. (2009). Interactions and biocontrol of pathogenic Streptomyces strains cooccurring in potato scab lesions. Journal of Applied Microbiology, 106(1), 199-212.Hino, I., & Kato, H. (1929). Cicinnoboli parasitic on mildew fungi. Bulletin of the Miyazaki Collegium of Agriculture and Forestry, 1, 91-100.Hiradate, S., Yoshida, S., Sugie, H., Yada, H., & Fujii, Y. (2002). Mulberry anthracnose antagonists (iturins) produced by Bacillus amyloliquefaciens RC-2. Phytochemistry, 61(6), 693-698. doi:10.1016/S0031-9422(02)00365-5.Hirai, T., Hiashima, A., Itoh, T., Takahashi, T., Shimomura, T., & Hayashi, H. (1966). Inhibitory effect of blasticidin S on Tobacco Mosaic Virus multiplication. Phytopathology, 56(4), 1236-1239. doi:10.1016/0042-6822(68)90195-5.Hirano, S. S., & Upper, C. D. (2000). Bacteria in the leaf ecosystem with emphasis on Pseudomonas syringae—a pathogen, ice nucleus, and epiphyte. Microbiology Molecular Biology Reviews, 64(3), 624-653. doi:10.1128/mmbr.64.3.624-653.2000.Hislop, E. C., & Cox, T. W. (1969). Effects of captan on the non-parasitic microflora of apple leaves. Transactions of the British mycological society, 52(2), 223-235. doi:10.1016/S00071536(69)80035-5.Hjeljord, L., & Tronsmo, A. (1998). Trichoderma and Gliocladium in biological control: an overview. En G. E. Harman & C. P. Kubice (Eds.), Trichoderma & Gliocladium: Enzymes, biological control and commercial applications (pp. 131-151). Londres, Reino Unido: Taylor & Francis Ltd.Hofstein, R., Daoust, R. A., & Aeschlimann, J. P. (1996). Constraints to the development of biofungicides: The example of “AQ10”, a new product for controlling powdery mildews. Entomophaga, 41(3-4), 455-460. doi:10.1007/bf02765797.Hogenhout, S. A., Ammar, E. D., Whitfield, A. E., & Redinbaugh, M. G. (2008). Insect vector interactions with persistently transmitted viruses. Annual Review of Phytopathology, 46, 327-359. doi:10.1146/annurev.phyto.022508.092135.Hokama, N., Kawano, S., & Tokashiki, I. (1993). Effectiveness of cross protection by a mild strain of Zucchini Yellow Mosaic Virus for Mosaic disease of pumpukin ( Japanese). Annals of Phytopathology of Society Japan, 59, 323.Holmes, F. O. (1934). A masked strain of tobaccomosaic virus. Phytopathology, 24, 845-873.Holtz, G., Coertze, S., & Williamson, B. (2007). The ecology of Botrytis on plant surfaces. En: Y. Elad, B. Williamson, P. Tudzynski, & N. Delen (Eds.), Botrytis: Biology, Pathology and Control (pp. 9-27). Dordrecht, Holanda: Springer. doi:10.1007/978-1-4020-2626-3_2.Hoog, G. S., & Guarro, J. (1995). Atlas of clinical fungi. Baarn, Holanda: Centraalbureau voor Schimmelcultures.Horst, R. K. (2013). Powdery mildews. En R. K. Horst (Ed.), Westcott's plant disease handbook. Springer Netherlands (pp. 285-293). Dordrecht, Holanda: Springer. doi:10.1007/978-94-007-2141-8_40.Howard, R. J., Ferrari, M. A., Roach, D. H., & Money, N. P. (1991). Penetration of hard substrates by a fungus employing enormous turgor pressures. Proceedings of the national academy of sciences, 88(24), 11281-11284.Howell, C. R. (2003). Mechanisms employed by Trichoderma species in the biological control of plant diseases: The history and evolution of current concepts. Plant Disease, 87(1), 4-10. doi:10.1094/PDIS.2003.87.1.4.Hughes, J. A., & Ollennu, L. A. A. (1994). Mild strain protection of cocoa in Ghana against cocoa swollen shoot virus—a review. Plant Pathology, 43(3), 442- 457. doi:10.1111/j.13653059.1994.tb01578.x.Hull, R. (2014). Plant Virology (5.a ed.). Boston, EE. UU.: Elsevier.Iáñez, E. (1998). Curso de microbiología general. Acción de los agentes físicos sobre las bacterias (ii). Recuperado de http://www.biologia.edu.ar/microgeneral/microianez/18_micro.htm.Index Fungorum (ifs). (2017). Index Fungorum. Recuperado de http://www.indexfungorum.org/Index.htm.Inácio, J., Rodrigues, M. G., Sobral, P., & Fonseca, Á. (2004). Characterisation and classification of phylloplane yeasts from Portugal related to the genus Taphrina and description of five novel Lalaria species. FEMS Yeast Research, 4(4-5), 541-555. doi:10.1016/S1567-1356(03)00226-5.Ippolito, A., & Nigro, F. (2000). Impact of preharvest application of biological control agents on postharvest diseases of fresh fruits and vegetables. Crop Protection, 19(8), 715-723. doi:10.1016/S0261-2194(00)00095-8.International Service for the Acquisition of Agribiotech Applications (isaaa). (2017). GM Approval Database. Recuperado de ttp://www.isaaa.org/gmap provaldatabase/Ishimaru, C. A., Klos, E. J., & Brubaker, R. R. (1988). Multiple antibiotic production by Erwinia herbicola. Phytopathology, 78(6), 746-750. doi:10.1094/Phyto-78-746International Subcommission on Trichoderma and Hypocrea Taxonomy (isth). (2017). Hypocrea/ Trichoderma diversity. List of known species described by 2006. Recuperado de http://www.isth.info/biodiversity/index.ph.Izuno, A., Tanabe, A. S., Toju, H., Yamasaki, M., Indrioko, S., & Isagi, Y. (2016). Structure of phyllosphere fungal communities in a tropical dipterocarp plantation: A massively parallel nextgeneration sequencing analysis. Mycoscience, 57(3), 171-180. doi:10.1016/j.myc.2015.12.005.Jackson, A. J., Walters, D. R., & Marshall, G. (1997). Antagonistic interactions between the foliar pathogen Botrytis fabae and isolates of Penicillium brevicompactum and Cladosporium cladosporioides on faba beans. Biological Control, 8(2), 97-106. doi:10.1006/bcon.1996.0481.Jackson, D., Skillman, J., & Vandermeer, J. (2012). Indirect biological control of the coffee leaf rust, Hemileia vastatrix, by the entomogenous fungus Lecanicillium lecanii in a complex coffee agroecosystem. Biological Control, 61(1), 89-97. doi:10.1016/j.biocontrol.2012.01.004.Jacobsen, B. (2006). Biological control of plant diseases by phyllosphere applied biological control agents. En M. J. Bailey, A. K. Lilley, T. M. Timms-Wilson, P. T. N. Spencer-Phillips (Eds.), Microbial Ecology of Aerial Plant Surfaces (pp. 133-147). Londres, Reino Unido: CABI.Jacques, M., Kinkel, L. L., & Morris, C. E. (1995). Population sizes, immigration, and growth of epiphytic bacteria on leaves of different ages and positions of field-grown endive (Cichorium endivia var. latifolia). Applied and Environental Microbiology, 61(3), 899-906.Janisiewicz, W. J., Tworkoski, T. J., & Sharer, C. (2000). Characterizing the mechanism of biological control of postharvest diseases on fruits with a simple method to study competition for nutrients. Phytopathology, 90(11), 1196-1200. doi:10.1094/ PHYTO.2000.90.11.1196.Jarvis, W. R. (1977). Botryotinia and Botrytis species: taxonomy, physiology, and pathogenicity. Quebec, Canadá: Department of Agriculture of Canada.Jeleń, H., Błaszczyk, L., Chełkowski, J., Rogowicz, K., & Strakowska, J. (2014). Formation of 6-n-pentyl-2Hpyran- 2-one (6-PAP) and other volatiles by different Trichoderma species. Mycological Progress, 13(3), 589-600. doi:10.1007/s11557-013-0942-2.Jijakli, M., Lepoivre, P., Tossut, P., & Thonard, P. (1993). Biological control of Botrytis cinerea and Penicillium sp. on post-harvest apples by two antagonistic yeasts. Mededelingen van de Faculteit Landbouwkundige en Toegepaste Biologische Wetenschappen (Rijksuniversiteit te Gent), 58(3b), 1349-1358.Jin, Y., Szabo, L. J., & Carson, M. (2010). Century-old mystery of Puccinia striiformis life history solved with the identification of Berberis spp. as an alternate host. Phytopathology, 100(5), 432-435. doi:10.1094/ PHYTO-100-5-0432.Jones, D. G. (1993). Exploitation of microorganisms. London, United Kingdom: Springer science & business media. doi:10.1007/978-94-011-1532-2.Junqueira, N. T. V., & Gasparotto, L. (1991). Controle biológico de fungos estromáticos causadores de doenças foliares em seringueira. En: W. Bettiol (Ed.) Controle biológico de doenças de plantas (pp. 307-331, Vol. 1). Jaguariúna, Brasil: Embrapa-cnpda.Kalogiannis, S., Tjamos, S. E., Stergiou, A., Antoniou, P. P., Ziogas, B. N., & Tjamos, E. C. (2006). Selection and evaluation of phyllosphere yeasts as biocontrol agents against grey mould of tomato. European Journal of Plant Pathology, 116(1), 69-76. doi:10.1007/ s10658-006-9040-5.Kämpfer, P. (2006). The family Streptomycetaceae, Part I: Taxonomy. En: M. Dworkin, S. Falkow, E. Rosenberg, K.-H. Schleifer & E. Stackebrandt (Eds.), The Prokaryotes: Volume 3: Archaea. bacteria: Firmicutes, Actinomycetes (pp. 538-604). Nueva York, EE. UU.: Springer. doi:10.1007/0-387-30743-5_22.Kaniewski, W., Lawson, C., & Thomas, P. (1993). Agronomically useful resistance in Russet Burbank potato containing a plrv cp gene. Documento presentado en ix International Congress of Virology. Glasgow, Scotland.Kapat, A., Zimand, G., & Elad, Y. (1998). Biosynthesis of pathogenicity hydrolytic enzymes by Botrytis cinerea during infection of bean leaves and in vitro. Mycology Research, 102(8), 1017-1024. doi:10.1017/ S0953756297006023.Karabulut, O. A., Tezcan, H., Daus, A., Cohen, L., Wiess, B., & Droby, S. (2004). Control of preharvest and postharvest fruit rot in Strawberry by Metschnikowia fructicola. Biocontrol Science and Technology, 14(5), 513-521. doi:10.1080/09583150410001682287.Keel, C., Schnider, U., Maurhofer, M., Voisard, C., Laville, J., Burger, U., … Défago, G. (1992). Suppression of root diseases by Pseudomonas fluorescens CHA0: Importance of the bacterial secondary metabolite 2,4-Diacetylphloroglucinol. Molecular Plant-Microbe Interactions, 5(1), 4-13.Kema, G., Annone, J., Sayoud, R., & Van Silfhout, C. (1996). Genetic variation for virulence and resistance in the wheat-Mycosphaerella graminicola pathosystem. I. Interactions between pathogen isolates and host cultivars. Phytopathology, 86(2), 200-212. doi:10.1094/Phyto-86-200.Kema, G., Sayoud, R., Annone, J., & Van Silfhout, C. (1996). Genetic variation for virulence and resistance in the wheat-Mycosphaerella graminicola pathosystem. ii. Analysis of interactions between pathogen isolates and host cultivars. Phytopathology, 86(2), 213-220. doi:10.1094/Phyto-86-213Kerling, L. C. P. (1958). De microflora of het blad van Beta vulgaris. Tijdschrift Over Plantenziekten, 64, 402-410. doi:10.1007/bf02137361.Kevan, P., Kapongo, J., Al-mazra'awi, M., & Shipp, L. (2008). Honey bees, bumble bees, and biocontrol: New alliances between old friends. En R. James & T. L. Pitts-Singer (Eds.), Bee pollination in agricultural ecosystems (pp. 65-81). Oxford, Reino Unido: Oxford University Press.Khan, M. M. A. A., & Verma, H. N. (1990). Partial characterisation of an induced virus inhibitory protein, associated with systemic resistance in Cyamopsis tetragonoloba (L.) Taub. plants. Annals of Applied Biology, 117(3), 617-623. doi:10.1111/j.1744-7348.1990. tb04827.x.Khan, N., Mishra, A., & Nautiyal, C. S. (2012). Paenibacillus lentimorbus B-30488r controls early blight disease in tomato by inducing host resistance associated gene expression and inhibiting Alternaria solani. Biological Control, 62(2), 65-74. doi:10.1016/j. biocontrol.2012.03.010.Khoa, N. Đ., Giàu, N. Đ. N., & Tun, T. Q. (2016). Effects of Serratia nematodiphila CT-78 on rice bacterial leaf blight caused by Xanthomonas oryzae pv. oryzae. Biological Control, 103, 1-10. doi:10.1016/j. biocontrol.2016.07.010.Kim, J. J., Goettel, M. S., & Gillespie, D. R. (2007). Potential of Lecanicillium species for dual microbial control of aphids and the cucumber powdery mildew fungus, Sphaerotheca fuliginea. Biological Control, 40(3), 327-332. doi:10.1016/j.biocontrol.2006.12.002.Kinkel, L. L. (1997). Microbial population dynamics on leaves. Annual Review of Phytopathology, 35, 327-347. doi:10.1146/annurev.phyto.35.1.327Kiss, L. (1997). Graminicolous powdery mildew fungi as new natural hosts of Ampelomyces mycoparasites. Canadian Journal of Botany, 75(4), 680-683. doi:10.1139/b97-076.Kiss, L. (1998). Natural occurrence of ampelomyces intracellular mycoparasites in mycelia of powdery mildew fungi. The New Phytologist, 140(4), 709-714. doi:10.1046/j.1469-8137.1998.00316.x.Kiss, L. (2003). A review of fungal antagonists of powdery mildews and their potential as biocontrol agents. Pest Management Science, 59(4), 475-483. doi:10.1002/ps.689.Kiss, L., Russell, J. C., Szentiványi, O., Xu, X., & Jeffries, P. (2004). Biology and biocontrol potential of Ampelomyces mycoparasites, natural antagonists of powdery mildew fungi. Biocontrol Science and Technology, 14(7), 635-651. doi:10.1080/095831504 10001683600.Klatt, B. K., Holzschuh, A., Westphal, C., Clough, Y., Smit, I., . . . Tscharntke, T. (2014). Bee pollination improves crop quality, shelf life and commercial value. Proceedings of the Royal Society B: Biological Sciences, 281(1775). doi:10.1098/rspb.2013.2440.Knudsen, G. R., & Hudler, G. W. (1987). Use of a computer simulation model to evaluate a plant disease biocontrol agent. Ecological Modelling, 35(1- 2), 45-62. doi:10.1016/0304-3800(87)90090-1.Ko, H.-S., Jin, R.-D., Krishnan, H. B., Lee, S.-B., & Kim, K.-Y. (2009). Biocontrol ability of Lysobacter antibioticus HS124 against Phytophthora Blight is mediated by the production of 4-Hydroxyphenylacetic acid and several lytic enzymes. Current Microbiology, 59(6), 608-615. doi:10.1007/s00284-009-9481-0.Kobayashi, N., Hiramatsu, A., & Akatsuka, T. (1987). Purification and chemical properties of an inhibitor of plant virus infection from fruiting bodies of Lentinus edodes. Agricultural and Biological Chemistry, 51(3), 883-890. doi:10.1271/bbb1961.51.883.Köhl, J., & Fokkema, N. J. (1993). Fungal interactions on living and necrotic leaves. En J. P. Blakeman & B. Williamson (Eds.), Ecology of plant pathogens (pp. 321-334). Oxon, Reino Unido: cabi.Köhl, J., Molhoek, W., Van der Plas, C., & Fokkema, N. (1995). Effect of Ulocladium atrum and other antagonists on sporulation of Botrytis cinerea on dead lily leaves exposed to field conditions. Phytopathology, 85(4), 393-400.Köhl, J., & Schlösser, E. (1989). Decay of sclerotia of Botrytis cinerea by Trichoderma spp. At low temperatures. Journal of Phytopathology, 125(4), 320- 326. doi:10.1111/j.1439-0434.1989.tb01076.x.Kokalis-Burelle, N., Backman, P. A., Rodríguez- Kábana, R., & Ploper, L. D. (1992). Potential for biological control of early leafspot of peanut using Bacillus cereus and chitin as foliar amendments. Biological Control, 2(4), 321-328. doi:10.1016/1049- 9644(92)90026-A.Korsten, L., De Villiers, E. E., Wehner, F. C., & Kotzé, J. M. (1997). Field sprays of Bacillus subtilis and fungicides for control of preharvest fruit diseases of avocado in South Africa. Plant Disease, 81(5), 455- 459. doi:10.1094/PDIS.1997.81.5.455.Kovach, J., Petzoldt, R., & Harman, G. E. (2000). Use of honey bees and bumble bees to disseminate Trichoderma harzianum 1295-22 to Strawberries for Botrytis control. Biological Control, 18(3), 235-242. doi:10.1006/bcon.2000.0839.Krauss, U., & Soberanis, W. (2002). Effect of fertilization and biocontrol application frequency on cocoa pod diseases. Biological Control, 24(1), 82-89. doi:10.1016/S1049-9644(02)00007-5.Kubicek, C. P., & Penttila, M. (1998). Regulation of production of plant polysaccharide degrading enzymes by Trichoderma. En G. E. Harman & C. P. Kubicek (Eds.), Trichoderma and Gliocladium (Chapter 3). Londres, Reino Unido: Taylor & Francis Ltd.Kubo, S., Ikeda, T., Imaizumi, S., Takanami, Y., & Mikami, Y. (1990). A potent plant virus inhibitor found in Mirabilis jalapa L. Japanese Journal of Phytopathology, 56(4), 481-487. doi:10.3186/jjphy topath.56.481.Kubota, K., Tsuda, S., Tamai, A., & Meshi, T. (2003). Tomato mosaic virus replication protein suppresses virus-targeted posttranscriptional gene silencing. Journal of Virology, 77(20), 11016-11026. doi:10.1128/jvi.77.20.11016-11026.2003.Kumar, A., & Purohit, A. K. (2012). The role of indigenous knowledge in biological control of plant pathogens: Logistics of new research initiatives. En: J. M. Mérillon & K. G. Ramawat (Eds.), Plant defence: Biological control (pp. 161-194). Dordrecht, Holanda: Springer. doi:10.1007/978-94-007-1933-0_7.Kupferschmidt, K. (2013). A lethal dose of rna. Science, 341(6147), 732-733. doi:10.1126/science. 341.6147.732.Kutuzova, S. N., Porokhovinova, E. A., & Brutch, N. B. (2017). Evolution of virulence in a population of the flax rust pathogen Melampsora lini (Pers.) Lev. in northwestern Russia. Russian Journal of Genetics: Applied Research, 7(2), 159-169. doi:10.1134/S20 7905971702006X.Labudova, I., & Gogorova, L. (1988). Biological control of phytopathogenic fungi through lytic action of Trichoderma species. FEMS Microbiology Letters, 52(3), 193-198. doi:10.1111/j.1574-6968.1988.tb 02594.x.Lam, K. S. (2006). Discovery of novel metabolites from marine actinomycetes. Current in Opinion Microbiology, 9(3), 245-251. doi:10.1016/j.mib. 2006.03.004.Lam, Y.-H., Wong, Y.-S., Wang, B., Wong, R.N.S., Yeung, H.-W., & Shaw, P.-C. (1996). Use of trichosanthin to reduce infection by turnip mosaic virus. Plant Science, 114(1), 111-117. doi:10.1016/0168-9452 (95)04310-1.Landry, C., Bonnot, F., Ravigné, V., Carlier, J., Rengifo, D., . . . Abadie, C. (2017). A foliar disease simulation model to assist the design of new control methods against black leaf streak disease of banana. Ecological Modelling, 359(C), 383-397. doi:10.1016/j.ecolmodel. 2017.05.009.Lapsker, Z., & Elad, Y. (2001). Involvement of reactive oxygen species and antioxidant process in the disease caused by Botrytis cinerea on bean leaves and in its biological control by means of Trichoderma harzianum T39. Biological Control of Fungal and Bacterial Plant Pathogens IOBC WPRS Bulletin, 24(3), 21-25.Larone, D. H., & Howard, D. H. (1996). Medically Important Fungi: A Guide to Identification. Washington, D.C., EE. UU.: ASM Press.Law, J. W.-F., Ser, H.-L., Khan, T. M., Chuah, L.-H., Pusparajah, P., . . . Lee, L.-H. (2017). The potential of Streptomyces as biocontrol agents against the rice blast fungus, Magnaporthe oryzae (Pyricularia oryzae). Frontiers in Microbiology, 8, 3. doi:10.3389/ fmicb.2017.00003.Lee, G., Lee, S.-H., Kim, K.M., & Ryu, C.-M. (2017). Foliar application of the leaf-colonizing yeast Pseudozyma churashimaensis elicits systemic defense of pepper against bacterial and viral pathogens. Scientific Reports, 7, 39432. doi:10.1038/srep39432Lee, R. E. J., Warren, G. J., & Gusta, L. V. (1995). Bioquímica de nucleos de hielo bacteriales. En F. Ray & K. Paul (Eds.), Nucleación biológica de hielo y sus aplicaciones (pp. 63-83). St. Paul, Minnesota, EE. UU.: The American Phytopathological Society (aps).Legler, S. E., Caffi, T., Kiss, L., Pintye, A., & Rossi, V. (2011). Methods for screening new Ampelomyces strains to be used as biocontrol agents against grapevine powdery mildew. IOBC/WPRS Bulletin, 67(marzo), 149-154.Legler, S. E., Pintye, A., Caffi, T., Gulyás, S., Bohár, G., ... Kiss, L. (2016). Sporulation rate in culture and mycoparasitic activity, but not mycohost specificity, are the key factors for selecting Ampelomyces strains for biocontrol of grapevine powdery mildew (Erysiphe necator). European Journal of Plant Pathology, 144(4), 723-736. doi:10.1007/s10658-015-0834-1.Lelliott, R. A., & Dickey, R. S. (1984). Genus VII. Erwinia. En J. Holt (Ed.), Bergey's Manual of Systematic Bacteriology (pp. 469-476). Filadelfia, EE. UU.: Wolters Kluwer Health.Lemanceau, P., Barret, M., Mazurier, S., Mondy, S., Pivato, B., ... Vacher, C. (2017). Chapter Five - plant communication with associated microbiota in the Spermosphere, Rhizosphere and Phyllosphere. Advances in Botanical Research, 82, 101-133. doi:10.1016/bs.abr.2016.10.007.Leonard, K. J., & Bushnell, W. R. (2003). Fusarium head blight of wheat and barley. St. Paul, EE. UU.: American Phytopathological Society (aps).Leroux, P. (2004). Chemical control of Botrytis and its resistance to chemical fungicides. En Y. Elad, B. Williamson, P. Tudzynski & N. Delen, (Eds.), Botrytis: Biology, pathology and control (pp. 195-222).Dordrecht, Holanda: Springer. doi:10.1007/978-1- 4020-2626-3_12.Leveau, J. H. J. (2007). Microbia communities in the phyllosphere. En M. Riederer & C. Müller (Eds.), Annual plant reviews volume 23: Biology of the plant cuticle (pp. 334-367). New Jersey, EE. UU.: Blackwell Publishing Ltd. doi:10.1002/9780470988718.ch11.Libkind, D. (2007). Evaluación de la técnica de msp-pcr para la caracterización molecular de aislamientos de Rhodotorula mucilaginosa provenientes de la Patagonia noroccidental. Revista Argentina de Microbiología, 39(3), 133-137.Lindow, S., Hecht-Poinar, E., & Elliott, V. (2004). Phyllosphere microbiology. St. Paul, EE. UU.: American Phytopathological Society (aps).Lindow, S. E., & Andersen, G. L. (1996). Influence of immigration on epiphytic bacterial populations on navel orange leaves. Applied and Environmental Microbiology, 62(8), 2978-2987.Lindow, S. E., & Brandl, M. T. (2003). Microbiology of the Phyllosphere. Applied Environmental Microbiology, 69(4), 1875-1883. doi:10.1128/aem.69.4.1875- 1883.2003.Lindow, S. E., & Leveau, J. H. J. (2002). Phyllosphere microbiology. Current Opinion in Biotechnology, 13(3), 238-243. doi:10.1016/S0958-1669(02)00313-0.Lo, C.-T. (1998). General mechanisms of action of microbial biocontrol agents. Plant Pathology Bulletin, 7(4), 155-166.Lorito, M., Woo, S. L., Harman, G. E., & Monte, E. (2010). Translational research on Trichoderma: from omics to the field. Annual Review of Phytopathology, 48, 395-417. doi:10.1146/annurev-phyto-073009- 114314.Louws, F. J., Rivard, C. L., & Kubota, C. (2010). Grafting fruiting vegetables to manage soilborne pathogens, foliar pathogens, arthropods and weeds. Scientia horticulturae, 127(2), 127-146. doi:10.1016/j.scienta. 2010.09.023.Maiti, C. K., Sen, S., Paul, A. K., & Acharya, K. (2012). Pseudomonas aeruginosa WS-1 for biological control of leaf blight disease of Withania somnifera. Arch. Phytopathol. Plant Protection, 45(7), 796-805. doi:10 .1080/03235408.2011.597150.Mansfield, J., Genin, S., Magori, S., Citovsky, V., Sriariyanum, M., Ronald, P., ... Foster, G. D. (2012). Top 10 plant pathogenic bacteria in molecular plant pathology. Molecular Plant Pathology, 13(6), 614-629. doi:10.1111/j.1364-3703.2012.00804.x.Marchand, D., & McNeil, J. N. (2000). Effects of wind speed and atmospheric pressure on mate searching behavior in the aphid parasitoid Aphidius nigripes (Hymenoptera: Aphidiidae). Journal of Insect Behavior, 13(2), 187-199. doi:10.1023/a:1007732113390.Martirosyan, V., & Steinberger, Y. (2014). Microbial functional diversity in the phyllosphere and laimosphere of different desert plants. Journal of Arid Environments,Martirosyan, V., & Steinberger, Y. (2014). Microbial functional diversity in the phyllosphere and laimosphere of different desert plants. Journal of Arid Environments, 107, 26-33. doi:10.1016/j. jaridenv.2014.04.002.Masih, E. I., Slezack-Deschaumes, S., Marmaras, I., Barka, E. A., ... Paul, B. (2001). Characterisation of the yeast Pichia membranifaciens and its possible use in the biological control of Botrytis cinerea, causing the grey mould disease of grapevine. fems Microbiology Letters, 202(2), 227-232. doi:10.1111/j.1574-6968.2001.tb10808.x.Mastouri, F., Björkman, T., & Harman, G. E. (2010). Seed treatment with Trichoderma harzianum alleviates biotic, abiotic, and physiological stresses in germinating seeds and seedlings. Phytopathology, 100(11), 1213-1221. doi:10.1094/ PHYTO-03-10-0091.Matei, A., & Doehlemann, G. (2016). Cell biology of corn smut disease—Ustilago maydis as a model for biotrophic interactions. Current Opinion in Microbiology, 34, 60-66. doi:10.1016/j.mib. 2016.07.020.McCain, A. (1994). Powdery Mildew. HortScript # 3. California, EE. UU.: University of California Cooperative Extension Marin County.McCook, S. (2006). Global rust belt: Hemileia vastatrix and the ecological integration of world coffee production since 1850. Journal of Global History, 1(2), 177-195. doi:10.1017/S174002280600012X.McCook, S. (2006). Global rust belt: Hemileia vastatrix and the ecological integration of world coffee production since 1850. Journal of Global History, 1(2), 177-195. doi:10.1017/S174002280600012X.McGuire, J. M., Kim, K. S., & Douthit, L. B. (1970). Tobacco ringspot virus in the nematode Xiphinema americanum. Virology 42(1), 212-216. doi:10.1016/0042-6822(70)90254-0.McKinney, H. H. (1929). Mosaic diseases in the Canary Islands, West Africa and Gibraltar. Journal of Agricultural Research, 39, 577-578.McManus, P. S., Stockwell, V. O., Sundin, G. W., & Jones, A. L. (2002). Antibiotic use in plant agriculture. Annual Review of Phytopathology, 40, 443-465. doi:10.1146/annurev.phyto.40.120301.093927.McQuilken, M. P., Gemmell, J., & Lahdenperä, M. I. (2001). Gliocladium catenulatum as a potential biological control agent of damping-off in bedding plants. Journal of Phytopathology, 149(3-4), 171-178. doi:10.1046/j.1439-0434.2001.00602.x.McSpadden-Gardener, B. B., & Fravel, D. (2002). Biological control of plant pathogens: Research, commercialization, and application in the usa. Plant health progress (pp. 207-209). doi:10.1094/PHP- 2002-0510-01-RV.Meena, B. (2014). Biological control of pest and diseases using fluorescent pseudomonads. En K. Sahayaraj (Ed.), Basic and Applied Aspects of Biopesticides (pp. 17-29). Nueva Delhi, India: Springer. doi.10.1007/978-81-322-1877-7_2.Mercier, J., & Lindow, S. E. (2000). Role of leaf surface sugars in colonization of plants by bacterial epiphytes. Applied and Environmental Microbiology, 66(1), 369- 374. doi:10.1128/aem.66.1.369-374.2000.Mew, T. W., Alvarez, A. M., Leach, J. E., & Swings, J. (1993). Focus on bacterial blight of rice. Plant Disease, 77(1), 5-12. doi:10.1094/PD-77-0005.Meyer, K. M., & Leveau, J. H. J. (2012). Microbiology of the phyllosphere: a playground for testing ecological concepts. Oecologia, 168(3), 621-629. doi:10.1007/ s00442-011-2138-2.Meyer, U., Fischer, E., Barbul, O., & Elad, Y. (2001). Effect of biocontrol agents on antigens present in the extracellular matrix of Botrytis cinerea, which are important for pathogenesis. IOBC WPRS Bulletin, 24(3), 5-9.Miedtke, U., & Kennel, W. (1990). Athelia bombacina and Chaetomium globosum as antagonists of the perfect stage of the apple scab pathogen (Venturia inaequalis) under field conditions. Journal of Plant Diseases and Protection, 97(1), 24-32.Milgroom, M. G., & Cortesi, P. (2004). Biological control of chestnut blight with hypovirulence: A critical analysis. Annual Review of Phytopathology, 42, 311- 338. doi:10.1146/annurev.phyto.42.040803.140325.Mizukami, T., & Wakimoto, S. (1969). Epidemiology and control of bacterial leaf blight of rice. Annual Review of Phytopathology, 7, 51-72. doi:10.1146/ annurev.py.07.090169.000411.Mommaerts, V., Put, K., Vandeven, J., Jans, K., Sterk, G., ... Smagghe, G. (2010). Development of a new dispenser for microbiological control agents and evaluation of dissemination by bumblebees in greenhouse strawberries. Pest Management Science, 66(11), 1199-1207. doi:10.1002/ps.1995.Momonoi, K., Mori, M., Matsuura, K., Moriwaki, J., & Morikawa, T. (2015). Quantification of Mirafiori lettuce big-vein virus and its vector, Olpidium virulentus, from soil using real-time pcr. Plant Pathology, 64(4), 825-830. doi:10.1111/ppa.12333.Montesinos, E., & Bonaterra, A. (2009). Pesticides, Microbial. En Reference module in life sciences (pp. 110- 120). Oxford, Reino Unido: Elsevier. doi:10.1016/ B978-0-12-809633-8.13087-0.Morandi, M. A. B., Sutton, J. C., & Maffia, L. A. (2000). Effects of host and microbial factors on development of Clonostachys rosea and control of Botrytis cinerea in rose. European Journal of Plant Pathology, 106(5), 439-448. doi:10.1023/a:1008738513748.Moreno, C., & Cotes, A. (2006). Survival in the phylloplane of Trichoderma koningii and biocontrol activity against tomato foliar pathogens. IOBC/ WPRS Bulletin, 30, 557-561.Moreno, C., Ramírez, J., Zapata, J., Diaz, A., & Cotes, A. (2012). Selection of Pichia onychis isolate for biological control of Botrytis cinerea based on its ecophysiological characteristics. IOBCWPRS Bulletin, 78, 229-232.Moreno, C., Smith, A., & Cotes, A. M. (2010a). Pruebas de eficacia de Trichoderma koningiopsis Th003 para el control del moho blanco de la lechuga. En C. A. Moreno & A. M. Cotes (Eds.), Desarrollo de un bioplaguicida a base de Trichoderma koningiopsis Th003 y uso en el cultivo de lechuga para el control del moho blanco (Sclerotinia sclerotiorum y Sclerotinia minor) (pp. 60-75). Bogotá, Colombia: Corporación Colombiana de Investigación Agropecuaria (Corpoica).Moreno, C. A., Cotes, A. M., Smith, A., Beltrán, C., Villamizar, L., ... Santos, A. (2010b). Desarrollo de un bioplaguicida a base de Trichoderma koningiopsis Th003 y uso en el cultivo de lechuga para el control del moho blanco Sclerotinia sclerotiorum y Sclerotinia minor. Bogotá, Colombia: Corporación Colombiana de Investigación Agropecuaria (Corpoica).Moreno, C. A., Cotes, A. M., & Vergara, E. G. (2007). Biological control of foliar diseases in tomato greenhouse crop in Colombia: selection of antagonists and efficacy tests. IOBC WPRS Bulletin, 30, 59.Moretto, C., Cervantes, A. L. L., Batista, A., & Kupper, K. C. (2014). Integrated control of green mold to reduce chemical treatment in post-harvest citrus fruits. Scientia Horticulturae, 165, 433-438. doi:10.1016/j. scienta.2013.11.019.Morris, C., E., Monteil, C. L., & Berge, O. (2013). The life history of Pseudomonas syringae: Linking agriculture to earth system processes. Annual Review Phytopathology, 51, 85-104. doi:10.1146/annurevphyto- 082712-102402.Muccilli, S., & Restuccia, C. (2015). Bioprotective role of yeasts. Microorganisms, 3(4), 588-611. doi:10.3390/ microorganisms3040588.Mukherjee, P., Sherkhane, P., & Murthy, N. (1999). Induction of stable benomyl-tolerant phenotypic mutants of Trichoderma pseudokoningii mtcc 3011, and their evaluation for antagonistic and biocontrol potential. Indian Journal of Experimental Biology, 37(7), 710-712.Mukherjee, P. K., Horwitz, B. A., & Kenerley, C. M. (2012). Secondary metabolism in Trichoderma – a genomic perspective. Microbiology, 158(1), 35-45. doi:10.1099/mic.0.053629-0.Mukherjee, P. K., Horwitz, B. A., Singh, U. S., Mukherjee, M., & Schmoll, M. (2013). Trichoderma in agriculture, industry and medicine: an overview. En P. K. Mukherjee, U. S. Singh, B. A. Horwitz, M. Schmoll, & M. Mukherjee (Eds.), Trichoderma biology and applications (pp. 1-9). CAB International. doi:10.1079/9781780642475.0001.Murphy, J. F. (2006). Applied aspects of induced resistance to plant virus infection. En G. Loebenstein & J. P. Carr (Eds.), Natural resistance mechanisms of plants to viruses (pp. 1-11). Dordrecht, Holanda: Springer. doi:10.1007/1-4020-3780-5_1.Murty, V. S. & Devadath, S. (1984). Role of seed in survival and transmission of Xanthomonas campestris pv. oryzae causing bacterial Blight of rice. Journal of Phytopathology, 110(1), 15-19. doi:10.1111/j.1439-0434.1984.tb00735.x.Nakano, M. M. & Zuber, P. (1998). Anaerobic growth of a “Strict aerobe” (Bacillus subtilis). Annual Review of Microbiology, 52, 165-190. doi:10.1146/annurev. micro.52.1.165.Nakazono-Nagaoka, E., Sato, C., Kosaka, Y., & Natsuaki, T. (2004). Evaluation of cross-protection with an attenuated isolate of Bean yellow mosaic virus by differential detection of virus isolates using rt-pcr. Journal of General Plant Pathology, 70(6), 359-362. doi:10.1007/s10327-004-0138-3.Narayanasamy, P. (2013). Mechanisms of action of fungal biological control agents. En P. Narayanasamy (Ed.), Biological management of diseases of crops: Volume 1: Characteristics of biological control agents (pp. 99-200). Dordrecht, Holanda: Springer. doi:10.1007/978-94- 007-6380-7_3.Navazio, L., Baldan, B., Moscatiello, R., Zuppini, A., Woo, S. L., ... Lorito, M. (2007). Calcium-mediated perception and defense responses activated in plant cells by metabolite mixtures secreted by the biocontrol fungus Trichoderma atroviride. BMC Plant Biology, 7, 41. doi:10.1186/1471-2229-7-41.National Center for Biotechnology Information (ncbi). (2017). Taxonomy browser. Recuperado de https:// www.ncbi.nlm.nih.gov/Taxonomy/Browser/ wwwtax.cgi?id=1883.Nelson, M. E., & Powelson, M. L. (1998). Biological control of gray mold of snap beans by Trichoderma hamatum. Plant Disease, 72(8), 727-729. doi:10.1094/ PD-72-0727.Newhook, F. J. (1951). Microbiological control of Botrytis cinerea pers. Ii. Antagonism by fungi and actinomycetes. Annals of Applied Biology, 38(1), 185- 202. doi:10.1111/j.1744-7348.1951.tb07796.x.Niño-Liu, D. O., Ronald, P. C., & Bogdanove, A. J. (2006). Xanthomonas oryzae pathovars: model pathogens of a model crop. Molecular Plant Pathology, 7(5), 303- 324. doi:10.1111/j.1364-3703.2006.00344.x.Nishiguchi, M., Kikuchi, S., Kiho, Y., Ohno, T., Meshi, T., & Okada, Y. (1985). Molecular basis of plant viral virulence; the complete nucleotide sequence of an attenuated strain of tobacco mosaic virus. Nucleic Acids Research, 13(15), 5585-5590. doi:10.1093/ nar/13.15.5585.Nishiguchi, M., & Kobayashi, K. (2011). Attenuated plant viruses: preventing virus diseases and understanding the molecular mechanism. Journal of General Plant Pathology, 77(4), 221-229. doi:10.1007/ s10327-011-0318-x.Noris, E., Accotto, G. P., Tavazza, R., Brunetti, A., Crespi, S., & Tavazza, M. (1996). Resistance to tomato yellow leaf curl geminivirus in Nicotiana benthamiana plants transformed with a truncated viral C1 gene. Virology, 224(1), 130-138. doi:10.1006/viro.1996.0514.O'Neill, T. M., Elad, Y., Shtienberg, D., & Cohen, A. (1996). Control of grapevine grey mould with Trichoderma harzianum T39. Biocontrol Science and Technology, 6(2), 139-146. doi:10.1080/09583159650039340.Orton, E. S., Deller, S., & Brown, J. K. M. (2011). Mycosphaerella graminicola: from genomics to disease control. Molecular Plant Pathology, 12(5), 413-424. doi:10.1111/j.1364-3703.2010.00688.x.Oshima, N. (1981). Control of tomato mosaic disease by attenuated virus. Japan Agricultural Research Quarterly, 14(4), 222-228.Pal, K. K., & Gardener, B. M. (2006). Biological control of plant pathogens. The Plant Health Instructor, 2, 1117-1142. doi:10.1094/PHI-A-2006-1117-02.Palaniyandi, S. A., Yang, S. H., Cheng, J. H., Meng, L., & Suh, J. W. (2011). Biological control of anthracnose (Colletotrichum gloeosporioides) in yam by Streptomyces sp. MJM5763. Journal of Applied Microbiology, 111(2), 443-455. doi:10.1111/j.1365- 2672.2011.05048.x.Palmieri, M. C., Perazzolli, M., Matafora, V., Moretto, M., Bachi, A., & Pertot, I. (2012). Proteomic analysis of grapevine resistance induced by Trichoderma harzianum T39 reveals specific defence pathways activated against downy mildew. Journal of Experimental Botany, 63(17), 6237-6251. doi:10.1093/jxb/ers279.Parker, J. E., Schulte, W., Hahlbrock, K., & Scheel, D. (1991). An extracellular glycoprotein from Phytophthora megasperma f. sp. glycinea elicits phytoalexin synthesis in cultured parsley cells and protoplasts. Molecular Plant-Microbe Interaction, 4, 19-27.Patiño-Vera, M., Jiménez, B., Balderas, K., Ortiz, M., Allende, R., ... Galindo, E. (2005). Pilot-scale production and liquid formulation of Rhodotorula minuta, a potential biocontrol agent of mango anthracnose. Journal of Applied Microbiology, 99(3), 540-550. doi:10.1111/j.1365-2672.2005.02646.x.Paulitz, T. C., & Bélanger, R. R. (2001). Biological control in greenhouse systems. Annual Review of Phytopathology, 39, 103-133. doi:10.1146/annurev. phyto.39.1.103.Pearson, M. N., & Bailey, A. M. (2013). Viruses of Botrytis. Advances in Virus Research, 86, 249-272. doi.10.1016/B978-0-12-394315-6.00009-X.Peng, G., & Sutton, J. C. (1991). Evaluation of microorganisms for biocontrol of Botrytis cinerea in strawberry. Canadian Journal of Plant Pathology, 13(3), 247-257. doi:10.1080/07060669109500938.Peng, G., Sutton, J. C., & Kevan, P. G. (1992). Effectiveness of honey bees for applying the biocontrol agent Gliocladium roseum to strawberry flowers to suppress Botrytis cinerea. Canadian Journal of Plant Pathology, 14(2), 117-129. doi:10.1080/07060669209500888.Peñuelas, J., & Terradas, J. (2014). The foliar microbiome. Trends Plant Science, 19(5), 278-280. doi:10.1016/j. tplants.2013.12.007.Perazzolli, M., Dagostin, S., Ferrari, A., Elad, Y., & Pertot, I. (2008). Induction of systemic resistance against Plasmopara viticola in grapevine by Trichoderma harzianum T39 and benzothiadiazole. Biological Control, 47(2), 228-234. doi:10.1016/j. biocontrol.2008.08.008.Perazzolli, M., Moretto, M., Fontana, P., Ferrarini, A., Velasco, R., ... Pertot, I. (2012). Downy mildew resistance induced by Trichoderma harzianum T39 in susceptible grapevines partially mimics transcriptional changes of resistant genotypes. BMC Genomics, 13, 660. doi:10.1186/1471-2164-13-660.Perazzolli, M., Roatti, B., Bozza, E., & Pertot, I. (2011). Trichoderma harzianum T39 induces resistance against downy mildew by priming for defense without costs for grapevine. Biological Control, 58(1), 74-82. doi:10.1016/j.biocontrol.2011.04.006.Perelló, A., & Mónaco, C. (2007). Reseña de “status and progress of biological control of wheat (Triticum aestivum l.) foliar diseases in argentina”. Fitosanidad, 11(2), 85-105.Perlak, F., Kaniewski, W., Lawson, C., Vincent, M., & Feldman, J. (1994). Genetically improved potatoes: Their potential role in integrated pest management. En M. Manka (Ed.), 3th Conference of the European Foundation for Plant Pathology (efpp) (pp. 451-454). Wageningen, Holanda: efpp.Phillips, M. W. A., & McDougall, J. (2012). Crop protection market trends and opportunities for new active ingredients. En American Chemical Society, Abstracts of Papers of the American Chemical Society (p. 244). Washington, EE. UU.: American Chemical Society.Piggot, P. J., & Hilbert, D. W. (2004). Sporulation of bacillus subtilis. Current Opinion in Microbiology, 7(6). 579-586. doi:10.1016/j.mib.2004.10.001.Pintye, A., Bereczky, Z., Kovács, G. M., Nagy, L. G., Xu, X., ... Kiss, L. (2012). No indication of strict host associations in a widespread mycoparasite: Grapevine powdery mildew (Erysiphe necator) is attacked by phylogenetically distant ampelomyces strains in the field. Phytopathology, 102(7), 707- 716. doi:10.1094/PHYTO-10-11-0270.Prabhakaran, N., Prameeladevi, T., Sathiyabama, M., & Kamil, D. (2015). Screening of different Trichoderma species against agriculturally important foliar plant pathogens. Journal of Environmental Biology, 36(1), 191.Prins, M., Laimer, M., Noris, E., Schubert, J., Wassenegger, M., & Tepfer, M. (2008). Strategies for antiviral resistance in transgenic plants. Molecular Plant Pathology, 9(1), 73-83. doi:10.1111/j.1364- 3703.2007.00447.x.Prusky, D. (1996). Pathogen quiescence in postharvest diseases. Annual Review of Phytopathology, 34(1), 413-434. doi:10.1146/annurev.phyto.34.1.413.Punja, Z. K., & Utkhede, R. S. (2003). Using fungi and yeasts to manage vegetable crop diseases. Trends Biotechnology, 21(9), 400-407. doi:10.1016/S0167- 7799(03)00193-8.Pusey, P. L., Stockwell, V. O., & Mazzola, M. (2009). Epiphytic bacteria and yeasts on apple blossoms and their potential as antagonists of Erwinia amylovora. Phytopathology, 99(5), 571-581. doi:10.1094/PHY TO-99-5-0571.Rabindran, R., & Vidhyasekaran, P. (1996). Development of a formulation of Pseudomonas fluorescens PfALR2 for management of rice sheath blight. Crop Protection, 15(8), 715-721. doi:10.1016/ S0261-2194(96)00045-2.Ramarathnam, R., Fernando, W. G. D., & de Kievit, T. (2011). The role of antibiosis and induced systemic resistance, mediated by strains of Pseudomonas chlororaphis, Bacillus cereus and B. amyloliquefaciens, in controlling blackleg disease of canola. BioControl, 56(2), 225-235. doi:10.1007/s10526-010-9324-8.Ramesh, S., & Mathivanan, N. (2009). Screening of marine actinomycetes isolated from the Bay of Bengal, India for antimicrobial activity and industrial enzymes. World Journal of Microbiology and Biotechnology, 25(12),2103-2111. doi:10.1007/ s11274-009-0113-4.Redford, A. J., & Fierer, N. (2009). Bacterial succession on the leaf surface: A novel system for studying successional dynamics. Microbial Ecology, 58(1), 189- 198. doi:10.1007/s00248-009-9495-y.Redmond, J., Marois, J., & MacDonald, J. (1987). Biological control of Botrytis cinerea on roses with epiphytic microorganisms. Plant Disease, 71(9), 799- 802. doi:10.1094/PD-71-0799.Robiglio, A., Sosa, M. C., Lutz, M. C., Lopes, C. A., & Sangorrín, M. P. (2011). Yeast biocontrol of fungal spoilage of pears stored at low temperature. International Journal of Food Microbiology, 147(3), 211-216. doi:10.1016/j.ijfoodmicro.2011.04.007.Rodríguez-Palenzuela, P., Matas, I. M., Murillo, J., López-Solanilla, E., Bardaji, L., Pérez-Martínez, I., ... Ramos, C. (2010). Annotation and overview of the Pseudomonas savastanoi pv. savastanoi ncppb 3335 draft genome reveals the virulence gene complement of a tumour-inducing pathogen of woody hosts. Environmental Microbiology, 12(6), 1604-1620. doi:10.1111/j.1462-2920.2010.02207.x.Romero, D., de Vicente, A., Rakotoaly, R. H., Dufour, S. E., Veening, J. W., ... Pérez-García, A. (2007a). The iturin and fengycin families of lipopeptides are key factors in antagonism of Bacillus subtilis toward Podosphaera fusca. Molecular Plant-Microbe Interactions Journal, 20(4), 430-440. doi:10.1094/ mpmi-20-4-0430.Romero, D., De Vicente, A., Zeriouh, H., Cazorla, F. M., Fernández-Ortuño, D., ... Pérez-García, A. (2007b). Evaluation of biological control agents for managing cucurbit powdery mildew on greenhouse-grown melon. Plant Pathology, 56(6), 976-986. doi:10.1111/ j.1365-3059.2007.01684.x.Romero, D., Rivera, M. E., Cazorla, F. M., De Vicente, A., & Pérez-García, A. (2003). Effect of mycoparasitic fungi on the development of Sphaerotheca fusca in melon leaves. Mycological Research, 107(1), 64-71. doi:10.1017/S0953756202006974.Roossinck, M. J., Sleat, D., & Palukaitis, P. (1992). Satellite RNAs of plant viruses: structures and biological effects. Microbiological Reviews, 56(2), 265-279.Ruanjan, P., Kertbundit, S., & Juříček, M. (2007). Posttranscriptional gene silencing is involved in resistance of transgenic papayas to papaya ringspot virus. Biologia Plantarum, 51(3), 517-520. doi:10.1007/ s10535-007-0110-0.Ruberson, J. R. (1999). Handbook of pest management. Nueva York, EE. UU.: CRC Press.Rückert, C., Blom, J., Chen, X., Reva, O., & Borriss, R. (2011). Genome sequence of B. amyloliquefaciens type strain DSM7T reveals differences to plantassociated B. amyloliquefaciens FZB42. Journal of Biotechnology, 155(1), 78-85. doi:10.1016/j. jbiotec.2011.01.006Ruinen, J. (1956). Occurrence of Beijerinckia species in the “Phyllosphere”. Nature, 177, 220-221. doi:10.1038/177220a0.Saha, D., Kumar, R., Ghosh, S., Kumari, M., & Saha, A. (2012). Control of foliar diseases of tea with Xanthium strumarium leaf extract. Industrial crops and products, 37(1), 376-382. doi:10.1016/j.indcrop.2011.12.030.Saligkarias, I. D., Gravanis, F. T., & Epton, H. A. S. (2002). Biological control of Botrytis cinerea on tomato plants by the use of epiphytic yeasts Candida guilliermondii strains 101 and US 7 and Candida oleophila strain I-182: II. a study on mode of action. Biological Control, 25(2), 151-161. doi:10.1016/ S1049-9644(02)00052-X.Samac, D. A., Willert, A. M., McBride, M. J., & Kinkel, L. L. (2003). Effects of antibiotic-producing Streptomyces on nodulation and leaf spot in alfalfa. Applied Soil Ecology, 22(1), 55-66. doi:10.1016/S0929- 1393(02)00109-9.Samuels, G. J. (1996). Trichoderma: a review of biology and systematics of the genus. Mycological Research, 100(8), 923-935. doi:10.1016/S0953- 7562(96)80043-8.Sanders, P. R., Sammons, B., Kaniewski, W., Haley, L., Layton, J., ... Tumer, N. (1992). Field resistance of transgenic tomatoes expressing the tobacco mosaic virus or tomato mosaic virus coat protein genes. Phytopathology, 82(6), 683-690. doi:10.1094/ Phyto-82-683.Sansone, G., Rezza, I., Fernández, G., Calvente, V., Benuzzi, D., & Sanz, M. I. (2011). Inhibitors of polygalacturonase and laccase of Botrytis cinerea and their application to the control of this fungus. International Biodeterioration and Biodegradation, 65(1), 243-247. doi:10.1016/j.ibiod.2010.09.010.Saravanakumar, D., Spadaro, D., Garibaldi, A., & Gullino, M. L. (2009). Detection of enzymatic activity and partial sequence of a chitinase gene in Metschnikowia pulcherrima strain MACH1 used as post-harvest biocontrol agent. European Journal of Plant Pathology, 123(2), 183-193. doi:10.1007/ s10658-008-9355-5.Sawant, I. S. (2014). Trichoderma-foliar pathogen interactions. The Open Mycology Journal, 8, 58-70. do i:10.2174/1874437001408010058.Sawant, I. S., Rajguru, Y. R., Salunkhe, V. P., & Wadkar, P. N. (2012). Evaluation and selection of efficient Trichoderma species and isolates from diverse locations in India for biological control of anthracnose disease of grapes. Journal of Biological Control, 26, 144-154.Sawant, I. S., Rajguru, Y. R., Salunkhe, V. P., & Wadkar, P. N. (2012). Evaluation and selection of efficient Trichoderma species and isolates from diverse locations in India for biological control of anthracnose disease of grapes. Journal of Biological Control, 26, 144-154.Scarselletti, R., & Faull, J. L. (1994). In vitro activity of 6-pentyl--pyrone, a metabolite of Trichoderma harzianum, in the inhibition of Rhizoctonia solani and Fusarium oxysporum f. sp. lycopersici. Mycology Research, 98(10), 1207-1209. doi:10.1016/S0953- 7562(09)80206-2.Schirmböck, M., Lorito, M., Wang, Y. L., Hayes, C. K., Arisan-Atac, I., ... Kubicek, C. P. (1994). Parallel formation and synergism of hydrolytic enzymes and peptaibol antibiotics, molecular mechanisms involved in the antagonistic action of Trichoderma harzianum against phytopathogenic fungi. Applied and Environmental Microbiology, 60(12), 4364-4370.Scherm, H., Ngugi, H. K., Savelle, A. T., & Edwards, J. R. (2004). Biological control of infection of blueberry flowers caused by Monilinia vaccinii-corymbosi. Biological Control, 29(2), 199-206. doi:10.1016/S10 49-9644(03)00154-3.Scholthof, K. B. Adkins, S., Czosnek, H., Palukaitis, P., Jacquot, E., Hohn, T., … Foster, G. D. (2011). Top 10 plant viruses in molecular plant pathology. Molecular Plant Pathology 12(9), 938-954. doi: 10.1111/j.1364- 3703.2011.00752.x.Schoonbeek, H.-J., Jacquat-Bovet, A.-C., Mascher, F., & Métraux, J.-P. (2007). Oxalate-degrading bacteria can protect Arabidopsis thaliana and crop plants against Botrytis cinerea. Molecular Plant-Microbe Interactions, 20(12), 1535-1544. doi:10.1094/MPMI-20- 12-1535.Schuster, A., & Schmoll, M. (2010). Biology and biotechnology of Trichoderma. Applied and Microbiological Biotechnology, 87(3), 787-799. doi:10. 1007/s00253-010-2632-1.Ser, H.-L., Law, J. W.-F., Chaiyakunapruk, N., Jacob, S. A., Palanisamy, U. D., ... Lee, L.-H. (2016). Fermentation conditions that affect clavulanic acid production in Streptomyces clavuligerus: A systematic review. Frontiers in Microbiology, 7, 522. doi:10.3389/ fmicb.2016.00522.Serrano, L., Manker, D., Brandi, F., & Cali, T. (2013). The use of Bacillus subtilis qst 713 and Bacillus pumilus qst 2808 as protectant fungicides in conventional application programs for black leaf streak control. Acta Horticulturae, 986. pp. 149-155. doi: 10.17660/ ActaHortic.2013.986.15.Shade, A., Jacques, M. A., & Barret, M. (2017). Ecological patterns of seed microbiome diversity, transmission, and assembly. Current Opinion in Microbiology, 37, 15-22. doi:10.1016/j.mib.2017.03.010.Shafir, S., Dag, A., Bilu, A., Abu-Toamy, M., & Elad, Y. (2006). Honey bee dispersal of the biocontrol agent Trichoderma harzianum T39: effectiveness in suppressing Botrytis cinerea on strawberry under field conditions. European Journal of Plant Pathology, 116(2), 119-128. doi:10.1007/s10658- 006-9047-y.Sharma, R. R., Singh, D., & Singh, R. (2009). Biological control of postharvest diseases of fruits and vegetables by microbial antagonists: A review. Biological Control, 50(3), 205-221. doi:10.1016/j. biocontrol.2009.05.001.Shigetou, N., Kaishu, L., Gonsalves, C., Gonsalves, D., & Slightom, J. L. (1991). Expression of the gene encoding the coat protein of cucumber mosaic virus (cmv) strain wl appears to provide protection to tobacco plants against infection by several different cmv strains. Gene, 107(2), 181-188. doi:10.1016/0378-1119(91)90317-5.Shoresh, M., Harman, G. E., & Mastouri, F. (2010). Induced systemic resistance and plant responses to fungal biocontrol agents. Annual Review of Phytopathology, 48, 21-43. doi:10.1146/annurevphyto- 073009-114450.Shtienberg, D., & Elad, Y. (1997). Incorporation of weather forecasting in integrated, biological-chemical management of Botrytis cinerea. Phytopathology, 87(3), 332-340. doi:10.1094/PHYTO.1997.87.3.332.Singh, D., Verma, N., & Varma, A. (2008). The fungal transmitted viruses. En A. Varma (Ed.), Mycorrhiza: State of the art, genetics and molecular biology, ecofunction, biotechnology, eco-physiology, structure and systematics (pp. 485-503). Berlín, Alemania. Springer. doi:10.1007/978-3-540-78826-3_24.Sivasithamparam, K., & Ghisalberti, E. (1998). Secondary metabolism in Trichoderma and Gliocladium. En G. E. Harman & C. P. Kubicek (Eds.), Trichoderma and Gliocladium (pp. 139-191). Londres, Reino Unido: Taylor & Francis Ltd.Smith, A., Beltrán, C. A., Kusunoki, M., Cotes, A. M., Motohashi, K., ... Deguchi, M. (2013). Diversity of soil-dwelling Trichoderma in Colombia and their potential as biocontrol agents against the phytopathogenic fungus Sclerotinia sclerotiorum (Lib.) de Bary. Journal of General Plant Pathology, 79(1), 74-85. doi:10.1007/s10327-012-0419-1.Smits, T. H. M., Rezzonico, F., Kamber, T., Goesmann, A., Ishimaru, C. A., ... Duffy, B., (2010). Genome sequence of the biocontrol agent Pantoea vagans strain C9-1. Journal of Bacteriology, 192(24), 6486- 6487. doi:10.1128/jb.01122-10.Sreenivasulu, C., & Aparna, Y. (2001). Bioremediation of methylparathion by free and immobilized cells of Bacillus sp. isolated from soil. Bulletin of Environmental Contamination and Toxicology, 67(1), 98-105. doi:10.1007/s001280096.Stefanova, M., Leiva, A., Larrinaga, L., & Coronado, M. (1999). Metabolic activity of Trichoderma spp. isolates for a control of soilborne phytopathogenic fungi. Revista de la Facultad de Agronomía Universidad de Zulia, 16, 509-516.Stein, T. (2005). Bacillus subtilis antibiotics: structures, syntheses and specific functions. Molecular Microbiology, 56(4), 845-857. doi:10.1111/j.1365- 2958.2005.04587.x.Stein, T. (2005). Bacillus subtilis antibiotics: structures, syntheses and specific functions. Molecular Microbiology, 56(4), 845-857. doi:10.1111/j.1365- 2958.2005.04587.x.Stirpe, F., Williams, D. G., Onyon, L. J., Legg, R. F., & Stevens, W. A. (1981). Dianthins, ribosomedamaging proteins with anti-viral properties from Dianthus caryophyllus L. (carnation). The Biochemcal Journal, 195(2), 399-405.Sultan, M. (2012). Biological control of leaf pathogens of tomato plants by Bacillus subtilis (strain FZB24): antagonistic effects and induced plant resistance. Bonn, Alemania: University of Bonn.Sundheim, L., & Krekling, T. (1982). Host-parasite relationships of the hyperparasite Ampelomyces quisqualis and its powdery mildew host Sphaerotheca fuliginea. Journal of Phytopathology, 104(3), 202-210. doi:10.1111/j.1439-0434.1982.tb00527.x.Sutton, J., & Peng, G. (1993a). Biocontrol of Botrytis cinerea in strawberry leaves. Phytopathology, 83(6), 615-621. doi:10.1094/Phyto-83-615.Sutton, J. C., & Peng, G. (1993b). Manipulation and vectoring of biocontrol organisms to manage foliage and fruit diseases in cropping systems. Annual Review of Phytopathology, 31(1), 473-493. doi:10.1146/ annurev.py.31.090193.002353.Swings, J., Van den Mooter, M., Vauterin, L., Hoste, B., Gillis, M., ... Kersters, K. (1990). Reclassification of the causal agents of bacterial blight (Xanthomonas campestris pv. oryzae) and bacterial leaf streak (Xanthomonas campestris pv. oryzicola) of rice as pathovars of Xanthomonas oryzae (ex ishiyama 1922) sp. nov., nom. rev. International Journal of Systematic and Evolutionary Microbiology, 40(3), 309-311. doi:10. 1099/00207713-40-3-309.Szentiványi, O., & Kiss, L. (2003). Overwintering of Ampelomyces mycoparasites on apple trees and other plants infected with powdery mildews. Plant Pathology, 52(6), 737-746. doi:10.1111/j.1365- 3059.2003.00937.x.Tahvonen, R., & Avikainen, H. (1987). The biological control of seed-borne Alternaria brassicicola of cruciferous plants with a powdery preparation of Streptomyces sp. Journal of Agricultural Science in Finland, 59, 199-208.Takamatsu, S. (2004). Phylogeny and evolution of the powdery mildew fungi (Erysiphales, Ascomycota) inferred from nuclear ribosomal dna sequences. Mycoscience, 45(2), 147-157. doi:10.1007/S10267- 003-0159-3.Teng, P. (1994). Epidemiological basis for blast management. En R. S. Zeigler, S. A. Leong & P. S. Teng (Eds.), Rice blast disease (pp. 409-433). Wallingford, EE. UU.: CAB International.Thapa, S., Prasanna, R., Ranjan, K., Velmourougane, K., & Ramakrishnan, B. (2017). Nutrients and host attributes modulate the abundance and functional traits of phyllosphere microbiome in rice. Microbiology Research, 204, 55-64. doi:10.1016/j. micres.2017.07.007.Thresh, J. M., & Cooter, R. J. (2005). Strategies for controlling cassava mosaic virus disease in Africa. Plant Pathology, 54(5), 587-614. doi:10.1111/j.1365- 3059.2005.01282.x.Torres, D. E., Rojas-Martínez, R. I., Zavaleta-Mejía, E., Guevara-Fefer, P., Márquez-Guzmán, G. J., & Pérez- Martínez, C. (2017). Cladosporium cladosporioides and Cladosporium pseudocladosporioides as potential new fungal antagonists of Puccinia horiana Henn., the causal agent of chrysanthemum white rust. PLoS ONE, 12(1), e0170782. doi:10.1371/journal. pone.0170782.Tronsmo, A., & Dennis, C. (1977). The use of Trichoderma species to control strawberry fruit rots. Netherlands Journal of Plant Pathology, 83, 449. doi:10.1007/bf03041462.Truchado, P., Gil, M. I., Reboleiro, P., Rodelas, B., & Allende, A. (2017). Impact of solar radiation exposure on phyllosphere bacterial community of red-pigmented baby leaf lettuce. Food Microbiology, 66, 77-85. doi:10.1016/j.fm.2017.03.018.Tsay, J. G., & Tung, B. (1991). Ampelomyces quisqualis ces. Ex schilecht., a hyper-parasite of the asparagus bean powdery mildew pathogen Erysiphe polygoni in Taiwan. Transactions of the Mycological Society of Republic of China, 6(2), 55-58. doi:10.7099/ TMSRC.199106.0055.Tucker, S. L., & Talbot, N. J. (2001). Surface attachment and pre-penetration stage development by plant pathogenic fungi. Annual Review of Phytopathology, 39, 385-417. doi:10.1146/annurev.phyto.39.1.385.Tuohimetsä, S., Hietaranta, T., Uosukainen, M., Kukkonen, S., & Karhu, S. (2014). Fruit development in artificially self- and cross-pollinated strawberries (Fragaria × ananassa) and raspberries (Rubus idaeus). Acta Agriculturae Scandinavica, Section B — Soil & Plant Science, 64(5), 408-415. doi:10.1080/090647 10.2014.919348.Tuon, F. F., & Costa, S. F. (2008). Rhodotorula infection. A systematic review of 128 cases from literature. Revista Iberoamericana de Micología, 25(3), 135-140.Turnbull, P. C. (1996). Bacillus. En S. Baron (Ed.), Barron's Medical Microbiology Medical Branch. Texas, EE. UU.: University of Texas.Umesha, S., Dharmesh, S. M., Shetty, S. A., Krishnappa, M., & Shetty, H.S. (1998). Biocontrol of downy mildew disease of pearl millet using Pseudomonas fluorescens. Crop Protection, 17(5), 387-392. doi:10.1016/S0261-2194(98)00014-3.Urbasch, I. (1983). On the genesis and germination of chlamydospores of Botrytis cinerea. Phytopathologische Zeitschrift, 108(1), 54-60.Vali, G. (1995). Principles of ice nucleation. En R. E. Lee, G. J. Warren, L.V. Gusta (Eds.), Biological ice nucleation and its applications (pp. 1-28). Saint Paul, EE. UU.: The American Phytopathological Society (aps).aps). Van Baarlen, P., Woltering, E. J., Staats, M., & Van Kan, J. A. L. (2007). Histochemical and genetic analysis of host and non-host interactions of Arabidopsis with three Botrytis species: an important role for cell death control. Molecular Plant Pathology, 8(1), 41-54. doi:10.1111/j.1364-3703.2006.00367.x.Van Damme, E. J. M., Barre, A., Barbieri, L., Valbonesi, P., Rouge, P., ... Peumans, W. J. (1997). Type 1 ribosome-inactivating proteins are the most abundant proteins in iris (Iris hollandica var. Professor Blaauw) bulbs: characterization and molecular cloning. The Biochemical Journal, 324(Pt. 3), 963.Van Kan, J. A. L., Shaw, M. W., & Grant-Downton, R. T. (2014). Botrytis species: relentless necrotrophic thugs or endophytes gone rogue? Molecular Plant Pathology, 15(9), 957-961. doi:10.1111/ mpp.12148.Verdier, V., Restrepo, S., Mosquera, G., Jorge, V., & López, C. (2004). Recent progress in the characterization of molecular determinants in the Xanthomonas axonopodis pv. manihotis–cassava interaction. Plant Molecular Biology, 56(4), 573-584. doi:10.1007/ s11103-004-5044-8.Verger, P. J. P., & Boobis, A. R. (2013). Reevaluate pesticides for food security and safety. Science, 341(6147), 717-718. doi:10.1126/science.1241572.Verma, H. N. (1994). Induction of durable resistance by primed Clerodendrum aculeatum leaf extract. Indian Phytopathology, 47(1), 19-22.Verma, H. N. (1994). Induction of durable resistance by primed Clerodendrum aculeatum leaf extract. Indian Phytopathology, 47(1), 19-22.Verma, H. N., & Awasthi, L. P. (1980). Occurrence of a highly antiviral agent in plants treated with Boerhaavia diffusa inhibitor. Canadian Journal of Botany, 58(20), 2141-2144. doi:10.1139/b80-246.Verma, H. N., & Dwivedi, S. D. (1984). Properties of a virus inhibiting agent, isolated from plants which have been treated with leaf extracts from Bougainvillea spectabilis. Physiological Plant Pathology, 25(1), 93- 101. doi:10.1016/0048-4059(84)90020-1.Vidhyasekaran, P., Rabindran, R., Muthamilan, M., Nayar, K., Rajappan, K., ... Vasumathi, K. (1997). Development of a powder formulation of Pseudomonas fluorescens for control of rice blast. Plant Pathology, 46(3), 291-297. doi:10.1046/j.1365-3059.1997. d01-27.x.Voegele, R. T., & Mendgen, K. W. (2011). Nutrient uptake in rust fungi: how sweet is parasitic life? Euphytica, 179(1), 41-55. doi:10.1007/s10681-011- 0358-5.Völksch, B., & May, R. (2001). Biological control of Pseudomonas syringae pv. glycinea by epiphytic bacteria under field conditions. Microbial Ecololy, 41(2), 132- 139. doi:10.1007/s002480000078.Vorholt, J. A. (2012). Microbial life in the phyllosphere. Nature reviews. Microbiology, 10(12), 828. doi:10.1038/nrmicro2910.Walker, A. S., Micoud, A., Rémuson, F., Grosman, J., Gredt, M., & Leroux, P. (2013). French vineyards provide information that opens ways for effective resistance management of Botrytis cinerea (grey mould). Pest Management Science, 69(6), 667-678. doi:10.1002/ps.3506.Wang, Q.-M., & Bai, F.-Y. (2004). Four new yeast species of the genus Sporobolomyces from plant leaves. fems Yeast Research, 4(6), 579-586. doi:10.1016/j. femsyr.2003.11.002.Wang, Q.-M., & Bai, F.-Y. (2004). Four new yeast species of the genus Sporobolomyces from plant leaves. fems Yeast Research, 4(6), 579-586. doi:10.1016/j. femsyr.2003.11.002.Wang, X., Xue, Y., Han, M., Bu, Y., & Liu, C. (2014). The ecological roles of Bacillus thuringiensis within phyllosphere environments. Chemosphere, 108, 258- 264. doi:10.1016/j.chemosphere.2014.01.050.Wasik, A. A., & Schiller, H. B. (2017). Functional proteomics of cellular mechanosensing mechanisms. Seminars in Cell and Developmental Biology, 71, 118- 128. doi:10.1016/j.semcdb.2017.06.019.Wheeler, G. S., & Madeira, P. T. (2017). Phylogeny within the Anacardiaceae predicts host range of potential biological control agents of Brazilian peppertree. Biological Control, 108, 22-29. doi:10.1016/j. biocontrol.2017.01.017.Whipps, J. M., Hand, P., Pink, D., & Bending, G. D. (2008). Phyllosphere microbiology with special reference to diversity and plant genotype. Journal of Applied Microbiology, 105(6), 1744-1755. doi:10.1111/j.1365-2672.2008.03906.x.Whipps, J. M., McQuilken, M. P., & Budge, S. P. (1993). Use of fungal antagonists for biocontrol of dampingoff and sclerotinia diseases. Pestic Management Science, 37(4), 309-313. doi:10.1002/ps.2780370402.Williamson, B., Tudzynski, B., Tudzynski, P., & Van Kan, J. A. L. (2007). Botrytis cinerea: the cause of grey mould disease. Molecular Plant Pathology, 8(5), 561- 580. doi:10.1111/j.1364-3703.2007.00417.x.Woo, S. L., Ruocco, M., Vinale, F., Nigro, M., Marra, R., ... Lorito, M. (2014). Trichoderma-based products and their widespread use in agriculture. The Open Mycology Journal, 8, 71-126. doi:10.2174/18744370 01408010071.Wood, R. K. S. (1951). The control of diseases of lettuce by the use of antagonistic organisms I. The control of Botrytis cinerea pers. Annals of Applied Biology, 38(1), 203-216. doi:10.1111/j.1744-7348.1951.tb07797.x.Wu, M., Zhang, J., Yang, L., & Li, G. (2016). rna mycoviruses and their role in Botrytis biology. En S. Fillinger & Y. Elad (Eds.), Botrytis – the fungus, the pathogen and its management in agricultural systems (pp. 71-90). Cham, Alemania: Springer International Publishing. doi:10.1007/978-3-319-23371-0_5.Wu, M., Zhang, J., Yang, L., & Li, G. (2016). rna mycoviruses and their role in Botrytis biology. En S. Fillinger & Y. Elad (Eds.), Botrytis – the fungus, the pathogen and its management in agricultural systems (pp. 71-90). Cham, Alemania: Springer International Publishing. doi:10.1007/978-3-319-23371-0_5.Wyand, R. A., & Brown, J. K. M. (2003). Genetic and forma specialis diversity in Blumeria graminis of cereals and its implications for host-pathogen coevolution. Molecular Plant Pathology, 4(3), 187-198. doi:10.1046/j.1364-3703.2003.00167.x.Yang, C.-H., Crowley, D. E., Borneman, J., & Keen, N. T. (2001). Microbial phyllosphere populations are more complex than previously realized. Proceedings of the National Academy of Sciences, 98(7), 3889-3894. doi:10.1073/pnas.051633898.Yang, H.-H., Yang, S. L., Peng, K.-C., Lo, C.-T., & Liu, S.-Y. (2009). Induced proteome of Trichoderma harzianum by Botrytis cinerea. Mycological Research, 113(Pt. 9), 924-932. doi:10.1016/jmycres.200 9.04.004.Yoshida, K., Goto, T., & Iizuka, N. (1985). Attenuated isolates of Cucumber Mosaic Virus produced by satellite RNA and cross protection between attenuated isolates and Virulent Ones. Japanese Journal of Phytopathology, 51(2), 238-242. doi:10.3186/jjphytopath.51.238.Yoshida, S., Hiradate, S., Koitabashi, M., Kamo, T., & Tsushima, S. (2017). Phyllosphere methylobacterium bacteria contain UVA-absorbing compounds. Journal of Photochemestry and Photobiology. B: Biology, 167: 168-175. doi:10.1016/j.jphotobiol.2016.12.019Young, C., & Andrews, J. (1990). Inhibition of pseudothecial development of Venturia inaequalis by the basidiomycete Athelia bombacina in apple leaf litter. Phytopathology, 80(6), 536-542. doi:10.1094/ Phyto-80-536.Young, J. M., Bradbury, J. F., Davis, R. E., Dickey, R. S., Ercolani, G. L., ... Vidaver, A. K. (1991). Nomenclatural revisions of plant pathogenic bacteria and list of names 1980-1988. Review of Plant Pathology, 70(4), 211-221.Young, J. M., Park, D. C., Shearman, H. M., & Fargier, E. (2008). A multilocus sequence analysis of the genus Xanthomonas. Systematic and Applied Microbiology, 31(5), 366-377. doi:10.1016/j.syapm.2008.06.004.Zapata, J., Acosta, C., Díaz, A., Villamizar, L., & Cotes, A. (2011). Characterization of Rhodotorula glutinis and Pichia onychis Isolates with Potential as Biopesticides for Controlling Botrytis cinerea. International Symposium on Biological Control of Postharvest Diseases: Challenges and Opportunities, 905, 155-160. doi:10.17660/ActaHortic.2011.905.16.Zapata, J., Villamizar, L., Díaz, L., Uribe, L., Bolaños, C., ... Cotes, A. M. (2013a). Biological control of Rhizoctonia solani and growth promotion activity of Trichoderma koningiopsis Th003 and Trichoderma asperellum Th034 formulations in potato (Solanum tuberosum). IOBC Bulletin, 86, 223-227.Zapata, J., Villamizar, L., Díaz, L., Uribe, L., Bolaños, C., Gómez, M., & Cotes, A. M. (2013b). Development of a biopesticide prototype based on the yeast Rhodotorula glutinis Lv316 for controlling Botrytis cinerea in blackberry. IOBC Bulletin, 86, 263-269.Zapata, J. A., & Cotes, A. M. (2013). Eficacia de dos prototipos de bioplaguicida a base de R. glutinis cepa LvCo7 y un bioplaguicida a base de T. koningiopsisZapata, J. A., & Cotes, A. M. (2013). Eficacia de dos prototipos de bioplaguicida a base de R. glutinis cepa LvCo7 y un bioplaguicida a base de T. koningiopsis cepa Th003 en el control de B. cinerea en cultivos de mora. En J. Zapata, (Ed.), LvCo7 para el control de Botrytis cinerea en cultivos de mora (pp. 73-79). Mosquera, Colombia: Corporación Colombiana de Investigación Agropecuaria (Corpoica).Zapata, Y., Díaz, A., Grijalba, E., Rodríguez, F., Elad, Y., & Cotes, A. M. (2016). Phyllosphere yeasts with potential for biological control of Botrytis cinerea in rose. Leuven, Bélgica: International Society for Horticultural Science (ishs).Zhan, G., Tian, Y., Wang, F., Chen, X., Guo, J., ... Kang, Z. (2014). A novel fungal hyperparasite of Puccinia striiformis f. sp. tritici, the causal agent of wheat stripe rust. PLoS ONE, 9(11), e111484. doi:10.1371/ journal.pone.0111484.Zhang, B., Zhang, H., Jin, B., Tang, L., Yang, J., ... Bai, Z. (2008a). Effect of cypermethrin insecticide on the microbial community in cucumber phyllosphere. Journal of Environmental Sciences, 20(11), 1356-1362. doi:10.1016/S1001-0742(08)62233-0.Zhang, H., Ma, L., Jiang, S., Lin, H., Zhang, X., ... Xu, Z. (2010). Enhancement of biocontrol efficacy of Rhodotorula glutinis by salicyclic acid against gray mold spoilage of strawberries. International Journal of Food Microbiology, 141(1-2), 122-125. doi:10.1016/j. ijfoodmicro.2010.04.022.Zhang, H., Ma, L., Wang, L., Jiang, S., Dong, Y., & Zheng, X. (2008b). Biocontrol of gray mold decay in peach fruit by integration of antagonistic yeast with salicylic acid and their effects on postharvest quality parameters. Biological Control, 47(1), 60-65. doi:10.1016/j.biocontrol.2008.06.012.Zhang, H., Wang, L., Dong, Y., Jiang, S., Cao, J., & Meng, R. (2007). Postharvest biological control of gray mold decay of strawberry with Rhodotorula glutinis. Biological Control, 40(2), 287-292. doi:10.1016/j. biocontrol.2006.10.008.Zhang, H., Wang, L., Ma, L., Dong, Y., Jiang, S., ... Zheng, X. (2009). Biocontrol of major postharvest pathogens on apple using Rhodotorula glutinis and its effects on postharvest quality parameters. Biological Control, 48(1), 79-83. doi:10.1016/j.biocontrol.2008.09.004.Zimand, G., Elad, Y., & Chet, I. (1996). Effect of Trichoderma harzianum on Botrytis cinerea pathogenicity. Phytopathology, 86(11), 1255-1260. doi:10.1094/Phyto-86-1255.Abawi, G. S., & Grogan, R. G. (1979). Epidemiology of diseases caused by Sclerotinia species. Phytopathology, 69(8), 899-904.Abawi, G. S., & Widmer, T. L. (2000). Impact of soil health management practices on soilborne pathogens, nematodes and root diseases of vegetable crops. Applied Soil Ecology, 15(1), 37-47. doi:10.1016/S0929-1393(00)00070-6.Adams, P., & Ayers, W. (1979). Ecology of Sclerotinia species. Phytopathology, 69(8), 896-899.Adams, P. B., & Tate, C. J. (1976). Mycelial germination of sclerotia of Sclerotinia sclerotiorum on soil. Plant Disease Reporter, 60, 515-518.Agrios, G. N. (2015). Plant pathology (5.a ed.). Londres, Reino Unido: Elsevier.Agrofit. (2017). Sistema de agrotóxicos fitossanitários. Recuperado de http://agrofit.agricultura.gov.br/agrofit_cons/ principal_agrofit_cons.Ahmad, J. S., & Baker, R. (1987). Rhizosphere competence of Trichoderma harzianum. Phytopathology, 77(2), 182-189. doi:10.1094/Phyto-77-182.Akpa, E., Jacques, P., Wathelet, B., Paquot, M., Fuchs, R., Budzikiewicz, H., & Thonart, P. (2001). Influence of culture conditions on lipopeptide production by Bacillus subtilis. Applied Biochemistry and Biotechnology, 91(1-9), 551-561. doi:10.1385/abab:91-93:1-9:551.Al-Rawahi, A. K. & Hancock, J. G. (1998). Parasitism and biological control of Verticillium dahliae by Pythium oligandrum. Plant Disease, 82(10), 1100-1106. doi:10.1094/PDIS.1998.82.10.1100.Alabouvette, C. (1986). Fusarium-wilt suppressive soils from the Châteaurenard region: review of a 10-year study. Agronomie, 6(3), 273-284. doi:10.1051/agro:19860307.Alabouvette, C., Olivain, C., Migheli, Q., & Steinberg, C. (2009). Microbiological control of soil-borne phytopathogenic fungi with special emphasis on wiltinducing Fusarium oxysporum. New Phytologist, 184(3), 529-544. doi:10.1111/j.1469-8137.2009.03014.x.Alabouvette, C., Schippers, B., Lemanceau, P., & Bakker, P. (1998). Biological control of Fusarium wilts toward development of commercial products. En G. J. Boalnd & L. D. Kuykendall (Eds.), Plant microbe interactions and biological control (pp. 15-36). Nueva York, EE. UU.: Marcel Dekker Inc.Aliferis, K. A., & Jabaji, S. (2010). Metabolite composition and bioactivity of Rhizoctonia solani sclerotial exudates. Journal of Agricultural and Food Chemistry, 58(13), 7604- 7615. doi:10.1021/jf101029a.Amellal, N., Burtin, G., Bartoli, F., & Heulin, T. (1998). Colonization of wheat roots by an exopolysaccharideproducing Pantoea agglomerans strain and its effect on rhizosphere soil aggregation. Applied and Environmental Microbiology, 64(10), 3740-3747.Aluko, M. O., & Hering, T. F. (1970). The mechanisms associated with the antagonistic relationship between Corticium solani and Gliocladium virens. Transactions of the British Mycological Society, 55(2), 173-179. doi:10.1016/ S0007-1536(70)80001-8.Anderson, J. A., Staley, J., Challender, M., & Heuton, J. (2018). Safety of Pseudomonas chlororaphis as a gene source for genetically modified crops. Transgenic Research, 27(1), 103-113. doi:10.1007/s11248-018-0061-6.Atanasova, L., Druzhinina, I., & Jaklitsch, W. M. (2013). Two hundred Trichoderma species recognized on the basis of molecular phylogeny. En P. K. Mukherjee, B. A. Horwitz, U. S. Singh, M. Mukherjee, & M. Schmoll (Eds.), Trichoderma: biology and applications (pp. 10-42). Oxfordshire, Reino Unido: CAB International.Ávila, C., & Velandia, J. (1992). Enfermedades de algunas especies hortícolas y su manejo. En Primer curso nacional de hortalizas de clima frío (Vol. 18) [Conferencias]. Mosquera, Colombia: Instituto Colombiana Agropecuario (ica).Bae, H., Roberts, D. P., Lim, H.-S., Strem, M. D., Park, S.-C., Ryu, C.-M., ... Bailey, B. A. (2010). Endophytic Trichoderma isolates from tropical environments delay disease onset and induce resistance against Phytophthora capsici in hot pepper using multiple mechanisms. Molecular Plant-Microbe Interactions, 24(3), 336-351. doi:10.1094/MPMI-09-10-0221.Bais, H. P., Fall, R., & Vivanco, J. M. (2004). Biocontrol of Bacillus subtilis against Infection of arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production. Plant Physiology, 134(1), 307- 319. doi:10.1104/pp.103.028712.Bais, H. P., Weir, T. L., Perry, L. G., Gilroy, S., & Vivanco, J. M. (2006). The role of root exudates in rhizosphere interactions with plants and other organisms. Annual Review of Plant Biology, 57, 233-266. doi:10.1146/ annurev.arplant.57.032905.105159.Baker, K. F. (1987). Evolving concepts of biological control of plant pathogens. Annual Review Phytopathology, 25(1), 67-85. doi:10.1146/annurev.py.25.090187.000435.Banat, I. M., Makkar, R. S., & Cameotra, S. S. (2000). Potential commercial applications of microbial surfactants. Applied Microbiology and Biotechnology, 53(5), 495-508. doi:10.1007/s002530051648.Banville, G. J. (1989). Yield losses and damage to potato plants caused by Rhizoctonia solani Kuhn. American Potato Journal, 66(12), 821-834. doi:10.1007/BF02853963.Bautista, G., Mendoza, H., & Uribe, D. (2007). Biocontrol of Rhizoctonia solani in native potato (Solanum phureja) plants using native Pseudomonas fluorescens. Acta Biológica Colombiana, 12(1), 19-32.BccResearch. (2017). Global markets for biopesticides. Recuperado de https://www.bccresearch.com/marketresearch/ chemicals/biopesticides-global-markets-reportchm029f. html.BccResearch. (2017). Global markets for biopesticides. Recuperado de https://www.bccresearch.com/marketresearch/ chemicals/biopesticides-global-markets-reportchm029f. html.Beckerich, A., & Hauduroy, P. (1922). Le bactériophage dans le traitement de la fièvre typhoïde. Comptes Rendus Biologies, 86, 168-170.Beckman, C. H. (1987). The nature of wilt diseases of plants. Saint Paul, EE. UU.: APS Press.Beltrán-Acosta, C. R. (2004). Selección de aislamientos de Trichoderma spp. con potencial biocontrolador de Rhizoctonia solani Kühn en papa bajo condiciones de casa de malla (trabajo de pregrado). Universidad Nacional de Colombia, Bogotá, Colombia.Beltrán-Acosta, C. R., Moreno-Velandia, C. A., Blanco, P., Villamizar, L., & Cotes, A. M. (2010). Biological control of Rhizoctonia solani and growth promotion activity of Trichoderma koningiopsis Th003 and Trichoderma asperellum Th034 formulations in potato (Solanum tuberosum). IOBC/WPRS Bulletin, 78, 223-227.Beltrán Acosta, C., Cotes, A. M., & Becerra, A. P. (2007). Selection of isolates of Trichoderma spp. with biocontrol activity over Rhizoctonia solani in potato. IOBC WPRS Bulletin, 30, 55-58.Benhamou, N., Le Floch, G., Vallance, J., Gerbore, J., Grizard, D., & Rey, P. (2012). Pythium oligandrum: an example of opportunistic success. Microbiology, 158(Pt. 11), 2679- 2694. doi:10.1099/mic.0.061457-0.Benhamou, N., Rey, P., Chérif, M., Hockenhull, J., & Tirilly, Y. (1997). Treatment with the mycoparasite Pythium oligandrum triggers induction of defense-related reactions in tomato roots when challenged with Fusarium oxysporum f. sp. radicis-lycopersici. Phytopathology, 87(1), 108-122. doi:10.1094/PHYTO.1997.87.1.108.Benhamou, N., Rey, P., Chérif, M., Hockenhull, J., & Tirilly, Y. (1997). Treatment with the mycoparasite Pythium oligandrum triggers induction of defense-related reactions in tomato roots when challenged with Fusarium oxysporum f. sp. radicis-lycopersici. Phytopathology, 87(1), 108-122. doi:10.1094/PHYTO.1997.87.1.108.Benhamou, N., Rey, P., Picard, K., & Tirilly, Y. (1999). Ultrastructural and cytochemical aspects of the interaction between the mycoparasite Pythium oligandrum and soilborne plant pathogens. Phytopathology, 89(6), 506-517. doi:10.1094/PHYTO.1999.89.6.506.Benítez, T., Rincón, A. M., Limón, M. C., & Codón, A. C. (2004). Biocontrol mechanisms of Trichoderma strains. International Microbiology, 7(4), 249-260.Benizri, E., Baudoin, E., & Guckert, A. (2001). Root colonization by inoculated plant growth-promoting rhizobacteria. Biocontrol Science and Technology, 11(5), 557-574. doi:10.1080/09583150120076120.Berg, G., Opelt, K., Zachow, C., Lottmann, J., Götz, M., Costa, R., & Smalla, K. (2006). The rhizosphere effect on bacteria antagonistic towards the pathogenic fungus Verticillium differs depending on plant species and site. FEMS Microbiology Ecology, 56(2), 250-261. doi:10.1111/j.1574-6941.2005.00025.x.Berg, G., & Smalla, K. (2009). Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiology Ecology, 68(1), 1-13. doi:10.1111/j.1574- 6941.2009.00654.x.Berg, G., Zachow, C., Lottmann, J., Götz, M., Costa, R., & Smalla, K. (2005). Impact of plant species and site on rhizosphere-associated fungi antagonistic to Verticillium dahliae Kleb. Applied Environmental Microbiology, 71(8), 4203-4213. doi:10.1128/aem.71.8.4203-4213.2005.Bertin, C., Yang, X., & Weston, L. A. (2003). The role of root exudates and allelochemicals in the rhizosphere. Plant Soil, 256(1), 67-83. doi:10.1023/a:1026290508166.Biraghi, A. (1951). Caratteri di resistenza in Castanea sativa nei confronti di Endothia parasitica. Bolletino della Staz Patologia Vegetale, 8, 167-171.Bliss, D. E. (1951). The destruction of Armillaria mellea in citrus soils. Phytopathology, 41, 665-683.Blum, B., Nicot, P. C., Köhl, J., & Ruocco, M. (2011). Chapter 7: Identified difficulties and conditions for field success of biocontrol. 3. Economic aspects: cost analysis. En P. C. Nicot (Ed.), Classical and augmentative biological control against diseases and pests: critical status analysis and review of factors influencing their success (pp. 58-61). Zürich, Suiza: International Organisation for Biological anda Integrated Control (iobc)/West Palaearctic Regional Section (wprs).Bonmatin, J.-M., Laprevote, O., & Peypoux, F. (2003). Diversity among microbial cyclic lipopeptides: Iturins and surfactins. Activity-structure relationships to design new bioactive agents. Combinatorial Chemistry and High Throughput Screening, 6(6), 541-556. doi:10.2174/ 138620703106298716.Borráez, A. (2011, octubre 7). Detectan exceso de químicos en cultivos de papa. Unperiodico. Recuperado de http:// agenciadenoticias.unal.edu.co/detalle/article/detectanexceso- de-quimicos-en-cultivos-de-papa.html.Borriss, R. (2011). Use of plant-associated Bacillus strains as biofertilizers and biocontrol agents in agriculture. En D. K. Maheshwari (Ed.), Bacteria in agrobiology: Plant growth responses (pp. 41-76). Berlín, Alemania: Springer Berlin. doi:10.1007/978-3-642-20332-9_3.Borriss, R. (2015). Bacillus, a plant-beneficial bacterium. En B. Lugtenberg (Ed.), Principles of plant-microbe interactions: Microbes for sustainable agriculture (pp. 379-391). Nueva York, EE. UU.: Springer International Publishing. doi:10.1007/978-3-319-08575-3_40.Bradshaw-Smith, R. P., Whalley, W. M., & Craig, G. D. (1991). Interactions between Pythium oligandrum and the fungal footrot pathogens of peas. Mycological Research, 95(7), 861-865. doi:10.1016/S0953-7562(09)80050-6.Bravo-Ruiz, G., Ruiz-Roldán, C., & Roncero, M. I. G. (2013). Lipolytic system of the tomato pathogen Fusarium oxysporum f. sp. lycopersici. Molecular Plant-Microbe Interactions, 26(9), 1054-1067. doi:10.1094/MPMI-03- 13-0082-R.Brewer, M. T., & Larkin, R. P. (2005). Efficacy of several potential biocontrol organisms against Rhizoctonia solani on potato. Crop Protection, 24(11), 939-950. doi:10.10 16/j.cropro.2005.01.012.Broadbent, P., & Baker, K. (1974). Behaviour of Phytophthora cinnamomi in soils suppressive and conducive to root rot. Australian Journal of Agricultural Research, 25(1), 121- 137. doi:10.1071/AR9740121.Brown, J. F., & Ogle, H. J. (Eds.). (1997). Plant pathogens and plant diseases. Armidale, Autralia: Rockvale Publications.Brunner, K., Omann, M., Pucher, M. E., Delic, M., Lehner, S. M., Domnanich, P., ... Zeilinger, S. (2008). Trichoderma G protein-coupled receptors: functional characterisation of a cAMP receptor-like protein from Trichoderma atroviride. Current Genetics, 54(6), 283-299. doi:10.1007/ s00294-008-0217-7.Brunoghe, R., & Maisin, J. (1921). Essais de therapeutique au moyen du bacteriophage du staphylocoque. Comptes Rendus des Seances de la Societe de Biologie, 85, 1029-1121.Burke, D. (1965). Fusarium root rot of beans and behavior of the pathogen in different soils. Phytopathology, 55(10), 122-121.Campion, C., Chatot, C., Perraton, B., & Andrivon, D. (2003). Anastomosis groups, pathogenicity and sensitivity to fungicides of Rhizoctonia solani isolates collected on potato crops in France. European Journal of Plant Pathology, 109(9), 983-992. doi:10.1023/B:EJPP.0 000003829.83671.8f.Carling, D. E., Baird, R. E., Gitaitis, R. D., Brainard, K. A., & Kuninaga, S. (2002). Characterization of AG-13, a newly reported anastomosis group of Rhizoctonia solani. Phytopathology, 92(8), 893-899. doi:10.1094/ PHYTO.2002.92.8.893.Carrillo, C., Teruel, J. A., Aranda, F. J., & Ortiz, A. (2003). Molecular mechanism of membrane permeabilization by the peptide antibiotic surfactin. Biochimica et Biophysica Acta (bba) - Biomembranes, 1611(1-2), 91-97. doi:10.1016/S0005-2736(03)00029-4.Cawoy, H., Bettiol, W., Fickers, P., & Ongena, M. (2011). Bacillus-based biological control of plant diseases. En InTech (Ed.), Pesticides in the modern world-pesticides use and management (pp. 273-302). doi:10.5772/17184.Cawoy, H., Debois, D., Franzil, L., De Pauw, E., Thonart, P., & Ongena, M. (2015). Lipopeptides as main ingredients for inhibition of fungal phytopathogens by Bacillus subtilis/ amyloliquefaciens. Microbial biotechnology, 8(2), 281-295. doi:10.1111/1751-7915.12238.Cawoy, H., Mariutto, M., Henry, G., Fisher, C., Vasilyeva, N., Thonart, P., ... Ongena, M. (2013). Plant defense stimulation by natural isolates of Bacillus depends on efficient surfactin production. Molecular Plant-Microbe Interactions, 27(2), 87-100. doi:10.1094/MPMI-09-13- 0262-R.Centro Internacional de la Papá (cip). (1996). Principales enfermedades, nematodos e insectos de la papa. Lima, Perú: cip.Ceresini, P. C., Shew, H. D., Vilgalys, R. J., & Cubeta, M. A. (2002). Genetic diversity of Rhizoctonia solani AG-3 from potato and tobacco in North Carolina. Mycologia, 94(3), 437-449. doi:10.1080/15572536.2003.11833209.Chandler, D., Bailey, A. S., Tatchell, G. M., Davidson, G., Greaves, J., & Grant, W. P. (2011). The development, regulation and use of biopesticides for integrated pest management. Philosophical Transactions of the Royal Society B: Biological Sciences, 366(1573), 1987-1998.Chavarro, E., & Ángel, J. E. (2011). Caracterización molecular y análisis de la variabilidad genética de R. solani. En C. R. Beltrán Acosta, C. A. Moreno Velandia, & A. M. Cotes Prado (Eds.), Trichoderma koningiopsis Th003, alternativa biológica para el control de Rhizoctonia solani en el cultivo de papa (pp. 16-31). Mosquera, Colombia: Corporación Colombiana de Investigación Agropecuaria (Corpoica).Chaverri, P., & Samuels Gary, J. (2013). Evolution of habitat preference and nutrition mode in a cosmopolitan fungal genus with evidence of interkingdom host jumps and major shifts in ecology. Evolution, 67(10), 2823-2837. doi:10.1111/evo.12169.Chet, I. (1987). Trichoderma: application, mode of action, and potential as a biocontrol agent of soilborne plant pathogenic fungi. En I. Chet (Ed.), Innovative approaches to plant disease control (pp. 137-160). Nueva York, EE. UU: John Wiley and Sons Press.Chet, I., & Baker, R. (1981). Isolation and biocontrol potential of Trichoderma hamatum from soil naturally suppressive to Rhizoctonia solani. Phytopathology, 71(3), 286-290. doi:10.1094/Phyto-71-286.Chet, I., & Henis, Y. (1975). Sclerotial morphogenesis in fungi. Annual Review of Phytopathology, 13(1), 169-192. doi:10.1146/annurev.py.13.090175.001125.Chin-A-Woeng, T. F. C., Bloemberg, G. V., Mulders, I. H. M., Dekkers, L. C., & Lugtenberg, B. J. J. (2000). Root colonization by phenazine-1-carboxamide-producing bacterium Pseudomonas chlororaphis PCL1391 Is essential for biocontrol of tomato foot and root rot. Molecular Plant- Microbe Interactions, 13(12), 1340-1345. doi:10.1094/ MPMI.2000.13.12.1340.Chitarra, G. S., Breeuwer, P., Nout, M. J. R., Van Aelst, A. C., Rombouts, F. M., & Abee, T. (2003). An antifungal compound produced by Bacillus subtilis YM 10–20 inhibits germination of Penicillium roqueforti conidiospores. Journal of Applied Microbiology, 94(2), 159-166. doi:10.1046/j.1365-2672.2003.01819.x.Chowdhury, S. P., Hartmann, A., Gao, X. W., & Borriss, R. (2015). Biocontrol mechanism by root-associated Bacillus amyloliquefaciens FZB42 – a review. Frontiers in Microbiology, 6, 780. doi: 10.3389/fmicb.2015.00780Clavijo, A., & Cotes, A. (1998). Evaluación de la actividad quitinasa en procesos de control biológico de Rhizoctonia solani y Fusarium oxysporum f. sp. lycopersici en tomate, mediante fitoinvigorización de semillas en presencia de Trichoderma koningii. Revista Colombiana de Biotecnología, 1(2), 58-66. doi:10.15446/rev.colomb.biote.Cochrane, S. A., & Vederas, J. C. (2016). Lipopeptides from Bacillus and Paenibacillus spp.: A gold mine of antibiotic candidates. Medicinal Research Reviews, 36(1), 4-31. doi:10.1002/med.21321.Companhia Nacional de Abastecimento (Conab). (2016). Acompanhamento da safra brasileira: safra (Vol. 3). Recuperado de https://goo.gl/zDqvos.Compant, S., Clément, C., & Sessitsch, A. (2010). Plant growth-promoting bacteria in the rhizo- and endosphere of plants: Their role, colonization, mechanisms involved and prospects for utilization. Soil Biology and Biochemistry, 42(5), 669-678. doi:10.1016/j.soilbio.2009.11.024.Compant, S., Duffy, B., Nowak, J., Clément, C., & Barka, E. A. (2005). Use of plant growth-promoting bacteria for biocontrol of plant diseases: Principles, mechanisms of action, and future prospects. Applied Environmental Microbiology, 71(9), 4951-4959. doi:10.1128/ aem.71.9.4951-4959.2005.Cook, J. R. (1993). Making greater use of introduced microorganisms for biological control of plant pathogens. Annual Review of Phytopathology, 31, 53-80. doi:10.1146/ annurev.py.31.090193.000413.Coons, G. H., & Kotila, J. E. (1925). The transmissible lytic principle (bacteriophage) in relation to plant pathogens. Phytopathology, 15, 357-370.Cotes, A., Cárdenas, A., & Pinzón, H. (2001). Effect of seed priming in the presence of Trichoderma koningii on seed and seedling disease induced in tomato by Rhizoctonia solani and Fusarium oxysporum f. sp. lycopersici. IOBC WPRS Bulletin, 24, 259-264.Cotes, A. M. (1993). Study of common bean protection against damping- off by treatment of seeds with Trichoderma koningii Oudemans (tesis de grado). Universidad de Gembloux, Gembloux, Bélgica.Cotes, A. M. (2011). Registry and regulation of biocontrol agents on food commodities in South America. Acta Horticulurae, 905, 301-306. doi:10.17660/ ActaHortic.2011.905.33.Cotes, A. M., Lepoivre, P., & Semal, J. (1996). Correlation between hydrolytic enzyme activities measured in bean seedlings after Trichoderma koningii treatment combined with pregermination and the protective effect against Pythium splendens. European Journal of Plant Pathology, 102(5), 497-506. doi:10.1007/BF01877144.Cotes, A. M., Thonart, P., & Lepoivre, P. (1994). Relationship between the protective activities of several strains of Trichoderma against damping-off agents and their ability to produce hydrolytic enzymes activities in soil or in synthetic media. Mededelingen van de Faculteit landbouwwetenschappen - Rijksuniversiteit Gent, 59, 931-941.Couillerot, O., Prigent-Combaret, C., Caballero-Mellado, J., & Moënne-Loccoz, Y. (2009). Pseudomonas fluorescens and closely-related fluorescent pseudomonads as biocontrol agents of soil-borne phytopathogens. Letters in Applied Microbiology, 48(5), 505-512. doi:10.1111/ j.1472-765X.2009.02566.x.Czarnes, S., Hallett, P. D., Bengough, A. G., & Young, I. M. (2000). Root- and microbial-derived mucilages affect soil structure and water transport. European Journal of Soil Science, 51(3), 435-443. doi:10.1046/j.1365- 2389.2000.00327.x.Darrah, P. R. (1993). The rhizosphere and plant nutrition: a quantitative approach. Plant and Soil, 155(1), 1-20. doi:10.1007/bf00024980.Davis, R. M. (2001). Plagas y enfermedades de la lechuga. Madrid, España: Mundi-Prensa.Debois, D., Fernandez, O., Franzil, L., Jourdan, E., de Brogniez, A., Willems, L., ... Ongena, M. (2015). Plant polysaccharides initiate underground crosstalk with bacilli by inducing synthesis of the immunogenic lipopeptide surfactin. Environmental Microbiology Reports, 7(3), 570- 582. doi:10.1111/1758-2229.12286.De Weger, L. A., Van der Bij, A. J., Dekkers, L. C., Simons, M., Wijffelman, C. A., & Lugtenberg, B. J. J. (1995). Colonization of the rhizosphere of crop plants by plant-beneficial pseudomonads. FEMS Microbiology Ecology, 17(4), 221-227. doi:10.1111/j.1574-6941.1995. tb00146.x.Debois, D., Jourdan, E., Smargiasso, N., Thonart, P., De Pauw, E., & Ongena, M. (2014). Spatiotemporal monitoring of the antibiome secreted by Bacillus biofilms on plant roots using maldi mass spectrometry imaging. Analytical Chemistry, 86(9), 4431-4438. doi:10.1021/ac500290s.Degenkolb, T., Fog Nielsen, K., Dieckmann, R., Branco- Rocha, F., Chaverri, P., Samuels Gary, J., ... Brückner, H. (2015). Peptaibol, secondary-metabolite, and hydrophobin pattern of commercial biocontrol agents formulated with species of the Trichoderma harzianum complex. Chemistry and Biodiversity, 12(4), 662-684. doi:10.1002/cbdv.201400300.Delgado-Sánchez, P., Ortega-Amaro, M. A., Jiménez-Bremont, J. F., & Flores, J. (2010). Are fungi important for breaking seed dormancy in desert species? Experimental evidence in Opuntia streptacantha (Cactaceae). Plant Biology, 13(1), 154-159. doi:10.1111/j.1438-8677.2010.00333.x.DeZwaan, T. M., Carroll, A. M., Valent, B., & Sweigard, J. A. (1999). Magnaporthe grisea Pth11p is a novel plasma membrane protein that mediates appressorium differentiation in response to inductive substrate cues. The Plant Cell, 11(10), 2013-2030. doi:10.1105/ tpc.11.10.2013.Di Pietro, A., Lorito, M., Hayes, C., Broadway, R., & Harman, G. (1993). Endochitinase from Gliocladium virens: isolation, characterization, and synergistic antifungal activity in combination with gliotoxin. Phytopathology, 83(3), 308-313.Dijksterhuis, J., Veenhuis, M., Harder, W., & Nordbring- Hertz, B. (1994). Nematophagous fungi: Physiological aspects and structure–function relationships. Advances in Microbial Physiology, 36, 111-143. doi:10.1016/S0065- 2911(08)60178-2.Ding, Z., Li, M., Sun, F., Xi, P., Sun, L., Zhang, L., & Jiang, Z. (2015). Mitogen-activated protein kinases are associated with the regulation of physiological traits and virulence in Fusarium oxysporum f. sp. cubense. PLoS One, 10(4), e0122634. doi:10.1371/journal.pone.0122634.Domsch, K. H., Gams, W., & Anderson, T. H. (1980). Compendium of soil fungi (Vol. 1). Londres, Reino Unido: Academic Press.Druzhinina, I. S., & Kubicek, C. P. (2014). Ecological genomics of Trichoderma. En F. Martin (Ed.), The ecological genomics of fungi (pp. 89-116). Hoboken, EE. UU.: Wiley Blackwell. doi:10.1002/9781118735893.ch5.Druzhinina, I. S., Seidl-Seiboth, V., Herrera-Estrella, A., Horwitz, B. A., Kenerley, C. M., Monte, E., ... Kubicek, C. P. (2011). Trichoderma: the genomics of opportunistic success. Nature Reviews Microbiology, 9(10), 749. doi:10. 1038/nrmicro2637.Elad, Y., Chet, I., & Henis, Y. (1982a). Degradation of plant pathogenic fungi by Trichoderma harzianum. Canadian journal of microbiology, 28(7), 719-725. doi:10.1139/ m82-110.Egamberdieva, D. (2016). Bacillus spp.: A potential plant growth stimulator and biocontrol agent under hostile environmental conditions. En M. T. Islam, M. Rahman, P. Pandey, C. K. Jha, & A. Aeron (Eds.), Bacilli and agrobiotechnology (pp. 91-111). Cham, Suiza: Springer International Publishing. doi:10.1007/978-3-319-44409-3_5.Elad, Y., Kalfon, A., & Chet, I. (1982b). Control of Rhizoctonia solani in cotton by seed-coating with Trichoderma spp. spores. Plant Soil, 66(2), 279-281. doi:10.1007/ bf02183987.Emmert, E. A. B. & Handelsman, J. (2006). Biocontrol of plant disease: a (Gram-) positive perspective. FEMS Microbiology Letters, 171(1), 1-9. doi:10.1111/j.1574-6968.1999. tb13405.x.Environmental Protection Agency (epa). (1999a). Bacillus subtilis GBO3 (129068) Fact Sheet. Recuperado de https://www3.epa.gov/pesticides/chem_search/reg_ actions/registration/fs_PC-129068_01-Nov-99.pdf.Environmental Protection Agency (epa). (1999b). Bacillus subtilis mbi 600 (129082) Fact Sheet. Recuperado de https://www3.epa.gov/pesticides/chem_search/reg_ actions/registration/fs_PC-129082_01-Nov-99.pdf.Environmental Protection Agency (epa). (2000). Bacillus subtilis var. amyloliquefaciens strain FZB24 (006480) Fact Sheet. Recuperado de https://www3.epa.gov/ pesticides/chem_search/reg_actions/registration/fs_ PC-006480_01-May-00.pdf.Environmental Protection Agency (epa). (2001a). Pseudomonas chlororaphis strain 63-28 (006478) Fact sheet. Recuperado de https://www3.epa.gov/pesticides/chem_ search/reg_actions/registration/fs_PC-006478_01- Apr-01.pdf.Environmental Protection Agency (epa). (2001b). Bacillus licheniformis strain SB3086 (pc Code 006492). Recuperado de https://www3.epa.gov/pesticides/chem_search/reg_ actions/registration/decision_PC-006492_1-Feb-01.pdf.Environmental Protection Agency (epa). (2002). Gliocladium catenulatum strain J1446 (pc Code 021009). Recuperado de https://www3.epa.gov/pesticides/chem_search/ reg_actions/registration/decision_PC-021009_12- Nov-02.pdf.Environmental Protection Agency (epa). (2004). Bacillus pumilus strain QST 2808 (pc Code 006485). Recuperado de https://www3.epa.gov/pesticides/chem_search/ reg_actions/registration/decision_PC-006485_16- Nov-04.pdf.Environmental Protection Agency (epa). (2005). Streptomyces lydicus strain WYEC108 (pc Code 006327). Recuperado de https://www3.epa.gov/pesticides/chem_search/ reg_actions/registration/decision_PC-006327_15- Feb-05.pdf.Environmental Protection Agency (epa). (2006). Bacillus subtilis strain QST 713 (pc Code 006479). Recuperado de https://www3.epa.gov/pesticides/chem_search/ reg_actions/registration/decision_PC-006479_9- Aug-06.pdfEnvironmental Protection Agency (epa). (2006). Bacillus subtilis strain QST 713 (pc Code 006479). Recuperado de https://www3.epa.gov/pesticides/chem_search/ reg_actions/registration/decision_PC-006479_9- Aug-06.pdfEnvironmental Protection Agency (epa). (2010b). Trichoderma gamsii strain icc 080 pc Code: 119207. Recuperado de https://www3.epa.gov/pesticides/ chem_search/reg_actions/registration/decision_PC- 119207_4-Mar-10.pdf.Environmental Protection Agency (epa). (2010c). Trichoderma hamatum isolate 382. Recuperado de https://www3.epa. gov/pesticides/chem_search/reg_actions/registration /fs_PC-119205_13-Jul-10.pdf.Environmental Protection Agency (epa). (2010d). Streptomyces Strain K61 proposed registration review decision. Recuperado de https://www.regulations.gov/ document?D=EPA-HQ-OPP-2009-0509-0005.Environmental Protection Agency (epa). (2011a). Trichoderma asperellum strain T34 pc Code: 119209. Recuperado de https://www3.epa.gov/pesticides/ chem_search/reg_actions/registration/decision_PC- 119209_14-Oct-11.pdf.Environmental Protection Agency (epa). (2011b). Bacillus amyloliquefaciens strain D747 Pesticide chemical (pc) Code: 016482. Recuperado de https://www3.epa.gov/ pesticides/chem_search/reg_actions/registration/ decision_PC-016482_08-Dec-11.pdf.Environmental Protection Agency (epa). (2016). Pesticide product registration; receipt of applications for new active ingredients. Recuperado de https://www.federalregister. gov/documents/2016/05/25/2016-12359/pesticideproduct- registration-receipt-of-applications-for-newactive- ingredients.Environmental Protection Agency (epa). (2017). Pesticides. Recuperado de https://www.epa.gov/pesticides.Environmental Protection Agency (epa). (2018). Biopesticide active ingredients and products containing them. Recuperado de http://www.epa.gov/pesticides/biopesticides/ product_lists.Errampalli, D., Peters, R. D., MacIsaac, K., Darrach, D., & Boswall, P. (2006). Effect of a combination of chlorine dioxide and thiophanate-methyl pre-planting seed tubertreatment on the control of black scurf of potatoes. Crop Protection, 25(12), 1231-1237. doi:10.1016/j. cropro.2006.03.002.European Commission (eu). (2017). Healt and food safety. Recuperado de http://ec.europa.eu/food/plant/pesticides /eu-pesticides-database/public/?event=activesubstance. selection&language=EN.European Food Safety Authority (efsa). (2012a). Conclusion on the peer review of the pesticide risk assessment of the active substance Pseudomonas sp. strain dsmz 13134. EFSA Journal, 10(12), 2954. doi:10.2903/j. efsa.2012.2954.European Food Safety Authority (efsa). (2012b). Conclusion on the peer review of the pesticide risk assessment of the active substance Trichoderma asperellum strain T34. EFSA Journal, 10(5), 2666. doi:10.2903/j.efsa.2017.4668.European Food Safety Authority (efsa). (2013a). Conclusion on the peer review of the pesticide risk assessment of the active substance Streptomyces lydicus WYEC 108. EFSA Journal, 11(11), 3425. doi:10.2903/j.efsa.2013.3425.European Food Safety Authority (efsa). (2013b). Conclusion on the peer review of the pesticide risk assessment of the active substance Streptomyces K61 (formerly Streptomyces griseoviridis). EFSA Journal, 11(1), 3061. doi:10.2903/j. efsa.2013.3061.European Food Safety Authority (efsa). (2013c). Conclusion on the peer review of the pesticide risk assessment of the active substance Trichoderma asperellum strains ICC012, T25 and TV1. EFSA Journal, 11(1), 3036. doi:10.2903/j. efsa.2013.3036.European Food Safety Authority (efsa). (2013d). Conclusion on the peer review of the pesticide risk assessment of the active substance Trichoderma gamsii ICC080. EFSA Journal, 11(1), 3062. doi:10.2903/j.efsa.2013.3062.European Food Safety Authority (efsa). (2013e). Conclusion on the peer review of the pesticide risk assessment of the active substance Trichoderma harzianum Rifai strains T-22 and ITEM-908. EFSA Journal, 11(10), 3055. doi:10.2903/j.efsa.2013.3055.European Food Safety Authority (efsa). (2014a). Streptomyces lydicus strain WYEC 108 SANCO/11427/2014. Recuperado de http://ec.europa. eu/food/plant/pesticides/eu-pesticides-database/ public/?event=activesubstance.detail&language=EN&se lectedID=2256.European Food Safety Authority (efsa). (2014b). Trichoderma asperellum (formerly T. harzianum) ICC012 SANCO/1842/08. Recuperado de http://ec.europa.eu/ food/plant/pesticides/eu-pesticides-database/public/? event=activesubstance.detail&language=EN&selected ID=1979.European Food Safety Authority (efsa). (2016). Bacillus amyloliquefaciens strain mbi 600 sante/10008/2016. Recuperado de http://ec.europa.eu/food/plant/pesti cides/eu-pesticides-database/public/?event=active substance.detail&language=EN&selectedID=2325.European Food Safety Authority (efsa). (2017a). Bacillus amyloliquefaciens strain FZB24 sante/12037/2016. Recuperado de http://ec.europa.eu/food/plant/pesti cides/eu-pesticides-database/public/?event=active substance.detail&language=EN&selectedID=2324.European Food Safety Authority (efsa). (2017a). Bacillus amyloliquefaciens strain FZB24 sante/12037/2016. Recuperado de http://ec.europa.eu/food/plant/pesti cides/eu-pesticides-database/public/?event=active substance.detail&language=EN&selectedID=2324.European Food Safety Authority (efsa). (2017b). Conclusion on the peer review of the pesticide risk assessment of the active substance Clonostachys rosea strain J1446 (approved in Regulation (eu) No 540/2011 as Gliocladium catenulatum strain J1446). EFSA Journal, 15(7), 4905. doi:10.2903/j.efsa.2017.4905.European Food Safety Authority (efsa). (2017b). Conclusion on the peer review of the pesticide risk assessment of the active substance Clonostachys rosea strain J1446 (approved in Regulation (eu) No 540/2011 as Gliocladium catenulatum strain J1446). EFSA Journal, 15(7), 4905. doi:10.2903/j.efsa.2017.4905.European Food Safety Authority (efsa). (2017c). Conclusion on the peer review of the pesticide risk assessment of the active substance Pseudomonas chlororaphis strain ma 342. EFSA Journal, 15(1), 4668. doi:10.2903/j.efsa. 2017.4668.Faure, D., Vereecke, D., & Leveau, J. H. J. (2009). Molecular communication in the rhizosphere. Plant and Soil, 321(1- 2), 279-303. doi:10.1007/s11104-008-9839-2.Ferreira, S. A., & Boley, R. A. (1992). Sclerotinia sclerotiorum. Recuperado de http://www.extento.hawaii.edu/KBASE/ crop/type/s_scler.htm.Ferrucho, R. L., Cifuentes, J. M., Ceresini, P., & García- Domínguez, C. (2012). Rhizoctonia solani AG-3PT is the major pathogen associated with potato stem canker and black scurf in Colombia. Agronomía Colombiana, 30(2), 204-213.Flores, A., Chet, I., & Herrera-Estrella, A. (1997). Improved biocontrol activity of Trichoderma harzianum by overexpression of the proteinase-encoding gene prb1. Current Genetics, 31(1), 30-37. doi:10.1007/s002940050173.Foley, M. F., & Deacon, J. W. (1985). Isolation of Pythium oligandrum and other necrotrophic mycoparasites from soil. Transactions of the British Mycological Society, 85(4), 631-639. doi:10.1016/S0007-1536(85)80257-6.Fravel, D. (1999). Commercial biocontrol products for use against soilborne crop diseases. Recuperado de http://www. barc.usda.gov/psi/bpdl/bpdlprod/bioprod.html.Fravel, D. R. (2005). Commercialization and implementation of biocontrol. Annual Review of Phytopathology, 43, 337- 359. doi:10.1146/annurev.phyto.43.032904.092924.Frey, P., Prior, P., Marie, C., Kotoujansky, A., Trigalet-Demery, D., & Trigalet, A. (1994). Hrp- Mutants of Pseudomonas solanacearum as potential biocontrol agents of tomato bacterial wilt. Applied and Environmental Microbiology, 60(9), 3175-3181.Friedl, M. A., & Druzhinina, I. S. (2012). Taxon-specific metagenomics of Trichoderma reveals a narrow communityof opportunistic species that regulate each other’s development. Microbiology, 158(Pt. 1), 69-83. doi:10.1099/mic.0.052555-0.Friedl, M. A., & Druzhinina, I. S. (2012). Taxon-specific metagenomics of Trichoderma reveals a narrow communityof opportunistic species that regulate each other’s development. Microbiology, 158(Pt. 1), 69-83. doi:10.1099/mic.0.052555-0.García, A. M. (2017). Inicia investigación oficial sobre Dumping en importaciones de papa congelada. Recuperado de http://fedepapa.com/inicia-investigacion-oficial-sobredumping- en-importaciones-de-papa-congelada-2-2/.Gerbore, J., Benhamou, N., Vallance, J., Le Floch, G., Grizard, D., Regnault-Roger, C., & Rey, P. (2014). Biological control of plant pathogens: advantages and limitations seen through the case study of Pythium oligandrum. Environmental Science and Pollution Research, 21(7), 4847- 4860. doi:10.1007/s11356-013-1807-6.Cotes, A. M. (2010). Compatibilidad de Trichoderma koningiopsis Th003 con plaguicidas químicos. En C. A. Moreno-Velandia, & A. M. Cotes (Eds.), Desarrollo de un bioplaguicida a base de Trichoderma koningiopsis Th003 y uso en el cultivo de lechuga para el control del moho blanco (Sclerotinia sclerotiorum y Sclerotinia minor) (pp. 55-60). Bogotá, Colombia: Corporación Colombiana de Investigación Agropecuaria (Corpoica).Giczey, G., Kerényi, Z., Fülöp, L., & Hornok, L. (2001). Expression of cmg1, an exo--1,3-glucanase gene from Coniothyrium minitans, increases during sclerotial parasitism. Applied and Environmental Microbiology, 67(2), 865-871. doi:10.1128/aem.67.2.865-871.2001.Gong, X., Fu, Y., Jiang, D., Li, G., Yi, X., & Peng, Y. (2007). l-Arginine is essential for conidiation in the filamentous fungus Coniothyrium minitans. Fungal Genetics and Biology, 44(12), 1368-1379. doi:10.1016/j.fgb.2007.07.007.Gordon, T. R., & Martyn, R. D. (1997). The evolutionary biology of Fusarium oxysporum. Annual Review of Phytopathology, 35, 111-128. doi:10.1146/annurev.phyto.35.1.111.Gorgen, C. A., Da Silveira Neto, A. N., Carneiro, L. C., Ragagnin, V., & Junior, M. L. (2010). Controle do mofobranco com palhada e Trichoderma harzianum 1306 em soja. Pesquisa Agropecuária Brasileira, 44(12), 1583-1590. doi:10.1590/S0100-204X2009001200004.Government Publishing Office (gpo). (2016). Federal register. Recuperado de https://www.federalregister.gov/ agencies/government-publishing-office.Grady, E. N., MacDonald, J., Liu, L., Richman, A., & Yuan, Z.-C. (2016). Current knowledge and perspectives of Paenibacillus: a review. Microbial Cell Factories, 15(1), 203. doi:10.1186/s12934-016-0603-7.Grayston, S. J., & Campbell, C. D. (1996). Functional biodiversity of microbial communities in the rhizospheres of hybrid larch (Larix eurolepis) and Sitka spruce (Picea sitchensis). Tree physiology, 16(11-12), 1031-1038. doi:10.1093/treephys/16.11-12.1031.Grossbard, E. (1945). Control of plant diseases by microbial antagonism. Rep. exp. Res. Sta. Cheshunt, 31, 55.Grossbard, E. (1946). The control of plant diseases by microbial antagonism. Rep. exp. Res. Sta. Cheshunt, 32, 41.Grossbard, E. (1947). The control of plant diseases by microbial antagonism. Rep. exp. Res. Sta. Cheshunt, 33, 29.Grossbard, E. (1948a). Investigations on microbial antagonism and antibiotic substances. Rep. exp. Res. Sta. Cheshunt, 34, 37.Grossbard, E. (1948b). Production of an antibiotic substance on wheat straw and other organic materials and in soil. Nature, 161(4094), 614. doi:10.1038/161614a0.Grossbard, E. (1949). Investigations on microbial antagonism and antibiotic substances. Rep. exp. Res. Sta. Cheshunt, 35, 38.Grossbard, E. (1952). Antibiotic production by fungi on organic manures and in soil. Journal of General Microbiology, 6(3-4), 295-310. doi:10.1099/00221287- 6-3-4-295.Haas, D., & Défago, G. (2005). Biological control of soil-borne pathogens by fluorescent Pseudomonads. Nature Reviews. Microbiology, 3(4), 307. doi:10.1038/nrmicro1129.Hadar, Y., Harman, G., & Taylor, A. (1984). Evaluation of Trichoderma koningii and T. harzianum from New York soils for biological control of seed rot caused by Pythium spp. Phytopathology, 74(1), 106-110. doi:10.1094/ Phyto-74-106.Haichar, F. Z., Marol, C., Berge, O., Rangel-Castro, J. I., Prosser, J. I., Balesdent, J., ... Achouak, W. (2008). Plant host habitat and root exudates shape soil bacterial community structure. The Isme Journal, 2(12), 1221. doi:10.1038/ismej.2008.80.Han, Q., Wu, F., Wang, X., Qi, H., Shi, L., Ren, A., ... Tang, C. (2015). The bacterial lipopeptide iturins induce Verticillium dahliae cell death by affecting fungal signalling pathways and mediate plant defence responses involved in pathogen-associated molecular pattern-triggered immunity. Environmental Microbiology, 17(4), 1166-1188. doi:10.1111/1462-2920.12538.Hanson, L. E., & Howell, C. R. (2004). Elicitors of plant defense responses from biocontrol strains of Trichoderma virens. Phytopathology, 94(2), 171-176. doi:10.1094/ PHYTO.2004.94.2.171.Harman, G., Chet, I., & Baker, R. (1980). Trichoderma hamatum effects on seed and seedling disease induced in radish and pea by Pythium spp. or Rhizoctonia solani. Phytopathology, 70(12), 1167-1172. doi:10.1094/Phyto-70-1167.Harman, G. E. (2000). Myths and dogmas of biocontrol changes in perceptions derived from research on Trichoderma harzinum T-22. Plant Disease, 84(4), 377- 393. doi:10.1094/PDIS.2000.84.4.377.Harman, G. E., Chet, I., & Baker, R. (1981). Factors affecting Trichoderma hamatum applied to seeds as a biocontrol agent. Phytopathology, 71(6), 569-572. doi:10.1094/ Phyto-71-569.Harman, G. E., Howell, C. R., Viterbo, A., Chet, I., & Lorito, M. (2004). Trichoderma species — opportunistic, avirulent plant symbionts. Nature Reviews. Microbiology, 2(1), 43. doi:10.1038/nrmicro797.Hartley, C. (1921). Damping-off in forest nurseries (Vol. 934). Washington, EE. UU.: US Department of Agriculture.Hartmann, A., Rothballer, M., & Schmid, M. (2008). Lorenz Hiltner, a pioneer in rhizosphere microbial ecology and soil bacteriology research. Plant and Soil, 312(1), 7-14. doi:10.1007/s11104-007-9514-z.Henry, A. W. (1931). The natural microflora of the soil in relation to the foot-rot problem of wheat. Canadian Journal of Research, 4(1), 69-77. doi:10.1139/cjr31-006.Henry, G., Deleu, M., Jourdan, E., Thonart, P., & Ongena, M. (2011). The bacterial lipopeptide surfactin targets the lipid fraction of the plant plasma membrane to trigger immune-related defence responses. Cellular Microbiology, 13(11), 1824-1837. doi:10.1111/j.1462- 5822.2011.01664.x.Hermosa, R., Cardoza, R. E., Rubio, M. B., Gutiérrez, S., & Monte, E. (2014). Chapter 10 - Secondary metabolism and antimicrobial metabolites of Trichoderma. En M. S. Herrera- Estrella, R. S. U. Druzhinina, & M. G. Tuohy (Eds.), Biotechnology and biology of Trichoderma (pp. 125- 137). Amsterdam, Holanda: Elsevier. doi:10.1016/B978- 0-444-59576-8.00010-2.Hiltner, L. (1904). Über neuere Erfahrungen und Probleme auf dem Gebiet der Bodenbakteriologie und unter besonderer Berücksichtigung der Gründüngung und Brache. Arbeiten der Deutschen Landwirtschafts Gesellschaft, 98, 59-78.Hinsinger, P. (1998). How do plant roots acquire mineral nutrients? Chemical processes involved in the rhizosphere. Advances in Agronomy, 64, 225-265.Hinsinger, P. (2001). Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: a review. Plant and Soil, 237(2), 173-195. doi:10.1023/a:1013351617532.Hinsinger, P., Plassard, C., & Jaillard, B. (2006). Rhizosphere: A new frontier for soil biogeochemistry. Journal of Geochemical Exploration, 88(1-3), 210-213. doi:10.1016/j. gexplo.2005.08.041.Hinsinger, P., Gobran, G. R., Gregory, P. J., & Wenzel, W. W. (2005). Rhizosphere geometry and heterogeneity arising from root-mediated physical and chemical processes. The New Phytologist, 168(2), 293-303. doi:10.1111/j.1469- 8137.2005.01512.x.Hinsinger, P., Plassard, C., Tang, C., & Jaillard, B. (2003). Origins of root-mediated pH changes in the rhizosphere and their responses to environmental constraints: A review. Plant and Soil, 248(1), 43-59. doi:10.1023/a:1022371130939.Hoitink, H., & Boehm, M. (1999). Biocontrol within the context of soil microbial communities: a substratedependent phenomenon. Annual Review of Phytopathology, 37, 427-446. doi:10.1146/annurev.phyto.37.1.427.Hoitink, H. A. J., Madden, L. V., & Dorrance, A. E. (2006). Systemic resistance induced by Trichoderma spp.: Interactions between the host, the pathogen, the biocontrol agent, and soil organic matter quality. Phytopathology, 96(2), 186-189. doi:10.1094/PHYTO-96-0186.Hornby, D. (1983). Suppressive soils. Annual Review of Phytopatholgy, 21(1), 65-85. doi:10.1146/annurev. py.21.090183.000433.Howell, C. (1982). Effect of Gliocladium virens on Pythium ultimum, Rhizoctonia solani, and damping-off of cotton seedlings. Phytopathology, 72(5), 496-498. doi:10.1094/ Phyto-72-496.Howell, C. R. (2003). Mechanisms employed by Trichoderma species in the biological control of plant diseases: The history and evolution of current concepts. Plant Disease, 87(1), 4-10. doi:10.1094/PDIS.2003.87.1.4.Howell, C. R. (2006). Understanding the mechanisms employed by Trichoderma virens to effect biological control of cotton diseases. Phytopathology, 96(2), 178- 180. doi:10.1094/PHYTO-96-0178.Howell, C. R., & Puckhaber, L. S. (2005). A study of the characteristics of “P” and “Q” strains of Trichoderma virens to account for differences in biological control efficacy against cotton seedling diseases. Biological Control, 33(2), 217-222. doi:10.1016/j.biocontrol.2005.02.003.Hoyos, L., Galvis, F., & Rodríguez, D. (2012). Aislamientos nativos y foráneos de Trichoderma para el control de Rizoctoniasis en papa criolla. Revista de Ciencias Agrícolas, 29(1), 5-15.Humphris, S. N., Bengough, A. G., Griffiths, B. S., Kilham, K., Rodger, S., Stubbs, V., ... Young, I. M. (2005). Root cap influences root colonisation by Pseudomonas fluorescens SBW25 on maize. FEMS Microbiology Ecology, 54(1), 123-130. doi:10.1016/j.femsec.2005.03.005.Hutchinson, C. M. (1999). Trichoderma virens-Inoculated composted chicken manure for biological weed control. Biological Control, 16(2), 217-222. doi:10.1006/ bcon.1999.0759.Ihrmark, K., Asmail, N., Ubhayasekera, W., Melin, P., Stenlid, J., & Karlsson, M. (2010). Comparative molecular evolution of Trichoderma chitinases in response to mycoparasitic interactions. Evolutionary Bioinformatics, 6, EBO.S4198. doi:10.4137/EBO.S4198.Ikeda, S., Shimizu, A., Shimizu, M., Takahashi, H., & Takenaka, S. (2012). Biocontrol of black scurf on potato by seed tuber treatment with Pythium oligandrum. Biological Control, 60(3), 297-304. doi:10.1016/j. biocontrol.2011.10.016.Inbar, J., & Chet, I. (1996). The role of lectins in recognition and adhesion of the mycoparasitic fungus Trichoderma spp. To its host. En I. Kahane, & I. Ofek (Eds.), Toward anti-adhesion therapy for microbial diseases (pp. 229-231). Boston, EE. UU.: Springer us. doi:10.1007/978-1-4613- 0415-9_27.Inderbitzin, P., Bostock, R. M., Davis, R. M., Usami, T., Platt, H. W., & Subbarao, K. V. (2011). Phylogenetics and taxonomy of the fungal vascular wilt pathogen Verticillium, with the descriptions of five new species. PLoS One, 6(12), e28341. doi:10.1371/journal.pone.0028341.Inès, M., & Dhouha, G. (2015). Lipopeptide surfactants: Production, recovery and pore forming capacity. Peptides, 71, 100-112. doi:10.1016/j.peptides.2015.07.006.Instituto Colombiano Agropecuario (ica). (2018a). Productos registrados bioinsumos abril de 2018. Recuperado de http://www.ica.gov.co/getdoc/2ad9e987-8f69-4358- b8a9-e6ee6dcc8132/PRODUCTOSBIOINSUMOSMAYO- 13-DE-2008.aspx.Instituto Colombiano Agropecuario (ica). (2018b). Empresas registradas bioinsumos - abril de 2018. Recuperado de http:// www.ica.gov.co/Areas/Agricola/Servicios/Fertilizantesy- Bio-insumos-Agricolas/Listado-de-Bioinsumos/2009/ EMPRESAS-REGISTRADAS-BIOINSUMOSJULIO- 8-DE-2008.aspx.Iriarte, F. B., Obradović, A., Wernsing, M. H., Jackson, L. E., Balogh, B., Hong, J. A., ... Vallad, G. E. (2012). Soil-based systemic delivery and phyllosphere in vivo propagation of bacteriophages. Bacteriophage, 2(4) 215–224. doi:10. 4161/bact.23530.Jacqmin, B., Cotes, A., Lepoivre, P., & Semal, J. (1993). Effect of the combination of seed priming and Trichoderma treatment on incidence of damping-off agents. Mededelingen van de Faculteit Landbouwkundige en Toegepaste Biologische Wetenschappen (Rijksuniversiteit te Gent), 58(3b), 1321-1328.Jagnow, G., Höflich, G., & Hoffmann, K.-H. (1991). Inoculation of non-symbiotic rhizosphere bacteria: possibilities of increasing and stabilizing yields. Journal of applied botany = Angewandte Botanik, 65(26), 97-126.Jaklitsch, W. M. (2011). European species of Hypocrea part II: species with hyaline ascospores. Fungal Diversity, 48(1), 1-250. doi:10.1007/s13225-011-0088-y.Javaid, A., & Ali, S. (2011). Herbicidal activity of culture filtrates of Trichoderma spp. against two problematic weeds of wheat. Natural Product Research, 25(7), 730-740. doi:10.1080/14786419.2010.528757.Ji, P., Campbell, H. L., Kloepper, J. W., Jones, J. B., Suslow, T. V., & Wilson, M. (2006). Integrated biological control of bacterial speck and spot of tomato under field conditions using foliar biological control agents and plant growthpromoting rhizobacteria. Biological Control, 36(3), 358- 367. doi:10.1016/j.biocontrol.2005.09.003.Ji, P., Campbell, H. L., Kloepper, J. W., Jones, J. B., Suslow, T. V., & Wilson, M. (2006). Integrated biological control of bacterial speck and spot of tomato under field conditions using foliar biological control agents and plant growthpromoting rhizobacteria. Biological Control, 36(3), 358- 367. doi:10.1016/j.biocontrol.2005.09.003.Jones, R. W., & Hancock, J. G. (1987). Conversion of viridin to viridiol by viridin-producing fungi. Canadian Journal of Microbiology, 33(11), 963-966. doi:10.1139/m87-169.Jones, R. W., & Hancock, J. G. (1987). Conversion of viridin to viridiol by viridin-producing fungi. Canadian Journal of Microbiology, 33(11), 963-966. doi:10.1139/m87-169.Jourdan, E., Henry, G., Duby, F., Dommes, J., Barthélemy, J. P., Thonart, P., & Ongena, M. (2009). Insights into the defense-related events occurring in plant cells following perception of surfactin-type lipopeptide from Bacillus subtilis. Molecular Plant-Microbe Interactions, 22(4), 456- 468. doi:10.1094/MPMI-22-4-0456.Justesen, A. F., Yohalem, D., Bay, A., & Nicolaisen, M. (2004). Genetic diversity in potato field populations of Thanatephorus cucumeris AG-3, revealed by its polymorphism and rapd markers. Mycological Research, 107(11), 1323-1331. doi:10.1017/S0953756203008517.Kamilova, F., Kravchenko, L. V., Shaposhnikov, A. I., Makarova, N., & Lugtenberg, B. (2006). Effects of the tomato pathogen Fusarium oxysporum f. sp. radicis-lycopersici and of the biocontrol bacterium Pseudomonas fluorescens WCS365 on the composition of organic acids and sugars in tomato root exudate. Molecular Plant-Microbe Interactions, 19(10), 1121-1126. doi:10.1094/MPMI-19-1121.Kao, C. W., & Ko, W. H. (1986). The role of calcium and micro-organisms in suppression of cucumber damping-off caused by Pythium splendens in a Hawaiian soil. Phytopathology, 76(2), 221-225. doi:10.1094/ Phyto-76-221.Karaca, G., Tepedelen, G., Belghouthi, A., & Paul, B. (2008). A new mycoparasite, Pythium lycopersicum, isolated in Isparta, Turkey: morphology, molecular characteristics, and its antagonism with phytopathogenic fungi. FEMS Microbiology Letters, 288(Keijer, J. (1996). The initial steps of the infection process in Rhizoctonia solani. En B. Sneh, S. Jabaji-Hare, S. Neate, & G. Dijst (Eds.), Rhizoctonia species: Taxonomy, molecular biology, ecology, pathology and disease control (pp. 149- 162). Dordrecht, Holanda: Springer. doi:10.1007/978- 94-017-2901-7_13.Karaca, G., Tepedelen, G., Belghouthi, A., & Paul, B. (2008). A new mycoparasite, Pythium lycopersicum, isolated in Isparta, Turkey: morphology, molecular characteristics, and its antagonism with phytopathogenic fungi. FEMS Microbiology Letters, 288(2), 163-170. doi:10.1111/ j.1574-6968.2008.01334.x.Kembel, S. W., O’Connor, T. K., Arnold, H. K., Hubbell, S. P., Wright, S. J., & Green, J. L. (2014). Relationships between phyllosphere bacterial communities and plant functional traits in a neotropical forest. Proceedings of the National Academy of Sciences, 111(38), 13715-13720. doi:10.1073/pnas.1216057111.Kerr, A. (1974). Soil microbiological studies on Agrobacterium radiobacter and biological control of crown gall. Soil Science, 118, 168-172. doi:10.1097/00010694- 197409000-00006.Kerr, A., & Htay, K. (1974). Biological control of crown gall through bacteriocin production. Physiological Plant Pathology, 4(1), 37-44. doi:10.1016/0048- 4059(74)90042-3.Kloepper, J. W. (1993). Plant growth promoting rhizobacteria as biological control agents. En B. F. Metting (Ed.), Soil microbial ecology-applications in agricultural and environmental management (pp. 255-274). Nueva York, EE. UU.: DRD Press.Kloepper, J. W., Leong, J., Teintze, M., & Schroth, M. N. (1980). Enhanced plant growth by siderophores produced by plant growth-promoting rhizobacteria. Nature, 286, 885-886. doi:10.1038/286885a0.Kloepper, J. W., & Schroth, M. N. (1978). Plant growthpromoting rhizobacteria on radishes. En Institut National de la Recherche Agronomique (inra) (Ed.), Proceedings of the 4th International Conference on Plant Pathogenic Bacteria (Vol. 2, pp. 879-882). Angers, Francia: inraKlosterman, S. J., Atallah, Z. K., Vallad, G. E., & Subbarao, K. V. (2009). Diversity, pathogenicity, and management of Verticillium species. Annual Review of Phytopathology, 47(1), 39-62. doi:10.1146/annurev-phyto-080508-081748.Knudsen, I. M. B., Hockenhull, J., Jensen, D. F., Gerhardson, B., Hökeberg, M., Tahvonen, R., ... Henriksen, B. (1997). Selection of biological control agents for controlling soil and seed-borne diseases in the field. European Journal of Plant Pathology, 103(9), 775-784. doi:10.1023/a:1008662313042.Kotila, J., & Coons, G. (1925). Investigations on the blackleg disease of potato. Michigan Agricultural Experimental Station Technical Bulletin, 67, 3-29.Kratka, J., Bergmanova, E., & Kudelova, A. (1994). Effect of Pythium oligandrum and Pythium ultimum on biochemical changes in cucumber (Cucumis sativus L.). Journal of Plant Diseases and Protection, 101(4), 406-413.Kubicek, C. P., Herrera-Estrella, A., Seidl-Seiboth, V., Martinez, D. A., Druzhinina, I. S., Thon, M., ... Grigoriev, I. V. (2011). Comparative genome sequence analysis underscores mycoparasitism as the ancestral life style of Trichoderma. Genome Biology, 12(4), R40. doi:10.1186/gb-2011-12-4-r40.Kumar, A., & Johri, B. N. (2012). Antimicrobial lipopeptides of Bacillus: Natural weapons for biocontrol of plant pathogens. En T. Satyanarayana, & B. N. Johri (Eds.), Microorganisms in sustainable agriculture and biotechnology (pp. 91-111). Dordrecht, Holanda: Springer. doi:10.100 7/978-94-007-2214-9_6.Kulkarni, R. D., Thon, M. R., Pan, H., & Dean, R. A. (2005). Novel G-protein-coupled receptor-like proteins in the plant pathogenic fungus Magnaporthe grisea. Genome Biology, 6(3), R24. doi:10.1186/gb-2005-6-3-r24.Kumar, A., Saini, S., Wray, V., Nimtz, M., Prakash, A., & Johri, B. N. (2012). Characterization of an antifungal compound produced by Bacillus sp. strain A5F that inhibits Sclerotinia sclerotiorum. Journal of Basic Microbiology, 52(6), 670-678. doi:10.1002/jobm.201100463.Larkin, R., Hopkins, D., & Martin, F. (1993). Effect of successive watermelon plantings on Fusarium oxysporum and other microorganisms in soils suppressive and conducive. Phytopathology, 83(10), 1097-1105. doi:10.1094/Phyto- 83-1097Kurzawińska, H., & Mazur, S. (2008). Biological control of potato against Rhizoctonia solani (Kühn). Sodininkystė ir Daržininkystė, 27(2), 419-425.Latgé, J. P. (2007). The cell wall: a carbohydrate armour for the fungal cell. Molecular Microbiology, 66(2), 279-290. doi:10.1111/j.1365-2958.2007.05872.x.Le Floch, G., Rey, P., Benizri, E., Benhamou, N., & Tirilly, Y. (2003). Impact of auxin-compounds produced by the antagonistic fungus Pythium oligandrum or the minor pathogen Pythium group F on plant growth. Plant and Soil, 257(2), 459-470. doi:10.1023/A:1027330024834.Lazarovits, G., Turnbull, A., & Johnston-Monje, D. (2014). Plant health management: Biological control of plant pathogens a2. En N. K. V. Alfen (Ed.), Encyclopedia of Agriculture and Food Systems (pp. 388-399). Oxford, Reino Unido: Academic Press. doi:10.1016/B978-0-444-52512-3.00177-7.Le Floch, G., Rey, P., Benizri, E., Benhamou, N., & Tirilly, Y. (2003). Impact of auxin-compounds produced by the antagonistic fungus Pythium oligandrum or the minor pathogen Pythium group F on plant growth. Plant and Soil, 257(2), 459-470. doi:10.1023/A:1027330024834.Lehner, M. S., Pethybridge, S. J., Meyer, M. C., & Del Ponte, E. M. (2017). Meta-analytic modelling of the incidence– yield and incidence–sclerotial production relationships in soybean white mould epidemics. Plant Pathology, 66(3), 460-468. doi:10.1111/ppa.12590.Lehtonen, M. J., Somervuo, P., & Valkonen, J. P. T. (2008). Infection with Rhizoctonia solani induces defense genes and systemic resistance in potato sprouts grown without light. Phytopathology, 98(11), 1190-1198. doi:10.1094/ PHYTO-98-11-1190.Leslie, J. F., & Summerell, B. A. (2008). Fusarium oxysporum Schlechtendahl emend. Snyder & Hansen. En The Fusarium laboratory manual (pp. 212-218). Ames, EE. UU.: Blackwell Publishing.Li, B., Fu, Y., Jiang, D., Xie, J., Cheng, J., Li, G., ... Yi, X. (2010). Cyclic gmp as a second messenger in the nitric oxidemediated conidiation of the mycoparasite Coniothyrium minitans. Applied and Environmental Microbiology, 76(9), 2830-2836. doi:10.1128/aem.02214-09.Li, L., Mo, M., Qu, Q., Luo, H., & Zhang, K. (2007). Compounds inhibitory to nematophagous fungi produced by Bacillus sp. strain H6 isolated from fungistatic soil. European Journal of Plant Pathology, 117(4), 329-340. doi:10.1007/s10658-007-9101-4.Lifshitz, R., Dupler, M., Elad, Y., & Baker, R. (1984a). Hyphal interactions between a mycoparasite, Pythium nunn, and several soil fungi. Canadian Journal of Microbiology, 30(12), 1482-1487. doi:10.1139/m84-236.Lifshitz, R., Stanghellini, M. E., & Baker, R. (1984b). A new species of Pythium isolated from soil in Colorado. Mycotaxon, 20(2), 373-379.Lifshitz, R., Windham, M., & Baker, R. (1986). Mechanism of biological control of preemergence damping-off of pea by seed treatment with Trichoderma spp. Phytopathology, 76(7), 720-725.Limón, M. C., Chacón, M. R., Mejías, R., Delgado-Jarana, J., Rincón, A. M., Codón, A. C., & Benítez, T. (2004). Increased antifungal and chitinase specific activities of Trichoderma harzianum cect 2413 by addition of a cellulose binding domain. Applied Microbiology and Biotechnology, 64(5), 675-685. doi:10.1007/s00253-003-1538-6.Lindberg, G. D. (1959). A transmissible disease of Helminthosporium victoriae. Phytopathology, 49, 29-32.Lochhead, A. G. (1940). Qualitative studies of soil microorganisms: III. Influence of plant growth on the character of the bacterial flora. Canadian Journal of Research, 18c(2), 42-53. doi:10.1139/cjr40c-007.Lochhead, A. G., & Chase, F. E. (1943). Qualitative studies of soil microorganisms: V. Nutritional requirements of the predominant bacterial flora. Soil Science, 55(2), 185-196.Liu, S.-D., & Baker, R. (1980). Mechanism of biological control in soil suppressive to Rhizoctonia solani. Phytopathology, 70(5), 404-412.Lodha, B. C., & Webster, J. (1990). Pythium acanthophoron, a mycoparasite, rediscovered in India and Britain. Mycological Research, 94(7), 1006-1008. doi:10.1016/S0953- 7562(09)81323-3.Lorito, M., Farkas, V., Rebuffat, S., Bodo, B., & Kubicek, C. P. (1996). Cell wall synthesis is a major target of mycoparasitic antagonism by Trichoderma harzianum. Journal of Bacteriology, 178(21), 6382-6385. doi:10.1128/ jb.178.21.6382-6385.1996.Lorito, M., & Woo, S. L. (2015). Trichoderma: A multi-purpose tool for integrated pest management. En B. Lugtenberg (Ed.), Principles of plant-microbe interactions: Microbes for sustainable agriculture (pp. 345-353). Cham, Alemania: Springer International Publishing. doi:10.1007/978-3-319-08575-3_36.Lugtenberg, B. (2015). Introduction to plant-microbe interactions. En B. Lugtenberg (Ed.), Principles of plant-microbe interactions: Microbes for sustainable agriculture (pp. 1-2). Cham, Alemania: Springer International Publishing. doi:10.1007/978-3-319-08575-3_1.Lorito, M., Woo, S. L., Harman, G. E., & Monte, E. (2010). Translational research on Trichoderma: from omics to the field. Annual Review of Phytopathology, 48, 395-417. doi:10.1146/annurev-phyto-073009-114314.Lugtenberg, B. J. J., Dekkers, L., & Bloemberg, G. V. (2001). Molecular determinants of rhizosphere colonization by Pseudomonas. Annual Review of Phytopathology, 39, 461- 490. doi:10.1146/annurev.phyto.39.1.461.Lugtenberg, B. , & Kamilova , F. (2009). Plant - growth-promoting rhizobacteria. Annual Review of Microbiology, 63, 541-556. doi:10.1146/annurev.micro. 62.081307.162918.Lumsden, R., Locke, J., Adkins, S., Walter, J., & Ridout, C. (1992). Isolation and localization of the antibiotics gliotoxin produced by Gliocladium virens from alginate prill in soil and soilless media. Phytopathology, 82(2), 230- 235. doi:10.1094/Phyto-82-230.Luo, Y., Zhang, D.-D., Dong, X.-W., Zhao, P.-B., Chen, L.- L., Song, X.-Y., ... Zhang, Y.-Z. (2010). Antimicrobial peptaibols induce defense responses and systemic resistance in tobacco against tobacco mosaic virus. FEMS Microbiology Letters, 313(2), 120-126. doi:10.1111/ j.1574-6968.2010.02135.x.Lynch, J. M. (1990). Introduction: some consequences of microbial rhizosphere competence for plant and soil. En The rhizosphere (pp. 1-10). Chichester, Inglaterra: John Wiley and Sons Ltd.Ma, Z., Hua, G. K. H., Ongena, M., & Höfte, M. (2016). Role of phenazines and cyclic lipopeptides produced by Pseudomonas sp. CMR12a in induced systemic resistance on rice and bean. Environmental Microbiology Reports, 8(5), 896-904. doi:10.1111/1758-2229.12454.Maget-Dana, R., & Peypoux, F. (1994). Iturins, a special class of pore-forming lipopeptides: biological and physicochemical properties. Toxicology, 87(1-3), 151-174. doi:10.1016/0300-483X(94)90159-7.Malamud, O. S. (1989). Research progress on Verticillium dahliae Kleb. En Centro Internacional de la Papa (cip), Fungal Diseases of the Potato. Report of planning conference on fungal diseases of the potato (pp. 139-157). Lima, Perú: cip.Malfanova, N., Franzil, L., Lugtenberg, B., Chebotar, V., & Ongena, M. (2012). Cyclic lipopeptide profile of the plant-beneficial endophytic bacterium Bacillus subtilis HC8. Archives of Microbiology, 194(11), 893-899. doi:10.1007/s00203-012-0823-0.Maloy, O. C., & Lang, K. J. (2003). Carl Freiherr Von Tubeuf: Pioneer in biological control of plant diseases. Annual Review of Phytopatholgy, 41(1), 41-52. doi:10.1146/ annurev.phyto.41.052002.095444.Mallmann, W., & Hemstreet, C. (1924). Isolation of an inhibitory substance from plants. Agricultural Research, 28(6), 599-602.Mandimba, G., Heulin, T., Bally, R., Guckert, A., & Balandreau, J. (1986). Chemotaxis of free-living nitrogenfixing bacteria towards maize mucilage. Plant and Soil, 90(1-3), 129-139. doi:10.1007/bf02277392.Marcum, D. B., Grogan, R. G., & Greathead, A. S. (1977). Fungicide control of lettuce drop caused by Sclerotinia sclerotiorum 'minor'. Plant Disease Reporter, 61, 555-559.Marschner, H. (1995). Mineral nutrition of higher plants (2.a ed.). Londres, Reino Unido: Academic Press. doi:10.1111/ j.1365-3040.1988.tb01130.x.Marshall, D. (1982). Effect of Trichoderma harzianum seed treatment and Rhizoctonia solani inoculum concentration on damping-off of snap bean in acidic soils. Plant Disease, 66(9), 788-789. doi:10.1094/PD-66-788.Martin, F., & Hancock, J. (1986). Association of chemical and biological factors in soils suppressive to Pythium ultimum. Phytopathology, 76(11), 1221-1231. doi:10.1094/Phyto- 76-1221.Mastouri, F., Björkman, T., & Harman, G. E. (2010). Seed treatment with Trichoderma harzianum alleviates biotic, abiotic, and physiological stresses in germinating seeds and seedlings. Phytopathology, 100(11), 1213-1221. doi:10.1094/PHYTO-03-10-0091.Mavrodi, D. V., Parejko, J. A., Mavrodi, O. V., Kwak, Y.-S., Weller, D. M., Blankenfeldt, W., & Thomashow, L. S. (2013). Recent insights into the diversity, frequency and ecological roles of phenazines in fluorescent Pseudomonas spp. Environmental Microbiology, 15(3), 675-686. doi:10.1111/ j.1462-2920.2012.02846.x.Mazzola, M. (1998). The potential of natural and genetically engineered fluorescent Pseudomonas spp. as biological control agents. En N. S. Subba & Y. R. Dommergues (Eds.), Microbial Interactions in agriculture and forestry (Vol. 1, pp. 193-217). Enfield, EE. UU.: Science Publishers, Inc.McClure, T. T. (1951). Fusarium foot rot of sweet potato sprouts. Phytopathology, 41, 72-77.McKinney, H. H. (1929). Mosaic diseases in the Canary Islands, West Africa and Gibraltar. Journal of Agricultural Research, 39(8), 577-578.McQuilken, M. P., Gemmell, J., Hill, R. A., & Whipps, J. M. (2003). Production of macrosphelide A by the mycoparasite Coniothyrium minitans. FEMS Microbiology Letters, 219(1), 27-31. doi:10.1016/S0378-1097(02) 01180-1.Mendes, R., Kruijt, M., de Bruijn, I., Dekkers, E., Van der Voort, M., Schneider, J. H., ... Raaijmakers, J. M. (2011). Deciphering the rhizosphere microbiome for diseasesuppressive bacteria. Science, 332(6033), 1097-1100. doi:10.1126/science.1203980.Mendgen, K., Hahn, M., & Deising, H. (1996). Morphogenesis and mechanisms of penetration by plant pathogenic fungi. Annual Review of Phytopathology, 34(1), 367-386. doi:10.1146/annurev.phyto.34.1.367.Menzies, J. D. (1959). Occurrence and transfer of a biological factor in soil that suppresses potato scab. Phytopathology, 49, 648-652.Meyer, M., Campos, H., Godoy, C., & Utiamada, C. (2016). Ensaios cooperativos de controle biológico de mofo branco na cultura da soja - safras 2012 a 2015. Documentos, 368, 19-46. doi:10.13140/RG.2.1.3074.9842.Meyer, M., Campos, H., Godoy, C., Utiamada, C., Silva, L. H. C. P., Goussain, M., ... Juliatti, F. C. (2017). Ensaios cooperativos de controle biológico de Sclerotinia sclerotiorum na cultura da soja: resultados sumarizados da safra 2015/2016. Circular Técnica, 124, 1-5.Meyer, M. C., Campos, H. D., Godoy, C. V., & Utiamada, C. M. (2014). Ensaios cooperativos de controle químico de mofo branco na cultura da soja: safras 2009 a 2012. Documentos, 345, 1-101.Meyer, M. C., Campos, H. D., Henning, A. A., Machado, A. Q., Utiamada, C. M., Pimenta, C. B., ... Venancio,W. S. (2015). Eficiência de fungicidas para controle de mofo branco (Sclerotinia sclerotiorum) em soja, na safra 2009/2010 – resultados sumarizados e individuais dos ensaios cooperativos. Circular Técnica, 109, 1-24.Mezui, J. C., Cotes, A. M., Lepoivre, P., & Semal, J. (1994). Evaluation of seed priming and Trichoderma treatment for the biological control of damping-off agents. En Institut National de la Recherche Agronomique (inra) (Ed.), Diseases and insects in forest nurseries (Vol. 68, pp. 189-196). Dijon, Francia: inra.Millard, W. A., & Taylor, C. B. (1927). Antagonism of microorganisms as the controlling factor in the: Inhibition of scab by green-manuring. Annals of Applied Biology, 14(2), 202-216. doi:10.1111/j.1744-7348.1927.tb07076.x.Mohamed, N., Lherminier, J., Farmer, M. J., Fromentin, J., Béno, N., Houot, V., ... Blein, J. P. (2007). Defense responses in grapevine leaves against Botrytis cinerea induced by application of a Pythium oligandrum strain or its elicitin, oligandrin, to roots. Phytopathology, 97(5), 611-620. doi:10.1094/PHYTO-97-5-0611.Monaci, L., Quintieri, L., Caputo, L., Visconti, A., & Baruzzi, F. (2016). Rapid profiling of antimicrobial compounds characterising B. subtilis TR50 cell-free filtrate by high-performance liquid chromatography coupled to high-resolution Orbitrap™ mass spectrometry. Rapid Communications in Mass Spectrometry, 30(1), 45-53. doi:10.1002/rcm.7408.Mongkolthanaruk, W. (2012). Classification of Bacillus beneficial substances related to plants, humans and animals. Journal of Microbiology and Biotechnology, 22(12), 1597-1604.Monteiro, F. P., Ferreira, L. C., Pacheco, L. P., & Souza, P. E. (2013). Antagonism of Bacillus subtilis against Sclerotinia sclerotiorum on Lactuca sativa. Journal of Agricultural Science, 5(4), 214-223. doi:10.5539/jas.v5n4p214.Montero, M., Sanz, L., Rey, M., Llobell, A., & Monte, E. (2007). Cloning and characterization of bgn16·3, coding for a -1,6-glucanase expressed during Trichoderma harzianum mycoparasitism. Journal of Applied Microbiology, 103(4), 1291-1300. doi:10.1111/j.1365-2672.2007.03371.x.Moore, E. S. (1926). D’Herelle’s bacteriophage in relation to plant parasites. South African Journal of Science, 23(12), 306.Moreno-Velandia, C. A. (2017). Interactions between Bacillus amyloliquefaciens Bs006, Fusarium oxysporum Map5 and cape gooseberry (Physalis peruviana) (tesis doctoral). Universidad Nacional, Bogotá, Colombia.Moreno, C., Castillo, F., González, A., Bernal, D., Jaimes, Y., Chaparro, M., ... Cotes, A. (2009). Biological and molecular characterization of the response of tomato plants treated with Trichoderma koningiopsis. Physiological and Molecular Plant Pathology, 74(2), 111-120. doi:10.1016/j.pmpp.2009.10.001.Moreno, C. A., Cotes, A. M., Smith, A., Beltrán, C., Villamizar, L., Gómez, M., ... Santos, A. (2010). Desarrollo de un bioplaguicida a base de Trichoderma koningiopsis Th003 y uso en el cultivo de lechuga para el control del moho blanco Sclerotinia sclerotiorum y Sclerotinia minor. Bogotá, Colombia: Corporación Colombiana de Investigación Agropecuaria (Corpoica).Moszczyńska, E., Pytlarz-Kozicka, M., & Grzeszczuk, J. (2015). The impact of applying biological treatment on the infection of potato tubers by the fungus Rhizoctonia solani and the bacterium Streptomyces scabiei. Journal of Research and Applications in Agricultural Engineering, 60(4), 46-50.Mukherjee, M., Horwitz, B. A., Sherkhane, P. D., Hadar, R., & Mukherjee, P. K. (2006). A secondary metabolite biosynthesis cluster in Trichoderma virens: evidence from analysis of genes underexpressed in a mutant defective in morphogenesis and antibiotic production. Current Genetics, 50(3), 193-202. doi:10.1007/s00294-006-0075-0.Mukherjee, P. K., Horwitz, B. A., & Kenerley, C. M. (2012). Secondary metabolism in Trichoderma – A genomic perspective. Microbiology, 158(Pt 1), 35-45. doi:10.1099/ mic.0.053629-0.Mukherjee, P. K., Horwitz, B. A., Singh, U. S., Mukherjee, M., & Schmoll, M. (2013). Trichoderma in agriculture, industry and medicine: an overview. En P. K. Mukherjee, B. A. Horwitz, U. Singh, M. Mukherjee, & M. Schmoll (Eds.), Trichoderma biology and applications (pp. 1-9). Nagpur, India: CAB International.Mukherjee, P. K., Latha, J., Hadar, R., & Horwitz, B. A. (2003). TmkA, a mitogen-activated protein kinase of Trichoderma virens, is involved in biocontrol properties and repression of conidiation in the dark. Eukaryotic Cell, 2(3), 446-455. doi:10.1128/ec.2.3.446-455.2003.Nihorimbere, V., Cawoy, H., Seyer, A., Brunelle, A., Thonart, P., & Ongena, M. (2012). Impact of rhizosphere factors on cyclic lipopeptide signature from the plant beneficial strain Bacillus amyloliquefaciens S499. FEMS Microbiology Ecology, 79(1), 176-191. doi:10.1111/j.1574-6941.2011.01208.x.Nogués, S., Cotxarrera, L., Alegre, L., & Trillas, M. I. (2002). Limitations to photosynthesis in tomato leaves induced by Fusarium wilt. New Phytologist, 154(2), 461-470. doi:10.1046/j.1469-8137.2002.00379.x.Notenboom, V., Boraston, A. B., Williams, S. J., Kilburn, D. G., & Rose, D. R. (2002). High-resolution crystal structures of the lectin-like xylan binding domain from Streptomyces lividans xylanase 10a with bound substrates reveal a novel mode of xylan binding. Biochemistry, 41(13), 4246-4254. doi:10.1021/bi015865j.Ogoshi, A. (1987). Ecology and pathogenicity of anastomosis and intraspecific groups of Rhizoctonia solani Kuhn. Annual Review of Phytopathology, 25(1), 125-143. doi:10.1146/annurev.py.25.090187.001013.Omann, M., & Zeilinger, S. (2010). How a mycoparasite employs G-protein signaling: Using the example of Trichoderma. Journal of Signal Transduction, 2010, 123- 126. doi:10.1155/2010/123126.Omann, M. R., Lehner, S., Escobar Rodríguez, C., Brunner, K., & Zeilinger, S. (2012). The seven-transmembrane receptor Gpr1 governs processes relevant for the antagonistic interaction of Trichoderma atroviride with its host. Microbiology, 158(Pt 1), 107-118. doi:10.1099/ mic.0.052035-0.Ongena, M., Henry, G., & Thonart, P. (2009). The roles of cyclic lipopeptides in the biocontrol activity of Bacillus subtilis. En U. Gisi, I. Chet, & M. L. Gullino (Eds.), Recent developments in management of plant diseases (pp. 59-69). Dordrecht, Holanda: Springer. doi:10.1007/978-1-4020-8804-9_5.Ongena, M., & Jacques, P. (2008). Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends in Microbiology, 16(3), 115-125. doi:10.1016/j.tim.2007. 12.009.Pal, K. K., & Gardener, B. M. (2006). Biological control of plant pathogens. The Plant Health Instructor, 2, 1117- 1142. doi:10.1094/PHI-A-2006-1117-02.Papapostolou, I., & Georgiou, C. D. (2010). Superoxide radical induces sclerotial differentiation in filamentous phytopathogenic fungi: a superoxide dismutase mimetics study. Microbiology, 156(Pt 3), 960-966. doi:10.1099/ mic.0.034579-0.Papavizas, G., Lewis, J., & Moity, T. (1982). Evaluation of new biotypes of Trichoderma harzianum for tolerance to benomyl and enhanced biocontrol capabilities. Phytopathology, 72(1), 126-132.Patel, H., Tscheka, C., Edwards, K., Karlsson, G., & Heerklotz, H. (2011). All-or-none membrane permeabilization by fengycin-type lipopeptides from Bacillus subtilis QST713. Biochimica et Biophysica Acta, 1808(8), 2000-2008. doi:https://doi:org/10.1016/j.bbamem.2011.04.008.Pennock, D., & McKenzie, N. (2016). Estado mundial del recurso suelo. Recuperado de http://www.fao.org/3/a-i5126s.pdf.Pérez-García, A., Romero, D., & De Vicente, A. (2011). Plant protection and growth stimulation by microorganisms: biotechnological applications of Bacilli in agriculture. Current Opinion in Biotechnology, 22(2), 187-193. doi:10.1016/j.copbio.2010.12.003.Pérez, S. L., Piedrahíta, W., & Arbeláez, G. (2011). Patogénesis de la pudrición blanda de la lechuga (Lactuca sativa L.) en la sabana de Bogotá causada por Sclerotinia sclerotiorum (Lib.) de Bary y Sclerotinia minor Jagger. Una revisión. Revista Colombiana de Ciencias Hortícolas, 3(2), 262-274. doi:10.17584/rcch.2009v3i2.1217.Pertot, I., Puopolo, G., Hosni, T., Pedrotti, L., Jourdan, E., & Ongena, M. (2013). Limited impact of abiotic stress on surfactin production in planta and on disease resistance induced by Bacillus amyloliquefaciens S499 in tomato and bean. FEMS Microbiology Ecology, 86(3), 505-519. doi:10.1111/1574-6941.12177.Picard, K., Ponchet, M., Blein, J.-P., Rey, P., Tirilly, Y., & Benhamou, N. (2000). Oligandrin. A proteinaceous molecule produced by the mycoparasite Pythium oligandrum induces resistance to Phytophthora parasitica infection in tomato plants. Plant Physiology, 124(1), 379- 396. doi:10.1104/pp.124.1.379.Pierson, E. A., & Weller, D. M. (1994). Use of mixtures of fluorescent Pseudomonads to suppress take-all and improve the growth of wheat. Phytopathology, 84(9), 940-947.Pieterse, C. M. J., Van Pelt, J. A., Verhagen, B. W., Ton, J., Van Wees, A. C. M., Léon-Kloosterziel, K. M., & Van Loon, L. C. (2003). Induced systemic resistance by plant growthpromoting rhizobacteria. Symbiosis, 35(1-3), 39-54.Pietro, A. D., Madrid, M. P., Caracuel, Z., Delgado-Jarana, J., & Roncero, M. I. G. (2003). Fusarium oxysporum: exploring the molecular arsenal of a vascular wilt fungus. Molecular Plant Pathology, 4(5), 315-325. doi:10.1046/ j.1364-3703.2003.00180.x.Purdy, L. H. (1979). Sclerotinia sclerotiorum: History, diseases and symptomatology, host range, geographic distribution, and impact. Phytopathology, 69(8), 875-880. doi:10.1094/ Phyto-69-875.Raaijmakers, J. M., De Bruijn, I., Nybroe, O., & Ongena, M. (2010). Natural functions of lipopeptides from Bacillus and Pseudomonas: more than surfactants and antibiotics. FEMS Microbiology Reviews, 34(6), 1037-1062. doi:10.1111/j.1574-6976.2010.00221.x.Raaijmakers, J. M., Paulitz, T. C., Steinberg, C., Alabouvette, C., & Moënne-Loccoz, Y. (2009). The rhizosphere: a playground and battlefield for soilborne pathogens and beneficial microorganisms. Plant and Soil, 321(1-2), 341- 361. doi:10.1007/s11104-008-9568-6.Raaijmakers, J. M., Van der Sluis, L., Bakker, P. A. H. M., Schippers, B., Koster, M., & Weisbeek, P. J. (1995). Utilization of heterologous siderophores and rhizosphere competence of fluorescent Pseudomonas spp. Canadian JournalRaaijmakers, J. M., Van der Sluis, L., Bakker, P. A. H. M., Schippers, B., Koster, M., & Weisbeek, P. J. (1995). Utilization of heterologous siderophores and rhizosphere competence of fluorescent Pseudomonas spp. Canadian Journal of Microbiology, 41(2), 126-135. doi:10.1139/m95-017.Raaijmakers, J. M., & Weller, D. M. (1998). Natural plant protection by 2,4-Diacetylphloroglucinol-producing Pseudomonas spp. in take-all decline soils. Molecular Plant-Microbe Interactions, 11(2), 144-152. doi:10.1094 MPMI.1998.11.2.144.Rahman, M. M. E., Hossain, D. M., Suzuki, K., Shiiya, A., Suzuki, K., Dey, T. K., ... Harada, N. (2016). Suppressive effects of Bacillus spp. on mycelia, apothecia and sclerotia formation of Sclerotinia sclerotiorum and potential as biological control of white mold on mustard. Australasian Plant Pathology, 45(1), 103-117. doi:10.1007/s13313-016-0397-4.Ravensberg, W. J. (2015). Commercialisation of microbes: Present situation and future prospects. En: B. Lugtenberg (Ed.), Principles of plant-microbe interactions: Microbes for sustainable agriculture (pp. 309-317). Cham, Alemania: Springer International Publishing. doi:10.1007/978-3- 319-08575-3_32.Reino, J. L., Guerrero, R. F., Hernández-Galán, R., & Collado, I. G. (2008). Secondary metabolites from species of the biocontrol agent Trichoderma. Phytochemistry Reviews, 7(1), 89-123. doi:10.1007/s11101-006-9032-2.Reinking, O. A., & Manns, M. M. (1933). Parasitic and other fusaria counted in tropical soils. Zeitschrift für Parasitenkunde, 6(1), 23-75. doi:10.1007/bf02121421.Reithner, B., Ibarra-Laclette, E., Mach, R. L., & Herrera- Estrella, A. (2011). Identification of mycoparasitism-related genes in Trichoderma atroviride. Applied and Environmental Microbiology, 77(13), 4361-4370. doi:10.1128/aem.00129-11.Ren, L., Li, G., Han, Y. C., Jiang, D. H., & Huang, H.-C. (2007). Degradation of oxalic acid by Coniothyrium minitans and its effects on production and activity of -1,3-glucanase of this mycoparasite. Biological Control, 43(1), 1-11. doi:10.1016/j.biocontrol.2007.06.006.Rey, P., Le Floch, G., Benhamou, N., & Tirilly, Y. (2008). Pythium oligandrum biocontrol: its relationships with fungi and plants. En E. Ait Barka, & C. Clément (Ed.), Plant-Microbe Interactions (pp. 43-57). Kerala, India: Research Signpost.Romão-Dumaresq, A. S., De Araújo, W. L., Talbot, N. J., & Thornton, C. R. (2012). rna interference of endochitinases in the sugarcane endophyte Trichoderma virens 223 reduces its fitness as a biocontrol agent of pineapple disease. PLoS One, 7(10), e47888. doi:10.1371/ journal.pone.0047888.Roberts, W. (1873). Studies on biogenesis. Proceedings of the Royal Society of London, 22(148-155), 289-291. doi:10.1098/rspl.1873.0045.Romero, D., De Vicente, A., Olmos, J. L., Dávila, J. C., & Pérez-García, A. (2007). Effect of lipopeptides of antagonistic strains of Bacillus subtilis on the morphology and ultrastructure of the cucurbit fungal pathogen Podosphaera fusca. Journal of Applied Microbiology, 103(4), 969-976. doi:10.1111/j.1365-2672.2007.03323.x.Rotblat, B., Enshell-Seijffers, D., Gershoni Jonathan, M., Schuster, S., & Avni, A. (2002). Identification of an essential component of the elicitation active site of the eix protein elicitor. The Plant Journal, 32(6), 1049-1055. doi:10.1046/j.1365-313X.2002.01490.x.Rovira, A. D. (1956). Plant root excretions in relation to the rhizosphere effect. Plant and Soil, 7(2), 178-194. doi:10.1007/BF01343726.Ruocco, M., Lanzuise, S., Vinale, F., Marra, R., Turrà, D., Woo, S. L., & Lorito, M. (2009). Identification of a new biocontrol gene in Trichoderma atroviride: The role of an abc transporter membrane pump in the interaction with different plant-pathogenic fungi. Molecular Plant-Microbe Interactions, 22(3), 291-301. doi:10.1094/MPMI-22-3-0291.Ryan, P. R., Delhaize, E., & Jones, D. L. (2001). Function and mechanism of organic anion exudation from plant roots. Annual Review of Plant Physiology and Plant Molecular Biology, 52, 527-560. doi:10.1146/annurev.arplant.52.1.527.Sammer, U. F., Reiher, K., Spiteller, D., Wensing, A., & Völksch, B. (2012). Assessment of the relevance of the antibiotic 2-amino-3-(oxirane-2,3-dicarboxamido)- propanoyl-valine from Pantoea agglomerans biological control strains against bacterial plant pathogens. MicrobiologyOpen, 1(4), 438-449. doi:10.1002/mbo3.43.Ryu, C.-M., Farag, M. A., Hu, C.-H., Reddy, M. S., Wei, H.-X., Paré, P. W., & Kloepper, J. W. (2003). Bacterial volatiles promote growth in Arabidopsis. Proceedings of the National Academy of Sciences, 100(8), 4927-4932. doi:10.1073/pnas.0730845100.Sanford, G. B., & Broadfoot, W. C. (1931). Studies of the effects of other soil-inhabiting micro-organisms on the virulence of Ophiobolus graminis Sacc. Scientific Agriculture, 11(8): 512-528. doi:10.4141/sa-1931-0056.Santos, A., Beltrán, C., García, M., Cotes, A. M., & Villamizar, L. (2011). Control de Rhizoctonia solani en semilla de papa criolla con T. koningiopsis (Th003) y T. asperellum (Th034). En C. R. Beltrán Acosta, C. A. Moreno Velandia, & A. M. Cotes (Eds.), Trichoderma koningiopsis Th003, alternativa biológica para el control de Rhizoctonia solani en el cultivo de papa (pp. 32-42). Mosquera, Colombia: Corporación Colombiana de Investigación Agropecuaria (Corpoica).Schäfer, T., & Adams, T. (2015). The importance of microbiology in sustainable agriculture. En B. Lugtenberg (Ed.), Principles of plant-microbe interactions: Microbes for sustainable agriculture (pp. 5-6). Cham, Alemania: Springer International Publishing. doi:10.1007/978-3- 319-08575-3_2.Scher, F. M., & Baker, R. (1980). Mechanism of biological control in a Fusarium-suppressive soil. Phytopathology, 70(5), 412-417. doi:10.1094/Phyto-70-412.Schirmböck, M., Lorito, M., Wang, Y. L., Hayes, C. K., Arisan-Atac, I., Scala, F., ... Kubicek, C. P. (1994). Parallel formation and synergism of hydrolytic enzymes and peptaibol antibiotics, molecular mechanisms involved in the antagonistic action of Trichoderma harzianum against phytopathogenic fungi. Applied and Environmental Microbiology, 60(12), 4364-4370.Seidl, V. (2008). Chitinases of filamentous fungi: a large group of diverse proteins with multiple physiological functions. Fungal Biology Reviews, 22(1), 36-42. doi:10.1016/j. fbr.2008.03.002.Seidl, V., Song, L., Lindquist, E., Gruber, S., Koptchinskiy, A., Zeilinger, S., ... Kubicek, C. P. (2009). Transcriptomic response of the mycoparasitic fungus Trichoderma atroviride to the presence of a fungal prey. BMC Genomics, 10, 567. doi:10.1186/1471-2164-10-567.Serrano-Carreon, L., Hathout, Y., Bensoussan, M., & Belin, J.-M. (1993). Metabolism of linoleic acid or mevalonate and 6-pentyl--pyrone biosynthesis by Trichoderma species. Applied and Environmental Microbiology, 59(9), 2945-2950.Sharon, E., Bar-Eyal, M., Chet, I., Herrera-Estrella, A., Kleifeld, O., & Spiegel, Y. (2001). Biological control of the root-knot nematode meloidogyne javanica by Trichoderma harzianum. Phytopathology, 91(7), 687-693. doi:10.1094/PHYTO.2001.91.7.687.Sharon, M., Sneh, B., Kuninaga, S., & Hyakumachi, M. (2006). The advancing identification and classification of Rhizoctonia spp. using molecular and biotechnological methods compared with the classical anastomosis grouping. Mycoscience, 47(6), 299-316. doi:10.1007/S10267-006-0320-X.Shipton, P. J. (1977). Monoculture and soilborne plant pathogens. Annual Review of Phytopathology, 15(1), 387- 407. doi:10.1146/annurev.py.15.090177.002131.Shoresh, M., Harman, G. E., & Mastouri, F. (2010). Induced systemic resistance and plant responses to fungal biocontrol agents. Annual Review of Phytopathology, 48, 21-43. doi:10.1146/annurev-phyto-073009-114450.Sindhu, S. S., Suneja, S., Goel, A. K., Parmar, N., & Dadarwal, K. R. (2002). Plant growth promoting effects of Pseudomonas sp. on coinoculation with Mesorhizobium sp. Cicer strain under sterile and “wilt sick” soil conditions. Applied Soil Ecology, 19(1), 57-64. doi:10.1016/S0929- 1393(01)00176-7.Singh, P., & Cameotra, S. S. (2004). Enhancement of metal bioremediation by use of microbial surfactants. Biochemical and Biophysical Research Communications, 319(2), 291-297. doi:10.1016/j.bbrc.2004.04.155.Sivasithamparam, K., & Ghisalberti, E. (1998). Secondary metabolism in Trichoderma and Gliocladium. En C. P. Kubicek & G. E. Harman (Eds.), Trichoderma and Gliocladium basic biology taxonomy and genetics (Vol. 1, pp. 139-191). Londres, Reino Unido: Taylor and Francis Ltd.Smalla, K., Sessitsch, A., & Hartmann, A. (2006). The Rhizosphere: ‘soil compartment influenced by the root’. FEMS Microbiology Ecology, 56(2), 165-165. doi:10.1111/j.1574-6941.2006.00148.x.Srivastava, S., Sinha, V., Vaishnavi, A., Kunwar, T., & Tigga, R. S. (2012). Regulation of antibiotics production in biocontrol strains of Pseudomonas spp. En T. Satyanarayana & B. N. Johri (Eds.), Microorganisms in sustainable agriculture and biotechnology (pp. 197-225). Dordrecht, Holanda: Springer. doi:10.1007/978-94-007-2214-9_11.Steinberg, C., Whipps, J. M., Wood, D., Fenlon, J., & Alabouvette, C. (1999). Mycelial development of Fusarium oxysporum in the vicinity of tomato roots. Mycological Research, 103(6), 769-778. doi:10.1017/ S0953756298007710.Steinkellner, S., Mammerler, R., & Vierheilig, H. (2005). Microconidia germination of the tomato pathogen Fusarium oxysporum in the presence of root exudates. Journal of Plant Interactions, 1(1), 23-30. doi:10.1080/17429140500134334.Stotzky, G., & Rem, L. T. (1966). Influence of clay minerals on microorganisms: I. Montmorillonite and kaolinite on bacteria. Canadian Journal of Microbiology, 12(3), 547- 563. doi:10.1139/m66-078.Stotzky, G., & Torrence Martin, R. (1963). Soil mineralogy in relation to the spread of Fusarium wilt of banana in central America. Plant and Soil, 18(3), 317-337. doi:10.1007/bf01347232.Subbarao, K. V. (1998). Progress toward integrated management of lettuce drop. Plant Disease, 82(10), 1068- 1078. doi:10.1094/PDIS.1998.82.10.1068.Summers, W. C. (2005). Bacteriophage research: early history. En E. Kutter & A. Sulakvelidze (Eds.), Bacteriophages: Biology and applications (pp. 5-27). Boca Ratón, EE. UU.: CRC Press.Szabó, M., Csepregi, K., Gálber, M., Virányi, F., & Fekete, C. (2012). Control plant-parasitic nematodes with Trichoderma species and nematode-trapping fungi: The role of chi18-5 and chi18-12 genes in nematode egg-parasitism. Biological Control, 63(2), 121-128. doi:10.1016/j.biocontrol.2012.06.013.Szekeres, A., Leitgeb, B., Kredics, L., Antal, Z., Hatvani, L., Manczinger, L., & Vágvölgyi, C. (2005). Peptaibols and related peptaibiotics of Trichoderma. Acta Microbiologica et Immunologica Hungarica, 52(2), 137-168. doi:10.1556/ AMicr.52.2005.2.2.Takenaka, S., Nakamura, Y., Kono, T., Sekiguchi, H., Masunaka, A., & Takahashi, H. (2006). Novel elicitinlike proteins isolated from the cell wall of the biocontrol agent Pythium oligandrum induce defence-related genes in sugar beet. Molecular Plant Pathology, 7(5), 325-339. doi:10.1111/j.1364-3703.2006.00340.x.Takenaka, S., Sekiguchi, H., Nakaho, K., Tojo, M., Masunaka, A., & Takahashi, H. (2008). Colonization of Pythium oligandrum in the tomato rhizosphere for biological control of bacterial wilt disease analyzed by real-time PCR and confocal laser-scanning microscopy. Phytopathology, 98(2), 187-195. doi:10.1094/PHYTO-98-2-0187.Thomas, R. C. (1935). A bacteriophage in relation to Stewart’s disease of corn. Phytopathology, 25(3), 371-372.Tijerino, A., Elena Cardoza, R., Moraga, J., Malmierca, M. G., Vicente, F., Aleu, J., ... Hermosa, R. (2011). Overexpression of the trichodiene synthase gene tri5 increases trichodermin production and antimicrobial activity in Trichoderma brevicompactum. Fungal Genetics and Biology, 48(3), 285- 296. doi:10.1016/j.fgb.2010.11.012.Tisdale, S. L., Havlin, J., Beaton, J., & Nelson, W. L. (1975). Soil fertility and fertilizers. Nueva York, EE. UU.: Pearson Education. doi:10.2307/1292062.Tomprefa, N., Hill, R., Whipps, J., & McQuilken, M. (2011). Some environmental factors affect growth and antibiotic production by the mycoparasite Coniothyrium minitans. Biocontrol Science and Technology, 21(6), 721-731. doi:10. 1080/09583157.2011.575211.Tomprefa, N., McQuilken, M. P., Hill, R. A., & Whipps, J. M. (2009). Antimicrobial activity of Coniothyrium minitans and its macrolide antibiotic macrosphelide A. Journal of Applied Microbiology, 106(6), 2048-2056. doi:10.1111/ j.1365-2672.2009.04174.x.Torkewitz, R. (2008). Chronology of fungicides. Recuperado de https://www.apsnet.org/about/history/Documents/ Chronology_of_Fungicides.pdf.Torres, H. (2002). Manual de las enfermedades mas importantes de la papa en el Perú. Lima, Perú: Centro Internacional de la Papa (cip).Torres, M. J., Brandan, C. P., Petroselli, G., Erra-Balsells, R., & Audisio, M. C. (2016). Antagonistic effects of Bacillus subtilis subsp. subtilis and B. amyloliquefaciens against Macrophomina phaseolina: sem study of fungal changes and uv-maldi-tof ms analysis of their bioactive compounds. Microbiological Research, 182, 31-39. doi:10.1016/j. micres.2015.09.005.Tsror, L. (2010). Biology, epidemiology and management of Rhizoctonia solani on potato. Journal of Phytopathology, 158(10), 649-658. doi:10.1111/j.1439- 0434.2010.01671.x.Tsror, L., Barak, R., & Sneh, B. (2001). Biological control of black scurf on potato under organic management. Crop Protection, 20(2), 145-150. doi:10.1016/S0261- 2194(00)00124-1.Tsror, L., & Peretz-Alon, I. (2005). The influence of the inoculum source of Rhizoctonia solani on development of black scurf on potato. Journal of Phytopathology, 153(4), 240-244. doi:10.1111/j.1439-0434.2005.00962.x.Twort, F. W. (1915). An investigation on the nature of ultramicroscopic viruses. The Lancet, 186(4814), 1241-1243. doi:10.1016/S0140-6736(01)20383-3.Uribe, D., Ortiz, E., Portillo, M., Bautista, G., & Cerón, J. (1999). Diversidad de Pseudomonas fluorescentes en cultivos de papa de la region cundiboyacense y su actividad antagonista in vitro sobre Rhizoctonia solani. Revista Colombiana Biotecnología, 2(1), 50-58.Van Breemen, N., Driscoll, C. T., & Mulder, J. (1984). Acidic deposition and internal proton sources in acidification of soils and waters. Nature, 307, 599-604. doi:10.1038/307599a0.Van Elsas, J. D., & Heijnen, C. E. (1990). Methods for the introduction of bacteria into soil: A review. Biology and Fertility of Soils, 10(2), 127-133. doi:10.1007/BF00336248.Van Lenteren, J. C., Bolckmans, K., Köhl, J., Ravensberg, W. J., & Urbaneja, A. (2018). Biological control using invertebrates and microorganisms: plenty of new opportunities. BioControl, 63(1), 39-59. doi:10.1007/ s10526-017-9801-4.Van Veen, J. A., Van Overbeek, L. S., & Van Elsas, J. D. (1997). Fate and activity of microorganisms introduced into soil. Microbiology and Molecular Biology Reviews, 61(2), 121-135.Vanittanakom, N., Loeffler, W., Koch, U., & Jung, G. (1986). Fengycin-a novel antifungal lipopeptide antibiotic produced by Bacillus subtilis F-29-3. The Journal of Antibiotics, 39(7), 888-901.Velivelli, S. L. S., De Vos, P., Kromann, P., Declerck, S., & Prestwich, B. D. (2014). Biological control agents: from field to market, problems, and challenges. Trends in Biotechnology, 32(10), 493-496. doi:10.1016/j. tibtech.2014.07.002.Verma, M., Brar, S. K., Tyagi, R. D., Surampalli, R. Y., & Valéro, J. R. (2007). Antagonistic fungi, Trichoderma spp.: Panoply of biological control. Biochemical Engineering Journal, 37(1), 1-20. doi:10.1016/j.bej.2007.05.012.Vinale, F., Sivasithamparam, K., Ghisalberti, E. L., Marra, R., Woo, S. L., & Lorito, M. (2008). Trichoderma–plant– pathogen interactions. Soil Biology and Biochemistry, 40(1), 1-10. doi:10.1016/j.soilbio.2007.07.002.Vinodkumar, S., Nakkeeran, S., Renukadevi, P., & Malathi, V. G. (2017). Biocontrol potentials of antimicrobial peptide producing Bacillus species: Multifaceted antagonists for the management of stem rot of carnation caused by Sclerotinia sclerotiorum. Frontiers in Microbiology, 8, 446. doi:10.3389/ fmicb.2017.00446.Viterbo, A., & Horwitz, B. A. (2010). Mycoparasitism. En K. Borkovich & D. J. Ebbole (Eds.), Cellular and molecular biology of filamentous fungi (pp. 676-693). Washington, EE. UU.: American Society of Microbiology. doi:10.1128/ 9781555816636.ch42.Walker, J. C., & Snyder, W. C. (1933). Pea wilt and root rots. Madison, EE. UU.: University of WisconsinWang, M., Zhang, M., Li, L., Dong, Y., Jiang, Y., Liu, K., ... Fang, X. (2017). Role of Trichoderma reesei mitogen-activated protein kinases (MAPKs) in cellulase formation. Biotechnology for Biofuels, 10, 99. doi:10.1186/s13068-017-0789-x.Wasson, D. L. (2017). Virgil. Recuperado de https://www. ancient.eu/virgil/.Watson, R. T., Albritton, D. T., Anderson, S. O., & Lee- Bapty, S. (1992). Methyl Bromide: Its Atmospheric Science, Technology and Economics. Nairobi, Kenya: United Nations Environmental Program.Wei, W., Zhu, W., Cheng, J., Xie, J., Jiang, D., Li, G., ... Fu, Y. (2016). Nox complex signal and MAPK cascade pathway are cross-linked and essential for pathogenicity and conidiation of mycoparasite Coniothyrium minitans. Scientific Reports, 6, 24325. doi:10.1038/srep24325.Weindling, R. (1932). Trichoderma lignorum as a parasite of other soil fungi. Phytopahtology, 22, 837-845.Weindling, R. (1934). Studies on a lethal principle effective in the parasitic action of Trichoderma lignorum on Rhizoctonia solani and other soil fungi. Phytopathology, 24(11), 1153-1179.Weindling, R. (1941). Experimental consideration of the mold toxins of Gliocladium and Trichoderma. Phytopathology, 31(11), 991-1003.Weindling, R., & Emerson, O. (1936). The isolation of a toxic substance from the culture filtrate of Trichoderma. Phytopathology, 26, 1068-1070.Welbaum, G. E., Sturz, A. V., Dong, Z., & Nowak, J. (2004). Managing soil microorganisms to improve productivity of agro-ecosystems. Critical Reviews in Plant Sciences, 23(2), 175-193. doi:10.1080/07352680490433295.Weller, D. M. (1988). Biological control of soilborne plant pathogens in the rhizosphere with bacteria. Annual Review of Phytopathology, 26(1), 379-407. doi:10.1146/ annurev.py.26.090188.002115.Weller, D. M. (2007). Pseudomonas biocontrol agents of soilborne pathogens: Looking back over 30 years. Phytopathology, 97(2), 250-256. doi:10.1094/ PHYTO-97-2-0250.Weller, D. M. (2015). Take-All Decline and Beneficial Pseudomonads. En B. Lugtenberg (Ed.), Principles of plantmicrobe interactions (pp. 363-370). Cham, Suiza: Springer. doi:10.1007/978-3-319-08575-3_38.Weller, D. M., & Cook, R. J. (1983). Suppression of take-all of wheat by seed treatments with fluorescent Pseudomonads. Phytopathology, 73(3), 463-469. doi:10.1094/Phyto-73-463.Weller, D. M., Raaijmakers, J. M., Gardener, B. B., & Thomashow, L. S. (2002). Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annual Review of Phytopathology, 40, 309-348. doi:10.1146/annurev.phyto.40.030402.110010.Weller, D. M., & Thomashow, L. (2016). Contribution of biocontrol agents to sustainable agriculture: Do insights from microbiome research and bca “omics” pay off. iobc Bulletin, 117, 2-6.Wells, H. D., Bel, B. K., & Jaworski, C. A. (1972). Efficacy of Trichoderma harzianun as a biocontrol for Sclerotium rolfsii. Phytopathology, 62, 442-447. doi:10.1094/Phyto-62-442.Whilhite, S., Lumsden, R., & Straney, D. (1994). Mutational analysis of gliotoxin production by the biocontrol fungus Gliocladium virens in relation to suppression of Pythium damping-off. Phytopathology, 84(8), 816-821.Whipps, J. M. (2001). Microbial interactions and biocontrol in the rhizosphere. Journal of Experimental Botany, 52(Suppl. 1): 487-511. doi:10.1093/jexbot/52.suppl_1.487.Whipps, J. M., & Gerlagh, M. (1992). Biology of Coniothyrium minitans and its potential for use in disease biocontrol. Mycological Research, 96(11), 897-907. doi:10.1016/ S0953-7562(09)80588-1.Whipps, J. M., Hand, P., Pink, D., & Bending, G. D. (2008). Phyllosphere microbiology with special reference to diversity and plant genotype. Journal of Applied Microbiology, 105(6), 1744-1755. doi:10.1111/j.1365- 2672.2008.03906.x.Wilson, P. S., Ahvenniemi, P. M., Lehtonen, M. J., Kukkonen, M., Rita, H., & Valkonen, J. P. T. (2008). Biological and chemical control and their combined use to control different stages of the Rhizoctonia disease complex on potato through the growing season. Annals of Applied Biology, 153(3), 307-320. doi:10.1111/j.1744- 7348.2008.00292.x.Wilson, P. S., Ketola, E. O., Ahvenniemi, P. M., Lehtonen, M. J., & Valkonen, J. P. T. (2007). Dynamics of soilborne Rhizoctonia solani in the presence of Trichoderma harzianum: effects on stem canker, black scurf and progeny tubers of potato. Plant Pathology, 57(1), 152-161. doi:10.1111/j.1365-3059.2007.01706.x.Wise, C., Falardeau, J., Hagberg, I., & Avis, T. J. (2014). Cellular lipid composition affects sensitivity of plant pathogens to fengycin, an antifungal compound produced by Bacillus subtilis strain CU12. Phytopathology, 104(10), 1036-1041. doi:10.1094/PHYTO-12-13-0336-R.Wood, R. K. S., & Tveit, M. (1955). Control of plant diseases by use of antagonistic organisms. Botanical Review, 21(8), 441-492.Wrather, J. A., Anderson, T. R., Arsyad, D. M., Tan, Y., Ploper, L. D., Porta-Puglia, A., ... Yorinori, J. T. (2001). Soybean disease loss estimates for the top ten soybean-producing counries in 1998. Canadian Journal of Plant Pathology, 23(2), 115-121. doi:10.1080/07060660109506918.Wright, J. M. (1954). The production of antibiotics in soil. Annals of Applied Biology, 41(2), 280-289. doi:10.1111/j.1744-7348.1954.tb01121.x.Wright, J. M. (1956). The production of antibiotics in soil. Annals of Applied Biology, 44(4), 461-466. doi:10.1111/ j.1744-7348.1956.tb02140.x.Yeaman, M. R., & Yount, N. Y. (2003). Mechanisms of antimicrobial peptide action and resistance. Pharmacological Reviews, 55(1), 27.Yedidia, I., Benhamou, N., & Chet, I. (1999). Induction of defense responses in cucumber plants (Cucumis sativus L.) by the biocontrol agent Trichoderma harzianum. Applied and Environmental Microbiology, 65(3), 1061-1070.Yedidia, I., Shoresh, M., Kerem, Z., Benhamou, N., Kapulnik, Y., & Chet, I. (2003). Concomitant induction of systemic resistance to Pseudomonas syringae pv. lachrymans in cucumber by Trichoderma asperellum (T-203) and accumulation of phytoalexins. Applied and Environmental Microbiology, 69(12), 7343-7353. doi:10.1128/aem.69.12.7343-7353.2003.Zeilinger, S., Gruber, S., Bansal, R., & Mukherjee, P. K. (2016). Secondary metabolism in Trichoderma – chemistry meets genomics. Fungal Biology Reviews, 30(2), 74-90. doi:10.1016/j.fbr.2016.05.001.Zeng, F., Gong, X., Hamid, M. I., Fu, Y., Jiatao, X., Cheng, J., ... Jiang, D. (2012). A fungal cell wall integrity-associated map kinase cascade in Coniothyrium minitans is required for conidiation and mycoparasitism. Fungal Genetics and Biology, 49(5), 347-357. doi:10.1016/j.fgb.2012.02.008.Zeng, L. M., Zhang, J., Han, Y. C., Yang, L., Wu, M.d., Jiang, D. H., ... Li, G. Q. (2014). Degradation of oxalic acid by the mycoparasite Coniothyrium minitans plays an important role in interacting with Sclerotinia sclerotiorum. Environmental Microbiology, 16(8), 2591-2610. doi:10.1111/1462- 2920.12409.Zhang, B., Dong, C., Shang, Q., Han, Y., & Li, P. (2013). New insights into membrane-active action in plasma membrane of fungal hyphae by the lipopeptide antibiotic bacillomycin L. Biochimica et Biophysica Acta, 1828(9), 2230-2237. doi:10.1016/j.bbamem.2013.05.033.Zhang, J., Howell, C. R., & Starr, J. L. (1996). Suppression of Fusarium colonization of cotton roots and Fusarium wilt by seed treatments with Gliocladium virens and Bacillus subtilis. Biocontrol Science and Technology, 6(2), 175-188. doi:10.1080/09583159650039377.Adikaram, N., Karunanayake, C., & Abayasekara, C. (2010). The role of pre-formed antifungal substances in the resistance of fruits to postharvest pathogens. En D. Prusky & M. L. Gullino (Eds.), Postharvest pathology (pp. 1-11). Dordrecht, Holanda: Springer.Abdelfattah, A., Li Destri-Nicosia, M. G., Cacciola, S. O., Droby, S., & Schena, L. (2015). Metabarcoding analysis of fungal diversity in the phyllosphere and carposphere of olive (Olea europaea). Plos One, 10(7), 1-19. doi:10.1371/ journal.pone.0131069.Andersen, B., Smedsgaard, J., & Frisvad, J. (2004). Penicillium expansum: Consistent production of patulin, chaetoglobosins, and other secondary metabolites in culture and their natural occurrence in fruit products. Journal of Agricultural and Food Chemistry, 52(8), 2421- 2428. doi:10.102/jf035406k.Andrews, J. H., & Harris, R. F. (2000). The ecology and biogeography of microorganisms on plant surfaces. Annual Review of Phytopathology, 38, 145-180. doi:10.1146/ annurev.phyto.38.1.145.Arras, G., De Cicco, V., Arru, S., & Lima, G. (1998). Biocontrol by yeasts of blue mould of citrus fruits and the mode of action of an isolate of Pichia guilliermondii. Journal of Horticultureal Science and Biotechnology, 73(3), 413-418. doi:10.1080/14620316.1998.11510993.Arras, G. (1996). Mode of action of an isolate of Candida famata in biological control of Penicillium digitatum in orange fruits. Postharvest Biology and Technology, 8(3), 191-198. doi:10.1016/0925-5214(95)00071-2.Arrebola, E., Jacobs, R., & Korsten, L. (2009). Iturin A is the principal inhibitor in the biocontrol activity of Bacillus amyloliquefaciens PPCB004 against postharvest fungal pathogens. Journal of Applied Microbiology, 108(2), 386- 395. doi:10.1111/j.1365-2672.2009.04438.x.Arrebola, E., Sivakumar, D., Bacigalupo, R., & Korsten, L. (2010). Combined application of antagonist Bacillus amyloliquefaciens and essential oils for the control of peach postharvest diseases. Crop Protection, 29(4), 369-377. doi:10.1016/j.cropro.2009.08.001.Barkai-Golan, R. (2001). Postharvest diseases of fruits and vegetables: development and control. Amsterdam, Holanda: Elsevier.Bastiaanse, H., De Lapeyre de Bellaire, L., Lassois, L., Misson, C., & Jijakli, M. H. (2010). Integrated control of crown rot of banana with Candida oleophila strain O, calcium chloride and modified atmosphere packaging. Biological Control, 53(1), 100-107. doi:10.1016/j. biocontrol.2009.10.012.Batta, Y. A. (2007). Control of postharvest diseases of fruit with an invert emulsion formulation of Trichoderma harzianum Rifai. Postharvest Biology and Technology, 43(1), 143-150. doi:10.1016/j.postharvbio.2006.07.010.Begum, M., Hocking, A. D., & Miskelly, D. (2009). Inactivation of food spoilage fungi by ultra violet (uvc) irradiation. International Journal of Food Microbiology, 129(1), 74-77. doi:10.1016/j.ijfoodmicro.2008.11.020.Bencheqroun, S. K., Bajji, M., Massart, S., Labhilili, M., Jaafari, S. E., & Jijakli M. H. (2007). In vitro and in situ study of postharvest apple blue mold biocontrol by Aureobasidium pullulans: Evidence for the involvement of competition for nutrients. Postharvest Biology Technology, 46(2), 128-135. doi:10.1016/j.postharvbio.2007.05.005.Breinig, F., Tipper, D. J., & Schmitt, M. J. (2002). Kre1p, the plasma membrane receptor for the yeast K1 viral toxin. Cell, 108(3), 395-405. doi:10.1016/S0092- 8674(02)00634-7.Bleve, G., Grieco, F., Cozzi, G., Logrieco, A., & Visconti, A. (2006). Isolation of epiphytic yeasts with potential for biocontrol of Aspergillus carbonarius and A. niger on grape. International Journal of Food Microbiology, 108(2), 204-209. doi:10.1016/j.ijfoodmicro.2005.12.004.Bryk, H. (1999). The study on the infection of apple fruits by Botrytis cinerea Pers. after harvest. Acta Agrobotanica, 52(1-2), 19-29.Bull, C. T., Wadsworth, M. L., Sorensen, K. N., Takemoto, J. Y., Austin, R. K.,... Smilanick, J. L. (1998). Syringomycin E produced by biological control agents controls green mold on lemons. Biological Control, 12(2), 89-95. doi:10.1006/ bcon.1998.0622.Caiazzo, R., Kim, Y., & Xiao, C. L. (2014). Occurrence and Phenotypes of Pyrimethanil Resistance in Penicillium expansum from Apple in Washington State. Plant Disease, 98(7), 924-928. doi:10.1094/PDIS-07-13-0721RE.Calvente, V., Benuzzi, D., & De Tosetti, M. I. S. (1999). Antagonistic action of siderophores from Rhodotorula glutinis upon the postharvest pathogen Penicillium expansum, International Biodeterioration and Bioegradation, 43(4), 167-172. doi:10.1016/S0964-8305(99)00046-3.Calvo, J., Calvente, V., De Orellano, M. E., Benuzzi, D., & Sanz de Tosetti M. I. (2003). Improvement in the biocontrol of postharvest diseases of apples with the use of yeast mixtures. Biocontrol, 48(5), 579-593. doi:10.1023/A:1025738811204.Canamas, T. P., Viñas, I., Usall, J., Torres, R., Anguera, M., & Teixidó, N. (2008). Control of postharvest diseases on citrus fruit by preharvest applications of biocontrol agent Pantoea agglomerans CPA-2: Part II. Effectiveness of different cell formulations. Postharvest Biology and Technology, 49(1), 96-106. doi:10.1016/j. postharvbio.2007.12.005.Calvo, J., Calvente, V., de Orellano, M. E., Benuzzi, D., & Sanz de Tosetti, M. (2007). Biological control of postharvest spoilage caused by Penicillium expansum and Botrytis cinerea in apple by using the bacterium Rahnella aquatilis. International Journal of Food Microbiology, 113(3), 251- 257. doi:10.1016/j.ijfoodmicro.2006.07.003.Capdeville, G., Souza, M. T., Santos, J. R. P., Miranda, S. P., Caetano A. R, & Torres, F. A. G. (2007). Selection and testing of epiphytic yeasts to control anthracnose in postharvest of papaya fruit. Scientia Horticulturae, 111(2), 179-185. doi:10.1016/j.scienta.2006.10.003.Cao, S., Zheng, Y., Tang, S., & Wang, K. (2008). Improved control of anthracnose rot in loquat fruit by a combination treatment of Pichia membranifaciens with CaCl2. International Journal of Food Microbiology, 126(1-2), 216- 220. doi:10.1016/j.ijfoodmicro.2008.05.026.Carisse, O. (2016). Epidemiology and aerobiology of Botrytis spp. En: S. Fillinger & Y. Elad, Y. (Eds.), Botrytis – the Fungus, the pathogen and its management in agricultural systems (pp. 127-148). Cham, Suiza: Springer International.Coates, L. M., & Johnson, G. I. (1997). Postharvest pathology of fruit and vegetables. En J. Brown & H. Ogle, (Eds.), Plant Pathogens and Plant Diseases (pp. 533- 547). Armidale, Australia: Rockvale.Castoria, R., De Curtis, F., Lima, G., Caputo, L., Pacifico, S., & De Cicco, V. (2001). Aureobasidium pullulans (LS-30) an antagonist of postharvest pathogens of fruits: study on its modes of action. Postharvest Biology and Technology, 22(1), 7-17. doi:10.1016/S0925-5214(00)00186-1.Conway, W. S., Sams, C. E., & Hickey, K. D. (2002). Pre- and postharvest calcium treatment of apple fruit and its effect on quality. Acta Horticulture, 594, 413-419. doi:10.17660/ ActaHortic.2002.594.53.Çorbacı, C., & Uçar, F. B. (2017). Production and optimization of killer toxin in Debaryomyces hansenii strains. Brazilian Archives of Biology and Technology, 60, e17160339. doi:10.1590/1678-4324-2017160339.Chalutz, E., & Wilson, C. (1990). Postharvest biocontrol of green and blue mold and sour rot of citrus fruit by Debaryomyces hansenii. Plant Diseases, 74, 134-137. doi:10.1094/PD-74-0134.Chanchaichaovivat, A., Ruenwongsa, P., & Panijpan, B. (2007). Screening and identification of yeast strains from fruit and vegetables: potential for biological control of postharvest chilli anthracnose (Colletotrichum capsici). Biological Control, 42, 326-335. doi:10.1016/j. biocontrol.2007.05.016.Choudhary, A. K., & Kumari, P. (2010). Management of mycotoxin contamination in preharvest and post harvest crops: present status and future prospects. Journal of Phytology, 2(7), 37-52.Departamento Nacional de Planeación (dnp). (2016). Pérdida y desperdicio de alimentos en Colombia, estudio de la dirección de seguimiento y evaluación de políticas públicas. Bogotá, Colombia: dnp.Droby, S., Chalutz, E., Wilson, C. L., & Wisniewski, M. E. (1992). Biological control of postharvest diseases: a promising alternative to the use of synthetic fungicides. Phytoparasitica, 20(Supl. 1), S149-S153. doi:10.1007/ bf02980427.Droby, S., Vinokur, V., Weiss, B., Cohen, L., Daus, A., Goldschmidt, E. E., & Porat, R. (2002). Induction of resistance to Penicillium digitatum in grapefruit by the yeast biocontrol agent Candida oleophila. Phytopathology, 92(4), 393-399. doi:10.1094/PHYTO.2002.92.4.393.Droby, S., Wisniewski, M., Macarisin, D., & Wilson, C. (2009). Twenty years of postharvest biocontrol research: Is it time for a new paradigm? Postharvest Biology and Technology, 52(2), 137-145. doi:10.1016/j.postharvbio.2008.11.009.Droby, S., Wisniewski, M., Teixidó, N., Spadaro, D., & Jijakli, M. H. (2016). The science, development, and commercialization of postharvest biocontrol products. Postharvest Biology and Technology, 122, 22-29. doi:10.1016/j.postharvbio.2016.04.006.Du Plooy, W., Regnier, T., & Combrinck, S. (2009). Essential oil amended coatings as alternatives to synthetic fungicides in citrus postharvest management. Postharvest Biology and Technology, 53(3), 117-122. doi:10.1016/j. postharvbio.2009.04.005.El-Ghaouth, A., Smilanick, J. L., & Wilson, C. L. (2000). Enhancement of the performance of Candida saitoana by the addition of glycolchitosan for the control of postharvest decay of apple and citrus fruit. Postharvest citrus fruit in Morocco. Communications in agricultural and applied biological sciences, 69(4), 601-609.Lassois, L., de Bellaire, L., & Jijakli, M. H. (2008). Biological control of crown rot of bananas with Pichia anomala strain K and Candida oleophila strain O. Biological Control, 45(3), 410-418. doi:10.1016/j.biocontrol.2008.01.013.Lavalard, M. (2017). Agrauxine and Syngenta start a partnership to launch Nexy®. Recuperado de https://www.agrauxine. com/es/2017/05/12/agrauxine-syngenta-nexy/.Lima, G., Curtis, F. D., Piedimonte, D., Spina, A. M., & De Cicco, V. (2006). Integration of biocontrol yeast and thiabendazole protects stored apples from fungicide sensitive and resistant isolates of Botrytis cinerea. Postharvest Biology and Technology, 40(3), 301-307. doi:10.1016/j.postharvbio.2006.01.017.Liu, J., Sui, Y., Wisniewski, M., Droby, S., & Liu, Y. (2013). Review: Utilization of antagonistic yeasts to manage postharvest fungal diseases of fruit. International Journal of Food Microbiology, 167(2), 153-160. doi:10.1016/j. ijfoodmicro.2013.09.004.Long, C. A., Deng, B. X., & Deng, X. (2006). Pilot testing of Kloeckera apiculata for the biological control of postharvest diseases of citrus. Annals of Microbiology, 56(1), 13-17. doi:10.1007/BF03174963.Long, C. A., Deng, B. X., & Deng, X. (2007). Commercial testing of Kloeckera apiculata, isolate 34-9, for biological control of postharvest diseases of citrus fruit. Annals of Microbiology, 57(2), 203-207. doi:10.1007/BF03175208.Magan, N., Medina, A., & Aldred, D. (2011). Possible climate-change effects on mycotoxin contamination of food crops pre- and postharvest. Plant Pathology, 60(1), 150-163. doi:10.1111/j.1365-3059.2010.02412.x.Mari, M., Neri, F., & Bertolini, P. (2007). Novel approaches to prevent and control postharvest diseases of fruits. Stewart Postharvest Review, 3(6), 4 doi:10.2212/spr.2007.6.4.Marquina, D., Santos, A., & Peinado, J. (2002). Biology of killer yeasts. International Microbiology, 5(2), 65-71. doi:10.1007/s10123-002-0066-z.Martins, G., Vallance, J., Mercier, A., Albertin, W., Stamatopoulos, P., Rey, P., … Masneuf-Pomarède, I. (2014). Influence of the farming system on the epiphytic yeasts and yeast-like fungi colonizing grape berries during the ripening process. International Journal of Food Microbiology, 177, 21-28. doi:10.1016/j. ijfoodmicro.2014.02.002.Mason, D., & Dennis, C. (1978). Post-harvest spoilage of Scottish raspberries in relation to pre-harvest fungicide sprays. Londres, Reino Unido: Horticultural Research.Massart, S., Martinez-Medina, M., & Jijakli, M. H. (2015). Biological control in the microbiome era: Challenges and opportunities. Biological Control, 89, 98-108. doi:10.1016/ j.biocontrol.2015.06.003.Mikani, A., Etebarian, H. R., Sholberg, P. L., Gorman, D. T., Stokes, S., & Alizadeh, A. (2008). Biological control of apple gray mold caused by Botrytis mali with Pseudomonas fluorescens strains. Postharvest Biology and Technology, 48(1), 107-112. doi:10.1016/j.posthar vbio.2007.09.020.Montesinos-Herrero, C., del Río, M.Á., Pastor, C., Brunetti, O., & Palou, L. (2009). Evaluation of brief potassium sorbate dips to control postharvest Penicillium decay on major citrus species and cultivars. Postharvest Biology and Technology, 52(1), 117-125. doi:10.1016/j. postharvbio.2008.09.012.Morales, H., Sanchis, V., Usall, J., Ramos, A. J., & Marín, S. (2008). Effect of biocontrol agents Candida sake and Pantoea agglomerans on Penicillium expansum growth and patulin accumulation in apples. International Journal of Food Microbiology, 122(1-2), 61-67. doi:10.1016/j. ijfoodmicro.2007.11.056.National Research Council (nrc). (1987). Management of technology: The hidden competitive advantage. Washington, EE. UU.: National Research Council, The National Academies Press.Nunes, C., Teixido, N., Usall, J., & Viñas, I. (2001). Biological control of major postharvest diseases on pear fruit with antagonistic bacteria Pantoea agglomerans (CPA-2). Acta Horticulturae, 553, 403-404. doi:10.17660/Acta Hortic.2001.553.92.Nunes, C., Usall, J., Teixidó, N., Fons, E., & Viñas, I. (2002). Postharvest biological control by Pantoea agglomerans (CPA-2) on Golden Delicious apples. Journal Applied Microbiology, 92(2), 247-255. doi:10.1046/j.1365- 2672.2002.01524.x.Nunes, C., Usall, J., Teixidó, N., Fons, E., & Viñas, I. (2002). Postharvest biological control by Pantoea agglomerans (CPA-2) on Golden Delicious apples. Journal Applied Microbiology, 92(2), 247-255. doi:10.1046/j.1365- 2672.2002.01524.x.Nunes, C., Usall, J., Manso, T., Torres, R., Olmo, M., & García, J. M. (2007). Effect of high temperature treatments on growth of Penicillium spp. and their development on ‘Valencia’ oranges. Food Science and Technology International, 13(1), 63- 68. doi:10.1177/1082013207075601.Nunes, C. A. (2012). Biological control of postharvest diseases of fruit. European Journal of Plant Pathology, 133(1), 181-196. doi:10.1007/s10658-011-9919-7.Organización de las Naciones Unidas para la Alimentación y la Agricultura (fao). (2015a). Iniciativa mundial sobre la reducción de la pérdida y el desperdicio de alimentos. Recuperado de http://www.fao.org/3/a-i4068s.pdf.Janisiewicz, W., Yourman, L., Roitman, J., & Mahoney, N. (1991). Postharvest control of blue mould and gray mould of apples and pears by dip treatment with pyrrolnitrin, a metabolite of Pseudomonas cepacia. Plant Disease, 75(5), 490-494. doi:10.1094/PD-75-0490.Janisiewicz, W. J., & Conway, W. S. (2010). Combining biological control with physical and chemical treatments to control fruit decay after harvest. Stewart Postharvest Review 6(1), article 3. doi.10.2212/spr.2010.1.3.Janisiewicz, W. J., & Korsten, L. (2002). Biological control of postharvest diseases of fruits. Annual Review of Phytopathology, 40, 411-441. doi:10.1146/annurev. phyto.40.120401.130158.Janisiewicz, W. J., Bastos Pereira, I., Almeida, M. S., Roberts, D. P., Wisniewski, M., & Kurtenbach, E. (2008). Improved biocontrol of fruit decay fungi with Pichia pastoris recombinant strains expressing Psd1 antifungal peptide. Postharvest Biology and Technology, 47(2), 218- 225. doi:10.1016/j.postharvbio.2007.06.010.Jarvis, W. R. (1991). Latent infections in the pre- and postharvest environment. HortScience, 26(6), 801.Jijakli, M., Lepoivre, P., Tossut, P., & Thonard, P. (1993). Biological control of Botrytis cinerea and Penicillium sp. on post-harvest apples by two antagonistic yeasts. Mededelingen van de Faculteit Landbouwkundige en Toegepaste Biologische Wetenschappen (Rijksuniversiteit te Gent), 58(3b), 1349-1358.Jijakli, M.H., Lepoivre, P., & Grevesse, C. (1999). Yeast species for biocontrol of apple postharvest diseases: An encouraging case of study for practical use. En K. G. Mukerji, B. P. Chamola, & R. K. Upadhyay (Eds.), Biotechnological approaches in biocontrol of plant pathogens (pp. 31-49). Boston, EE. UU.: Springer.Helbig, J. (2002). Ability of the antagonistic yeast Cryptococcus albidus to control Botrytis cinerea in strawberry. Biocontrol, 47(1), 85-99. doi:10.1023/A:1014466903941.Karabulut, O. A., & Baykal, N. (2003). Biological control of postharvest diseases of peaches and nectarines by yeasts. Journal of Phytopathology, 151(3), 130-134. doi:10.1046/ j.1439-0434.2003.00690.x.Karabulut, O. A., & Baykal, N. (2004). Integrated control of postharvest diseases of peaches with a yeast antagonist, hot water and modified atmosphere packaging. Crop Protection, 23(5), 431-435. doi:10.1016/j.cropro.2003.09.012.Karabulut, O. A., Arslan, U., Kadir, I., & Gul, K. (2005). Integrated control of post harvest diseases of sweet cherry with yeast antagonist and sodium bicarbonate applications within a hydrocooler. Postharvest Biology and Technology, 37(2), 135-141. doi:10.1016/j.postharvbio.2005.03.003.Kecskemeti, E., Berkelmann-Lohnertz, B., & Reineke, A. (2016). Are epiphytic microbial communities in the carposphere of ripening grape clusters (Vitis vinifera l.) different between conventional, organic, and biodynamic grapes? PLoS One, 11, e0160852. doi:10.1371/journal. pone.0160852.Kefialew, Y., & Ayalew, A. (2008). Postharvest biological control of anthracnose (Colletotrichum gloeosporioides) on mango (Mangifera indica). Postharvest Biology and Technology, 50(1), 8-11. doi:10.1016/j.postharvbio.2008.03.007.Kim, Y. K., Saito, S., & Xiao, C. L. (2015). Occurrence of Fludioxonil resistance in Penicillium digitatum from citrus in california. Plant Diseases, 99(10), 1447. doi:10.1094/ PDIS-02-15-0226-PDN.Kinay, P., & Yildiz, M. (2008). The shelf life and effectiveness of granular formulations of Metschnikowia pulcherrima and Pichia guilliermondii yeast isolates that control postharvest decay of citrus fruit. Biological Control, 45(3), 433-440. doi:10.1016/j.biocontrol.2008.03.001.Koomen, I., & Jeffrics, P. (1993). Effects of antagonistic microorganisms on the postharvest development of Colletotrichum gloeosporioides on mango. Plant Pathology, 42(2), 230-237. doi:10.1111/j.1365-3059.1993. tb01495.x.Kota, V. R., Kulkarni, S., & Hegde, Y. R. (2006). Postharvest diseases of mango and their biological management. Journal of Plant Disease Science, 1(2), 186-188.Krishnamurthy, S., & Kushalappa, C. G. (1985). Studies on the shelf life and quality of Robusta bananas as affected by post-harvest treatments. Journal of Horticultural Science, 60(4), 549-556. doi: 10.1080/14620316.1985.11515663.Lacroix, C. (2010). Protective cultures, antimicrobial metabolites and bacteriophages for food and beverage biopreservation. Cambridge, Inglaterra: Elsevier.Lahlali, R., Serrhini, M. N., & Jijakli, M. H. (2004). Efficacy assessment of Candida oleophila (strain O) and Pichia anomala (strain K) against major postharvest diseases of citrus fruits in Morocco. Communations in Agriculture Applied Biological Sciences, 69(4), 601-609.Lahlali, R., Raffaele, B., & Jijakli, M. H. (2011). UV protectants for Candida oleophila (strain O), a biocontrol agent of postharvest fruit diseases. Plant Pathology, 60(2), 288-295. doi:10.1111/j.1365-3059.2010.02368.x.Lahlali, R., Serrhini, M. N., & Jijakli, M. H. (2005a). Development of a biological control method against postharvest diseases of citrus fruits. Communications in Agriculture Applied Biological Sciences, 70(3), 47-58.Lahlali, R., Serrhini, M. N., & Jijakli, M. H. (2005b). Studying and modelling the combined effect of temperature and water activity on the growth rate of P. expansum. International Journal of Food Microbiology, 103(3), 315- 322. doi:10.1016/j.ijfoodmicro.2005.02.002.Lahlali, R., Serrhini, M. N., & Jijakli, M. H. (2004). Efficacy assessment of Candida oleophila (strain O) and Pichia anomala (strain K) against major postharvest diseases of Biology and Technology, 19(1), 103-110. doi:10.1016/ S0925-5214(00)00076-4.El-Ghaouth, A., & Wilson, C. (2002). Patente EUA 6419922B1. Candida saitoana compositions for biocontrol of plant postharvest decay. Washington, EE. UU.: Oficina de Patentes y Marcas de EUA.El-Ghaouth, A., Wilson, C., & Wisniewski, M. (2003). Control of postharvest decay of apple fruit with Candida saitoana and induction of defense responses. Phytopathology, 93(3), 344-348. doi:10.1094/PHYTO.2003.93.3.344.Ghaouth, A., Wilson, C., & Wisniewski, M. (2004). Biologically-based alternatives to synthetic fungicides for the control of postharvest diseases of fruit and vegetables. En S. A. M. H. Naqvi (Ed.), Diseases of fruit and vegetables (pp. 511-535). Dordrecht, Holanda: Springer.El-Ghaouth, A., Wilson, C. L., & Wisniewski, M. (1998). Ultrastructural and cytochemical aspects of the biological Control of Botrytis cinerea by Candida saitoana in apple fruit. Phytopathology, 88(4), 282-291. doi:10.1094/ PHYTO.1998.88.4.282.El-Neshawy, S. M., & Wilson, C. L. (1997). Nisin enhancement of biocontrol of postharvest diseases of apple with Candida oleophila. Postharvest Biology and Technology, 10(1), 9-14. doi:10.1016/S0925-5214(96)00053-1.Environmental Protection Agency (epa). (2016). What are Biopesticides? Recuperado de https://www.epa. gov/ingredients-used-pesticide-products/what-arebiopesticides.Faisal, M., Prema, R., Nagendran, K., Karthikeyan, G., Raguchander, T., & Prabakar, K. (2013). Development and evaluation of water in oil based emulsion formulation of Pseudomonas fluorescens (FP7) against Colletotrichum musae incitant of anthracnose disease in banana. Euroepan Journal of Plant Pathology, 138(1), 167-180. doi:10.1007/ s10658-013-0320-6.Fan, Q., & Tian, S. P. (2001). Postharvest biological control of grey mold and blue mold on apple by Cryptococcus albidus (Saito) Skinner. Postharvest Biology and Technology, 21(3), 341-350. doi:10.1016/S0925-5214(00)00182-4.Filonow, A. B. (2001). Butyl acetate and yeasts interact in adhesion and germination of Botrytis cinerea conidia in vitro and in fungal decay of golden delicious apple. Journal of Chemical Ecology, 27(4), 831-844. doi:10.1023/A:1010314305461.Fourie, J. F., & Holz, G. (1998). Effects of fruit and pollen exudates on growth of Botrytis cinerea and infection of plum and nectarine fruit. Plant Disease, 82(2), 165-170. doi:10.1094/PDIS.1998.82.2.165.Fuentes, O. E, García, P. G, & Cotes, A. M. (2002). Evaluation of potential agents for postharvest biocontrol of Alternaria alternata in tomato. Bulletin OILB/SROP, 25(10), 403-406.Gamagae, S. U., Sivakumar, D., Wilson Wijeratnam, R. S., & Wijesundra R. L. C. (2003). Use of sodium bicarbonate and Candida oleophila to control anthracnose in papaya during storage. Crop Protection, 22(5), 775-779. doi:10.1016/S0261-2194(03)00046-2.García, G., & Cotes, A. M. (2001). Searching alternatives for biological control of Rhizopus stolonifer in tomato postharvest. Fitopatología colombiana, 25, 39-47.García G., Jiménez, Y., Neisa, A., & Cotes, A. M. (2001). Selection of native yeasts for biological control of post-harvest rots caused by Botrytis allii in onion and Rhizopus stolonifer in tomato. Bulletin OILB/SROP, 24(3), 181-184.Gomes, A., Queiroz, M., & Pereira, O. (2015). Mycofumigation for the biological control of postharvest diseases in fruits and vegetables: A review.Bioengineering. Austin Journal of Biotechnology & Bioengineering, 2(4), 1051.Govender, V., Korsten, L., & Sivakumar, D. (2005). Semicommercial evaluation of Bacillus licheniformis to control mango postharvest diseases in South Africa. Postharvest Biology and Technology, 38(1), 57-65. doi:10.1016/j. postharvbio.2005.04.005.Grevesse, C., Jijakli, H., Duterme, O., Colinet, D., & Lepoivre, P. (1998). Preliminary study of exo-b-1, 3-Glucanase encoding genes in relation to the protective activity of Pichia anomala (strain K) against Botrytis cinerea on postharvest apples. Bulletin OILB/SROP = IOBC/ WPRS Bulletin, 21(9), 81-89.Gueldner, R. C., Reilly, C. C., Pusey, P. L., Costello, C. E., Arrendale, R. F., Cox, R. H., Himmelsbach, D. S., et al. (1988). Isolation and identification of iturins as antifungal peptides in biological control of peach brown rot with Bacillus subtilis. Journal of Agriculture and Food Chemistry, 36(2), 366-370. doi:10.1021/jf00080a031.Ippolito, A., El-Ghaouth, A., Wilson, C. L., & Wisniewski, M. (2000). Control of postharvest decay of apple fruit by Aureobasidium pullulans and induction of defense responses. Postharvest Biology and Technology, 19(3), 265- 272. doi:10.1016/S0925-5214(00)00104-6.Guijarro, B., Melgarejo, P., Torres, R., Lamarca, N., Usall, J., & De Cal, A. (2007). Effects of different biological formulations of Penicillium frequentans on brown rot of peaches. Biological Control, 42(1), 86-96. doi:10.1016/j. biocontrol.2007.03.014.Ippolito, A., & Nigro, F. (2000). Impact of preharvest application of biological control agents on postharvest diseases of fresh fruits and vegetables. Crop Protection, 19(8), 715-723. doi:10.1016/S0261-2194(00)00095-8.Janisiewicz, W. J. (1987). Postharvest biological control of blue mold on apple. Phytopathology, 77, 481-485.Janisiewicz, W., & Roitman, J. (1988). Biological control of blue mold and gray mold on apple and pear with Pseudomonas cepacia. Phytopathology, 78(12), 1697-1700.Organización de las Naciones Unidas para la Alimentación y la Agricultura (fao). (2015b). Pérdidas y desperdicios de alimentos en América Latina y el Caribe. Recuperado de http://www.fao.org/3/a-i5504s.pdf.Palou, L. (2011). Control integrado no contaminante de enfermedades de poscosecha (cincep): nuevo paradigma para el sector español de los cítricos. Levante Agrícola, (406), 173-183.Palou, L., Smilanick, J., & Droby, S. (2008). Alternatives to conventional fungicides for the control of citrus postharvest green and blue molds. Stewart Postharvest Review, 4(2), 1-16.Park, M. H., & Kim, J. G. (2015). Low-dose UV-C irradiation reduces the microbial population and preserves antioxidant levels in peeled garlic (Allium sativum L.) during storage. Postharvest Biology and Technology, 100, 109-112. doi:10.1016/j.postharvbio.2014.09.013.Perez, M. F., Contreras, L., Garnica, N. M., Fernández-Zenoff, M. V., Farías, M. E., Sepulveda, M., … Dib, J. R. (2016). Native killer yeasts as biocontrol agents of postharvest fungal diseases in lemons. PLoS ONE, 11(10), e0165590. doi:10.1371/journal.pone.0165590.Prusky, D., Alkan, N., Mengiste, T., & Fluhr, R. (2013). Quiescent and necrotrophic lifestyle choice during postharvest disease development. Annual Review of Phytopathology, 51, 155-176. doi:10.1146/annurevphyto- 082712-102349.Pusey, P. L. (1989). Use of Bacillus subtilis and related organisms as biofungicides. Pesticide Science, 27(2), 133- 140. doi:10.1002/ps.2780270204.Pusey, P. L., & Wilson, C. L. (1984). Postharvest biological control of stone fruit brown rot by Bacillus subtilis. Plant Diseases, 68(9), 753-756. doi:10.1094/PD-69-753.Qin, G. Z., & Tian, S. P. (2004). Biocontrol of postharvest diseases of jujube fruit by Cryptococcus laurentii combined with a low doses of fungicides under different storage conditions. Plant Disease, 88(5), 497-501.Ray, R. C., Swain, M. R., Panda, S. H., & Lata. (2011). Microbial control of postharvest diseases of fruits, vegetables, roots, and tubers. En A. Singh, N. Parmar, & R. C. Kuhad (Eds.), Bioaugmentation, Biostimulation and Biocontrol (pp. 311-355). Berlín, Alemania: Springer. doi:10.1007/978-3-642-19769-7_13.Saravanakumar, D., Spadaro, D., Garibaldi, A., & Gullino, M. L. (2009). Detection of enzymatic activity and partial sequence of a chitinase gene in Metschnikowia pulcherrima strain MACH1 used as post-harvest biocontrol agent. European Journal of Plant Pathology, 123(2), 183-193. doi:10.1007/s10658-008-9355-5.Schena, L., Nigro, F., Pentimone, I., Ligorio, A., & Ippolito, A. (2003). Control of postharvest rots of sweet cherries and table grapes with endophytic isolates of AureobasidiumSchena, L., Nigro, F., Pentimone, I., Ligorio, A., & Ippolito, A. (2003). Control of postharvest rots of sweet cherries and table grapes with endophytic isolates of Aureobasidium pullulans. Postharvest Biology Technology, 30(3), 209-220. doi:10.1016/S0925-5214(03)00111-X.Seethapathy, P., Gurudevan, T., Subramanian, K. S., & Kuppusamy, P. (2016). Bacterial antagonists and hexanalinduced systemic resistance of mango fruits against Lasiodiplodia theobromae causing stem-end rot. Journal of Plant Interactions, 11(1), 158-166. doi:10.1080/17429 145.2016.1252068.Selitrennikoff, C. P. (2001). Antifungal Proteins. Applied Environmental Microbiology, 67(7), 2883-2894. doi:10.1128/aem.67.7.2883-2894.2001.Sharma, R. R., Singh, D., & Singh, R. (2009). Biological control of postharvest diseases of fruits and vegetables by microbial antagonists: A review. Biological Control, 50(3), 205-221. doi:10.1016/j.biocontrol.2009.05.001.Sivakumar, D., Wilson Wijeratnam R. S., Marikar, F. M. M. T., Abeyesekere M., & Wijesundera R. L. C. (2001). Antagonistic effect of Trichoderma harzianum on post harvest pathogens of rambutans. Acta Horticulturae, 553, 389-392. doi:10.17660/ActaHortic.2001.553.88.Sivakumar, D., Wilson Wijeratnam, R. S., Abeyesekere, M., & Wijesundera R. L. C. (2002). Combined effect of generally regarded as safe (gras) compounds and Trichoderma harzianum on the control of postharvest diseases of rambutan. Phytoparasitica, 30(1), 43-51. doi:10.1007/BF02983969.Sivakumar, D, Wilson Wijeratnam, R. S., Wijesundera, R. L. C., Marikar, F. M. T., & Abeyesekere, M. (2000). Antagonistic effect of Trichoderma harzianum on postharvest pathogens of rambutan (Nephelium lappaceum). Phytoparasitica, 28(3), 240-247. doi:10.1007/ BF02981802.Smilanick, J. L., & Denis-Arrue, R. (1992). Control of green mold of lemons with Pseudomonas species. Plant Disease, 76(5), 481-485. doi:10.1094/PD-76-0481.Spadaro, D., & Droby, S. (2016). Development of biocontrol products for postharvest diseases of fruit: The importance of elucidating the mechanisms of action of yeast antagonists. Trends in Food Science & Technology, 47, 39- 49. doi:10.1016/j.tifs.2015.11.003.Spadaro, D., Vola, R., Piano, S., & Gullino, M. L. (2002). Mechanisms of action and efficacy of four isolates of the yeast Metschnikowia pulcherrima active against postharvest pathogens on apples. Postharvest Biology and Technology, 24(2), 123-134. doi:10.1016/S0925-5214(01)00172-7.Spadaro, D., & Gullino, M. L. (2004). State of the art and future prospects of the biological control of postharvest fruit diseases. International Journal of Food Microbiology, 91(2), 185-194. doi:10.1016/s0168-1605(03)00380-5.Spadaro, D., Garibaldi, A., & Gullino, M. L. (2004). Control of Penicillium expansum and Botrytis cinerea on apple combining a biocontrol agent with hot water dipping and acibenzolar-S-methyl, baking soda, or ethanol application. Postharvest Biology and Technology, 33(2), 141-151. doi:10.1016/j.postharvbio.2004.02.002.Syamaladevi, R. M., Lupien, S. L., Bhunia, K., Sablani, S. S., Dugan, F., Rasco, B., Killinger, et al. (2014). UV-C light inactivation kinetics of Penicillium expansum on pear surfaces: Influence on physicochemical and sensory quality during storage. Postharvest Biology and Technology, 87, 27-32. doi:10.1016/j.postharvbio.2013.08.005.Takesako, K., Ikai, K., Haruna, F., Endo, M., Shimanaka, K., Sono, E., Nakamura, T., et al. (1991). Aureobasidins, new antifungal antibiotics. Taxonomy, fermentation, isolation, and properties. The Journal of Antibiotics (Tokyo), 44(9), 919-924. doi:10.7164/antibiotics.44.919.Terao, D., De Carvalho Campos, J. S., Benato, E. A., & Hashimoto, J. M. (2015). Alternative strategy on control of postharvest diseases of mango (Mangifera indica L.) by use of low dose of ultraviolet-c irradiation. Food Engineering Reviews, 7(2), 171-175. doi:10.1007/s12393- 014-9089-4.Tian, S., Fan, Q, Xu, Y, & Liu H. (2002). Biocontrol efficacy of antagonist yeasts to gray mold and blue mold on apples and pears in controlled atmospheres. Plant Disease, 86(8), 848-853. doi:10.1094/PDIS.2002.86.8.848.Tian, S., Qin, G., & Xu, Y. (2005). Synergistic effects of combining biocontrol agents with silicon against postharvest diseases of jujube fruit. Journal of Food Protection, 68(3), 544-550.Tronsmo, A., & Dennis, C. (1977). The use of Trichoderma species to control strawberry fruit rots. Netherlands journal of plant pathology, 83(Supl. 1), 449. doi:10.1007/ bf03041462.Torres, R., Teixidó, N., Viñas, I., Mari, M., Casalini, L., Giraud, M., & Usall J. (2006). Efficacy of andida sake CPA-1 formulation for controlling Penicillium expansum decay on pome fruit from different Mediterranean regions. Journal of Food Protection, 69(11), 2703-2711. doi:10.4315/0362-028X-69.11.2703.Usall, J., Teixido, N., Torres, R., Ochoa de Eribe, X., & Viñas I. (2001). Pilot tests of Candida sake (CPA-1) applications to control postharvest blue mold on apple fruit. Postharvest Biology and Technology, 21(2), 147-156. doi:10.1016/S0925-5214(00)00131-9.Valencia-Chamorro, S. A., Palou, L., Del Rio, M. A., & Perez-Gago, M. B., (2011). Antimicrobial edible films and coatings for fresh and minimally processed fruits and vegetables: a review. Critical Review in Food Science and Nutrition, 51(9), 872-900. doi:10.1080/10408398.2010. 485705.Wang, X., Li, G., Jiang, D., & Huang, H. C. (2009). Screening of plant epiphytic yeasts for biocontrol of bacterial fruit blotch (Acidovorax avenae subsp. citrulli) of hami melon. Biological Control, 50(2), 164-171. doi:10.1016/j. biocontrol.2009.03.009.Weir, B. S., Johnston, P. R., & Damm, U. (2012). The Colletotrichum gloeosporioides species complex. Studies in Mycology, 73(1), 115-180. doi:10.3114/sim0011.Wilson, C. L., & El-Ghaouth, A. (2002). Patent EUA 6423310. Biological coating with a protective and curative effect for the control of postharvest decay. Washington, EE. UU.: Oficina de Patentes y Marcas de EUA.Wilson, C. L., & Pusey, P. (1985). Potential for biological control of postharvest plant diseases. Plant Diseases, 69(5), 375-378. doi:10.1094/PD-69-375.Wilson, C. L., & Wisniewski, M. E. (1989). Biological control of postharvest diseases of fruits and vegetables: An emerging technology. Annual Review of Phytopathology, 27, 425-441. doi:10.1146/annurev.py.27.090189.002233.Wilson, C. L., & Wisniewski, M. E. (1994). Biological control of postharvest diseases: theory and practice. Madison, EE. UU.: CRC Press.Wilson, C. L. Wisniewski, M. E., Droby, S., & Chalutz, E. (1993). A selection strategy for microbial antagonists to control postharvest diseases of fruits and vegetables. Scientia Horticulturae, 53(3), 183-189. doi:10.1016/0304- 4238(93)90066-Y.Wisniewski, M., Biles, C., Droby, S., McLaughlin, R., Wilson, C., & Chalutz, E. (1991). Mode of action of the postharvest biocontrol yeast, Pichia guilliermondii. I. Characterization of attachment to Botrytis cinerea. Physiological and Molecular Plant Pathology, 39(4), 245- 258. doi:10.1016/0885-5765(91)90033-E.Wisniewski, M., Droby, S., Norelli, J., Liu, J., & Schena, L. (2016). Alternative management technologies for postharvest disease control: The journey from simplicity to complexity. Postharvest Biology and Technology, 122, 3-10. doi:10.1016/j.postharvbio.2016.05.012.Wisniewski, M., Wilson, C., Droby, S., Chalutz, E., El- Ghaouth, A., & Stevens, C. (2007). Postharvest biocontrol: new concepts and applications. En C. Vincent, M. S. Goettel, & L. George (Eds.), Biological control: a global perspective: case studies from around the world (p. 262-273). Boca Ratón, EE. UU.: CAB International.Wisniewski, M., Wilson, C., & Hershberger, W., (1989). Characterization of inhibition of Rhizopus stolonifer germination and growth by Enterobacter cloacae. Canadian Journal of Botany, 67(8), 2317-2323. doi:10.1139/ b89-296.Wu, F., & Khlangwiset, P. (2010). Health economic impacts and cost-effectiveness of aflatoxin-reduction strategies in Africa: case studies in biocontrol and post-harvest interventions. Food additives and contaminants Part A, 27(4), 496-509. doi:10.1080/19440040903437865.Yang, D. M., Bi, Y., Chen, X. R, Ge, Y. H, & Zhao, J. (2006). Biological control of postharvest diseases with Bacillus subtilis (B1 strain) on muskmelons (Cucumis melo L. cv. Yindi). Acta Horticulturae, 712, 735-740. doi:10.17660/ ActaHortic.2006.712.94.Yao, H. J., & Tian, S. P. (2005). Effects of a biocontrol agent and methyl jasmonate on postharvest diseases of peach fruit and the possible mechanisms involved. Journal of Applied Microbiology, 98(4), 941-950. doi:10.1111/ j.1365-2672.2004.02531.x.Zhang, H., Zheng, X., Fu, C., & Xi, Y. (2003). Biological control of blue mold rot of pear by Cryptococcus laurentii. Journal of Horticultural Science and Biotechnology, 78(6), 888-893. doi:10.1080/14620316.2003.11511714.Zhang, H., Zheng, X., Fu, C., & Xi, Y. (2005). Postharvest biological control of gray mold rot of pear with Cryptococcus laurentii. Postharvest Biology and Technology, 35(1), 79-86. doi:10.1016/j.postharvbio.2004.03.011.Zhang, H., Wang, L., Dong, Y., Jiang, S., Cao, J., & Meng, R. (2007). Postharvest biological control of gray mold decay of strawberry with Rhodotorula glutinis. Biological Control, 40(2), 287-292. doi:10.1016/j. biocontrol.2006.10.008.Zhang, H., Zheng, X., Wang, L., Li, S., & Liu, R. (2007). Effect of antagonist in combination with hot water dips on postharvest Rhizopus rot of strawberries. Journal of Food Engineering, 78(1), 281-287. doi:10.1016/j. jfoodeng.2005.09.027.Zhang, H., Zheng, X., & Yu, T. (2007). Biological control of postharvest diseases of peach with Cryptococcus laurentii. Food Control, 18(4), 287-291. doi:10.1016/j. foodcont.2005.10.007.Zhang H, Ma, L., Wang, L., Jiang, S., Dong, Y., & Zheng X. (2008) Biocontrol of gray mold decay in peach fruit by integration of antagonistic yeast with salicylic acid and their effects on postharvest quality parameters. Biological Control, 47(1), 60-65. doi:10.1016/j. biocontrol.2008.06.012.Zhang, H., Wang, L., Ma, L., Dong, Y., Jiang, S., Xu, B., & Zheng, X. (2009). Biocontrol of major postharvest pathogens on apple using Rhodotorula glutinis and its effects on postharvest quality parameters. Biological Control, 48(1), 79-83. doi:10.1016/j. biocontrol.2008.09.004.Zhao, Y., Shao, X. F, Tu, K., & Chen, J. K. (2007). Inhibitory effect of Bacillus subtilis B10 on the diseases of postharvest strawberry. International Journal of Fruit Science, 24(3), 339-343.Zhou, T., Northover, J., & Schneider, K. E. (1999). Biological control of postharvest diseases of peach with phyllosphere isolates of Pseudomonas syringae. Canadian Journal of Plant Pathology, 21(4), 375-381. doi:10.1080/07060669909501174.Abdelfattah, A., Wisniewski, M., Droby, S., & Schena, L. (2016). Spatial and compositional variation in the fungal communities of organic and conventionally grown apple fruit at the consumer point-of-purchase. Horticulture Research, 3, 16047. doi:10.1038/hortres.2016.47.Adesemoye, A. O., Torbert, H. A., & Kloepper, J. W. (2009). Plant growth-promoting rhizobacteria allow reduced application rates of chemical fertilizers. Microbial Ecology, 58(4), 921-929. doi:10.1007/s00248-009-9531-y.Agler, M. T., Ruhe, J., Kroll, S., Morhenn, C., Kim, S.- T., Weigel, D., & Kemen, E. M. (2016). Microbial hub taxa link host and abiotic factors to plant microbiome variation. PLoS Biology, 14(1), 1002352. doi:10. 1371/journal.pbio.1002352.Alavi, P., Starcher, M. R., Thallinger, G. G., Zachow, C., Muller, H., & Berg, G. (2014). Stenotrophomonas comparative genomics reveals genes and functions that differentiate beneficial and pathogenic bacteria. BMC Genomics, 15, 482. doi:10.1186/1471-2164 -15-482.Alavi, P., Starcher, M. R., Zachow, C., Müller, H., & Berg, G. (2013). Root-microbe systems: the effect and mode of interaction of Stress Protecting Agent (spa) Stenotrophomonas rhizophila DSM14405(T). Frontiers in Plant Science, 4, 141. doi:10.3389/fpls.2013.00141.Alivisatos, A. P., Blaser, M. J., Brodie, E. L., Chun, M., Dangl, J. L., Donohue, T. J., ... Taha, S. A. (2015). A unified initiative to harness Earth’s microbiomes. Science 350(6260), 507-508. doi:10.1126/science.aac8480.Aliye, N., Fininsa, C., & Hiskias, Y. (2008). Evaluation of rhizosphere bacterial antagonists for their potential to bioprotect potato (Solanum tuberosum) against bacterial wilt (Ralstonia solanacearum). Biological ControlAndrews, J. H. (1992). Biological control in the phyllosphere. Annual Review of Phytopathology, 30, 603-635. doi:10. 1146/annurev.py.30.090192.003131.Arias, F., Gómez, L., Suárez, E., & Rendón, S. (2015). Inteligencia de mercados para la cadena de uchuva colombiana (Physalis peruviana). Revista Oidles, 9(18). Recuperado de http://www.eumed.net/rev/oidles/18/uchuva.html.Armstrong, G., & Armstrong, J. K. (1981). Formae speciales and races of Fusarium oxysporum causing wilt diseases. In P. E. Nelson, T. A. Toussoun, & R. J. Cook (Eds.), Fusarium: diseases, biology, and taxonomy (pp. 391-399). Pensilvania: Penn State University Press.Badri, D. V., & Vivanco, J. M. (2009). Regulation and function of root exudates. Plant, Cell & Environment, 32(6), 666- 681. doi:10.1111/j.1365-3040.2008.01926.x.Bakken, L. R. (1997). Culturable and nonculturable bacteria in soil. En J. D. Van Elsas, J. T. Trevors, & E. M. H. Wellington (Eds.), Modern soil microbiology (pp. 47-61). Nueva York, EE. UU.: CRC Press.Bakker, M. G., Manter, D. K., Sheflin, A. M., Weir, T. L., & Vivanco, J. M. (2012). Harnessing the rhizosphere microbiome through plant breeding and agricultural management. Plant and Soil, 360(1-2), 1-13. doi:10.1007/ s11104-012-1361-x.Balaguera, L. H. E., Ramírez, L. V., & Herrera, A. (2014). Fisiología y bioquímica del fruto de uchuva (Physalis peruviana L.) durante la maduración y poscosecha. En C. P. Pássaro Carvalho & D. A. Moreno (Eds.), Physalis peruviana L.: fruta andina para el mundo (pp. 113-131). Murcia, España: Cebas - csic.Barak, J. D., & Schroeder, B. K. (2012). Interrelationships of food safety and plant pathology: the life cycle of human pathogens in plants. Annual Review of Phytopathology, 50, 241-266. doi:10.1146/annurev-phyto-081211-172936.Barnard, R. L., Osborne, C. A., & Firestone, M. K. (2013). Responses of soil bacterial and fungal communities to extreme desiccation and rewetting. The ISME Journal, 7(11), 2229-2241. doi:10.1038/ismej.2013.104.Beckman, C. H. (1987). The nature of wilt diseases of plants. Maryland, EE. UU.: APS Press.Berendsen, R. L., Pieterse, C. M. J., & Bakker, P. A. (2012). The rhizosphere microbiome and plant health. Trends in Plant Science, 17(8), 478-486. doi10.1016/j. tplants.2012.04.001.Berendsen, R. L., Pieterse, C. M. J., & Bakker, P. A. (2012). The rhizosphere microbiome and plant health. Trends in Plant Science, 17(8), 478-486. doi10.1016/j. tplants.2012.04.001.Berg, G. (2009). Plant–microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Applied Microbiology and Biotechnology, 84(1), 11-18. doi:10.1007/s00253-009- 2092-7.Berg, G., Erlacher, A., Smalla, K., & Krause, R. (2014a). Vegetable microbiomes: is there a connection among opportunistic infections, human health and our ‘gut feeling’? Microbial Biotechnology, 7(6), 487-495. doi:10.1111 /1751-7915.12159.Berg, G., Eberl, L., & Hartmann, A. (2005). The rhizosphere as a reservoir for opportunistic human pathogenic bacteria. Environmental Microbiology, 7(11), 1673-1685. doi:10.1111/j.1462-2920.2005.00891.x.Berg, G., Grube, M., Schloter, M., & Smalla, K. (2014c). Unraveling the plant microbiome: looking back and future perspectives. Frontiers in Microbiology, 5, 148. doi:10.3389/fmicb.2014.00148.Berg, G., Grube, M., Schloter, M., & Smalla, K. (2014b). The plant microbiome and its importance for plant and human health. Frontiers in Microbiology, 5, 491. doi:10.3389/ fmicb.2014.00491.Berg, G., Hartenberger, K., Liebminger, S., & Zachow, C. (2012). Antagonistic endophytes from mistletoes as bioresource to control plant as well as clean room pathogens. IOBC/wprs Bulletin, 78, 29-32. Recuperado de https:// goo.gl/QSKqM1.Berg, G., Rybakova, D., Grube, M., & Köberl, M. (2016). The plant microbiome explored: implications for experimental botany. Journal of Experimental Botany, 67(4), 995-1002. doi:10.1093/jxb/erv466.Berg, G., Zachow, C., Müller, H., Philipps, J., & Tilcher, R. (2013). Next-generation bio-products sowing the seeds of success for sustainable agriculture. Agronomy, 3(4), 648. doi:10.3390/agronomy3040648.Berg, G., & Smalla, K. (2009). Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiology Ecology, 68(1), 1-13. doi:10.1111/j.1574- 6941.2009.00654.x.Bernal, P. (10 de junio de 2016). Microbioma: el ‘nuevo órgano’ del cuerpo humano que compartimos con la mayoría de seres. El Diario. Recuperado de https://goo.gl/xVVLRw.Bhatti, K. H., Ahmed, N.-u.-D., Shah, A., Iqbal, M., Iqbal, T., & Jiahe, W. (2011). Transgenic tobacco with rice zincfinger gene OsLOL2 exhibits an enhanced resistance against bacterial-wilt. Australasian Plant Pathology, 40(2), 133-140. doi:10.1007/s13313-010-0022-x.Blaser, M., Bork, P., Fraser, C., Knight, R., & Wang, J. (2013). The microbiome explored: recent insights and future challenges. Nature Reviews Microbiology, 11(3), 213-217. doi:10.1038/nrmicro2973.Bulgarelli, D., Rott, M., Schlaeppi, K., Ver Loren van Themaat, E., Ahmadinejad, N., Assenza, F., ... Schulze- Lefert, P. (2012). Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature, 488(7409), 91-95. doi:10.1038/nature11336.Bloemberg, G. V., & Lugtenberg, B. J. J. (2001). Molecular basis of plant growth promotion and biocontrol by rhizobacteria. Current Opinion in Plant Biology, 4(4), 343- 350. doi:10.1016/S1369-5266(00)00183-7.Bulgarelli, D., Schlaeppi, K., Spaepen, S., Ver Loren van Themaat, E., & Schulze-Lefert, P. (2013). Structure and functions of the bacterial microbiota of plants. Annual Review of Plant Biology, 64, 807-838. doi:10.1146/ annurev-arplant-050312-120106.Busby, P. E., Peay, K. G., & Newcombe, G. (2016). Common foliar fungi of Populus trichocarpa modify Melampsora rust disease severity. New Phytologist, 209(4), 1681-1692. doi:10.1111/nph.13742.Busby, P. E., Soman, C., Wagner, M. R., Friesen, M. L., Kremer, J., Bennett, A., ... Dangl, J. L. (2017). Research priorities for harnessing plant microbiomes in sustainable agriculture. PLoS Biology, 15(3), e2001793. doi:10.1371/ journal.pbio.2001793.Caitilyn, A., Prior, P., & Hayward, A. C. (Eds.). (2005). Bacterial wilt disease and the Ralstonia solanacearum species complex. Saint Paul, EE. UU.: American Phytopathological Society.Camatti-Sartori, V., Da Silva-Ribeiro, R. T., Valdebenito- Sanhueza, R. M., Pagnocca, F. C., Echeverrigaray, S., & Azevedo, J. L. (2005). Endophytic yeasts and filamentous fungi associated with southern Brazilian apple (Malus domestica) orchards subjected to conventional, integrated or organic cultivation. Journal of Basic Microbiology, 45(5), 397-402. doi:10.1002/jobm.200410547.Cardenas, P. A., Cooper, P. J., Cox, M. J., Chico, M., Arias, C., Moffatt, M. F., & Cookson, W. O. (2012). Upper airways microbiota in antibiotic-naïve wheezing and healthy infants from the tropics of rural Ecuador. PLoS One, 7(10), e46803. doi:10.1371/journal.pone.0046803.Cellier, G., & Prior, P. (2010). Deciphering phenotypic diversity of Ralstonia solanacearum strains pathogenic to potato. Phytopathology, 100(11), 1250-1261. doi:10.1094/ PHYTO-02-10-0059.Cook, R. J. (2007). Tell me again what it is that you do. Annual Review of Phytopathology, 45, 1-23. doi:10.1146/ annurev.phyto.45.062806.094415.Copeland, J. K., Yuan, L., Layeghifard, M., Wang, P. W., & Guttman, D. S. (2015). Seasonal community succession of the phyllosphere microbiome. Molecular Plant-Microbe Interactions Journal, 28(3), 274-285. doi:10.1094/MPMI- 10-14-0331-FI.Corporación Colombia Internacional. (2007). Sistema de inteligencia de mercados (Perfil producto N°. 34). Recuperado de http://bibliotecadigital.agronet.gov.co/ bitstream/11348/5287/2/2006327162612_uchuva_ CCI_actualizaci %C3 %B3n.pdf.González, C., & Barrero, M. (Eds.). (2011). Estudio de la marchitez vascular de la uchuva para el mejoramiento genético del cultivo. Bogotá: Corporación Colombiana de Investigación Agropecuaria (Corpoica) y Cámara de Comercio de Bogotá.Google Académico. (s. f.). Estadisticas. Recuperado de https://scholar.google.com/citations?view_op=metrics_ intro&hl=es#d=gs_hdr_drw&p=&u=.Obregón, D., Lancheros, O., Forero de La-Rotta, M.C., Miranda, D., & Chavez, B. (2007). Efecto de los tratamientos químicos y biológicos sobre el marchitamiento vascular de la uchuva (Physalis peruviana L.), ocasionada por el hongo Fusarium oxysporum Schlecht. Ponencia presentada en 2.° Congreso Colombiano de Horticultura. Bogotá, Colombia.Redacción Economía (4 de febrero de 2016). Frutas que ProColombia ofrecerá a los alemanes. El Espectador. Recuperado de https://goo.gl/X5q4so.Instituto Colombiano Agropecuario (ica). (2017). Productos registrados bioinsumos. Recu perado de http://www.ica. gov.co/getdoc/2ad9e987-8f69-4358b8a9e6ee6dcc 8132/PRODUCTOSBIOINSUMOS-MAYO-13- DE-2008.aspx.Alatorre-Rosas, R. (2007). Hongos entomopatógenos. En L. A. Rodríguez-del-Bosque & H. Arredondo-Bernal (Eds.), Teoría y aplicación del control biológico (pp. 127- 143). Ciudad de México, México: Sociedad Mexicana de Control Biológico.Antía, O. P., Posada, F. J., Bustillo, A. E., & González, M. T. (1992). Producción en finca del hongo Beauveria bassiana para el control de la broca del café (Avances técnicos N.º 182). Chinchiná, Colombia: Centro Nacional de Investigaciones de Café (Cenicafé).Anderson, P., & Morales, F. (2005). Whitefly and Whiteflyborne Viruses in the Tropics: Building a Knowledge Base for Global Action. Cali, Colombia: Centro Internacional de Agricultura Tropical (ciat).Bustillo, A. E. (1995). El uso del hongo Beauveria bassiana como un componente en un programa de manejo integrado de la broca del café, Hypothenemus hampei. En Sociedad Colombiana de Entomología (Socolen), Memorias del xxii Congreso de la Sociedad Colombiana de Entomología (Socolen) (pp. 79-85). Bogotá, Colombia: Socolen.Bustillo, A. E., Cárdenas, R., Villalba, D., Benavides, P., Orozco, J., & Posada, F. J. (1998). Manejo integrado de la broca del café, Hypothenemus hampei (Ferrari) en Colombia. Chinchiná, Colombia: Cenicafé.Cadena, G. (2005). Desarrollos científicos de Cenicafé en la última década. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 1(30), 89-100.Corporación Colombiana de Investigación Agropecuaria (Corpoica). (2011). Evaluación y validación de bioplaguicidas a base de hongos entomopatógenos para el manejo de mosca blanca Bemisia tabaci en algodón, tabaco y berenjena en Tolima, Córdoba y Huila (Informe técnico). Bogotá, Colombia: Corpoica.Corporación Colombiana de Investigación Agropecuaria (Corpoica). (2016). Registro N.º 00004565. Bogotá, Colombia: icaCruz, M. (2014). Desarrollo de un proceso de fermentación sólida para el hongo Trichoderma asperellum th204 en un fermentador de lecho fijo (tesis de maestría). Universidad Nacional de Colombia, Bogotá, Colombia.Ebratt, E., Espinel, C., & Cotes, A. (1998). Observaciones sobre el comportamiento, biología y ecología de Rhammatocerus schistocercoides (Orthoptera: Acrididae) en la altillanura colombiana. Revista Colombiana de Entomología, 24(3-4), 75-81.Ebratt, E., Espinel, C., & Cotes, A. (2000). Estudio de la teoría de fases en Rhammatocerus schistocercoides (Orthoptera: Acrididae) en los llanos orientales de Colombia. Revista Colombiana de Entomología, 26(3-4), 83-88.Ebratt, E. E., Espinel, C., Gómez, M. I., Villamizar, L. F., Cotes, A. M., Gutiérrez, J. C. … León, G. (2000). La langosta llanera en Colombia (Boletín técnico). Bogotá, Colombia: Corporación Colombiana de Investigación Agropecuaria (Corpoica).Espinel, C., Ebratt, E., & Cotes, A. (1998). Evaluación de cepas nativas de Metarhizium anisopliae para el control biológico de Rhammatocerus schistoscercoides (Orthoptera: Acrididae). Revista Colombiana de Entomología, 24(1-2), 1-5.Espinel, C., Lozano, M. D., Cotes, A. M., & López-Ávila, A. (2006). Eficacia de los productos bajo condiciones de campo. En C. Espinel, M. D. Lozano, A. M. Cotes & A. López-Ávila (Eds.), Desarrollo de un bioplaguicida para el control de la mosca blanca Bemisia tabaci (Boletín técnico). Bogotá, Colombia: Corporación Colombiana de Investigación Agropecuaria (Corpoica).Espinel, C., Torres, L., González, V., & Cotes, A. M. (2006). Selección de hongos entomopatógenos para el control de la mosca blanca Bemisia tabaci. Bogotá, Colombia: Corporación Colombiana de Investigación Agropecuaria (Corpoica).Espinel, C., Zuluaga, M. V., Jiménez, N., & Gómez, M. (2012). Uso del bioplaguicida a base de Lecanicillium lecanii para el control de Bemisia tabaci en el cultivo de berenjena. En M. Gómez, L. Villamizar, C. Espinel, E. Varón, N. Jiménez, M. V. Zuluaga & A. López (Eds.), Uso de Lecanicillium lecanii para el control de la mosca blanca Bemisia tabaci en algodón y berenjena (pp. 45-58). Bogotá, Colombia: Corporación Colombiana de Invetigación Agropecuaria (Corpoica).García, J., & López-Ávila, A. (2006). Evaluación de cepas nativas de Lecanicillium lecanii (Zimm). Viegas en el control de la mosca blanca de los invernaderos Trialeurodes vaporariorum (Westwood). En A. Cotes, A. López-Ávila, L. Villamizar, A. Díaz, C. Espinel, L. Torres & J. García (Eds.), Resumen de investigaciones en el control biológico de las moscas blancas Bemisa tabaci y Trialeurodes vaporariorum. Bogotá, Colombia: Corporación Colombiana de Invetigación Agropecuaria (Corpoica).Garzón, I., Villamizar, L., Cotes, A., García, J., & LópezÁvila, A. (2006). Evaluación de Lecanicillium lecanii para el control de Trialeurodes vaporariorum (Westwood) en tomate. En A. Cotes, A. López-Ávila, L. Villamizar, A. Díaz, C. Espinel, L. Torres & J. García (Eds.), Resumen de investigaciones en el control biológico de las moscas blancas Bemisia tabaci y Trialeurodes vaporariorum. Bogotá, Colombia: Corporación Colombiana de Invetigación Agropecuaria (Corpoica).Gómez, M., Villamizar, L., & Cotes, A. M. (1997). Producción masiva y preformulación de Metarhizium spp. para el control biológico de la langosta llanera. Revista Colombiana de Entomología, 23(3-4), 119-124.González, G. (1994). Evaluación de la patogenicidad de diferentes aislamientos de Beauveria bassiana de la colección de entomopatógenos (Informe anual de labores). Chinchiná, Colombia: Centro Nacional de Investigaciones de Café (Cenicafé).González, M. T., Posada, F. J., & Bustillo, A. E. (1993). Desarrollo de un bioensayo para evaluar la patogenicidad de Beauveria bassiana sobre Hypothenemus hampei. Revista Cenicafé, 44(3), 93-102.Grijalba, E., Villamizar, L., & Cotes, A. (2009). Evaluación de la estabilidad de Paecilomyces sp. y Beauveria bassiana frente a la radiación ultravioleta. Revista Colombiana de Entomología, 35(1), 1-6.Instituto Colombiano Agropecuario (ica). (2016). Listado de productos bioinsumos registrados. Recuperado de https://www.ica.gov.co/Areas/Agricola/Servicios/ Fertilizantes-y-Bio-insumos-Agricolas/Listado-de- Bioinsumos/2009/PRODUCTOS-BIOINSUMOSMAYO- 13-DE-2008.aspx.Instituto Colombiano Agropecuario (ica). (2017). Listado de empresas de bioinsumos registradas, diciembre de 2017. Recuperado de http://www.ica.gov.co/Areas/ Agricola/Servicios/Fertilizantes-y-Bio-insumos- Agricolas/Listado-de-Bioinsumos/2009/EMPRESASREGISTRADAS- BIOINSUMOS - JULIO-8- DE-2008.aspx.Jiménez, L., García, J., Villamizar, L., & Cotes, A. M. (2006). Evaluación de técnicas de aplicación de un bioplaguicida para el control de la mosca blanca de los invernaderos Trialeurodes vaporariorum (Westwood) en habichuela. En A. Cotes, A. López-Ávila, L. Villamizar, A. Díaz, C. Espinel, L. Torres & J. García (Eds.), Resumen de investigaciones en el control biológico de las moscas blancas Bemisia tabaci y Trialeurodes vaporariorum. Bogotá, Colombia: Corporación Colombiana de Investigación Agropecuaria (Corpoica).Lacayo, L., Barrios, M., Jiménez, C., & Sandino, V. (1994). El uso de hongos entomopatógenos para el manejo de la broca del café (Hypothenemus hampei) en Nicaragua. Documento presentado en Reunión Informativa sobre Avances de Investigación. Managua, Nicaragua.López, A., & García, J. (2000). Manejo integrado sostenible de moscas blancas como plaga y vectores de virus en los trópicos: Reconocimiento, diagnóstico y caracterización de especies de mosca blanca como plagas en el trópico alto de América Latina (Informe final del convenio entre la Agencia Danesa de Desarrollo Internacional [Danida], Corpoica y ciat). Bogotá, Colombia: Corporación Colombiana de Investigación Agropecuaria (Corpoica).Mariño, P., Villamizar, L., Espinel, C., & Cotes, A. (2004). Caracterización de prototipos de bioplaguicidas granulados a base de Metarhizium anisopliae para el control de Ancognatha scarabaeoides (Coleoptera: Melolonthidae). Revista Colombiana de Entomología, 30(1), 43-49.Morales, E., Cruz, F., Ocampo, A., Rivera, G., & Morales, B. (1991). Una aplicación de la biotecnología para el control de la broca del café. Documento presentado en Colloque Scientifique International sur le Café. París, Francia.Organización de las Naciones Unidas para la Alimentación y la Agricultura (fao). (2002). Expert Consultation and Risk Assessment on the Importation and Large-Scale Use of Mycopesticides against Locusts. Recuperado de http:// www.fao.org/ag/locusts/oldsite/PDFs/meetings/Myco pestE.pdf.Ortiz-Catón, M., Alatorre-Rosas, R., Valdivia-Bernal, R., Ortiz-Catón, A., Medina-Torres, R., & Alejo-Santiago, G. (2011). Efecto de la temperatura y humedad relativa sobre el desarrollo de los hongos entomopatógenos. Revista BioCiencias, 1(2), 42-53.Peña, Z. P. (2011). Fotoestabilidad de dos formulaciones de bioplaguicidas a base de Lecanicillium lecanii Vl026 y Trichoderma koningiopsis Th003 (tesis de pregrado). Pontificia Universidad Javeriana, Bogotá, Colombia.Posada, F., & Bustillo, A. (1994). El hongo Beauveria bassiana y su impacto en la caficultura colombiana. Agricultura Tropical, 31(3), 97-106.Posada, F. J. (1993). Control biológico de la broca del café, Hypothenemus hampei (Ferrari) con hongos. En Sociedad Colombiana de Entomología (Socolen), Memorias Congreso de la Sociedad Colombiana de Entomología (Socolen). Cali, Colombia: Socolen.Ribera, M., & Paradelo, C. (1997). El sol y la piel. Fotoprotección y filtros solares. Medicina Integral, 30(2), 64-71.Rivera, H. F., & Zuluaga, M. V. (2012). Uso del bioplaguicida a base de Lecanicillium lecanii para el control de Bemisia tabaci en el cultivo de algodón. En M. Gómez, L. Villamizar, C. Espinel, E. Varón, N. Jiménez, M. V. Zuluaga & A. López-Ávila (Eds.), Uso de Lecanicillium lecanii para el control de la mosca blanca Bemisia tabaci en algodón y berenjena. Bogotá, Colombia: Corporación Colombiana de Investigación Agropecuaria (Corpoica).Rodríguez, I. V., Bueno, J. M., Cardona, C. M., & Morales, H. M. (2012). Biotipo B de Bemisia tabaci (Hemiptera: Aleyrodidae): plaga de pimentón en el Valle del Cauca, Colombia. Revista Colombiana de Entomología, 38(1), 14.Santos, A. M., De Brito-Brandão, P. F., & Rivero, L. F. V. (2017). Efecto del estrés térmico y la radiación ultravioleta durante la producción masiva de Nomuraea rileyi. Revista Colombiana de Biotecnología, 19(1), 82-91.Santos, A. M., Uribe, L. A., Zuluaga, M. V., & Villamizar, L. F. (2012). Estabilidad de un bioplaguicida a base de Lecanicillium lecanii formulado como un granulado dispersable (wg). En M. Gómez, L. Villamizar, C. Espinel, E. Varón, N. Jiménez, M. V. Zuluaga … A. López-Ávila. (Eds.), Uso de Lecanicillium lecanii para el control de la mosca blanca Bemisia tabaci en algodón y berenjena. Bogotá, Colombia: Corporación Colombiana de Investigación Agropecuaria (Corpoica).Sponagel, K. W. (1994). La broca del café Hypothenemus hampei en plantaciones de café robusta en la amazonía ecuatoriana. Giessen, Alemania: Wissenschaftlicher Fachverlag.Tobar, S., Vélez, P., & Montoya, E. (1996). Selección de aislamientos patogénicos de Beauveria bassiana y Metarhizium anisopliae por resistencia a la luz ultravioleta. Documento presentado en Congreso de la Sociedad Colombiana de Entomología (Socolen). Cartagena, Colombia.Valdés-Gutiérrez, S., Escobar-López, L., Córdoba-Castro, L., & Góngora-Botero, C. (2014). Efecto de la luz ultravioleta sobre Beauveria bassiana y su virulencia a la broca. Revista Cenicafé, 62(2), 58-68.Vélez, P., & Montoya, E. (1993). Supervivencia del hongo Beauveria bassiana bajo radiación solar en condiciones de laboratorio y campo. Revista Cenicafé, 44(3), 111-122.Vélez, P. E., Posada, F., Marín, P., González, M., Osorio, E., & Bustillo, A. (1997). Técnicas para el control de calidad de formulaciones de hongos entomopatógenos (Boletín técnico N.º 17). Chinchiná, Colombia: Centro Nacional de Investigaciones de Café (Cenicafé).Zárate, C., Cotes, A., & Villamizar, L. (2010). Estudio de la estabilidad en almacenamiento de tres formulaciones oleosas a base de Nomuraea rileyi. Documento presentado en xxxiii Congreso Nacional de Control Biológico. Ciudad de México, México.Alarcón, J., Arévalo, E., Díaz, A., Galindo, J., & Rosero, A. (2012). Manejo integrado de plagas enfermedades en el cultivo del caucho. Bogotá, Colombia: Instituto Colombiano Agropecuario (ica).Barrera Cubillos, G. P., Gómez, J., Cuartas, P., León, G., & Villamizar Rivero, L. F. (2014). Caracterización morfológica, biológica y genética de un aislamiento colombiano de granulovirus de Erinnyis ello (L.) (Lepidoptera: Sphingidae). Revista Colombiana de Biotecnología 16(2), 129-140. doi:10.15446/rev.colomb.biote.v16n2.41663.Barrera Cubillos, G. P., Gómez, J., Cuartas, P., León, G., & Villamizar Rivero, L. F. (2014). Caracterización morfológica, biológica y genética de un aislamiento colombiano de granulovirus de Erinnyis ello (L.) (Lepidoptera: Sphingidae). Revista Colombiana de Biotecnología 16(2), 129-140. doi:10.15446/rev.colomb.biote.v16n2.41663.Bellotti, A. C., Arias, B., Reyes, J. A., Fernández, F. O., Ceballos, L. F., & Medina, L. M. (1989). Manejo integrado de Erinnyis ello (L.) (gusano cachón de la yuca), guía de estudio para ser usada como complemento de la Unidad Audiotutorial sobre el mismo tema. Recuperado de http://books.google.com. co/books?id=Rud9PMRWUrkC&printsec=frontcover &source=gbs_atb#v=onepage&q&f=false.Caballero, P., López-Feber, T. L., & Williams, T. (2001). Los baculovirus y sus aplicaciones como bioinsecticidas en el control biológico de plagas. Valencia, España: Phytoma- España.Caballero, P. W., & Williams, T. (2008). Virus entomopatógenos. En J. A. Jacas & A. Urbaneja (Eds.), Control biológico de plagas agrícolas (pp. 121-135). Valencia, España: Phytoma-España.Cuartas, P., & Villamizar, L. (2011). Interacciones de los Virus Entomopatógenos y su Efecto sobre la Actividad Biológica. Revista Facultad de Ciencias Básicas, 7(2), 220- 239. Recuperado de https://revistas.unimilitar.edu.co/ index.php/rfcb/article/viewFile/2056/1586+&cd=1&h l=es&ct=clnk&gl=co&client=firefox-b-ab.Chaparro, M., Espinel, C. C., Cotes, A. M. P., & Villamizar, L. R. (2010). Fotoestabilidad y actividad insecticida de dos formulaciones de granulovirus sobre larvas de Tecia solanivora. Revista Colombiana de Entomología, 36(1), 25- 30. Recuperado de http://www.scielo.org.co/pdf/rcen/ v36n1/v36n1a06.pdf.Del Rincón, M. (2010). Los virus entomopatógenos: una alternativa viable en el control de plagas. En: Sociedad Mexicana de Control Biológico, Memorias xxi Curso Nacional de Control Biológico (pp. 111-120). Uruapan, México: Impresos Gutiérrez.Devotto, L., & Gerding, M. (2003). Respuesta de dos aislamientos chilenos de Metarhizium anisopliae (Metschnikoff ) Sorokin a la adición de un protector solar. Agricultura Técnica, 63(4), 339-346.García, F., Mosquera, M. T., Vargas, C., & Rojas, L. A. (2002). Control biológico, microbiológico y físico de Spodoptera frugiperda (Lepidoptera: Noctuidae), plaga del maíz y otros cultivos en Colombia. Revista Colombiana de Entomología, 28(1), 53-60.Gómez-Valderrama, J., Cuartas, P., Ruiz, J., Uribe, L., Santos, A., León, G., & Villamizar, L. (2014). Estabilidad de una formulación a base de un granulovirus colombiano de Erinnyis ello (Lepidoptera:Sphingidae). Revista Hechos Microbiológicos, 5(2, suplemento 2), 128. Recuperado de http://aprendeenlinea.udea.edu.co/revistas/index.php/ hm/article/view/21416/17752.Gómez, J., Cuartas, P., Ruiz, J., Villamizar, L., & León, G. (2015). Eficacia de una formulación a base de un granulovirus colombiano de Erinnyis ello (Lepidoptera: Sphingidae). En Sociedad Colombiana de Entomología (Socolen), Resumenes xlii Congreso Colombiano de Entomología (pp. 79). Medellín, Colombia: Socolen.Gómez, J., Cuartas, P., León, G., Campos, J., Ruiz, C., Santos, A., & Villamizar, L. (2016). Granulovirus para el control de Erinniys ello (Lepidoptera: Sphingidae) en el cultivo de caucho natural. Ponencia presentada en xxiii Congreso Latinoamericano de Microbiología y xiv Congreso Argentino de Microbiología. Rosario, Argentina.Gómez, J., Villamizar, L., Espinel, C., & Cotes, A. M. (2009). Comparación de la eficacia y la productividad de tres granulovirus nativos sobre larvas de Tecia solanivora (Povolny) (Lepidoptera: Gelechiidae). Corpoica Ciencia y Tecnología Agropecuaria, 10(2), 152-158. Recuperado de http://revista.corpoica.org.co/index.php/revista/article/ download/137/140.Grison, P. (1969). Reflexiones sobre la utilizacion de Smithiavirus pityocampae Vago en la lucha microbiologica contra Thaumetopoea pityocampa Schiff. Boletín del Servicio de Plagas Forestales, 24, 105-112.Ibarra, J. E., & Del Rincón M. C. (1998). Virus entomopatógenos. En Curso Nacional de Control Biológico (pp. 90-103). Río Bravo, México: Sociedad Mexicana de Control Biológico.Instituto Colombiano Agropecuario (ica). 2017. Productos registrados bioinsumos. Recuperado de http://www.ica.gov. co/getdoc/2ad9e987-8f69-4358-b8a9-e6ee6dcc8132/ PRODUCTOSBIOINSUMOS-MAYO-13-DE-2008. aspx.Kondo, T. (2011). Notas sobre el uso correcto del término técnico para referirse a la cría masiva de insectos y otros artrópodos: cría masiva vs. cría masal y cría en masa. Boletín del Museo de Entomología de la Universidad del Valle, 12(2), 26-28. Recuperado de http://entomologia. univalle.edu.co/boletin/5Kondo2.pdf.León, M., Beltrán, G. A., Campos, J. A., & Juan, C. (2010). Enemigos naturales y manejo integrado del gusano cachón (Erinnyis ello) en el cultivo del caucho (Hevea brasiliensis). Recuperado de https://www.researchgate. net/publication/270161239_Enemigos_naturales_y_ manejo_integrado_del_gusano_cachon_Erinnyis_ello_ en_el_cultivo_del_caucho.López-Ávila, A., & Espitia-Malagón, E. (2000). Plagas y benéficos en el cultivo de la papa en Colombia. [Boletín Técnico Divulgativo Corpoica]. Bogotá, Colombia: Produmedios.Martínez, A., Tapiero, A., León, G., Arguello, O., Gutiérrez, A., García, F., … Pinzón, Y. (2013). Modelo productivo para el cultivo del árbol de caucho natural en la Orinoquía. Zonas de escape y no escape al Mal Suramericano de la hojas de Caucho. Bogotá, Colombia: Corporación Centro de Investigación en Caucho (Cenicaucho), Corporación Colombiana de Investigación Agropecuaria (Corpoica).Negrete, F., & Morales, A. (2003). El gusano cogollero del maíz (Spodoptera frugiperda. Smith). Recuperado de http://bibliotecadigital.agronet.gov.co/bitstream/ 11348/4870/2/20061127153058_El%20gusano%20 cogollero%20del%20maiz.pdf.Rodríguez-Pérez, M. A., & Beckage, N. E. (2006). Estrategias co-evolutivas de la interacción entre parasitoides y polidnavirus. Revista Latinoamericana de Microbiología, 48(1), 31-43.Romero, R. (2007). Microbiología y parasitología humana. Bases etiológicas de las enfermedades infecciosas y parasíticas (3.a ed.). Madrid, España: Editorial Médica Panamericana.Ruiz, C., Gómez-Valderrama, J., Chaparro, M., Sotelo, P., & Villamizar, L. (2015). Ajuste de las condiciones de un sistema para la producción in vivo de un nucleopoliedrovirus de Spodoptera frugiperda (Lepidoptera: Noctuidae). Biotecnología Aplicada, 32(4), 4311-4316.Schmitt, A. (1988). Uso de Baculovirus erinnyis para el control biológico del gusano cachón de la yuca. Yuca: Boletín Informativo 12(1), 1-4.Vargas, B., Rubio, S., & López-Ávila, A. (2004). Estudios de hábitos y comportamiento de la polilla guatemalteca de la papa Tecia solanivora (Lepidoptera: Gelechiidae) en papa almacenada. Revista Colombiana de Entomología, 30(2), 211-217.Villamizar, L., Zeddam, J., Espinel, C., & Cotes, A. (2005). Implementación de técnicas de control de calidad para la producción de un bioplaguicida a base del granulovirus de Phthorimaea operculella Phop GV. Revista Colombiana de Entomología, 31(2), 127-132.Villamizar, L. F. (2011). Virus entomopatógenos y cambio climático. En Sociedad Colombiana de Entomología (Socolen) (Ed.), Memorias xxxvii Congreso Socolen Cambio climático: Retos y oportunidades para la entomología (pp. 127-143). Manizales, Colombia: Socolen.Villanueva, D., & Saldamando, C. (2013). Tecia solanivora, Povolny (Lepidoptera: Gelechiidae): una revisión sobre su origen, dispersión y estrategias de control biológico. Ingeniería y Ciencia, 9(18), 197-214.Zenner, I., Arévalo, H. A., & Mejía, R. (2007). El gusano cogollero del maíz, Spodoptera frugiperda ( JE Smith) (Lepidoptera: Noctuidae) y algunas plantas transgénicas. Revista Colombiana de Ciencias Hortícolas, 1(1), 103-113.Agudelo, J. A., Santos-Amaya, O., Aguilera-Garramuño, E., & Argüelles-Cárdenas, J. (2010). Evaluación de dos marcas comerciales de la feromona sexual de Spodoptera frugiperda Smith (Lepidoptera: Noctuidade) en el Tolima, (Colombia). Revista Corpoica. Ciencia y Tecnología Agropecuaria, 11(2), 137-143. doi:10.21930/rcta.vol11_ num2_art:204.Aldana de la Torre, R. C., Aldana de la Torre, J.A., & Moya, O. M. (2011). Manejo del picudo Rhychophporus palmarum L. (Coleptera: Curculionidae). Recuperado de: https://www. ica.gov.co/getattachment/19e016c0-0d14-4412-af12- 03eecfe398f2/Manejo-del-picudo--Rhynchophoruspalmarum- L--(Cole.aspx.Arévalo-Peñaranda, E., Díaz-Niño, M. F., Castro-Ávila, A. P., Caicedo-Vallejo, A. M., & Palacino-Córdoba, J. H. (2017). Vigilancia oficial de plagas de alto impacto en sistemas productivos agrícolas de Colombia. En Sociedad Colombiana de Entomología (Socolen) (Ed.), XLIV Congreso Socolen (pp. 113-119). Bogotá, Colombia: Socolen.Barreto-Triana, N., & López-Ávila, A. (2010). Semiochemicals in Pest Management in Colombia. En Latin American Association of Chemical Ecology, I Latin American Meeting of Chemical Ecology Colonia del Sacramento (pp. 68). Colonia del Sacramento, Uruguay: Asociación Latino Americana de Ecología Química (alaeq).Castro-Ortega, L. A., & Suárez-Gómez, H. D. (1998). Eficiencia de los tubos mata picudos y de las trampas cebadas con feromona Grandlure en el control de Anthonomus grandis (Coleoptera: Curculionoidae). Corpocaribe, 3, 21-28.Corporación Centro de Investigación en Palma de Aceite (Cenipalma). (2010). Biología, hábitos y manejo de Rhynchophorus palmarum L. (Coleoptera: Curculionidae). Bogotá, Colombia: Corporación Centro de Investigación en Palma de Aceite (Cenicaña).Chinchilla, C., Menjivar, R., & Arias, E. (1990). Picudo de la palma y enfermedad del anillo rojo/hoja pequeña en una plantación comercial en Honduras. Turrialba, 40(4), 471-477.Corporación Centro de Investigación en Palma de Aceite (Cenipalma). (2017). Plegable feromona Rhynchophorol C. Bogotá, Colombia: Corporación Centro de Investigación en Palma de Aceite (Cenicaña).Cotes-Prado, A. M., López-Ávila, A., Bosa-Ochoa, C. F., Zuluaga-Mogollón, M. V., Rincón-Rueda, D. F., & Valencia, E. (2012). Uso de los compuestos volátiles de la papa en el control de la polilla guatemalteca. Mosquera, Colombia: Corporación Colombiana de Investigación Agropecuaria.Löhr, B., & Parra, P. P. (2014). Manual de trampeo del picudo negro de las palmas, Rhynchophorus palmarum, en trampas de feromona adaptadas a la situación particular de pequeños productores de la costa del Pacífico Colombiano. Cali, Colombia: Centro Internacional de Agricultura Tropical (ciat).Ministerio de Agricultura y Ganadería (mag). (2008). Informe del sector agropecuario: Algodón 2007/2008. Asunción, Paraguay: mag.Monserrat, A. (2009). La polilla del tomate “Tuta absoluta” en la región de Murcia: Bases para su control. Serie Técnica. Murcia, España: Consejería de Agua y Agricultura.Morales, J., Muñoz, L., Rodríguez, D., & Cantor, F. (2014). Acción combinada de freromona sexual y de avispas Apanteles gelechiidivoris para el control de Tuta absoluta en cultivos de tomate bajo invernadero. Acta Biológica Colombiana, 19(2), 175-184. doi:10.15446/abc. v19n2.38202.Moya-Murillo, O. M., Aldana-De la Torre, R. C., & Bustillo- Pardey, A. E. (2015). Eficacia de trampas para capturar Rhynchophorus palmarum (Coleóptera: Dryophthoridae) en plantaciones de palma de aceite. Revista Colombiana de Entomología, 41(1), 18-23.Peña, E. A., Reyes, R. & Bastidas, S. (1996). Efectividad de una feromona de agregación en dos tipos de trampas para la captura del insecto Rhynchophorus palmarum en la zona de Tumaco. En Sociedad Colombiana de Entomología (Socolen) (Ed.), Resúmenes XXIII Congreso Socolen (p. 83). Bogotá, Colombia: Socolen.Pérez, C. (2017). Alternativas de manejo ecológico de insectos en el cultivo del arroz en Colombia. En Sociedad Colombiana de Entomología (Socolen) (Ed.), XLIV Congreso Socolen (pp. 258-270) Bogotá, Colombia: Socolen.Polack, L. A., García-Sampedro, C., & Saini, E. D. (2002). Guía de monitoreo y reconocimiento de plagas y enemigos naturales de tomate y pimiento. San Pedro, Argentina: Instituto Nacional de Tecnología Agropecuaria (inta).Romero-Frías, A. (2017). Semioquímicos de picudos (Coleoptera: Curculionidae): Un aporte al desarrollo de la fruticultura en Colombia. En Sociedad Colombiana de Entomología (Socolen) (Ed.), XLIV Congreso Socolen (pp. 226-231). Bogotá, Colombia: Socolen.Romero-Frías, A., Murata, Y., Simões Bento, J. M., & Osorio, C. (2016). (1R,2S,6R)-Papayanal: a new malespecific volatile compound released by the guava weevil Conotrachelus psidii (Coleoptera: Curculionidae). Bioscience, Biotechnology and Biochemistry, 80(5), 848-855. doi:10.1080/09168451.2015.1136877.Schneider, D. (1969). Insect olfaction: deciphering system for chemical messages. Science, 163(3871), 1031-1037.Servicio Nacional de Sanidad y Calidad Agroalimentaria de Argentina (Senasa Argentina). (2015). Programa de Prevención y Erradicación del Picudo del Algodonero. Buenos Aires, Argentina: Servicio Nacional de Sanidad y Calidad Agroalimentaria (Senasa).Servicio Nacional de Sanidad y Calidad Agroalimentaria de Perú (Senasa Perú), & Servicio Nacional de Sanidad Agropecuaria e Inocuidad Alimentaria de Bolivia (Senasag). (2001). Plan de trabajo para la exportación de fibra de algodón sin cardar ni peinar, de Santa Cruz-Bolivia, al Perú. Lima: Perú: Senasa Perú y Senasag.Stadler, T., & Buteler, M. (2007). Migración y dispersión de Anthonomus grandis (Coleoptera: Curculionidae) en América del Sur. Revista de la Sociedad Entomológica Argentina, 66(3-4), 205-217.Vergara, R. (2015). Retos y posibilidades del manejo etológico de plagas en la producción agrícola (Parte I). Revista Metroflor, 68, 40-61.Vilela, E., & Della Lucia, T. M. C. (2001). Feromonios de insetos: biología, química e aplicacao (2.ª ed). Riberao Preto, Brasil: Holos Editora.Yucra-Equize, E. (2002). Densidad de trampas de feromonas para la captura de la polilla del tomate, Tuta absoluta, Meyrick (tesis de grado). Universidad Autonoma Gabriel Rene Moreno, Saipinia, Bolivia.Aldana, J., Calvache, H., & Arias, D. (2000). Programa comercial de manejo de Leptopharsa gibbicarina Froeschner (Hemiptera: Tingidae) con la hormiga Crematogaster spp., en una plantación de palma de aceite. Palmas, 21(número especial), 167-173.Aldana, J., Calvache, H., & Méndez, A. (1995). Distribución de hormigas y su efecto sobre Leptopharsa gibbicarina en una plantación de palma de aceite. Palmas, 16(3), 19-23.Aldana, R. C., Aldana, J., Calvache, H., & Arias, D. (1998). Papel de la hormiga Crematogaster sp. en el control de Leptopharsa gibbicarina en una plantación de palma de aceite. Palmas, 19(4), 25-32.Alterio, M. A. & Ramos, A. (2011). Informe de visita de diagnóstico de la situación sanitaria en el Archipiélago de San Andrés, Providencia y Santa Catalina. Recuperado de http://xn--elisleo-9za.com/index.php?option=com_ content&view=article&id=2464:la-cochinilla-ide-quese- trata&catid=41:ambiental&Itemid=83.Andrade, M. E., Briceño, J. A., Muñoz, P., & Jiménez, J. (1989). Búsqueda y reconocimiento de los enemigos naturales y hospedantes alternos de las principales plagas. En flores bajo invernadero en la sabana de Bogotá. Acta Biológica Colombiana, 1(5), 45-57. Recuperado de https://revistas. unal.edu.co/index.php/actabiol/article/view/21925.Barrios-Trilleras, C. E., Cuchimba-Triana, M. S., & Bustillo- Pardey, A. E. (2015). Parámetros poblacionales de Leptopharsa gibbicarina (Hemiptera: Tingidae) plaga de la palma de aceite. Revista Colombiana de Entomología, 41(1), 1-5.Braun, A. R., Álvarez, J. M., Cuéllar, M. E., Duque, M. C., Escobar, J. R., Franco, C., ... Zuñiga, R. R. (1993). Inventario de ácaros fitófagos y sus enemigos naturales en el cultivo de la yuca en Ecuador. En A. R. Braun (Ed.), Bases fundamentales para investigación sobre los ácaros plagas y sus enemigos naturales en el Ecuador. Documento de Trabajo No. 126 (pp. 1-51). Cali, Colombia: Centro Internacional de Agricultura Tropical (ciat).Chapin, E. A. (1964). Las especies colombianas de Cryptognatha (Coleoptera: Coccinellidae). Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 12(46), 231-234.Coronado-Blanco, J. M., Ruiz-Cancino, E., & Marín-Jarillo, A. (2000). Registro de la asociación depredadora de Zagloba beaumonti Casey (Coleoptera: Coccinellidae) con Unaspis citri (Comstock) (Homoptera: Diaspididae). Acta Zoológica Mexicana, 79, 277-278.Culik, M. P., Martins, D. S., Ventura, J. A., Peronti, A. L. B. G., Gullan, P. J., & T. Kondo. (2007). Coccidae, Pseudococcidae, Ortheziidae, and Monophlebidae (Hemiptera: Coccoidea) of Espírito Santo, Brazil. Biota Neotropica, 7(3), 1-5. doi:http://dx.doi.org/10.1590/ S1676-06032007000300006 .Departamento Administrativo Nacional de Estadística (dane). (2016). Encuesta Nacional Agropecuaria ENA 2015. Boletín técnico. Recuperado de https://www.dane. gov.co/files/investigaciones/agropecuario/enda/ena/ 2015/boletin_ena_2015.pdf.Departamento Administrativo Nacional de Estadística (dane). (2016). Encuesta Nacional Agropecuaria ENA 2015. Boletín técnico. Recuperado de https://www.dane. gov.co/files/investigaciones/agropecuario/enda/ena/ 2015/boletin_ena_2015.pdf.Evans, G., Kondo, T., Maya Álvarez, M. F., Hoyos Carvajal, L. M., Quiroz J. A., & Silva Gómez, M. (2012). First report of Anagyrus kamali Moursi and Gyranusoidea indica Shafee, Alam and Agarwal (Hymenoptera: Encyrtidae), parasitoids of the pink hibiscus mealybug Maconellicoccus hirsutus (Green) (Hemiptera: Pseudococcidae) on San Andres Island, Colombia. Corpoica Ciencia y Tecnología Agropecuaria, 13(2), 219-222. doi:10.21930/rcta.vol13_ num2_art:260.Gallego-Ropero, M., & Armbrecht, I. (2005). Depredación por hormigas sobre la broca del café Hypothenemus hampei (Curculionidae: Scolytinae) en cafetales cultivados bajo dos niveles de sombra en Colombia. Manejo Integrado de Plagas y Agroecología, (76), 32-40.González, F. C., Gómez Pacheco, M., Hernández Espinosa, D., & Rodríguez Tapia, J. (2010). Entomófagos asociados a las plagas citrícolas, Lepidosaphes gloverii Packard (Hemiptera: Diaspididae), Phyllocnistis citrella Stainton (Lepidoptera: Gracillariidae) y Diaphorina citri (Kuwayama) (Hemiptera: Psyllidae) en naranjo Valencia. Centro Agrícola, 37(4), 59-65.González, J. G., Benítez, E. R., & López-Ávila, A. (2006). Efecto de la densidad del depredador de moscas blancas Delphastus pusillus (Le Conte) (Coleoptera: Coccinellidae) sobre su eficiencia de búsqueda. Revista Colombiana de Entomología, 32(1), 10-17.Guzmán, L., Calvache, H., Aldana, J., & Méndez, A. (1997). Manejo de Leptopharsa gibbicarina Froeschner (Hemiptera: Tingidae) con la hormiga Crematogaster sp. en una plantación de palma de aceite. Palmas, 18(4), 19-26.Hilarión, A., Niño, A., Cantor, F., Rodríguez, D., & Cure, J. R. (2008). Criterios para la liberación de Phytoseiulus persimilis Athias Henriot (Parasitiformes: Phytoseiidae) en cultivo de rosa. Agronomía Colombiana, 26(1), 68-77.Imbachi, K., Mesa, C., Nora, C., Rodríguez, I. V., Gómez, I., Cuchimba, M., ... Carabalí, A. (2012). Evaluación de estrategias de control biológico de Polyphagotarsonemus latus (Banks) y Phyllocoptruta oleivora (Ashmead) en naranja Valencia. Acta Agronómica, 61(4), 364-370. doi:10.15446/acag.Instituto Colombiano Agropecuario (ica). (2010). Plan para el manejo y mitigación del riesgo ocasionado por la cochinilla rosada (Maconellicoccus hirsutus) y la chinche acanalada (Crypticerya multicicatrices) en las islas de San Andrés y Providencia (pp. 15). San Andrés, Colombia: ica.Instituto Colombiano Agropecuario (ica). (2015, diciembre). Resolución No. 00002390. Declaración el estado de emergencia fitosanitaria en el territorio nacional por la presencia de adultos de Diaphorina citri infectados con la bacteria de la enfermedad del hlb. Recuperado de https:// goo.gl/AmFBe6.Instituto Colombiano Agropecuario (ica). (2016). Productos registrados, Bioinsumos - septiembre 23 de 2016. Recuperado de https://goo.gl/urv2nL.Instituto de Hidrología, Meteorología y Estudios Ambientales (Ideam). (1995). Datos de las variables climáticas de la isla de San Andrés, Providencia y Santa Catalina (p. 70). Bogotá, Colombia: Instituto de Hidrología, Meteorología y Estudios Ambientales.Kondo, T. (2001). Las cochinillas de Colombia (Hemiptera: Coccoidea). Biota Colombiana, 2(1), 31-48.Kondo, T. (2008). Las escamas de la guanábana: Annona muricata L. Novedades Técnicas, Revista Regional, Corpoica, Centro de Investigación Palmira, 9(10), 25-29.Kondo, T., González F., G., & Guzmán-Sarmiento, Y. C. (2017). Capítulo I. Enemigos naturales de Diaphorina citri. En T. Kondo (Ed.), Protocolo de cría y liberación de Tamarixia radiata Waterston (Hymenoptera: Eulophidae) (pp. 23-32). Mosquera, Colombia: Corporación Colombiana de Investigación Agropecuaria (Corpoica).Kondo, T., Peronti, A. L., Kozár F., & Szita, E. (2012b). Capítulo 7. Los insectos escama asociados a los cítricos, con énfasis en Praelongorthezia praelonga (Douglas) (Hemiptera: Coccoidea: Ortheziidae). En C. P. Pássaro Carvalho (Ed.), Cítricos: cultivo, poscosecha e industrialización (pp. 173-189). Itagüí, Colombia: Editorial Artes y Letras S. A. S.Kondo-Rodríguez, D. T. (2009). Los insectos escama (Hemiptera: Coccoidea) del mango, Mangifera indica L. (Anacardiaceae) en Colombia. Novedades Técnicas, Revista Regional. Corpoica, Centro de Investigación Palmira, 10(13), 41-44.León, G., & Kondo, T. (2017). Insectos y ácaros de los cítricos; Guía ilustrada de especies dañinas y benéficas, con técnicas para el manejo integrado de plagas (pp. 182). Mosquera, Colombia: Corporación Colombiana de Investigación Agropecuaria (Corpoica).Migeon, A., Nouguier, E., & Dorkeld, F. (2011). Spider mites web: A comprehensive database for the Tetranychidae. En M. W. Sabelis, & J. Bruin (Eds.), Trends in Acarology. Proceedings of the 12th International Congress (pp. 557- 560). Dordrecht, Holanda: Springer.Montañez, M. L., Calvache, H., Luque, J. E., & Méndez, A. (1997). Control biológico de Leptopharsa gibbicarina (Hemiptera: Tingidae) con la hormiga Crematogaster sp. (Hymenoptera: Formicidae) en palma de aceite. Revista Palmas, 18(1), 23-30.Palomares-Pérez, M., Rodríguez-Vélez, B., Ayala-Zermeño, M. A., De la Cruz-Llanas, J. J., Mendoza-Castañeda, A. M., Sánchez-González, J.A., ... Cordoba-Urtíz, E. G. (2016). Aspectos biológicos y capacidad de depredación de Exochomus marginipennis (LeConte) (Coleoptera: Coccinellidae) sobre Diaphorina citri Kuwayama (Hemiptera: Liviidae). Chilean Journal of Agricultural & Animal Sciences, 32(2), 102-109. doi:10.4067/S0719- 38902016000200003.Quiroga, I. A., Maya, M. F., Martínez, A. S., & Hoyos, L. M. (2011). Paecilomyces sp. como alternativa de control biológico de la cochinilla acanalada (Crypticerya multicicatrices Cockerell) en San Andrés (Colombia). Boletín del Museo Entomológico Francisco Luís Gallego, 3(4), 10-17.Ramos-Portilla, A. A., & Caballero, A. (2017). Diaspididae en Citrus spp. (Rutaceae) de Colombia: Nuevos registros y una clave taxonómica para su identificación. Revista Facultad Nacional de Agronomía, Medellín, 70(2), 8139- 8154. doi:10.15446/rfna.v70n2.64519.Silva-Gómez, M., Quiroz-Gamboa, J.A., Hoyos-Carvajal, L.M., Yepes-R., F.C., Maya-A., M.F. & Santos-M., A. (2017). Coccinélidos depredadores de Crypticerya multicicatrices (Hemiptera: Monophlebidae) en San Andrés Isla, Colombia. Boletín Científico Centro de Museos Museo de Historia Natural, Universidad de Caldas, 21(1), 165-173. doi:10.17151/bccm.2017.21.1.13.Trujillo, J. (1992). Control biológico por conservación: enfoque relegado. Perspectivas de su desarrollo en Latinoamérica. Memorias del IV Congreso Internacional de Manejo de Plagas Ceiba (Honduras), 33(1A), 17-26.Valenzuela, G. (1993). Aspectos históricos del control biológico. En F. Palacios (Ed.), Control biológico en Colombia: historia, avances y proyecciones (pp. 1-8). Palmira, Colombia: Universidad Nacional de Colombia.Velásquez, V. H., Núñez, B., & García, R. F. (1992). Avances en el reconocimiento y evaluación de agentes benéficos de Orthezia praelonga Douglas. Ponencia presentada en el XIX Congreso de Socolen, Colombia, Manizales.Yaninek, J. S. & Bellotti, A. C. (1987). Exploration for natural enemies of cassava green mites based on agrometeorological criteria. En D. Rijks & G. Mathys (Eds.), Proceedings of the Sentinar on Agrometeorology and Crop Protection in the Lowly Humid and Sub-Humid Tropics, Cotonou, Benin, 7-11 July 1986 (pp. 69-75). Ginebra, Suiza: World Meteorological Organization.Amaya-Navarro, M. (1977). El Trichogramma spp en el control integrado de plagas. En ica (Ed.), Manual de control integrado de plagas (pp. 76-89). Ibagué, Colombia: ica .Amaya, N., & Zenner de Polania, M. (1976). Estudios básicos tendientes a mejorar el uso del Trichogramma spp. en el control integrado de plagas en Colombia. Revista Colombiana de Entomología, 2(1), 13-25.Arias, B., & Bellotti, A. (1977). Eficiencia del Bacillus thuringiensis, sobre el gusano cachon de la yuca Erinnyis ello, en un programa de control biologico. Revista Colombiana de Entomología, 3(3-4), 93-97.Arias, B., & Bellotti, A. (1984). Pérdidas en rendimiento (daño simulado) causadas por Erinnyis ello (L.) y niveles críticos de población en diferentes etapas de desarrollo en tres clones de yuca. Revista Colombiana de Entomología, 10(3-4), 28-35.Arias, B., & Bellotti, A. (1987). Control de Erinnyis ello (L) (Lep: Sphingidae) gusano cachón de la yuca Manihot esculenta (Crantz) con Baculovirus erinnyis ngv. Revista Colombiana de Entomología, 13, 29-35.Arias, B., & Bellotti, A. (1993). Manejo integrado de Erinnyis ello (L) gusano cachón de la yuca con énfasis en sus enemigos naturales y agentes de control microbial. En F. Palacios, I. Arciniegas, & A. Astudillo (Eds.), Control Biológico en Colombia, historia, avances, proyecciones (pp. 132-146). Palmira, Colombia: Universidad Nacional de Colombia.Aristizábal, A., Bustillo, L., Baker, A., Orozco, P., & Chaves, B. (1998). Efecto depredador del parasitoide Cephalonomia stephanoderis (Hymenoptera: Bethylidae) sobre los estados inmaduros de Hypothenemus hampei (Coleoptera: Scolytidae) en condiciones de campo. Revista Colombiana de Entomología, 24(1-2), 35-41.Aristizábal, A., Bustillo, L., Orozco, A., & Chaves, B., (1998). Efecto del parasitoide Cephalonomia stephanoderis (Hymenoptera: Bethylidae) sobre las poblaciones de Hypothenemus hampei (Coleoptera: Scolytidae) durante y después de la cosecha. Revista Colombiana de Entomología, 24(3-4), 149-155.Aristizábal, L., Orozco, J., & Baker, P. (1996). Liberación, dispersión y parasitismo de Cephalonomia stephanoderis en condiciones de campo. Chinchiná, Colombia: Centro Nacional de Investigaciones del Café (Cenicafé).Aristizábal, L., Salazar, H. M., Mejía, C. G., & Bustillo, A. E. (2004). Introducción y evaluación de Phymastichus coffea (Hymenoptera: Eulophidae) en fincas de pequeños caficultores, a través de investigación participativa. Revista Colombiana de Entomología, 30(2), 219-224.Armbrecht, I., Chacón, P., & Rojas, M. (1986). Biología de la mosca de los botones florales del maracuyá Dasiops inedulis (Diptera: Lonchaeidae) en el Valle del Cauca. Revista Colombiana de Entomología, 12(1), 16-22.Bacca-Ibarra, R. T. (1999). Efecto del parasitoide Prorops nasuta Waterston (Hymenoptera: Bethylidae) sobre poblaciones de broca del café Hypothenemus hampei (Ferrari) (Coleoptera: Scolytidae) (tesis de maestría). Universidad Nacional de Colombia, Bogotá, Colombia.Badilla, F. (2002). Un programa exitoso de control biológico de insectos plaga de la caña de azúcar en Costa Rica. Manejo Integrado de Plagas, (64), 77-87.Badilla, F., Solís-Soto, A., & Alfaro-Solís, D. (1991). Control biológico del taladrador de la caña de azúcar Diatraea sp. (Lepidoptera: Pyralidae) en Costa Rica. Manejo Integrado de Plagas, (20-21), 39-44.Basso, C., & Pintureau, B. (2004). Las especies de Trichogramma de Uruguay (Hymenoptera: Trichogrammatidae). Revista de la Sociedad Entomológica de Argentina, 63(1-2), 71-80.Bellotti, A., Reyes, J., Arias, B., Segura, P., Urias, M., & Schmitt, A. (1983). Manejo de una explosión del gusano cachón Erinnyis ello (L) (Lepidoptera: Sphingidae). En J. Reyes, (Ed.), Yuca: Control integrado de las plagas (pp. 305-312). Cali, Colombia: Programa de las Naciones Unidas para el Desarrollo (pnud) y Centro Internacional de Agricultura Tropical (ciat).Bellotti, A. C., Arias, B., & Reyes, J. A. (2002). Manejo de plagas de la yuca. La yuca en el tercer milenio. En B. Ospina (Ed.), Sistemas Modernos de Producción, Procesamiento, Utilización y Comercialización (pp. 220-233). Cali, Colombia: Centro Internacional de Agricultura Tropical (ciat).Bellotti, A. C., Arias, B., Reyes, J. A., Fernández, F. O., Ceballos, L. F., & Medina, L. M., (1989). Manejo integrado de Erinnyis ello (L.) (gusano cachón de la yuca), guía de estudio para ser usada como complemento de la Unidad Audiotutorial sobre el mismo tema. Cali, Colombia: Centro Internacional de Agricultura Tropical (ciat).Bellotti, A. C., Arias, B., Herrera, C. J., & Holguín, C. M. (2007). Manejo integrado de moscas blancas asociadas al cultivo de la yuca. Cali, Colombia: Centro Internacional de Agricultura Tropical (ciat).Bellotti, A. C., & Schoonhoven, A. V. (1978). Plagas de la yuca y su control. Cali, Colombia: Centro Internacional de Agricultura Tropical (ciat).Benavides, P., Bustillo, A., & Montoya, E. (1994). Avances sobre el uso del parasitoide Cephalonomia stephanoderis para el control de la broca del café, Hypothenemus hampei. Revista Colombiana de Entomología, 20(4), 247-253.Bustillo, A. (1991). Perspectivas de un manejo integrado de la broca del Café, Hypothenemus hampei, en Colombia. Agricultura Tropical (Colombia), 28(1), 83-93.Bustillo, A. (1995). Utilización del control biológico clásico en un programa de manejo integrado: el caso de la broca del café, Hypothenemus hampei, en Colombia. Documento presentado en Curso Internacional de Manejo Integrado de Plagas. Pasto, Colombia.Bustillo, A., Cárdenas, A., Villalba, R., Benavides, D., Orozco, P., & Posada, F. (1998). Manejo integrado de la broca del café Hypothenemus hampei (Ferrari) en Colombia. Chinchiná, Colombia: Federación Nacional de Cafeteros de Colombia y Centro Nacional de Investigaciones de Café Pedro Uribe Mejía.Bustillo, A., Orozco-Hoyos, J., Benavides-Machado, P., & Portilla-Reina, M. (1996). Producción masiva y uso de parasitoides para el control de la broca del café en Colombia. Cenicafé, 47(4), 215-230.Campos, M. (2001). Lista de los géneros de avispas parasitoides Braconidae (Hymenoptera: Ichneumonoidea) de la Región Neotropical. Biota Colombiana, 2(3), 193-232.Cano-Londoño, D. (2000). Biología, comportamiento y enemigos nativos del picudo de los cítricos Compsus n. sp coleoptera: curculionidae en la zona central cafetera. En Federación Nacional de Cafeteros de Colombia. Memorias del Seminario Nacional sobre el Picudo de los Cítricos (pp. 1-7). Pereira, Colombia: Federación Nacional de Cafeteros de Colombia.Cano, D., Cardenas, R., Bustillo, A., & Orozco, G. (2002). Biología y enemigos nativos del picudo de los cítricos Compsus n. sp. (Coleoptera: Curculionidae). Revista Colombiana de Entomología, 28(1), 43-52.Carabalí, A. (2012). Alternativas sostenibles para el manejo del picudo de los cítricos Compsus sp en Antioquia y Valle del Cauca [Informe final de proyecto]. Palmira, Colombia: Corporación Colombiana de Investigación Agropecuaria (Corpoica).Carabalí, A. (2015). Validación de estrategias de manejo de poblaciones de Compsus viridivittatus y ácaros como aporte del componente entomológico a la construcción del modelo productivo en cítricos [Informe final de proyecto]. Palmira, Colombia: Corporación Colombiana de Investigación Agropecuaria (Corpoica).Carabalí, A. (2016). Recomendaciones de manejo Compsus viridivittatus y ácaros (Polyphagotarsonemus latus y Phyllocoptruta oleivora) en cultivos de naranja y lima ácida Tahiti [Informe final]. Palmira, Colombia: Corporación Colombiana de Investigación Agropecuaria (Corpoica).Carballo, M. & Guaharay, F. (2004). Control biológico de plagas agrícolas. Managua, Nicaragua: Centro Agronómico Tropical de Investigación y Enseñanza (catie).Centro Nacional de Investigaciones del Café (Cenicafé). (1990). Manual de capacitación en control biológico. Chinchiná, Colombia: Cenicafé.Cermeli, M., Morales, P., Perozo, J., & Godoy, F. (2009). Distribución del psílido asiático de los cítricos (Diaphorina citri Kuwayama (Hemiptera, Psyllidae) y presencia de Tamarixia radiata (Waterston)(Hymenoptera, Eulophidae) en Venezuela. Entomotropica, 22(3), 181- 184.Centro Internacional de Agricultura Tropical (ciat). (1974). Informe Anual. Cali, Colombia: ciat.Centro Internacional de Agricultura Tropical (ciat). (1978). Informe Anual. Programa de Entomología de Yuca. Cali, Colombia: ciat.Departamento Administrativo Nacional de Estadística (dane). (2016). Resultados Encuesta Nacional Agropecuaria (ena). Bogotá, Colombia: dane.Cuellar, M. E., & Morales, F. J. (2006). La mosca blanca Bemisia tabaci (Gennadius) como plaga y vectora de virus en fríjol común (Phaseolus vulgaris L.). Revista Colombiana de Entomología, 32(1), 1-9.Delgado, D., & Sotomayor, I. (1990). Algunos resultados sobre la cría, adaptación y colonización de los entomógenos Prorops nasuta Waters. y Cephalonomia stephanoderis Betrem, en la regulación de poblaciones de H. hampei en el Ecuador. Miscelánea, 18, 58-95.Gallego, J. S. C., Caicedo, A. M., Carabalí, A., & Muñoz, J. E. (2012). Comportamiento alimenticio y de oviposición de Compsus viridivittatus (Coleoptera: Curculionidae) en especies de cítricos. Revista Colombiana de Entomología, 38(2), 191.García, R., & Jiménez, F. (1992). Producción y manejo de Trichogramma spp. en Colombia. ica-Informa, 26, 3-8.Gaviria, M. (1990). El control biológico de los insectos plaga de la caña de azúcar en Colombia. En Grupo de Países Latinoamericanos y del Caribe Exportadores de Azúcar (Geplacea), Memorias del III congreso de la Sociedad Colombiana de Técnicos de la Caña de Azúcar (pp. 201- 227). Cali, Colombia: Geplacea.en caña azúcar en Colombia. En Centro de Investigación de la Caña de Azúcar de Colombia (Cenicaña) (Ed.), Caña: azúcar y panela con el mejor entorno ambiental. Homenaje 21 años de Centro de Investigación de la Caña de Azúcar de Colombia - Cenicaña (1997-1998) (pp. 43-64). Cali, Colombia: Cenicaña.Gaviria, M., Belloti, J. D., & Gaviria, A. C. J. D. (1986). Manejo del Trichogramma spp. en cultivos agrícolas y de flores en Colombia. En R. Millan (Ed.), Producción y manejo de Trichogramma (pp. 30-36). Palmira, Colombia: Instituto Colombiano Agropecuario (ica).Gaviria, M., & Gaviria, J. D. (1998). Problemas entomológicos en caña azúcar en Colombia. En Centro de Investigación de la Caña de Azúcar de Colombia (Cenicaña) (Ed.), Caña: azúcar y panela con el mejor entorno ambiental. Homenaje 21 años de Centro de Investigación de la Caña de Azúcar de Colombia - Cenicaña (1997-1998) (pp. 43-64). Cali, Colombia: Cenicaña.Gerding, M., & Torres, C. (2001). Parasitoide de huevos de polillas Trichogramma: Insecto benéfico para el control de plagas. Boletín Informativo del Instituto de Investigaciones Agropecuarias, 55, 1-2.Gold, C., Altieri, M., & Bellotti, A. (1989a). Relative oviposition rates of the cassava hornworm, Erinnyis ello [lep.: Sphingidae], and accompanying parasitism by Telenomus sphingis [Hym.: Scelionidae], on upper and lower leaf surfaces of cassava. Biological Control, 34(1), 73-76. doi:10.1007/BF02372589.Gómez, L. A., Díaz, A. E., & Lastra, L. A. (1996). Reconocimiento de las especies de Trichogramma asociadas con la caña de azúcar en Colombia. Revista Colombiana de Entomología, 22(1), 1-5.González, R. (1952). Contribución al estudio de moscas Anastrepha en Colombia. Revista Facultad Nacional de Agronomía, 12, 423-549.Granadillo-Cuello, J. A., Villalobos-Moreno, A., & Villamizar-Cobos, J. (2014). Parasitoides de Trialeurodes vaporariorum Westwood, 1856 (Hemiptera: Aleyrodidae) en cultivos de fríjol en García Rovira, Santander. Respuestas, 19(2), 15-24.Guimarães, J. A., & Zucchi, R. A. (2004). Parasitism behavior of three species of Eucoilinae (Hymenoptera: Cynipoidea: Figitidae) fruit fly parasitoids (Diptera) in Brazil. Neotropical Entomology, 33(2), 217-224. doi:10.1590/ S1519-566X2004000200012.Guzmán, D. (1996). Efecto de varios insecticidas sobre el parasitoide de la broca del café Cephalonomia stephanoderis Betrem (Hymenoptera: Bethylidae). Manizales, Colombia: Universidad de Caldas.Guzmán, R. (1984). Algunos aspectos relacionados con el manejo del Trichogramma sp. En ica (Ed.), Manual de control integrado de plagas (pp. 199-207). Ibagué, Colombia: Instituto Colombiano Agropecuario (ica).Hernández, L. M., & Manzano, M. R. (2016). Efecto del viento en la dispersión a corta distancia del parasitoide Amitus fuscipennis MacGown y Nebeker (Hymenoptera: Platygastridae) en cultivos de fríjol y habichuela. Acta Agronómica, 65(1), 80-86. doi:10.15446/acag. v65n1.48816.Hernández, L. M., Otero, J. T., & Manzano, M. R. (2013). Biological control of the greenhouse whitefly by Amitus fuscipennis: Understanding the role of extrafloral nectaries from crop and non-crop vegetation. Biologial Control, 67(2), 227-234. doi:10.1016/j.biocontrol.2013.08.003.Instituto Colombiano Agropecuario (ica). (1975). Cría masiva de la avispita Trichogramma sp. En Curso Instituto Colombiano Agropecuario (pp. 78-81). Bogotá, Colombia: ica.Instituto Colombiano Agropecuario (ica). (2001). Municipios del Departamento del Tolima reportados con presencia del Picudo de los cítricos (Compsus sp.) [Boletín de Epidemiología N.° 38]. Ibagué, Colombia: ica.Instituto Colombiano Agropecuario (ica). (11 de diciembre de 2015). Por medio de la cual se declara el estado de emergencia fitosanitaria en el territorio nacional por la presencia de adultos de Diaphorina citri infectados con la bacteria de la enfermedad del hlb de los cítricos [Resolución 2390 de 2015]. DO [49.723]. Bogotá: ica.Instituto Colombiano Agropecuario (ica). (2016). Productos registrados bioinsumos. Recuperado de https://www.ica. gov.co/getdoc/2ad9e987-8f69-4358-b8a9-e6ee6dcc 8132/PRODUCTOSBIOINSUMOS-MAYO-13- DE-2008.aspx.Katiyar, K., Camacho, J., Geraud, F., & Matheus, R. (1995). Parasitoides hymenópteros de moscas de las frutas (Diptera: Tephritidae) en la región occidental de Venezuela. Revista de la Facultad de Agronomía, 12(3), 303-312.Kondo, T., Quintero, Q., Campuzano, M., Wyckhuys, K., & Heraty, J. (2012). First report of Tamarixia radiata (Waterston)(Hymenoptera: Eulophidae), a parasitoid of the Asian citrus psyllid Diaphorina citri Kuwayama (Hemiptera: Psyllidae) in the Department of Valle Del Cauca, Colombia. Boletín del Museo de Entomología de la Universidad del Valle, 13(1), 48-51.León, G. (1987). Fluctuación poblacional y manejo de Anastrepha spp. en mango y guayaba. Revista Colombiana de Entomología, 5, 42-55.León, G., Evans, G. A., & Campos, J. C. (2001). Parasitoides de plagas (Homoptera) de los cítricos en el departamento del Meta, Colombia. Revista Colombiana de Entomología, 27, 143-146.López-Ávila, A., Cardona, C., García, J., Rendón, F., & Hernández, P. (2001). Reconocimiento e identificación de enemigos naturales de moscas blancas (Homoptera: Aleyrodidae) en Colombia y Ecuador. Revista Colombiana de Entomología, 27(3-4), 137-141.Manzano, M. R., Van Lenteren, J., & Cardona, C. (2003a). Comportamiento de búsqueda de Amitus fuscipennis (Hymenoptera: Platygastridae): Tiempo de permanencia en la planta hospedera y actividad de búsqueda. Revista Colombiana de Entomología, 29, 221-226.Márquez, M., & Valencia, S. (1991). Evaluación de Encarsia formosa Gahan y Amitus fuscipennis MacGown and Nebeker, en el control de Trialeurodes vaporariorum (Westwood) en crisantemo (Chrysanthemum morifolium Rainat.) (tesis de grado). Universidad Nacional de Colombia, Medellín, Colombia.Medina, P., Saldarriaga, V., & Pérez, G. (1994). Biología del Amitus fuscipennis MacGown & Nebeker, bajo tres condiciones ecológicas en Rionegro (Antioquia). Revista Colombiana de Entomología, 20, 143-148.Melo, E. L. (2002). Potencial del control biológico en el manejo de las plagas de la yuca. En B. Ospina, H. Ceballos, E. Alvarez, A. Bellotti, L. Calvert, B. Arias, L. Cadavid … M. Cuervo (Eds.), La yuca en el Tercer Milenio: Sistemas modernos de producción, procesamiento, utilización y comercialización (pp. 234-249). Cali, Colombia: CIAT.Montoya, C. (2001). Epidemiología del picudo de los cítricos, Compsus sp. (Coleoptera: Curculionidae). En Sociedad Colombiana de Entomología (Socolen), Memorias del xxvii Congreso Socolen (p. 12). Pereira, Colombia: Socolen.Morales, J., Vásquez, C., Pérez, N. L., Valera, N., Ríos, Y., Arrieche, N., & Querino, R. B. (2007). Especies de Trichogramma (Hymenoptera: Trichogrammatidae) parasitoides de huevos de lepidópteros en el Estado Lara, Venezuela. Neotropical Entomology, 36(4), 542-546. doi:10.1590/S1519-566X2007000400011.Núñez, L., Santos, R., Guarín, G., & León, G. (2004). Moscas de las frutas (Díptera: Tephritidae) y parasitoides asociados con Psidium guajava L. y Coffea arabica L. en tres municipios de la Provincia de Vélez (Santander, Colombia). Parte 2: Identificación y evaluación de parasitoides del Orden Hymenoptera. Revista Corpoica, 5(1), 13-21. doi:10.21930/rcta.vol5_num1_art:17.Carrer-Filho, R., Romeiro, R. S., & Garcia, F. A. O. (2008). Biocontrole de doenças de parte aérea do tomateiro por Nocardioides thermolilacinus. Tropical Plant Pathology, 33(6), 457-460. doi:10.1590/S1982-56762008000600010Instituto Brasileiro de Geografía e Estatística (ibge). (2016). Levantamento sistemático da produção agrícola - lspa. Recuperado de https://www.ibge.gov.br/estatisticasnovoportal/ economicas/agricultura-e-pecuaria/9201- levantamento-sistematico-da-producao-agricola.html?= &t=o-que-e.Koppert Biological Systems. (2017). Mycotal. Recuperado de https://www.koppert.es/plagas/moscas-blancas/ productos-contra/mycotal/.Koppert do Brasil Holding. (2017a). Boveril®. Recuperado de http://koppert.com.br/assets/fichas/boveril.pdf.Koppert do Brasil Holding. (2017b). Metarril®. Recuperado de http://koppert.com.br/produtos/metarril/.Magalhães, B., Faria, M., & Guerra, W. (1996). Desenvolvimento de bioinsecticidas para o controle de gafanhotos no Brasil. Documentos presentados en la Reunión Técnica Regional sobre Biología y Control de la Langosta Rhammatocerus schistocercoides. Cuiabá, Brasil.Sosa-Gómez, D., Moscardi, F., Santos, B., Alves, L., & Alves, S. (2008). Produção e uso de vírus para o controle de pragas na América Latina. En S. Alves & R. Lopes (Eds.), Controle microbiano de pragas na América Latina: Avanços e desafios (pp. 49-58). Piracicaba, Brasil: Fundação de Estudos Agrários Luiz de Queiroz (fealq).Ministério da Agricultura, Pecuária e Abastecimento (mapa). (2011). Agenda estratégica: Algodāo 2010-2015. Brasília, Brasil: Ministério da Agricultura, Pecuária e Abastecimento (mapa).Bortoli, S. A., Venvenga, S. R., Gravena, S., & Miranda, J. E. (2001). Biologia de Pentilia egena Mulsant (Coleoptera: Coccinellidae) e predação sobre Chrysomphalus fícus Ashmead (Homoptera: Diaspididae). Boletín de Sanidad Vegetal Plagas, 27, 337-343.Botelho, P. S. M. (1992). Quinze anos de controle biológico da Diatraea saccharalis utilizando parasitóides. Pesquisa Agropecuária Brasileira, 27, 255-262.De Brito, S. A. (1975). Phenacoccus sp.: a nova praga que ataca as ponteiras da mandioca no Estado do Para. Belém, Brasil: Empresa Brasileira de Pesquisa Agropecuária (Embrapa).Ferreira, D. (2010). Coleta, identificação e seleção de Trichogramma spp. (Hymenoptera: Trichogrammatidae) visando ao manejo de Grapholita molesta (Busck, 1916) (Lepidoptera: Tortricidae) [tesis de maestría]. Universidade Federal do Espírito Santo, Vitória, Brasil.Lopes, E. (1982). Ocorrência da cochonilha dos brotos da mandioca (Phenacoccus herreni) no Estado da Paraíba. João Pessoa, Brasil: emepa.Darwin, C. (2010). Chapter I. Domestic dogs and cats. En The variation of animals and plants under domestication (pp. 15-48). Cambridge, Inglaterra: Cambridge University Press. doi:10.1017/CBO9780511709500.DeAngelis, K. M., Pold, G., Topçuoğlu, B. D., Van Diepen, L. T. A., Varney, R. M., Blanchard, J. L., ... Frey, S. D. (2015). Long-term forest soil warming alters microbial communities in temperate forest soils. Frontiers in Microbiology, 6. doi:10.3389/fmicb.2015.00104.De Carvalho, M. P., Gulotta, G., Do Amaral, M. W., Lünsdorf, H., Sasse, F., & Abraham, W.-R. (2016). Coprinuslactone protects the edible mushroom Coprinus comatus against biofilm infections by blocking both quorum-sensing and MurA. Environmental Microbiology, 18(11), 4254-4264. doi:10.1111/1462-2920.13560.Dominguez-Bello, M. G., Costello, E. K., Contreras, M., Magris, M., Hidalgo, G., Fierer, N., & Knight, R. (2010). Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proceedings of the National Academy of Sciences USA, 107(26), 11971-11975. doi:10.1073/ pnas.1002601107.Egamberdieva, D., Kucharova, Z., Davranov, K., Berg, G., Makarova, N., Azarova, T., ... Lugtenberg, B. (2011). Bacteria able to control foot and root rot and to promote growth of cucumber in salinated soils. Biology and Fertility Soils, 47(2), 197-205. doi:10.1007/s00374-010-0523-3.Doornbos, R. F., Van Loon, L. C., & Bakker, P. A. H. M. (2012). Impact of root exudates and plant defense signaling on bacterial communities in the rhizosphere. A review. Agronomy for Sustainable Development, 32(1), 227- 243. doi:10.1007/s13593-011-0028-y.Elsayed, T. R., Nour, E. H., Jacquiod, S., Sørensen, S. J., & Smalla, K. (en prensa). Deciphering the complex interaction between Ralstonia solanacearum and antagonists during tomato wilt biocontrol: rhizosphere microbiome shifts as mode of action? Frontiers in Microbiology.Elser, J. J., Bracken, M. E. S., Cleland, E. E., Gruner, D. S., Harpole, W. S., Hillebrand, H., ... Smith, J.E. (2007). Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecology Letters, 10(12), 1135-1142. doi:10.1111/j.1461-0248.2007.01113.x.Fischer, G., Almanza-Merchán, P. J., & Miranda, D. (2014). Importancia y cultivo de la uchuva (Physalis peruviana L.). Revista Brasileira de Fruticultura, 36(1), 01-15. doi:10.1590/0100-2945-441/13.Friesen, M. L., Porter, S. S., Stark, S. C., Von Wettberg, E. J., Sachs, J. L., & Martínez-Romero, E. (2011). Microbially mediated plant functional traits. Annual Review of Ecology, Evolution, and Systematics, 42, 23-46. doi:10.1146/ annurev-ecolsys-102710-145039.Fungal Barcoding. (2017). Fungal Barcoding Database. Recuperado de http://www.fungalbarcoding.org.Garibaldi, A., Gilardi, G., & Gullino, M. L. (2004). First report of Fusarium oxysporum causing vascular wilt of lamb’s lettuce (Valerianella olitoria) in italy. Plant Disease, 88(1), 83-83. doi:10.1094/PDIS.2004.88.1.83C.Gilbert, J. A., Jansson, J. K., & Knight, R. (2014). The Earth Microbiome project: successes and aspirations. BMC Biololy, 12, 69. doi:10.1186/s12915-014-0069-1.Gilbert, J. A., Meyer, F., Jansson, J., Gordon, J., Pace, N., Tiedje, ... Knight, R. (2010). The earth microbiome project: Meeting report of the “1st EMP meeting on sample selection and acquisition” at argonne national laboratory october 6(th) 2010. Standards in Genomic Sciences 3,(3), 249-253. doi:10.4056/aigs.1443528.Gordon, T. R., & Martyn, R. D. (1997). The evolutionary biology of Fusarium oxysporum. Annual Review of Phytopathology, 35, 111-128. doi:10.1146/annurev. phyto.35.1.111.Götz, M., Gomes, N. C. M., Dratwinski, A., Costa, R., Berg, G., Peixoto, ... Smalla, K. (2006). Survival of gfptagged antagonistic bacteria in the rhizosphere of tomato plants and their effects on the indigenous bacterial community. FEMS Microbiology Ecology, 56(2), 207-218. doi:10.1111/j.1574-6941.2006.00093.x.Grover, A., Azmi, W., Gadewar, A. V., Pattanayak, D., Naik, P. S., Shekhawat, G. S., & Chakrabarti, S. K. (2006). Genotypic diversity in a localized population of Ralstonia solanacearum as revealed by random amplified polymorphic dna markers. Journal of Applied Microbiology, 101(4), 798-806. doi:10.1111/j.1365- 2672.2006.02974.x.Grey, B. E., & Steck, T. R. (2001). The viable but nonculturable state of Ralstonia solanacearum may be involved in long-term survival and plant infection. Applied and Environmental Microbiology, 67(9), 3866-3872. doi:10.1128/AEM.67.9.3866-3872.2001.Grube, M., Cardinale, M., De Castro, J. V., Jr., Müller, H., & Berg, G. (2009). Species-specific structural and functional diversity of bacterial communities in lichen symbioses. The ISME journal, 3(9), 1105. doi:10.1038/ ismej.2009.63.Guo, J.-H., Qi, H.-Y., Guo, Y.-H., Ge, H.-L., Gong, L.- Y., Zhang, L.-X., & Sun, P.-H. (2004). Biocontrol of tomato wilt by plant growth-promoting rhizobacteria. Biological Control, 29(1), 66-72. doi:10.1016/S1049- 9644(03)00124-5.Haglund, W., & Kraft, J. (2001). Fusarium wilt. In J. M. Kraft, & F. L. Pfleger (Eds.), Compendium of pea diseases and pests (pp. 13-14 ). Saint Paul, EE. UU.: APS Press.Haichar, F. Z., Marol, C., Berge, O., Rangel-Castro, J. I., Prosser, J. I., Balesdent, J., ... Achouak, W. (2008). Plant host habitat and root exudates shape soil bacterial community structure. The ISME Journal, 2(12), 1221- 1230.Haiser, H. J., Gootenberg, D. B., Chatman, K., Sirasani, G., Balskus, E. P., & Turnbaugh, P. J. (2013). Predicting and manipulating cardiac drug inactivation by the human gut bacterium Eggerthella lenta. Science, 341(6143), 295-298. doi:10.1126/science.1235872.Hartmann, A., Rothballer, M., & Schmid, M. (2008). Lorenz Hiltner, a pioneer in rhizosphere microbial ecology and soil bacteriology research. Plant and Soil 312(1-2), 7-14. doi:10.1007/s11104-007-9514-z.Hashem, M., Alamri, S. A., Hesham, A. E.-L., Al-Qahtani, F. M. H., & Kilany, M. (2014). Biocontrol of apple blue mould by new yeast strains: Cryptococcus albidus KKUY0017 and Wickerhamomyces anomalus KKUY0051 and their mode of action. Biocontrol Science and Technology, 24(10), 1137-1152. doi:10.1080/09583157.2014.926857.Hayward, A. C. (1991). Biology and epidemiology of bacterial wilt caused by Pseudomonas Solanacearum. Annual Review of Phytopathology, 29, 65-87. doi:10.1146/annurev. py.29.090191.000433.Heckman, D. S., Geiser, D. M., Eidell, B. R., Stauffer, R. L., Kardos, N. L., & Hedges, S. B. (2001). Molecular evidence for the early colonization of land by fungi and plants. Science, 293(5532), 1129-1133. doi:10.1126/ science.1061457.Holden, N., Pritchard, L., & Toth, I. (2009). Colonization outwith the colon: plants as an alternative environmental reservoir for human pathogenic enterobacteria. fems Microbiology Review, 33(4), 689-703. doi:10.1111/ j.1574-6976.2008.00153.x.Hu, H. Q., Li, X. S., & He, H. (2010). Characterization of an antimicrobial material from a newly isolated Bacillus amyloliquefaciens from mangrove for biocontrol of Capsicum bacterial wilt. Biological Control, 54(3), 359- 365. doi:10.1016/j.biocontrol.2010.06.015.Human Microbiome Project Consortium. (2012). Structure, function and diversity of the healthy human microbiome. Nature, 486(7402), 207-214. doi:10.1038/nature11234.Irikiin, Y., Nishiyama, M., Otsuka, S., & Senoo, K. (2006). Rhizobacterial community-level, sole carbon source utilization pattern affects the delay in the bacterial wilt of tomato grown in rhizobacterial community model system. Applied Soil Ecology, 34(1), 27-32. doi:10.1016/j. apsoil.2005.12.003.Jackson, R. W. (Ed.). (2009). Plant pathogenic bacteria: Genomics and molecular biology. Norfolk, Reino Unido: Caister Academic Press.Jackson, R. W. (Ed.). (2009). Plant pathogenic bacteria: Genomics and molecular biology. Norfolk, Reino Unido: Caister Academic Press.Kaestli, M., Schmid, M., Mayo, M., Rothballer, M., Harrington, G., Richardson, L., ... Currie, B. J. (2012). Out of the ground: aerial and exotic habitats of the melioidosis bacterium Burkholderia pseudomallei in grasses in Australia. Environmental Microbiology, 14(8), 2058-2070. doi:10.1111/j.1462-2920.2011.02671.x.Kembel, S. W., O’Connor, T. K., Arnold, H. K., Hubbell, S. P., Wright, S. J., & Green, J. L. (2014). Relationships between phyllosphere bacterial communities and plant functional traits in a neotropical forest. Proceedings of the National Academy of Sciences, 111(38), 13715-13720. doi:10.1073/pnas.1216057111.Köberl, M., Müller, H., Ramadan, E. M., & Berg, G. (2011). Desert farming benefits from microbial potential in arid soils and promotes diversity and plant health. PLoS One, 6(9), e24452. doi:10.1371/journal.pone.0024452.Köberl, M., Schmidt, R., Ramadan, E. M., Bauer, R., & Berg, G. (2013). The microbiome of medicinal plants: diversity and importance for plant growth, quality and health. Frontiers in Microbiology, 4, 400. doi:10.3389/ fmicb.2013.00400.Kouki, S., Saidi, N., Ben Rajeb, A., Brahmi, M., Bellila, A., Fumio, M., ... Ouzari, H. (2012). Control of Fusarium wilt of tomato caused by Fusarium oxysporum F. sp. radicis-lycopersici using mixture of vegetable and Posidonia oceanica compost. Applied and Environmental Soil Science, 2012, 1-11. doi:10.1155/2012/239639.Leach, J. E., Triplett, L. R., Argueso, C. T., & Trivedi, P. (2017). Communication in the Phytobiome. Cell, 169(4), 587-596. doi:10.1016/j.cell.2017.04.025.Lebeis, S. L. (2015). Greater than the sum of their parts: characterizing plant microbiomes at the community-level. Current Opinion in Plant Biology, 24, 82-86. doi:10.1016/j. pbi.2015.02.004.Lebeis, S. L., Rott, M., Dangl, J. L., & Schulze-Lefert, P. (2012). Culturing a plant microbiome community at the cross-Rhodes. New Phytologist, 196(2), 341-344. doi:10.1111/j.1469-8137.2012.04336.x.Lehman, R., Cambardella, C., Stott, D., Acosta-Martinez, V., Manter, D., Buyer, J., ... Karlen, D. (2015). Understanding and enhancing soil biological health: The solution for reversing soil degradation. Sustainability, 7(1), 988-1027. doi:10.3390/su7010988.Leveau, J. H. J. (2007). The magic and menace of metagenomics: prospects for the study of plant growth-promoting rhizobacteria. European Journal of Plant Pathology, 119(3), 279-300. doi:10.1007/s10658-007-9186-9.Lugtenberg, B., & Kamilova, F. (2009). Plant-Growth- Promoting Rhizobacteria. Annual Review of Microbiology, 63, 541-556. doi:10.1146/annurev. micro.62.081307.162918.Lindow, S. E., & Brandl, M. T. (2003). Microbiology of the Phyllosphere. Applied and Environmental Microbiology, 69(4), 1875-1883. doi:10.1128/aem.69.4.1875-1883.2003.Lugtenberg, B. J. J., Chin-A-Woeng, T. F. C., & Bloemberg, G. V. (2002). Microbe–plant interactions: principles and mechanisms. Antonie Van Leeuwenhoek, 81(1-4), 373- 383. doi:10.1023/A:1020596903142.Lundberg, D. S., Lebeis, S. L., Paredes, S. H., Yourstone, S., Gehring, J., Malfatti, S., ... Dangl, J. L. (2012). Defining the core Arabidopsis thaliana root microbiome. Nature 488, 86-90. doi:10.1038/nature11237.Lyte, M. (2013). Microbial endocrinology in the microbiomegut- brain axis: How bacterial production and utilization of neurochemicals influence behavior. PLoS Pathogens, 9(11), e1003726. doi:10.1371/journal.ppat.1003726.Mann, C. (1991). Lynn Margulis: Science's unruly earth mother. Science, 252 (5004), 378-381. doi:10.1126/ science.252.5004.378.Mendes, L. W., Kuramae, E. E., Navarrete, A. A., Van Veen, J. A., & Tsai, S. M. (2014). Taxonomical and functional microbial community selection in soybean rhizosphere. The ISME Journal, 8(8), 1577-1587. doi:10.1038/ ismej.2014.17.Massart, S., Martínez-Medina, M., & Jijakli, M. H. (2015). Biological control in the microbiome era: Challenges and opportunities. Biological Control, 89, 98-108. doi:10.1016/j.biocontrol.2015.06.003.Mendes, L. W., Tsai, S. M., Navarrete, A. A., De Hollander, M., Van Veen, J. A., & Kuramae, E. E. (2015). Soil-borne microbiome: Linking diversity to function. Microbial Ecology, 70(1), 255-265. doi:10.1007/s00248-014-0559-2.Menzies, J. D. (1959). Occurrence and transfer of abiological factor in soil that suppresses potato scab. Phytopathology, 49, 648-652.Mendes, R., Kruijt, M., De Bruijn, I., Dekkers, E., Van der Voort, M., Schneider, J. H. M., ... Raaijmakers, J. M. (2011). Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science, 332(6033), 1097- 1100. doi:10.1126/science.1203980.Messiha, N. A. S., Van Bruggen, A. H. C., Franz, E., Janse, J. D., Schoeman-Weerdesteijn, M. E., Termorshuizen, A. J., & Van Diepeningen, A. D. (2009). Effects of soil type, management type and soil amendments on the survival of the potato brown rot bacterium Ralstonia solanacearum. Applied Soil Ecology, 43(2-3), 206-215. doi:10.1016/j. apsoil.2009.07.008.Messiha, N. A. S., Van Diepeningen, A. D., Farag, N. S., Abdallah, S. A., Janse, J. D., & Van Bruggen, A. H. C. (2007). Stenotrophomonas maltophilia: a new potential biocontrol agent of Ralstonia solanacearum, causal agent of potato brown rot. European Journal of Plant Pathology, 118(3), 211-225. doi:10.1007/s10658-007-9136-6.Michielse, C. B., & Rep, M. (2009). Pathogen profile update: Fusarium oxysporum. Molecular Plant Pathology, 10(3), 311-324. doi:10.1111/j.1364-3703.2009.00538.x.Morriën, E., Hannula, S. E., Snoek, L. B., Helmsing, N. R., Zweers, H., de Hollander, M., ... Van der Putten, W. H. (2017). Soil networks become more connected and take up more carbon as nature restoration progresses. Nature Communications, 8, 14349. doi:10.1038/ncomms14349.Mueller, U. G., & Sachs, J. L. (2015). Engineering microbiomes to improve plant and animal health. Trends in Microbiology, 23(10), 606-617. doi:10.1016/j.tim.2015.07.009.Muyzer, G., & Smalla, K. (1998). Application of denaturing gradient gel electrophoresis (dgge) and temperature gradient gel electrophoresis (tgge) in microbial ecology. Antonie Van Leeuwenhoek, 73(1), 127-141. doi:10.1023/A:1000669317571.Nakahara, H., Mori, T., Sadakari, N., Matsusaki, H., & Matsuzoe, N. (2016). Selection of effective nonpathogenic Ralstonia solanacearum as biocontrol agents against bacterial wilt in eggplant. Journal of Plant Diseases and Protection, 123(3), 119-124. doi:10.1007/s41348- 016-0019-y.ncbi. (2017). GenBank. Recuperado de https://www.ncbi. nlm.nih.gov/genbank/.Nguyen, M. T., & Ranamukhaarachchi, S. L., (2010). Soilborne antagonists for biological control of bacterial wilt disease caused by Ralstonia solanacearum in tomato and pepper. Journal of Plant Pathology, 92(2), 395-405. doi:10.4454/jpp.v92i2.183.Nion, Y. A., & Toyota, K. (2015). Recent trends in control methods for bacterial wilt diseases caused by Ralstonia solanacearum. Microbes Environments, 30(1), 1-11. doi:10.1264/jsme2.ME14144.Nogales, A., Nobre, T., Valadas, V., Ragonezi, C., Döring, M., Polidoros, A., Arnholdt-& Schmitt, B. (2016). Can functional hologenomics aid tackling current challenges in plant breeding? Briefings in Functional Genomics, 15(4), 288-297. doi:10.1093/bfgp/elv030.Ofek, M., Hadar, Y., & Minz, D. (2012). Ecology of root colonizing Massilia (Oxalobacteraceae). plos One, 7(7), e40117. doi:10.1371/journal.pone.0040117.Opelt, K., Berg, C., & Berg, G. (2007). The bryophyte genus Sphagnum is a reservoir for powerful and extraordinary antagonists and potentially facultative human pathogens. FEMS Microbiology Ecology, 61(1), 38-53. doi:10.1111/ j.1574-6941.2007.00323.x.Ortiz, N., Armada, E., Duque, E., Roldán, A., & Azcón, R. (2015). Contribution of arbuscular mycorrhizal fungi and/or bacteria to enhancing plant drought tolerance under natural soil conditions: Effectiveness of autochthonous or allochthonous strains. Journal of Plant Physiology, 174, 87-96. doi:10.1016/j.jplph.2014.08.019.Palmer, C., Bik, E. M., DiGiulio, D. B., Relman, D. A., & Brown, P. O. (2007). Development of the human infant intestinal microbiota. PLoS Biology, 5(7), e177. doi:10.1371/journal.pbio.0050177.Panke-Buisse, K., Poole, A. C., Goodrich, J. K., Ley, R. E., & Kao-Kniffin, J. (2015). Selection on soil microbiomes reveals reproducible impacts on plant function. The ISME Journal, 9(4), 980-989. doi:10.1038/ismej.2014.196.Pera, J., & Calvet, C. (1989). Suppression of Fusarium wilt of carnation in a composted pine bark and a composted olive pumice. Plant Disease, 73(8), 699-700. doi:10.1094/ PD-73-0699.Philippot, L., Hallin, S., Börjesson, G., & Baggs, E. M. (2009). Biochemical cycling in the rhizosphere having an impact on global change. Plant and Soil, 321, 61-81. doi:10.1007/ s11104-008-9796-9.Phytobiomes (2016). Phytobiomes: A roadmap for research and translation. Recuperado de https://goo.gl/haofjs.Ravel, J., Gajer, P., Abdo, Z., Schneider, G. M., Koenig, S. S. K., McCulle, S. L., ... Forney, L. J. (2011). Vaginal microbiome of reproductive-age women. Proceedings of the National Academy of Sciences of the United States of America, 108(Suppl. 1), 4680-4687. doi:10.1073/ pnas.1002611107.Ramesh, R., Joshi, A. A., & Ghanekar, M. P. (2009). Pseudomonads: major antagonistic endophytic bacteria to suppress bacterial wilt pathogen, Ralstonia solanacearum in the eggplant (Solanum melongena L.). World Journal of Microbiology and Biotechnology, 25(1), 47-55. doi:10.1007/ s11274-008-9859-3.Reuveni, M., Sheglov, D., Sheglov, N., Ben-Arie, R., & Prusky, D. (2002). Sensitivity of red delicious apple fruit at various phenologic stages to infection by Alternaria alternata and moldy-core control. European Journal of Plant Pathology, 108(5), 421-427. doi:10.1023/A:1016063626633.Reid, A., & Greene, S. E. (2013). How microbes can help feed the world. Recuperado de https://goo.gl/GpqkQD.Roder, A., Hoffmann, E., Hagemann, M., & Berg, G. (2005). Synthesis of the compatible solutes glucosylglycerol and trehalose by salt-stressed cells of Stenotrophomonas strains. FEMS Microbiology Letters, 243(1), 219-226. doi:10.1016/j.femsle.2004.12.005.Rout, M. E., & Southworth, D. (2013). The root microbiome influences scales from molecules to ecosystems: The unseen majority. American Journal of Botany, 100(9), 1689-1691. doi:10.3732/ajb.1300291.Ryan, R. P., Monchy, S., Cardinale, M., Taghavi, S., Crossman, L., Avison, M. B., ... Dow, J. M. (2009). The versatility and adaptation of bacteria from the genus Stenotrophomonas. Nature Reviews. Microbiology, 7(7), 514-525. doi:10.1038/nrmicro2163.Santhanam, R., Luu, V. T., Weinhold, A., Goldberg, J., Oh, Y., & Baldwin, I. T. (2015). Native root-associated bacteria rescue a plant from a sudden-wilt disease that emerged during continuous cropping. Proceedings of the National Academy of Sciences of the United States of America, 112(36), E5013-E5020. doi:10.1073/pnas.1505765112.Scherwinski, K., Grosch, R., & Berg, G. (2008). Effect of bacterial antagonists on lettuce: active biocontrol of Rhizoctonia solani and negligible, short-term effects on nontarget microorganisms. FEMS Microbiology Ecology, 64(1), 106-116. doi:10.1111/j.1574-6941.2007.00421.x.Schlaeppi, K., & Bulgarelli, D. (2014). The plant microbiome at work. Molecular Plant-Microbe Interactions MPMI, 28(3), 212-217. doi:10.1094/MPMI-10-14-0334-FI.Schmid, F., Moser, G., Müller, H., & Berg, G. (2011). Functional and structural microbial diversity in organic and conventional viticulture: Organic farming benefits natural biocontrol agents. Applied and Environmental Microbiology, 77(6), 2188-2191. doi:10.1128/aem.02187-10.Schönfeld, J., Gelsomino, A., Van Overbeek, L. S., Gorissen, A., Smalla, K., & Van Elsas, J. D. (2003). Effects of compost addition and simulated solarisation on the fate of Ralstonia solanacearum biovar 2 and indigenous bacteria in soil. FEMS Microbiology Ecology, 43(1), 63-74. doi:10.1111/j.1574-6941.2003.tb01046.x.Selosse, M.-A., Bessis, A., & Pozo, M. J. (2014). Microbial priming of plant and animal immunity: symbionts as developmental signals. Trends in Microbiology, 22(11), 607-613. doi:10.1016/j.tim.2014.07.003.Sender, R., Fuchs, S., & Milo, R. (2016). Revised estimates for the number of human and bacteria. Cells in the Body. PLoS Biology, 14(8), e1002533. doi:10.1371/journal. pbio.1002533.Shen, Z., Ruan, Y., Xue, C., Zhong, S., Li, R., & Shen, Q. (2015). Soils naturally suppressive to banana Fusarium wilt disease harbor unique bacterial communities. Plant and Soil, 393(1), 21-33. doi:10.1007/s11104-015-2474-9.Singh, B. K., Bardgett, R. D., Smith, P., & Reay, D. S. (2010). Microorganisms and climate change: terrestrial feedbacks and mitigation options. Nature Reviews. Microbiology, 8(11), 779-790. doi:10.1038/nrmicro2439.Soman, C., Li, D., Wander, M. M., & Kent, A. D. (2017). Long-term fertilizer and crop-rotation treatments differentially affect soil bacterial community structure. Plant and Soil, 413(1-2), 145-159. doi:10.1007/s11 104-016-3083-y.Stulberg, E., Fravel, D., Proctor, L. M., Murray, D. M., LoTempio, J., Chrisey, L., ... Records, A. (2016). An assessment of US microbiome research. Nature Microbiology, 1(1), 1-7. doi:10.1038/nmicrobiol.2015.15.Swanson, J. K., Yao, J., Tans-Kersten, J., & Allen, C. (2005). Behavior of Ralstonia solanacearum race 3 biovar 2 during latent and active infection of geranium. Phytopathology, 95(2), 136-143. doi:10.1094/PHYTO-95-0136.Szczech, M., Rondomański, W., Brzeski, M. W., Smolińska, U., & Kotowski, J. F. (1993). Suppressive effect of a commercial earthworm compost on some root infecting pathogens of cabbage and tomato. Biological Agriculture & Horticulture, 10(1), 47-52. doi:10.1080/01448765.19 93.9754650.Tan, H. M., Cao, L. X., He, Z. F., Su, G. J., Lin, B., & Zhou, S. N. (2006). Isolation of endophytic actinomycetes from different cultivars of tomato and their activities against Ralstonia solanacearum in vitro. World Journal of Microbiology and Biotechnology, 22(12), 1275-1280. doi:10.1007/s11274-006-9172-y.Tang, W. H. W., Wang, Z., Levison , B. S., Koeth , R. A., Britt , E. B., Fu, X., ... Hazen , S.L. (2013). Intestinal microbial metabolism of Phosphatidylcholine and cardiovascular risk. The New England Journal of Medicine, 368(17), 1575-1584. doi:10.1056/NEJMoa1109400.Teplitski, M., Warriner, K., Bartz, J., & Schneider, K. R. (2011). Untangling metabolic and communication networks: interactions of enterics with phytobacteria and their implications in produce safety. Trends in Microbiology, 19(3), 121-127. doi:10.1016/j.tim.2010.11.007.Theis, K. R., Dheilly, N. M., Klassen, J. L., Brucker, R. M., Baines, J. F., Bosch, T. C. G., ... Bordenstein, S. R. (2016). Getting the hologenome concept right: an ecoevolutionary framework for hosts and their microbiomes. mSystems, 1(2), e00028-16. doi:10.11 28/mSystems.00028-16.Toju, H., Tanabe, A. S., Yamamoto, S., & Sato, H. (2012). High-Coverage its primers for the dna-based identification of ascomycetes and basidiomycetes in environmental samples. PLoS One, 7(7), e40863. http:// doi.org/10.1371/journal.pone.0040863Turnbaugh, P. J., Ley, R. E., Hamady, M., Fraser-Liggett, C., Knight, R., & Gordon, J. I. (2007). The human microbiome project: exploring the microbial part of ourselves in a changing world. Nature, 449(7164), 804- 810. doi:10.1038/nature06244.Turner, T. R., James, E. K., & Poole, P. S. (2013). The plant microbiome. Genome Biology, 14(6), 209. doi:10.1186/ gb-2013-14-6-209.Tyler, H. L., & Triplett, E. W. (2008). Plants as a habitat for beneficial and/or human pathogenic bacteria. Annual Review of Phytopathology, 46(1), 53-73. doi:10.1146/ annurev.phyto.011708.103102.Van Baarlen, P., Van Belkum, A., Summerbell, R. C., Crous, P. W., & Thomma, B. P. (2007). Molecular mechanisms of pathogenicity: how do pathogenic microorganisms develop cross-kingdom host jumps? fems Microbiology Reviews, 31(3), 239-277. doi:10.1111/j.1574-6976.2007.00065.x.Van Elsas, J. D., Kastelein, P., De Vries, P. M., & Van Overbeek, L. S. (2001). Effects of ecological factors on the survival and physiology of Ralstonia solanacearum bv. 2 in irrigation water. Canadian Journal of Microbiology, 47(9), 842-854. doi:10.1139/w01-084.Van Elsas, J. D., Chiurazzi, M., Mallon, C. A., Elhottovā, D., Krištůfek, V., & Salles, J. F. (2012). Microbial diversity determines the invasion of soil by a bacterial pathogen. Proceedings of the National Academy of Sciences of the United States of America, 109(4), 1159-1164. doi:10.1073/ pnas.1109326109.Van Overbeek, L. S., Van Doorn, J., Wichers, J. H., Van Amerongen, A., Van Roermund, H. J., & Willemsen, P. T. (2014). The arable ecosystem as battleground for emergence of new human pathogens. Frontiers in Microbiology, 5, 104. doi:10.3389/fmicb.2014.00104.Vandenkoornhuyse, P., Quaiser, A., Duhamel, M., Le Van, A., & Dufresne, A. (2015). The importance of the microbiome of the plant holobiont. The New Phytologist, 206(4), 1196-1206. doi:10.1111/nph.13312.Vorholt, J. A. (2012). Microbial life in the phyllosphere. Nature Reviews. Microbiology, 10(12), 828-840. doi:10.1038/ nrmicro2910.Wagner, M. R., Lundberg, D. S., Coleman-Derr, D., Tringe, S. G., Dangl, J. L., & Mitchell-Olds, T. (2014). Natural soil microbes alter flowering phenology and the intensity of selection on flowering time in a wild Arabidopsis relative. Ecology Letters, 17(6), 717-726. doi:10.1111/ele.12276.Wei, Z., Huang, J., Tan, S., Mei, X., Shen, Q., & Xu, Y. (2013). The congeneric strain Ralstonia pickettii QL-A6 of Ralstonia solanacearum as an effective biocontrol agent for bacterial wilt of tomato. Biological Control, 65(2), 278- 285. doi:10.1016/j.biocontrol.2012.12.010.Wei, Z., Yang, T., Friman, V.-P., Xu, Y., Shen, Q., & Jousset, A. (2015). Trophic network architecture of rootassociated bacterial communities determines pathogen invasion and plant health. Nature Communications, 6, 8413. doi:10.1038/ncomms9413.Weller, D. M., Raaijmakers, J. M., Gardener, B. B., & Thomashow, L. S. (2002). Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annual Review of Phytopathology 40, 309-348. doi:10.1146/annurev.phyto.40.030402.110010.Whitman, W. B., Coleman, D. C., & Wiebe, W. J. (1998). Prokaryotes: The unseen majority. Proceedings of the National Academy of Sciences, 95(12), 6578-6583. doi:10.1073/pnas.95.12.6578.Widder, S., Allen, R. J., Pfeiffer, T., Curtis, T. P., Wiuf, C., Sloan, W. T., ... Soyer, O. S. (2016). Challenges in microbial ecology: building predictive understanding of community function and dynamics. The ISME Journal, 10(11), 2557-2568. doi:10.1038/ismej.2016.45.Wisniewski, M., Droby, S., Norelli, J., Liu, J., & Schena, L. (2016). Alternative management technologies for postharvest disease control: The journey from simplicity to complexity. Postharvest Biology and Technology, 122, 3-10. doi:10.1016/j.postharvbio.2016.05.012.Wubs, E. R. J., Van der Putten, W. H., Bosch, M., & Bezemer, T. M. (2016). Soil inoculation steers restoration of terrestrial ecosystems. Nature Plants, 2(8), 16107. doi:10.1038/nplants.2016.107.Xue, Q.-Y., Chen, Y., Li, S.-M., Chen, L.-F., Ding, G.-C., Guo, D.-W., Guo, J.-H. (2009). Evaluation of the strains of Acinetobacter and Enterobacter as potential biocontrol agents against Ralstonia wilt of tomato. Biological Control, 48(3), 252-258. doi:10.1016/j.biocontrol.2008.11.004.Yabuuchi, E., Kosako, Y., Yano, I., Hotta, H., & Nishiuchi, Y. (1995). Transfer of two Burkholderia and an Alcaligenes species to Ralstonia gen. Microbiology and Immunology, 39(11), 897-904. doi:10.1111/j.1348-0421.1995. tb03275.x.Yatsunenko, T., Rey, F. E., Manary, M. J., Trehan, I., Dominguez-Bello, M.G., Contreras, M., ... Gordon, J. I. (2012). Human gut microbiome viewed across age and geography. Nature, 486(7402), 222-227. doi:10.1038/ nature11053.Zachow, C., Berg, C., Müller, H., Meincke, R., Komon- Zelazowska, M., Druzhinina, I. S., ... Berg, G. (2009). Fungal diversity in the rhizosphere of endemic plant species of Tenerife (Canary Islands): relationship to vegetation zones and environmental factors. The isme Journal, 3(1), 79. doi:10.1038/ismej.2008.87.Zachow, C., Berg, C., Müller, H., Meincke, R., Komon- Zelazowska, M., Druzhinina, I. S., ... Berg, G. (2009). Fungal diversity in the rhizosphere of endemic plant species of Tenerife (Canary Islands): relationship to vegetation zones and environmental factors. The isme Journal, 3(1), 79. doi:10.1038/ismej.2008.87.Zacky, F. A., & Ting, A. S. Y. (2013). Investigating the bioactivity of cells and cell-free extracts of Streptomyces griseus towards Fusarium oxysporum f. sp. cubense race 4. Biological Control, 66(3), 204-208. doi:10.1016/j. biocontrol.2013.06.001.Angus, T. A. (1954). A bacterial toxin paralysing silkworm larvae. Nature, 173, 545-546. doi:10.1038/173545a0.Adang, M. J., Crickmore, N., & Jurat-Fuentes, J. L. (2014). Chapter two - diversity of Bacillus thuringiensis crystal toxins and mechanism of action. En T. S. Dhadialla & S. S. Gill (Eds.), Advances in Insect Physiology (pp. 39-87). Vol. 47. Cambridge, Inglaterra: Academic Press.Aronson, A. I., Beckman, W., & Dunn, P. (1986). Bacillus thuringiensis and related insect pathogens. Microbiological reviews, 50(1), 1-24.Asolkar, R., Huang, H., Koivunen, M., & Marrone, P. (2015). Patente EUA 8715754 Chromobacterium bioactive compositions and metabolites, Marrone Bio Innovations, I. Washington: Oficina de Patentes y Marcas de EUA.Ballester, V., Granero, F., Tabashnik, B. E., Malvar, T., & Ferré, J. (1999). Integrative model for binding of Bacillus thuringiensis toxins in susceptible and resistant larvae of the diamondback moth (Plutella xylostella). Applied and Environmental Microbiology, 65(4), 1413-1419.Benoit, T. G., Wilson, G. R., Bull, D. L., & Aronson, A. I. (1990). Plasmid-associated sensitivity of Bacillus thuringiensis to uv light. Applied and Environmental Microbiology, 56(8), 2282-2286.Beegle, C. C., & Yamamoto, T., (1992). Invitation paper (C.P. Alexander Fund): history of Bacillus thuringiensis Berliner research and development. The Canadian Entomologist, 124(4), 587-616. doi:10.4039/Ent124587-4.Berg, G. (2009). Plant-microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Applied Microbiology and Biotechnology, 84(1), 11-18. doi:10.1007/s00253-009- 2092-7.Berry, C. (2012). The bacterium, Lysinibacillus sphaericus, as an insect pathogen. Journal of Invertebrate Pathology, 109(1), 1-10. doi:10.1016/j.jip.2011.11.008.Biostart. (2017). The safe, effective way to control nz grass grub. Recuperado de http://www.biostart.co.nz/products/bioinsecticides/ bioshield-grass-grub/.Bone, L. W., & Tinelli, R. (1987). Trichostrongylus colubriformis: larvicidal activity of toxic extracts from Bacillus sphaericus (strain 1593) spores. Experimental Parasitology, 64(3), 514-516. doi:10.1016/0014-4894(87)90066-X.Bowen, D., Rocheleau, T. A., Blackburn, M., Andreev, O., Golubeva, E., Bhartia, R., & Ffrench-Constant, R. H. (1998). Insecticidal toxins from the bacterium Photorhabdus luminescens. Science, 280(5372), 2129-2132. doi:10.1126/science.280.5372.2129.Braga, R. M., Dourado, M. N., & Araújo, W. L. (2016). Microbial interactions: ecology in a molecular perspective. Brazilian Journal Microbiology, 47(1), 86-98. doi:10.1016/j.bjm.2016.10.005.Bravo, A. (2004). Familia de proteínas inseticidas de Bacillus thuringiensis. En: Bravo, A., Cerón, J. (Eds.), Bacillus thuringiensis en el control biológico (pp 49-68). Bogotá, Colombia: Editorial Buena Semilla.Bresolin, G., Morgan, J. A. W., Ilgen, D., Scherer, S., & Fuchs, T. M. (2006). Low temperature-induced insecticidal activity of Yersinia enterocolitica. Molecular Microbiology, 59(2), 503-512. doi:10.1111/j.1365-2958.2005.04916.x.Bucher, G. (1981). Identification of bacteria found in insects. En H. D. Burges (Ed.), Microbial control of pests and plant diseases, 1970-1980 (pp. 7-33). Londres, Reino: Academic Press.Cordova-Kreylos, A. L., Fernandez, L. E., Koivunen, M., Yang, A., Flor-Weiler, & L., Marrone, P. G. (2013). Isolation and Characterization of Burkholderia rinojensis sp. nov., a Non-Burkholderia cepacia Complex Soil Bacterium with Insecticidal and Miticidal Activities. Applied and Environmental Microbiology, 79(24), 7669- 7678. doi:10.1128/aem.02365-13.Couch, T. L. (2000). Industrial fermentation and formulation of entomopathogenic bacteria. En J. F. Charles, A. Delécluse & C. N. Roux (Eds.), Entomopathogenic bacteria: From laboratory to field application (pp. 297-316). Dordrecht, Holanda: Springer.Crickmore, N., Zeigler, D. R., Feitelson, J., Schnepf, E., Van Rie, J., Lereclus, D., ... Dean, D. H. (1998). Revision of the nomenclature for the Bacillus thuringiensis pesticidal crystal proteins. Microbiology and Molecular Biology Reviews, 62(3), 807-813.Champion, O. L., Cooper, I. A., James, S. L., Ford, D., Karlyshev, A., Wren, B. W., …Titball R. W. (2009). Galleria mellonella as an alternative infection model for Yersinia pseudotuberculosis. Microbiology, 155(5), 1516- 1522. doi:10.1099/mic.0.026823-0.Chakoosari, M. M. D. (2013). Efficacy of various biological and microbial insecticides. Journal of biology and today’s world, 2, 249-254.Chandler, D., Bailey, A. S., Tatchell, G. M., Davidson, G., Greaves, J., & Grant, W. P. (2011). The development, regulation and use of biopesticides for integrated pest management. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 366(1573), 1987- 1998. doi:10.1098/rstb.2010.0390.Chattopadhyay, P., Chatterjee, S., Gorthi, S., & Sen, S. K. (2012). Exploring Agricultural Potentiality of Serratia entomophila AB2: Dual Property of Biopesticide and Biofertilizer. British Biotechnology Journal, 2(1), 1-12. doi:10.9734/BBJ/2012/778.Chattopadhyay, P., Gorthi, S., Chatterjee, S., & Sen, S. K. (2011). Characterization of bacterial isolates as natural biocontrol agents of bollworm from an epizootic pest (Heliothis armigera). Pest Technology, 5(1), 81-85.Chattopadhyay, P., Gorthi, S., Chatterjee, S., & Sen, S. K. (2011). Characterization of bacterial isolates as natural biocontrol agents of bollworm from an epizootic pest (Heliothis armigera). Pest Technology, 5(1), 81-85.d’Herelle, F., (1911). Sur une épizootie de nature bactérienne sévissant sur les sauterelles au Mexique. Comptes Rendus de l'Académie des Sciences, 152, 1413-1415.De Barjac, H., & Bonnefoi, A. (1962). Essai de classification biochimique et sérologique de 24 souches de Bacillus du type B. Thuringiensis. Entomophaga, 7(1), 5-31. doi:10.1007/BF02375988.Dacheux, D., Attree, I., Schneider, C., & Toussaint, B. (1999). Cell death of human polymorphonuclear neutrophils induced by a Pseudomonas aeruginosa cystic fibrosis isolate requires a functional Type iii secretion system. Infection and Immunity, 67(11), 6164-6167.De Maagd, R. A., Bosch, D., & Stiekema, W. (1999). Bacillus thuringiensis toxin-mediated insect resistance in plants. Trends in Plant Science, 4(1), 9-13. doi:10.1016/S1360- 1385(98)01356-9.Dodd, S. J., Hurst, M. R. H., Glare, T. R., O'Callaghan, M., & Ronson, C. W. (2006). Occurrence of sep insecticidal toxin complex genes in Serratia spp. and Yersinia frederiksenii. Applied and Environmental Microbiology, 72(10), 6584-6592. doi:10.1128/aem.00954-06.Dingman, D. W. (2009). dna fingerprinting of Paenibacillus popilliae and Paenibacillus lentimorbus using pcr-amplified 16S–23S rDNA intergenic transcribed spacer (its) regions. Journal of Invertebrate Pathology, 100(1), 16-21. doi:10.1016/j.jip.2008.09.006.Dutky, S. (1963). The milky diseases. En E. Steinhaus (Ed.), Insect Pathology: An Advanced Treatise (pp. 75-115). Nueva York , EE. UU.: Academic press.Endo, H., Azuma, M., Adegawa, S., Kikuta, S., & Sato, R. (2017). Water influx via aquaporin directly determines necrotic cell death induced by the Bacillus thuringiensis Cry toxin. FEBS Lett, 591(1), 56-64. doi:10.1002/1873- 3468.12506.Dutta, S. (2015). Biopesticides: an ecofriendly approach for pest control. World Journal of Pharmacy and Pharmaceutical Sciences, 4(6), 250-265.Environmental Protection Agency (epa). (2008). Biopesticide active ingredients and products containing them. Recuperado de http://www.epa.gov/pesticides/biopesticides/ product_lists.Fang, J., Xu, X., Wang, P., Zhao, J.-Z., Shelton, A.M., Cheng, J., … Sheng, Z. (2007). Characterization of Chimeric Bacillus thuringiensis Vip3 Toxins. Applied Environmental Microbiology, 73(3), 956-961. doi:10.1128/AEM.02079-06.Federici, B. A. (2007). Bacteria as biological control agents for insects: Economics, engineering, and environmental safety. En M. Vurro & J. Gressel (Eds.), Novel biotechnologies for biocontrol agent enhancement and management (pp. 25-51). Dordrecht, Holanda: Springer.Ferguson, C. M., Barton, D. M., Harper L. A., Swaminathan., J., Van Koten, C., & Hurst, M. R. H. (2012). Survival of Yersinia entomophaga MH96 in a pasture ecosystem and effects on pest and non-target invertebrate populations. New Zealand Plant Protection, 65: 166-173.Ferré, J., & Rie, J. V. (2002). Biochemistry and genetics of insect resistance to Bacillus thuringiensis. Annual Reviews of Entomology, 47, 501-533. doi:10.1146/annurev. ento.47.091201.145234.Ffrench-Constant, R., & Waterfield, N. (2005). An abc guide to the bacterial toxin complexes. Advances in Applied Microbiology, 58, 169-183. doi:10.1016/S0065- 2164(05)58005-5.Ffrench-Constant, R. H., Dowling, A., & Waterfield, N. R. (2007). Insecticidal toxins from Photorhabdus bacteria and their potential use in agriculture. Toxicon, 49(4), 436- 451. doi:10.1016/j.toxicon.2006.11.019.Fuchs, T. M., Bresolin, G., Marcinowski, L., Schachtner, J., & Scherer, S. (2008). Insecticidal genes of Yersinia spp.: Taxonomical distribution, contribution to toxicity towards Manduca sexta and Galleria mellonella, and evolution. BMC Microbiology, 8, 214. doi:10.1186/1471- 2180-8-214.Ge, Y., Hu, X., Zheng, D., Wu, Y., & Yuan, Z. (2011). Allelic diversity and population structure of Bacillus sphaericus as revealed by multilocus sequence typing. Applied and Environmental Microbiology, 77(15), 5553-5556. doi:10.1128/AEM.00207-11.Gómez-Garzón, C., Hernández-Santana, A., & Dussán, J. (2016). Comparative genomics reveals Lysinibacillus sphaericus group comprises a novel species. BMC Genomics, 17, 1-10. doi:10.1186/s12864-016-3056-9.Glare, T. R., Corbett, G. E., & Sadler, T. J. (1993). Association of a large plasmid with amber disease of the New Zealand grass grub, Costelytra zealandica, caused by Serratia entomophila and Serratia proteamaculans. Journal of Invertebrate Pathology, 62(2), 165-170. doi:10.1006/ jipa.1993.1091.Gómez, I., Sánchez, J., Miranda, R., Bravo, A., & Soberón, M. (2002). Cadherin-like receptor binding facilitates proteolytic cleavage of helix -1 in domain I and oligomer pre-pore formation of Bacillus thuringiensis Cry1Ab toxin. FEBS Letters, 513(2-3), 242-246. doi:10.1016/S0014- 5793(02)02321-9.Gonzalez, J. M., & Carlton, B. C. (1980). Patterns of plasmid dna in crystalliferous and acrystalliferous strains of Bacillus thuringiensis. Plasmid, 3(1), 92-98. doi:10.1016/ S0147-619X(80)90038-4.Grimont, P., & Grimont, F. (1978). The genus Serratia. Annual Review of Microbiology, 32, 221-248. doi:10.1146/ annurev.mi.32.100178.001253.Grimont, P. A. D., Jackson, T. A., Ageron, E., & Noonan, M. J. (1988). Serratia entomophila sp. nov. associated with amber disease in the New Zealand grass grub Costelytra zealandica. International Journal of Systematic and Evolutionary Microbiology, 38, 1-6. doi:10.1099/00207713-38-1-1.Grkovic, S., Glare, T. R., Jackson, T. A., & Corbett, G. E. (1995). Genes essential for amber disease in grass grubs are located on the large plasmid found in Serratia entomophila and Serratia proteamaculans. Applied and Environmental Microbiology, 61(6), 2218-2223.Gupta, B. L., Dow, J. A., Hall, T. A., & Harvey, W. R. (1985). Electron probe X-ray microanalysis of the effects of Bacillus thuringiensis var. kurstaki crystal protein insecticide on ions in an electrogenic K+-transporting epithelium of the larval midgut in the lepidopteran, Manduca sexta, in vitro. Journal of Cell Science, 74, 137-152.Haddy, R. I., Mann, B. L., Nadkarni, D. D., Cruz, R. F., Elshoff, D. J., Buendia, F. C., … Oberheu, A. M. (1996). Nosocomial infection in the community hospital: severe infection due to Serratia species. The Journal of Family Practice, 42(3), 273-278.Harrison, H., Patel, R., & Yousten, A. A. (2000). Paenibacillus associated with milky disease in Central and South American scarabs. Journal of Invertebrate Pathology, 76(3), 169-175. doi:10.1006/jipa.2000.4969.Heckel, D. G. (2012). Learning the ABCs of Bt: abc transporters and insect resistance to Bacillus thuringiensis provide clues to a crucial step in toxin mode of action. Pesticide Biochemistry and Physiology, 104(2), 103-110. doi:10.1016/j.pestbp.2012.05.007.Hejazi, A., & Falkiner, F. R. (1997). Serratia marcescens. Journal of Medical Microbiology, 46, 903-912. doi:10.1099/00222615-46-11-903.Hire, R. S., Hadapad, A. B., Vijayalakshmi, N., & Dongre, T. K. (2010). Characterization of highly toxic indigenous strains of mosquitocidal organism Bacillus sphaericus. FEMS Microbiology Letters, 305(2), 155-161. doi:10.1111/j.1574-6968.2010.01927.x.Höfte, H., & Whiteley, H. R. (1989). Insecticidal crystal proteins of Bacillus thuringiensis. Microbiological Reviews, 53(2), 242-255.Hoshino, T. (2011). Violacein and related tryptophan metabolites produced by Chromobacterium violaceum: biosynthetic mechanism and pathway for construction of violacein core. Applied Microbiology and Biotechnology, 91, 1463. doi:10.1007/s00253-011-3468-z.Hurst, M. R., Glare, T. R., & Jackson, T. A. (2004). Cloning Serratia entomophila antifeeding genes–a putative defective prophage active against the grass grub Costelytra zealandica. Journal of Bacteriology, 186(15), 5116-5128. doi: 10.1128/JB.186.15.5116-5128.2004.Hurst, M. R., Glare, T. R., Jackson, T. A., & Ronson, C. W. (2000). Plasmid-located pathogenicity determinants of Serratia entomophila, the causal agent of amber disease of grass grub, show similarity to the insecticidal toxins of Photorhabdus luminescens. Journal of Bacteriology, 182(18), 5127-5138. doi:10.1128/JB.182.18.5127-5138.2000.Hurst, M. R. H., Beattie, A. K., Jones, S. A., Hsu, P.-C., Calder, J., & Van Koten, C. (2015). Temperature-dependent Galleria mellonella mortality as a result of Yersinia entomophaga infection. Applied and Environmental Microbiology, 81(18), 6404-6414. doi:10.1128/aem.00790-15.Hurst, M. R. H., Becher, S. A., & O’Callaghan, M. (2011). Nucleotide sequence of the Serratia entomophila plasmid pADAP and the Serratia proteamaculans pU143 plasmid virulence associated region. Plasmid, 65(1), 32-41. doi:10.1016/j.plasmid.2010.10.001.Hurst, M. R. H., Becher, S. A., Young, S. D., Nelson, T. L., Glare, T. R. (2011). Yersinia entomophaga sp. nov., isolated from the New Zealand grass grub Costelytra zealandica. International Journal Systematic and Evolutionary Microbiology, 61(4), 844-849. doi:10.1099/ijs.0.024406-0.Hurst, M. R. H., Jones, S. A., Binglin, T., Harper, L. A., Jackson, T. A., & Glare, T. R., (2011). The main virulence determinant of Yersinia entomophaga MH96 is a broad host-range toxin complex active against insects. Journal of Bacteriology, 193(8), 1966-1980. doi:10.1128/JB.01 044-10.Hurst, M. R. H., Jones, S. M., Tan, B., & Jackson, T. A. (2007). Induced expression of the Serratia entomophila Sep proteins shows activity towards the larvae of the New Zealand grass grub Costelytra zealandica. FEMS Microbiology Letters, 275(1), 160-167. doi:10.1111/ j.1574-6968.2007.00886.x.Hurst, M. R. H., van Koten, C., & Jackson, T. A. (2014). Pathology of Yersinia entomophaga MH96 towards Costelytra zealandica (Coleoptera; Scarabaeidae) larvae. Journal of Invertebrate Pathology, 115, 102-107. doi:10.1016/j.jip.2013.11.004.Ibarra, J. E., & Federici, B. A. (1986). Parasporal bodies of Bacillus thuringiensis subsp. morrisoni (PG-14) and Bacillus thuringiensis subsp. israelensis are similar in protein composition and toxicity. FEMS Microbiology Letters, 34(1), 79-84. doi:10.1111/j.1574-6968.1986. tb01353.x.Inglis, G. D., & Lawrence, A. M. (2001). Effects of Serratia marcescens on the F1 generation of laboratory-reared Heliothis virescens (Lepidoptera: Noctuidae). Journal of Economic Entomology, 94(2), 362-366. doi:10.1603/0022- 0493-94.2.362.Jackson, T. A. (2007). A novel bacterium for control of grass grub. En C. Vincent, M. S. Goettel, & G. Lazarovits (Eds.), Biological control: a global perspective (pp. 160- 168). Wallingford, Inglaterra: cabi.Jackson, T. A., Boucias, D. G., & Thaler, J. O. (2001). Pathobiology of amber disease, caused by Serratia spp., in the New Zealand grass grub, Costelytra zealandica. Journal of Invertebrate Pathology, 78(4), 232-243. doi:10.1006/ jipa.2002.5078.Jackson, T. A., Huger, A. M., & Glare, T. R. (1993). Pathology of Amber Disease in the New Zealand Grass Grub Costelytra zealandica (Coleoptera: Scarabaeidae). Journal of Invertebrate Pathology, 61(2), 123-130. doi:10.1006/ jipa.1993.1024.Jackson, T. A., Pearson, J. F., O'Callaghan, M., Mahanty, H. K., & Willcocks, M. J. (1992). Pathogen to product - Development of Serratia entomophila (Enterobacteriaceae) as a commercial biological agent for the New Zealand grass grub (Costelytra zealandica). En T. A. Jackson, & T. R. Glare, (Eds.), Use of Pathogens in Scarab Pest Management (pp. 191-198). Andover, EE. UU.: Intercept.Jackson, T. A., Pearson, J. F., & Stucki, G. (1986). Control of the grass grub, Costelytra zealandica (White) (Coleoptera:Jackson, T. A., Townsend, R. J., & Barlow, N. D. (1999). Predicting grass grub populationchange in Canterbury. En: J. N. Matthiessen (Ed.) Proceedings of the 7th australasian conference on grassland invertebrate ecology. Wembley, Autralia. pp. 21-26.Jackson, T. A., & Zimmermann, G. (1996). Is there a role for Serratia spp. in the biocontrol of Melolontha spp.? Bulletin OILB/SROP, 19(2), 47-53.Jackson, T. A., & Zimmermann, G. (1996). Is there a role for Serratia spp. in the biocontrol of Melolontha spp.? Bulletin OILB/SROP, 19(2), 47-53.Jarrett, C. O., Deak, E., Isherwood, K. E., Oyston, P. C., Fischer, E. R., Whitney, A. R., … Hinnebusch, B. J. (2004). Transmission of Yersinia pestis from an infectious biofilm in the flea vector. The journal of infectious diseases, 190(4), 782-792. doi:10.1086/422695.Jisha, V. N., Smitha, R. B., & Benjamin, S. (2013). An overview on the crystal toxins from Bacillus thuringiensis. Advances in microbiology, 3, 462-472. doi:10.4236/ aim.2013.35062.Jolley, K. A., Chan, M.-S., & Maiden, M. C. (2004). mlstdbNet – distributed multi-locus sequence typing (mlst) databases. BMC Bioinformatics, 5, 86. doi:10.1186/1471- 2105-5-86.Jurat-Fuentes, J. L., & Crickmore, N., (2017). Specificity determinants for Cry insecticidal proteins: Insights from their mode of action. Journal of Invertebrate Pathology, 142, 5-10. doi:10.1016/j.jip.2016.07.018.Kain, W., & Atkinson, D. (1970). Rational approach to grass grub control. Proceedings of the 23rd NZ Weed and Pest Control Conference, pp. 180-183. Palmerston North, Nueva Zelanda: New Zealand Plant Protection Society.Kaška, M. (1976). The toxicity of extracellular proteases of the bacterium Serratia marcescens for larvae of greater wax moth, Galleria mellonella. Journal of Invertebrate Pathology, 27(2), 271. doi:10.1016/0022-2011(76)90158-0.Kellen, W. R., Clark, T. B., Lindegren, J. E., Ho, B. C., Rogoff, M. H., & Singer, S. (1965). Bacillus sphaericus Neide as a pathogen of mosquitoes. Journal of Invertebrate Pathology, 7(4), 442-448. doi:10.1016/0022-2011(65)90120-5.Kergunteuil, A., Bakhtiari, M., Formenti, L., Xiao, Z., Defossez, E., & Rasmann, S. (2016). Biological control beneath the feet: A review of crop protection against insect root herbivores. Insects, 7(4), 70. doi:10.3390/ insects7040070.Key, P. B., & Scott, G. I. (1992). Acute toxicity of the mosquito larvicide, Bacillus sphaericus, to the grass shrimp, Palaemonetes pugio, and mummichog, Fundulus heteroclitus. Bulletin of Environmental Contamination and Toxicology, 49(3), 425-430. doi:10.1007/BF01239647.Khetan, S. (2001). Microbial pest control. Nueva York, EE. UU.: Marcel Dekker.Khyami-Horani, H., Hajaij, M., & Charles, J.-F. (2003). Characterization of Bacillus thuringiensis ser. jordanica (Serotype H71), a novel serovariety isolated in Jordan. Current Microbiology, 47(1), 0026-0031. doi:10.1007/ s00284-002-3940-1.Kil, Y. J., Seo, M. J., Kang, D. K., Oh, S. N., Cho, H. S., Youn, Y. N., … Yu, Y. M. (2014). Effects of enterobacteria (Burkholderia sp.) on development of Riptortus pedestris. Journal of the Faculty of Agriculture, Kyushu University, 59(1), 77-84.Kinkel, L. L., Bakker, M. G., & Schlatter, D. C. (2011). A coevolutionary framework for managing diseasesuppressive soils. Annual Review of Phytopatholgoy, 49, 47-67. doi:10.1146/annurev-phyto-072910-095232.Klein, M. G. (1988). Pest management of soil-inhabiting insects with microorganisms. Agriculture Ecosystems & Environment. 24(1-3), 337-349. doi:10.1016/0167- 8809(88)90077-1.Klein, M. G., & Jackson, T. A. (1992). Bacterial diseases of scarabs. En J. Trevor & G. Travis (Eds.), Use of pathogens in scarab pest management (pp.43-61). Andover, EE. UU.: Intercept.Krishnan, M., Bharathiraja, C., Pandiarajan, J., Prasanna, V. A., Rajendhran, J., & Gunasekaran, P. (2014). Insect gut microbiome - An unexploited reserve for biotechnological application. Asian Pacific Journal of Tropical Biomedicine, 4(Suppl. 1), S16-S21. doi:10.12980/APJTB.4.2014C95.Kupferschmied, P., Maurhofer, M., & Keel, C. (2013). Promise for plant pest control: root-associated pseudomonads with insecticidal activities. Frontiers in Plant Science, 4, 287. doi:10.3389/fpls.2013.00287.Lacey, L. A., & Georgis, R. (2012). Entomopathogenic nematodes for control of insect pests above and below ground with comments on commercial production. Journal of Nematology, 44(2), 218-225.Lambert, B., & Peferoen, M. (1992). Insecticidal Promise of Bacillus thuringiensis: Facts and mysteries about a successful biopesticide. Bioscience, 42(2), 112-122. doi:10.2307/1311652.Lecadet, M. M., Frachon, E., Dumanoir, V. C., Ripouteau, H., Hamon, S., Laurent, P., & Thiéry, I. (1999). Updating the H-antigen classification of Bacillus thuringiensis. Journal of Applied Microbiology, 86(4), 660-672. doi:10.1046/ j.1365-2672.1999.00710.x.Lereclus, D., Lecadet, M.-M., Ribier, J., & Dedonder, R. (1982). Molecular relationships among plasmids of Bacillus thuringiensis: Conserved sequences through 11 crystalliferous strains. Molecular and general genetics mgg, 186(3), 391-398. doi:10.1007/BF00729459.LifeSci. (2017). “Bacillus thuringiensis” Toxin Nomenclature. Recuperado de http://www.lifesci.sussex.ac.uk/home/ Neil_Crickmore/Bt/.Lodish, H., Berk, A., Matsudaira, P., Kaiser, C., Krieger, M., Scott, M., … Darnell, J. (2006). Biología celular y molecular. Buenos Aires, Argentina: Editorial Médica Panamericana.Loper, J. E., Hassan, K. A., Mavrodi, D. V., Davis II, E. W., Lim, C. K., Shaffer, B. T., ... Paulsen, I. T. (2012). Comparative genomics of plant-associated Pseudomonas spp.: insights into diversity and inheritance of traits involved in multitrophic interactions. PLoS Genetics, 8(7), e1002784. doi:10.1371/journal.pgen.1002784.López-Meza, J. E., Barboza-Corona, J. E., Del Rincón- Castro, M. C., & Ibarra, J. E. (2003). Sequencing and characterization of plasmid pUIBI-1 from Bacillus thuringiensis serovar entomocidus LBIT-113. Current Microbiology, 47(5), 395-399. doi:10.1007/s00284-003- 4041-5.Lord, J. C. (2005). From metchnikoff to Monsanto and beyond: The path of microbial control. Journal of Invertebrate Pathology, 89(1), 19-29. doi:10.1016/j. jip.2005.04.006.Lysenko, O. (1976). Chitinase of Serratia marcescens and its toxicity to insects. Journal of Invertebrate Pathology, 27, 385-386.Marshall, S. D .G., Hares, M. C., Jones, S. A., Harper, L. A., Vernon, J. R., Harland, D. P., ... Hursta M. R. H. (2012). Histopathological effects of the Yen-Tc toxin complex from Yersinia entomophaga MH96 (Enterobacteriaceae) on the Costelytra zealandica (Coleoptera: Scarabaeidae) larval midgut. Applied and Environmental Microbiology, 78(14), 4835-4847. doi:10.1128/aem.00431-12.Martin, P. A., Hirose, E., & Aldrich, J. R. (2007). Toxicity of Chromobacterium subtsugae to southern green stink bug (Heteroptera: Pentatomidae) and corn rootworm (Coleoptera: Chrysomelidae). Journal of Economic Entomology, 100(3), 680-684.Martin, P. A. W., Gundersen-Rindal, D., Blackburn, M., & Buyer, J. (2007). Chromobacterium subtsugae sp. nov., a betaproteobacterium toxic to Colorado potato beetle and other insect pests. International Journal of Systematic and Evolutionary Microbiology, 57(5), 993-999. doi:10.1099/ ijs.0.64611-0.McNally, A., Cheasty, T., Fearnley, C., Dalziel, R. W., Paiba, G. A., Manning, G., Newell, D. G. (2004). Comparison of the biotypes of Yersinia enterocolitica isolated from pigs, cattle and sheep at slaughter and from humans with yersiniosis in Great Britain during 1999-2000. Letters in Applied Microbiology, 39, 103-108. doi:10.1111/j.1472- 765X.2004.01548.x.Mnif, I., & Ghribi, D. (2015). Potential of bacterial derived biopesticides in pest management. Crop Protection, 77, 52- 64. doi:10.1016/j.cropro.2015.07.017.Mizuki, E., Park, Y. S., Saitoh, H., Yamashita, S., Akao, T., Higuchi, K., Ohba, M. (2000). Parasporin, a human leukemic cell-recognizing parasporal protein of Bacillus thuringiensis. Clinical and Diagnostic Laboratory Immunology, 7(4), 625-634.Monnerat, R., De Silva, S. F., Dias, D. S., Martins, E. S., Praça, L. B., Jones, G. W., ... Berry, C. (2004). Screening of Brazilian Bacillus sphaericus strains for high toxicity against Culex quinquefasciatus and Aedes aegypti. Journal of Applied Entomology, 128(7), 469-473. doi:10.1111/ j.1439-0418.2004.00874.x.Monnerat, R., Nicolas, L., Frachon, E., & Hamon, S. (1992). Characterization and toxicity to mosquito larvae of four Bacillus sphaericus strains isolated from Brazilian soils. Journal of Invertebrte Pathology, 60(1), 10-14. doi:10.1016/0022-2011(92)90147-V.Murray, P., Rosentahl, K., & Pfaller, M., (2009). Microbiología médica. (7.ª ed.). Barcelona, España, Elsevier.Núñez-Valdez, M. E., Calderón, M. A., Aranda, E., Hernández, L., Ramírez-Gama, R. M., Lina, L., … Villalobos, F. J. (2008). Identification of a putative mexican strain of Serratia entomophila pathogenic against root-damaging larvae of Scarabaeidae (Coleoptera). Applied and Environmental Microbiology, 74(3), 802-810. doi:10.1128/AEM.01074-07.Núñez-Valdez, M. E., Calderón, M. A., Aranda, E., Hernández, L., Ramírez-Gama, R. M., Lina, L., … Villalobos, F. J. (2008). Identification of a putative mexican strain of Serratia entomophila pathogenic against root-damaging larvae of Scarabaeidae (Coleoptera). Applied and Environmental Microbiology, 74(3), 802-810. doi:10.1128/AEM.01074-07.O'Callaghan, M., Garnham, M. L., Nelson, T. L., Baird, D., & Jackson, T. A. (1996). The pathogenicity of Serratia strains to Lucilia sericata (Diptera: Calliphoridae). Journal of Invertebrate Pathology, 68(1), 22-27. doi:10.1006/ jipa.1996.0054.O'Callaghan, M., Young, S., Barlow, N., & Jackson, T. (1999). The ecology of grass grub pathogenic Serratia spp. New Zealand pastures. En J. N. Mathiessen (Ed.). Proceedings of the 7th australasian conference on grassland invertebrate ecology, (pp. 85-91). Perth, Australia: csiro Entomology.Ocelotl, J., Sánchez, J., Gómez, I., Tabashnik, B. E., Bravo, A., & Soberón, M. (2017). ABCC2 is associated with Bacillus thuringiensis Cry1Ac toxin oligomerization and membrane insertion in diamondback moth. Scientific Reports, 7, 2386. doi:10.1038/s41598-017-02545-y.Opota, O., Vallet-Gély, I., Vincentelli, R., Kellenberger, C., Iacovache, I., Gonzalez, M. R., … Lemaitre, B. (2011) Monalysin, a novel ß-pore-forming toxin from the Drosophila pathogen Pseudomonas entomophila, contributes to host intestinal damage and lethality. PLoS Pathogens, 7(9): e1002259. doi:10.1371/journal. ppat.1002259.Owuama, C. I. (2001). Entomopathogenic symbiotic bacteria, Xenorhabdus and Photorhabdus of nematodes. World journal of microbiology and biotechnology, 17(5), 505-515. doi:10.1023/A:1011916021378.Park, H.-W., Mangum, C. M., Zhong, H. E., & Hayes, S. R. (2007). Isolation of Bacillus sphaericus with improved efficacy against Culex quinquefasciatus. Journal of the American Mosquito Control Association, 23(4), 478-480. doi:10.2987/5663.1.Pechy-Tarr, M., Borel, N., Kupferschmied, P., Turner, V., Binggeli, O., Radovanovic, D., … Keel, C. (2013). Control and host-dependent activation of insect toxin expression in a root-associated biocontrol pseudomonad. Environmental Microbiology, 15(3), 736-750. doi:10.1111/1462- 2920.12050.Péchy-Tarr, M., Bruck, D. J., Maurhofer, M., Fischer, E., Vogne, C., Henkels, M. D., ... Keel, C. (2008). Molecular analysis of a novel gene cluster encoding an insect toxin in plant-associated strains of Pseudomonas fluorescens. Environmental Microbiology, 10(9), 2368-2386. doi:10.1111/j.1462-2920.2008.01662.x.Pérez-García, G., Basurto-Ríos, R., & Ibarra, J. E. (2010). Potential effect of a putative H-driven promoter on the over expression of the Cry1Ac toxin of Bacillus thuringiensis. Journal of Invertebrate Pathology, 104(2), 140-146. doi:10.1016/j.jip.2010.02.010.Pigott, C. R., & Ellar, D. J. (2007). Role of receptors in Bacillus thuringiensis crystal toxin activity. Microbiology and Molecular Biology Reviews, 71(2), 255-281. doi:10.1128/ mmbr.00034-06.Podgwaite, J. D., & Cosenza, B. J. (1976). A strain of Serratia marcescens pathogenic for larvae of Lymantria dispar: Infectivity and mechanisms of pathogenicity. Journal of Invertebrate Pathology, 27(2), 199-208. doi:10.1016/0022- 2011(76)90146-4.Poinar, G. O., Jr., Wassink, H. J., Leegwater-van der Linden, M. E., & van der Geest, L. P. (1979). Serratia marcescens as a pathogen of tsetse flies. Acta Tropica, 36(3), 223-227.Ravensberg, W. J. (2011). A roadmap to the successful development and commercialization of microbial pest control products for control of arthropods. Berlín, Alemania: Springer Science & Business Media.Raymond, B., Johnston, P. R., Nielsen-LeRoux, C., Lereclus, D., & Crickmore, N. (2010). Bacillus thuringiensis: an impotent pathogen? Trends of Microbioly, 18(5), 189-194. doi:10.1016/j.tim.2010.02.006.Reyes-Ramírez, A., & Ibarra, J. E. (2008). Plasmid patterns of Bacillus thuringiensis type strains. Applied and Environmental Microbiology, 74(1), 125-129. doi:10.1128/ AEM.02133-07.Raymond, B., Johnston, P. R., Nielsen-LeRoux, C., Lereclus, D., & Crickmore, N. (2010). Bacillus thuringiensis: an impotent pathogen? Trends of Microbioly, 18(5), 189-194. doi:10.1016/j.tim.2010.02.006.Rippere, K. E., Tran, M. T., Yousten, A. A., Hilu, K. H., & Klein, M. G. (1998). Bacillus popilliae and Bacillus lentimorbus, bacteria causing milky disease in Japanese beetles and related scarab larvae. International Journal of Systematic and Evolutionary Microbiology, 48, 395-402. doi:10.1099/00207713-48-2-395.Robert, R., Farrar, J., Phyllis, A., Martin, W., & Ridgway, R. (2001). A strain of Serratia marcescens (Enterobacteriaceae) with high virulence per os to larvae of a laboratory colony of the Corn earworm (Lepidoptera: Noctuidae). Journal of Entomological Science, 36(4), 380- 390. doi:10.18474/0749-8004-36.4.380.Robert, L. L., Perich, M. J., Schlein, Y., Jacobson, R. L., Wirtz, R. A., Lawyer, P. G., & Githure, J. I. (1997). Phlebotomine sand fly control using bait-fed adults to carry the larvicide Bacillus sphaericus to the larval habitat. Journal of the American Mosquito Control Association, 13(12), 140-144.Ruffner, B., Pechy-Tarr, M., Ryffel, F., Hoegger, P., Obrist, C., Rindlisbacher, A., ... Maurhofer, M. (2013). Oral insecticidal activity of plant-associated Pseudomonas. Environmental Microbiolgy, 15(3), 751-763. doi:10.1111/ j.1462-2920.2012.02884.x.Santos-Mendoza, M., Ibarra, J. E., Delecluse, A., & Juárez- Pérez, A. (2002). Phylogenetic relationship between the Bacillus thuringiensis type strains, based on the sequence of the flagellin gene. En J. E. Ibarra (Chair) Annual meeting of the society for invertebrate pathology (p. 110). Foz do Iguazú, Brasil: Society for Invertebrate Pathology.Saraka, D., Savin, C., Kouassi, S., Cissé, B., Koffi, E., Cabanel, N., ... Carniel, E. (2017). Yersinia enterocolitica, a neglected cause of human enteric infections in Côte d’Ivoire. PLoS Neglected Tropical Diseases, 11, e0005216. doi:10.1371/ journal.pntd.0005216.Schnepf, E., Crickmore, N., Van Rie, J., Lereclus, D., Baum, J., Feitelson, J., ... Dean, D. H. (1998). Bacillus thuringiensis and its pesticidal crystal proteins. Microbiology and Molecular Biology Reviews, 62(3), 775-806.Sergeant, M., Jarrett, P., Ousley, M., & Morgan, J. A. W. (2003). Interactions of insecticidal toxin gene products from Xenorhabdus nematophilus PMFI296. Applied, and Environmental Microbiology, 69(6), 3344-3349. doi:10.1128/aem.69.6.3344-3349.2003.Shen, X., Hu, H., Peng, H., Wang, W., & Zhang, X. (2013). Comparative genomic analysis of four representative plant growth-promoting rhizobacteria in Pseudomonas. BMC Genomics, 14, 1-20. doi:10.1186/1471-2164-14-271.Shingote, P. R., Moharil, M. P., Dhumale, D. R., Deshmukh, A. G., Jadhav, P. V., Dudhare, M. S., & Satpute, N. S. (2013). Distribution of vip genes, protein profiling and determination of entomopathogenic potential of local isolates of Bacillus thuringiensis. Bt Research, 4(3), 14-20. doi:10.5376/bt.2013.04.0003.Silva-Filha, M. H., Nielsen-LeRoux, C., & Jean-François, C. (1999). Identification of the receptor for Bacillus sphaericus crystal toxin in the brush border membrane of the mosquito Culex pipiens (Diptera: Culicidae). Insect Biochemistry and Molecular Biology, 29(8), 711-721. doi:10.1016/S0965-1748(99)00047-8.Singh, G. J. P., & Gill, S. S. (1988). An electron microscope study of the toxic action of Bacillus sphaericus in Culex quinquefasciatus larvae. Journal of Invertebrate Pathology, 52(2), 237-247. doi:10.1016/0022-2011(88)90131-0.Snitkin, E. S., & Segre, J. A. (2014). Pseudomonas aeruginosa adaptation to human hosts. Nature Genetics, 47, 2. doi:10.1038/ng.3172.Splittstoesser, C. M., Tashiro, H., Lin, S. L., Steinkraus, K. H., & Fiori, B. J. (1973). Histopathology of the European chafer, Amphimallon majalis, infected with Bacillus popilliae. Journal of Invertebrate Pathology, 22(2), 161-167. doi:10.1016/0022-2011(73)90128-6.Splittstoesser, C. M., Tashiro, H., Lin, S. L., Steinkraus, K. H., & Fiori, B. J. (1973). Histopathology of the European chafer, Amphimallon majalis, infected with Bacillus popilliae. Journal of Invertebrate Pathology, 22(2), 161-167. doi:10.1016/0022-2011(73)90128-6.Steinhaus, E. A. (1941). A study of the bacteria associated with thirty species of insects. Journal of Bacteriology, 42(6), 757-790.Steinhaus, E. A. (1975). Disease in a minor chord: being a semihistorical and semibiographical account of a period in science when one could be happily yet seriously concerned with the diseases of lowly animals without backbones, especially the insects. Columbus, EE. UU.: Ohio State University Press.Stucki, G., Jackson, T. A., & Noonan, M. J. (1984). Isolation and characterisation of Serratia strains pathogenic for larvae of the New Zealand grass grub Costelytra zealandica. New Zealand Journal of Science, 27, 255-260.Townsend, R. J., Ferguson, C. M., Proffitt, J. R., Slay, M. W. A., Swaminathan, J., Day, S., … Jackson T. A. (2004). Establishment of Serratia entomophila after application of a new formulation for grass grub control. New Zealand Plant Protection, 57, 10-12.Trought, T. E. T., Jackson, T. A., & French, R. A. (1982). Incidence and transmission of a disease of grass grub (Costelytra zealandica) in Canterbury. New Zealand Journal of Experimental Agriculture, 10(1), 79-82. doi:10 .1080/03015521.1982.10427847.Van der Pas, R., Waddington, C., & Ravensberg, W. (2000). Commercialisation of a microbial pesticide “challenges and constraints”. Bulletin IOBC/WPRS, 23(2), 15-18.Van Frankenhuyzen, K. (2009). Insecticidal activity of Bacillus thuringiensis crystal proteins. Journal of Invertebrate Pathology. 101(1), 1-16. doi:10.1016/j.jip.2009.02.009.Visnovsky, G. A., Smalley, D. J., O'Callaghan, M., & Jackson, T. A. (2008). Influence of culture medium composition, dissolved oxygen concentration and harvesting time on the production of Serratia entomophila, a microbial control agent of the New Zealand grass grub. Biocontrol Science and Technology, 18(1), 87-100. doi:10.1080/09583150701760513.Vodovar, N., Vallenet, D., Cruveiller, S., Rouy, Z., Barbe, V., Acosta, C., … Boccard, F. (2006). Complete genome sequence of the entomopathogenic and metabolically versatile soil bacterium Pseudomonas entomophila. Nature Biotechnology, 24, 673-679. doi:10.1038/nbt1212.Vodovar, N., Vinals, M., Liehl, P., Basset, A., Degrouard, J., Spellman, P., … Lemaitre, B. (2005). Drosophila host defense after oral infection by an entomopathogenic Pseudomonas species. Proceedings of the National Academy of Science of the USA, 102(32), 11414-11419. doi:10.1073/pnas.0502240102.Wahba, M. M. (2000). The influence of Bacillus sphaericus on the biology and histology of Phlebotomus papatasi. Journal of Egyptian Society of Parasitology, 30(1), 315-323.Walker, K., Mendelsohn, M., Matten, S., Alphin, M., & Ave, D. (2003). The role of microbial Bt products in U.S. Crop protection. Journal of New Seeds, 5(1), 31-51. doi:10.1300/J153v05n01_03.Waterfield, N., Hares, M., Yang, G., Dowling, A., & Ffrench-Constant, R. (2005). Potentiation and cellular phenotypes of the insecticidal Toxin complexes of Photorhabdus bacteria. Cellular Microbiology, 7(3), 373- 382. doi:10.1111/j.1462-5822.2004.00467.x.Wermelinger, E. D., Zanuncio, J. C., Rangel, E. F., Cecon, P. R., & Rabinovitch, L. (2000). Toxicity of Bacillus Species to Larvae of Lutzomyia longipalpis (L. & N.) (Diptera: Psychodidae: Phlebotominae). Anais da Sociedade Entomológica do Brasil, 29(3), 609-614. doi:10.1590/ S0301-80592000000300025.Wermelinger, E. D., Zanuncio, J. C., Rangel, E. F., Cecon, P. R., & Rabinovitch, L. (2000). Toxicity of Bacillus Species to Larvae of Lutzomyia longipalpis (L. & N.) (Diptera: Psychodidae: Phlebotominae). Anais da Sociedade Entomológica do Brasil, 29(3), 609-614. doi:10.1590/ S0301-80592000000300025.Xu, D., & Côté, J.-C. (2008). Sequence diversity of Bacillus thuringiensis flagellin (H antigen) protein at the intra-H serotype level. Applied Environmental Microbiology, 74(17), 5524-5532. doi:10.1128/aem.00951-08.Whalon, M. E., & Wingerd, B. A. (2003). Bt: Mode of action and use. Archives of Insect Biochemistry and Physiology, 54(4), 200-211. doi:10.1002/arch.10117.Yang, G., Dowling, A. J., Gerike, U., Ffrench-Constant, R. H., & Waterfield, N. R. (2006). Photorhabdus virulence cassettes confer injectable insecticidal activity against the wax moth. Journal of Bacteriology, 188(6), 2254-2261. doi:10.1128/JB.188.6.2254-2261.2006.Yu, X., Zheng, A., Zhu, J., Wang, S., Wang, L., Deng, Q., ... Li, P. (2011). Characterization of Vegetative Insecticidal Protein vip Genes of Bacillus thuringiensis from Sichuan Basin in China. Current Microbiology, 62(3), 752-757. doi:10.1007/s00284-010-9782-3.Zalunin, I. A., Elpidina, E. N., & Oppert, B. (2015). The role of proteolysis in the biological activity of Bt insecticidal crystal proteins. En M. Soberón, A. Gao & A. Bravo (Eds.), Bt Resistance: Characterization and Strategies for GM Crops Producing Bacillus thuringiensis Toxins (pp. 107-118). Wallingford, Inglaterra: Centre for Agricultural Bioscience International (cabi). doi:10.1079/9781780644370.0107.Zhang, D., De Souza, R. F., Anantharaman, V., Iyer, L. M., & Aravind, L. (2012). Polymorphic toxin systems: Comprehensive characterization of trafficking modes, processing, mechanisms of action, immunity and ecology using comparative genomics. Biology Direct, 7, 18. doi:10.1186/1745-6150-7-18.Zhang, J., Hodgman, T. C., Krieger, L., Schnetter, W., & Schairer, H. U. (1997). Cloning and analysis of the first cry gene from Bacillus popilliae. Journal of Bacteriology, 179(13), 4336-4341. doi:10.1128/jb.179.13.4336-4341.Ainsworth, G. C. (1976). Introduction to the history of mycology. Londres, Reino Unido: Cambridge University Press.Alves, R. T., Bateman, R. P., Gunn, J., Prior, C., & Leather, S. R. (2002). Effects of different formulations on viability and medium-term storage of Metarhizium anisopliae conidia. Neotropical Entomology, 31(1), 91-99.Bassi, A. (1835). Del mal del segno, calcinaccio o moscardino, malattia che affligge i bachi de seta. Recuperado de https:// archive.org/details/bub_gb_0lt4GksHzmACBarrios, G. J., & Mejía, A. (1996). Production of secondary metabolites by solid-state fermentation. Biotechnology Annual Review, 2, 85-121.Bateman, R., Batt, D., Carey, M., Douro-Kpindou, O., Godonou, I., Jenkins, N. E., ... Paraïso, A. (1994). Progress with the development of Metarhizium flavoviridae for control of locusts and grasshoppers. Bulletin OILB SROP (France), 17(3), 23.Bellon-Maurel, V., Orliaca, O., & Christen, P. (2003). Sensors and measurements in solid state fermentation: a review. Process Biochemistry, 38(6), 881-889.Bellon-Maurel, V., Orliaca, O., & Christen, P. (2003). Sensors and measurements in solid state fermentation: a review. Process Biochemistry, 38(6), 881-889.Brancini, G., Rangel, D., & Braga, G. (2016). Exposure of Metarhizium acridum mycelium to light induces tolerance to UV-B radiation. FEMS Microbiology Letters, 363(6), fnw036. doi:10.1093/femsle/fnw036Clarkson, J. M., & Charnley, A. K. (1996). New insights into the mechanisms of fungal pathogenesis in insects. Trends in Microbiology, 4(5), 197-203.De Crecy, E., Jaronski, S., Lyons, B., Lyons, T. J., & Keyhani, N. O. (2009). Directed evolution of a filamentous fungus for thermotolerance. bmc Biotechnology, 9(1), 74. doi:10.1186/1472-6750-9-74.De Faria, M. R., & Wraight, S. P. (2007). Mycoinsecticides and mycoacaricides: a comprehensive list with worldwide coverage and international classification of formulation types. Biological Control, 43(3), 237-256.Dos Santos, M. M., Da Rosa, A. S., Dal’Boit, S., Mitchell, D. A., & Krieger, N. (2004). Thermal denaturation: is solid-state fermentation really a good technology for the production of enzymes? Bioresource Technology, 93(3), 261-268.Ferron, P. (1978). Biological control of insect pest by entomogenous fungi. Annual Review of Entomology, 23(1), 409-442.Gillespie, A. T., & Claydon, N. (1989). The use of entomogenous fungi for pest control and the role of toxins in pathogenesis. Pest Management Science, 27(2), 123-130.Goettel, M. S., Inglis, G. D., & Wraight, S. P. (2000). Fungi. En L. A. Lacey & H. K. Kaya (Eds.), Field manual of techniques in invertebrate pathology (pp. 223-248). Dordrecht, Holanda: Springer.Hajek, A., & St. Leger, R. (1994). Interactions between fungal pathogens and insect hosts. Annual Review of Entomology, 39(1), 293-322.Hedgecock, S., Moore, D., Higgins, P. M., & Prior, C. (1995). Influence of moisture content on temperature tolerance and storage of Metarhizium flavoviride conidia in an oil formulation. Biocontrol Science and Technology, 5(3), 371-378.Jackson, M. A., Dunlap, C. A., & Jaronski, S. T. (2010). Ecological considerations in producing and formulating fungal entomopathogens for use in insect biocontrol. BioControl, 55(1), 129-145.Jaronski, S., & Jackson, M. A. (2012). Mass production of entomopathogenic hypocreales. En L. A. Lacey (Ed.), Manual of Techniques in Invertebrate Pathology (pp. 255- 284). Nueva York, EE. UU.: Academic Press.Kachatourians, G. (1991). Physiology and genetics of entomopathogenic fungi. En D. K. Arora, L. Ajello & K. G. Mukerji (Eds.), Handbook of Applied Micology: Humans, animals and insects (Vol. 2, pp. 548-611). Nueva York, EE. UU.: CRC Press.Kim, J. S., Je, Y. H., Woo, E. O., & Park, J. S. (2011). Persistence of Isaria fumosorosea (Hypocreales: Cordycipitaceae) SFP- 198 conidia in corn oil-based suspension. Mycopathologia, 171(1), 67-75.Koppert Biological Systems. (2014). Material safety data sheet. Mycotal. Recuperado de https://www.koppert.com/ fileadmin/Koppert/MSD/EN/MYCOTAL_MSDS__ EN__04Dec2013.versie_4.3.pdf.Lacey, L., Grzywacz, D., Shapiro-Ilan, D., Frutos, R., Brownbridge, M., & Goettel, M. (2015). Insect pathogens as biological control agents: back to the future. Journal of Invertebrate Pathology, 132, 1-41.Leland, J. E., Mullins, D. E., Vaughan, L. J., & Warren, H. L. (2005). Effects of media composition on submerged culture spores of the entomopathogenic fungus, Metarhizium anisopliae var. acridum. Part 2: Effects of media osmolality on cell wall characteristics, carbohydrate concentrations, drying stability, and pathogenicity. Biocontrol Science and Technology, 15(4), 393-409.Lord, J. C. (2005). From Metchnikoff to Monsanto and beyond: the path of microbial control. Journal of Invertebrate Pathology, 89(1), 19-29.Magan, N. (2007). Fungi in extreme environments. En C. Kubicek & I. S. Druzhinina (Eds.), Environmental and Microbial Relationships. The Mycota (vol. 4, pp. 85-103). Berlín, Alemania: Springer-Verlag.Manpreet, S., Sawraj, S., Sachin, D., Pankaj, S., & Banerjee, U. (2005). Influence of process parameters on the production of metabolites in solid-state fermentation. Malaysian Journal of Microbiology, 2(1), 1-9.Mitchell, D. A., Von Meien, O. F., & Krieger, N. (2003). Recent developments in modeling of solid-state fermentation: heat and mass transfer in bioreactors. Biochemical Engineering Journal, 13(2-3), 137-147.Moore, D., Higgins, P., & Lomer, C. (1996). Effects of simulated and natural sunlight on the germination of conidia of Metarhizium flavoviride Gams and Rozsypal and interactions with temperature. Biocontrol Science and Technology, 6(1), 63-76.Moore, D., Reed, M., Le Patourel, G., Abraham, Y., & Prior, C. (1992). Reduction of feeding by the desert locust, Schistocerca gregaria, after infection with Metarhizium flavoviride. Journal of Invertebrate Pathology, 60(3), 304-307.Moscardi, F. (1999). Assessment of the application of baculoviruses for control of Lepidoptera. Annual Review of Entomology, 44(1), 257-289. doi:10.1146/annurev. ento.44.1.257.Nicholson, W. L., Schuerger, A. C., & Setlow, P. (2005). The solar uv environment and bacterial spore uv resistance: considerations for Earth-to-Mars transport by natural processes and human spaceflight. Mutation Research/ Fundamental and Molecular Mechanisms of Mutagenesis, 571(1-2), 249-264.Olson, S. (2015). An analysis of the biopesticide market now and where it is going. Outlooks on Pest Management, 26(5), 203-206. doi:10.1564/v26_oct_04.Pandey, A. (1992). Recent process developments in solidstate fermentation. Process Biochemistry, 27(2), 109-117.Prabhakar, A., Krishnaiah, K., Janaun, J., & Bono, A. (2005). An overview of engineering aspects of solid state fermentation. Malaysian Journal of Microbiology, 1(2), 10- 16.Prior, C. (1995). Advances in mycopesticide formulation and application. En R. Hall (Ed.),The Biological Control of Crop Pests in the Caribbean: Report of a Workshop Held in Roseau, Dominica (pp. 17-22). Londres, Reino Unido: Commonwealth Secretariat.Rangel, D. E., Braga, G. U., Anderson, A. J., & Roberts, D. W. (2005). Variability in conidial thermotolerance of Metarhizium anisopliae isolates from different geographic origins. Journal of Invertebrate Pathology, 88(2), 116-125.Rangel, D. E., Fernandes, É. K., Braga, G. U., & Roberts, D. W. (2011). Visible light during mycelial growth and conidiation of Metarhizium robertsii produces conidia with increased stress tolerance. FEMS Microbiology Letters, 315(2), 81-86.Sabaratnam, S., & Traquair, J. A. (2002). Formulation of a Streptomyces biocontrol agent for the suppression of Rhizoctonia damping-off in tomato transplants. Biological Control, 23(3), 245-253.Saxena, D., Ben-Dov, E., Manasherob, R., Barak, Z. E., Boussiba, S., & Zaritsky, A. (2002). A uv tolerant mutant of Bacillus thuringiensis subsp. kurstaki producing melanin. Current Microbiology, 44(1), 25-30.Shahid, A. A., Rao, Q. A., Bakhsh, A., & Husnain, T. (2012). Entomopathogenic fungi as biological controllers: new insights into their virulence and pathogenicity. Archives of Biological Sciences, 64(1), 21-42.Smits, N., & Sinoquet, H. (2004). Fungal bioinsecticide survival in response to uvb in 3D digitized grapevine canopies: a simulation study. En C. Godin, J. Hanan, W. Kurt, A. Lacointe, A. Takenaka, P. Prusinkiewicz, … B. Andrieu (Eds.), Proceedings of the 4th International Workshop on Functional-Structural Plant Models (pp. 7-11). Montpellier, Francia: UMR AMAPSteinhaus, E. (1956). Microbial control —the emergence of an idea. A brief history of insect pathology through the nineteenth century. Hilgardia, 26(2), 107-160.Van Lenteren, J. C., Bolckmans, K., Köhl, J., Ravensberg, W. J., & Urbaneja, A. (2017). Biological control using invertebrates and microorganisms: plenty of new opportunities. BioControl, 62(1), 1-21. doi:10.1007/ s10526-017-9801-4.Vega, F. E., Jackson, M. A., Mercadier, G., & Poprawski, T. J. (2003). The impact of nutrition on spore yields for various fungal entomopathogens in liquid culture. World Journal of Microbiology and Biotechnology, 19(4), 363-368.Villamizar, L., Grijalba, E., Zuluaga, V., Gómez, M., & Cotes, A. M. (2009). Evaluation of some parameters influencing the activity of a fungal biocontrol agent used for Bemisia tabaci control. IOBCWPRS Bulletin, 45, 327-330.Wang, C., & Wang, S. (2017). Insect pathogenic fungi: genomics, molecular interactions and genetic improvements. Annual Review of Entomology, 62, 73-90. doi:10.1146/annurev-ento-031616-035509.Wang, S., Miao, X., Zhao, W., Huang, B., Fan, M., Li, Z., & Huang, Y. (2005). Genetic diversity and population structure among strains of the entomopathogenic fungus, Beauveria bassiana, as revealed by inter-simple sequence repeats (issr). Mycological Research, 109(12), 1364-1372.Zhang, S., & Xia, Y. (2008). Identification of genes preferentially expressed during microcycle conidiation of Metarhizium anisopliae using suppression subtractive hybridization. FEMS Microbiology Letters, 286(1), 71-77.Zhao, J., Yao, R., Wei, Y., Huang, S., Keyhani, N.O., & Huang, Z. (2016). Screening of Metarhizium anisopliae uv-induced mutants for faster growth yields a hypervirulent isolate with greater uv and thermal tolerances. Applied Microbiology and Biotechnology, 100(21), 9217-9228.Zimmermann, G. (2008). The entomopathogenic fungi Isaria farinosa (formerly Paecilomyces farinosus) and the Isaria fumosorosea species complex (formerly Paecilomyces fumosoroseus): biology, ecology and use in biological control. Biocontrol Science and Technology, 18(9), 865-901.Adamo, S. (2009). The impact of physiological state on immune function in insects. En: J. Rolff y S. E. Reynolds (Eds.), Insect Infection and Immunity: Evolution, Ecology and Mechanisms (pp. 173-186). Nueva York, EE. UU.: Oxford University Press.Andermatt Biocontrol. (s. f.). Our products. Recuperado de http://www.andermattbiocontrol.com.Arakawa, T. (2003). Chitin synthesis inhibiting antifungal agents promote nucleopolyhedrovirus infection in silkworm, Bombyx mori (Lepidoptera: Bombycidae) larvae. Journal of Invertebrate Pathology, 83(3), 261-263.Arakawa, T., Furuta, Y., Miyazawa, M., & Kato, M. (2002). Flufenoxuron, an insect growth regulator, promotes peroral infection by nucleopolyhedrovirus (BmNPV) budded particles in the silkworm, Bombyx mori L. Journal of Virological Methods, 100(1-2), 141-147.Arora, R., & Shera, P. S. (2014). Genetic improvement of biocontrol agents for sustainable pest management. En: K. Sahayaraj (Ed.), Basic and applied aspects of biopesticides (pp. 255-285). Nueva Delhi, India: Springer.Arrizubieta, M., Simón, O., Caballero, P., & Williams, T. (2015). Novel genotypes of the Helicoverpa armigera single nucleopolyhedrovirus (hearSNPV), method for the production thereof, and use of same as a biological control agent. World Intellectual Property Organization (wipo) Patent WO/2015/197900A1. Recuperado de http:// www.sumobrain.com/patents/wipo/Novel-genotypeshelicoverpa- armigera-single/WO2015197900A1.pdf.Arthurs, S., & Lacey, L. (2004). Field evaluation of commercial formulations of the codling moth granulovirus: persistence of activity and success of seasonal applications against natural infestations of codling moth in Pacific Northwest apple orchards. Biological Control, 31(3), 388-397. Recuperado de https://pubag.nal.usda.gov/ download/9802/PDF.Asser-Kaiser, S., Fritsch, E., Undorf-Spahn, K., Kienzle, J., Eberle, K., Gund, N., … Jehle, J. A. (2007). Rapid emergence of baculovirus resistance in codling moth due to dominant, sex-linked inheritance. Science, 317(5846), 1916-1918. doi:10.1126/science.1146542.Arthurs, S., Lacey, L., & Fritts R. Jr. (2005). Optimizing use of codling moth granulovirus: effects of application rate and spraying frequency on control of codling moth larvae in Pacific Northwest apple orchards. Journal of Economic Entomology, 98(5), 1459-1468. Recuperado de https:// naldc.nal.usda.gov/download/1556/PDF.Barrera, G. P. (2013). Spodoptera frugiperda nucleopolyhedrovirus: the basis for a biopesticide product in Colombia (tesis doctoral). Universidad Pública de Navarra, Pamplona, España. Recuperado de http://academica-e.unavarra.es/xmlui/bits tream/handle/2454/16983/Tesis_Barrera.pdf?sequence=4.Barrera, G. P., Belaich, M. N., Patarroyo, M. A., Villamizar, L. F., & Ghiringhelli, P. D. (2015). Evidence of recent interspecies horizontal gene transfer regarding nucleopolyhedrovirus infection of Spodoptera frugiperda. BMC Genomics, 16, 1008. doi:10.1186/s12864-015-2218-5.Barrera Cubillos, G. P., Gómez-Valderrama, J. A., & Villamizar Rivero, L. F. (2017). Efficacy of microencapsulated nucleopolyhedroviruses from Colombia as biological insecticides against Spodoptera frugiperda (Lepidoptera: Noctuidae). Acta Agronómica, 66(2), 267-274. doi:10. 15446/acag.v66n2.54354.Battu, G., Arora, R., & Dhaliwal, G. (2002). Prospects of baculoviruses in integrated pest management. In: O. Koul and G. S. Dhalival (Eds.), Microbial biopesticides (pp. 215- 238). Londres, Inglaterra: Taylor & Francis.Bassi, A. (1835). And the sign of the plaster or disease that dormice afflicts bugs daseta Part-I., Tip Terica Orcesi Lod, pp. 1-67.Bell, R. A., Owens, C. D., Shapiro, M., Tardif, J. R. (1981). Mass rearing and virus production. Development of Mass- Rearing Technology. En C. Doane and M. L. McManus (Eds.), The gypsy moth: research toward integrated pest management (pp. 599-655). Recuperado de https://naldc. nal.usda.gov/download/CAT82474520/PDF.Behle, R. W., & Popham, H. J. (2012). Laboratory and field evaluations of the efficacy of a fast-killing baculovirus isolate from Spodoptera frugiperda. Journal of Invertebrate Pathology 109(2), 194-200. doi:10.1016/j. jip.2011.11.002.Bellotti, A. C., Arias, B., & Guzmán, O. (1992). Biological control of the cassava hornworm Erinnyis ello (Lepidoptera: Sphingidae). The Florida Entomologist, 75(4), 506-515. doi:10.2307/3496132.Benz, G. A. (1986). Introduction: historical perspectives. En R. R. Granados, & B. Federici (Eds.). Biology of Baculoviruses (Vol. I; pp. 1-36). Boca Ratón, EE. UU.: crc Press.Bergold, G. H. (1947). Die isolierung des polyeder-virus und die natur der polyeder. Zeitschrift für Naturforschung, 2(3- 4), 122-143. doi:10.1515/znb-1947-3-408.Berling, M., Blachere-Lopez, C., Soubabere, O., Lery, X., Bonhomme, A., Sauphanor, B., & Lopez-Ferber, M. (2009). Cydia pomonella granulovirus genotypes overcome virus resistance in the codling moth and improve virus efficiency by selection against resistant hosts. Applied and Environmental Microbiology, 75(4), 925-930.Berling, M., Sauphanor, B., Bonhomme, A., Siegwart, M., & Lopez Ferber, M. (2013). A single sex-linked dominant gene does not fully explain the codling moth's resistance to granulovirus. Pest Management Science, 69(11), 1261- 1266. doi:10.1002/ps.3493.Bernal, A., Simón, O., Williams, T., & Caballero, P. (2014). Stage-specific insecticidal characteristics of a nucleopolyhedrovirus isolate from Chrysodeixis chalcites enhanced by optical brighteners. Pest Management Science, 70(5), 798-804. doi:10.1002/ps.3617.Bhandari, K., Sood, P., Mehta, P. K., Choudhary, A., & Prabhakar, C. S. (2009). Effect of botanical extracts on the biological activity of granulosis virus against Pieris brassicae. Phytoparasitica, 37(4), 317-322.Biedma, M. E., Salvador, R., Ferrelli, M. L., Sciocco-Cap, A., & Romanowski, V. (2015). Effect of the interaction between Anticarsia gemmatalis multiple nucleopolyhedrovirus and Epinotia aporema granulovirus, on A. gemmatalis (Lepidoptera: Noctuidae) larvae. Biological Control, 91, 17-21. doi:10.1016/j.biocontrol.2015.07.006.Bideshi, D., Bigot, Y., Federici, B., & Spears, T. (2010). Ascoviruses. En S. Asgari & K. Johnson (Eds.), Insect virology (pp. 3-34). Norfolk, Reino Unido: Caister Academic Press.Bosch, A., Pintó, R. M., & Abad, F. X. (2006). Survival and transport of enteric viruses in the environment. En S. M. Mgoyal (Ed.), Viruses in foods (pp. 151-187). Recuperado de http://www.ub.edu/virusenterics/wp-content/ uploads/2013/06/GOY6.pdf.Carballo, A., Murillo, R., Jakubowska, A., Herrero, S., Williams, T., & Caballero, P. (2017). Co-infection with iflaviruses influences the insecticidal properties of Spodoptera exigua multiple nucleopolyhedrovirus occlusion bodies: Implications for the production and biosecurity of baculovirus insecticides. Plos One 12(5), e0177301. doi:10.1371/journal.pone.0177301.Carlson, J., Suchman, E., & Buchatsky, L. (2006). Densoviruses for control and genetic manipulation of mosquitoes. Advances in Virus Research, 68, 361-392. doi:10.1016/S0065-3527(06)68010-X.Cisneros, J., Pérez, J. A., Penagos, D. I., Ruiz, J., Goulson, D., Caballero, P., … Williams, T. (2002). Formulation of a nucleopolyhedrovirus with boric acid for control of Spodoptera frugiperda (Lepidoptera: Noctuidae) in maize. Biological Control, 23(1), 87-95. doi:10.1006/ bcon.2001.0985Combes, C. (2001). L'art d'être parasite: les associations du vivant. París, Francia: Flammarion.Coulibaly, F., Chiu, E., Ikeda, K., Gutmann, S., Haebel, P., Schulze-Briese, C., … Metcalf, P. (2007). The molecular organization of cypovirus polyhedra. Nature, 446(7131), 97-101.Cuartas, P., Villamizar, L., Espinel, C., & Cotes, A. M. (2009). Infección de granulovirus nativos sobre Tecia solanivora y Phthorimaea operculella (Lepidoptera: Gelechiidae). Revista Colombiana de Entomología, 35(2), 122-129. Recuperado de http://www.scielo.org.co/pdf/rcen/ v35n2/v35n2a03.pdf.Cheng, X. W., Carner, G. R., & Arif, B. M. (2000). A new ascovirus from Spodoptera exigua and its relatedness to the isolate from Spodoptera frugiperda. Journal of General Virology, 81, 3083-3092. Recuperado de http:// www.microbiologyresearch.org/docserver/fulltext/ jgv/81/12/0813083a.pdf?expires=1516921147&id=id &accname=guest&checksum=3F04092C76D1AAB9D C45718EC18176CA.Cherry, A., Parnell, M., Grzywacz, D., & Jones, K. (1997). The Optimization ofin VivoNuclear Polyhedrosis Virus Production in Spodoptera exempta (Walker) and Spodoptera exigua (Hübner). Journal of Invertebrate Pathology, 70(1), 50-58.Del Rincón, M., & Ibarra, J. (2011). Entomopathogenic Viruses. En: N. Rosas (Ed.), Biological Control of Insect Pests (pp. 29-64). Houston, EE. UU.: Studium Press llc.Derksen, A. C., & Granados, R. R. (1988). Alteration of a lepidopteran peritrophic membrane by baculoviruses and enhancement of viral infectivity. Virology, 167, 242-250.Dougherty, E. M., Narang, N., Loeb, M., Lynn, D. E., & Shapiro, M. (2006). Fluorescent brightener inhibits apoptosis in baculovirus-infected gypsy moth larval midgut cells in vitro. Biocontrol Science and Technology, 16(2), 157-168.Eberle, K. E., & Jehle, J. A. (2006). Field resistance of codling moth against Cydia pomonella granulovirus (CpGV) is autosomal and incompletely dominant inherited. Journal of Invertebrate Pathology, 93(3), 201-206.Ehlers, R. U. (Ed.). (2011). Regulation of Biological Control Agents. Dordrecht, Holanda: Springer.El-Far, M., Li, Y., Fédière, G., Abol-Ela, S., & Tijssen, P. (2004). Lack of infection of vertebrate cells by the densovirus from the maize worm Mythimna loreyi (MlDNV). Virus Research, 99(1), 17-24.Erez, Z., Steinberger-Levy, I., Shamir, M., Doron, S., Stokar-Avihail, A., Peleg, Y., … Albeck, S. (2017). Communication between viruses guides lysis–lysogeny decisions. Nature, 541, 488-493.Espinel-Correal, C., Léry, X., Villamizar, L., Gómez, J., Zeddam, J. L., Cotes, A. M., & López-Ferber, M. (2010). Genetic and biological analysis of Colombian Phthorimaea operculella granulovirus isolated from Tecia solanivora (Lepidoptera: Gelechiidae). Applied and Environmental Microbiology, 76(22), 7617-7625.Falcon, L. A. (1976). Problems associated with the use of arthropod viruses in pest control. Annual Review of Entomology, 21, 305-324.Federici, B. A., Bideshi, D. K., Tan, Y., Spears, T., & Bigot, Y. (2009). Ascoviruses: superb manipulators of apoptosis for viral replication and transmission. En J. L. Van Etten (Ed.). Lesser Known Large dsDNA Viruses (pp. 171-196). Berlín, Alemania: Springer.Federici, B., & Bigot, Y. (2003). Origin and evolution of polydnaviruses by symbiogenesis of insect dna viruses in endoparasitic wasps. Journal of Insect Physiology, 49(5), 419-432.Federici, B. A., & Govindarajan, R. (1990). Comparative histopathology of three ascovirus isolates in larval noctuids. Journal of Invertebrate Pathology, 56(3), 300-311.Friedberg, E. C., Walker, G. C., & Siede, W. (1995). dna repair and mutagenesis. Washington, EE. UU.: ASM Press.Federici, B. A. (1993). Viral pathobiology in relation to insect control. En N. E. Beckage, S. N. Thompson, & B. A. Federici. Parasites and pathogens of insects (Vol. 2, Pathogen, pp. 81-101). San Diego, EE. UU.: Academic Press.Fritsch, E., Undorf-Spahn, K., Kienzle, J., Zebitz, C. P., & Huber, J. (2005). Apfelwickler-granulovirus: erste Hinweise auf Unterschiede in der Empfindlichkeit lokaler Apfelwickler-populationen. Nachrichtenblatt des Deutschen Pflanzenschutzdienstes, 57(2), 29-34.Giri, L., Feiss, M. G., Bonning, B. C., & Murhammer, D. W. (2012). Production of baculovirus defective interfering particles during serial passage is delayed by removing transposon target sites in fp25k. Journal of General Virology, 93(Pt 2), 389-399. doi:10.1099/vir.0.036566-0.Gómez, J., Guevara, J., Cuartas, P., Espinel, C., & Villamizar, L. (2013). Microencapsulated Spodoptera frugiperda nucleopolyhedrovirus: insecticidal activity and effect on arthropod populations in maize. Biocontrol Science and Technology, 23(7), 829-846.Gómez, J., Moreno, C., Vega, K., Cotes, A., & Villamizar, L. (2011). Formulation effect over insecticidal activity of Phthorimaea operculella granulovirus VG003 for controlling Tecia solanivora. IOBC/WPRS Bulletin, 66, 441-445.Gómez, J. A., Barrera, G., López-Ferber, M., Belaich, M., Ghiringhelli, P., & Villamizar, L. (2017). Potential of betabaculoviruses to control the tomato leafminer Tuta absoluta (Meyrick). Journal of Applied Entomology, 142(1- 2), 67-77.Goto, C., Mukawa, S., & Mitsunaga, T. (2015). Two Year Field Study to Evaluate the Efficacy of Mamestra brassicae Nucleopolyhedrovirus Combined with Proteins Derived from Xestia c-nigrum Granulovirus. Viruses, 7(3), 1062- 1078. doi:10.3390/v7031062.Goulson, D., Martínez, A.-M., Hughes, W. O., & Williams, T. (2000). Effects of optical brighteners used in biopesticide formulations on the behavior of pollinators. Biological Control, 19(3), 232-236. Recuperado de http://citeseerx. ist.psu.edu/viewdoc/download?doi=10.1.1.418.8527&r ep=rep1&type=pdf.Grison, P., Vago, C., & Maury, R. (1959). La lutte contre la processionnaire du pin “Thaumetopoca pityocampa” Schiff dans le massif du ventoux. Essai d'utilisation pratique d'un virus spécifique. Revue Forestière Française, 5, 353- 370. Recuperado de http://hdl.handle.net/2042/27499.Gröner, A. (1986). Specificity and safety of baculoviruses. En: R. R. Granados & B. Federici (Eds.), The Biology of Baculoviruses. (Vol. I, Biological Properties and Molecular Biology, pp. 177-202). Boca Ratón, EE. UU.: CRC Press.Guo, H., Fang, J., Wang, J., Zhong, W., & Liu, B. (2007). Interaction of Xestia c-nigrum granulovirus with peritrophic matrix and Spodoptera litura nucleopolyhedrovirus in Spodoptera litura. Journal of Economic Entomology, 100(1), 20-25. Recuperado de http://ipp.jaas.ac.cn/Article/ UploadFiles/200907/2009072310303981.pdf.Hauschild, R. (2011). Facilitations in the regulation of plant protection products containing baculoviruses. En R. Ehlers (Ed.), Regulation of Biological Control Agents (pp. 259-266). Dordrecht, Holanda: Springer.Hoffmann-Campo, C. B., Moscardi, F., Corrêa-Ferreira, B. S., Oliveira, L. J., Sosa-Gómez, D. R., Panizzi, A. R., ... Oliveira, E. D. (2000). Pragas da soja no Brasil e seu manejo integrado. Recuperado de https://www.agencia.cnptia. embrapa.br/Repositorio/circtec30_000g46xpyyv02wx5o k0iuqaqkbbpq943.pdf.Hoover, K., Humphries, M. A., Gendron, A. R., & Slavicek, J. M. (2010). Impact of viral enhancin genes on potency of Lymantria dispar multiple nucleopolyhedrovirus in L. dispar following disruption of the peritrophic matrix. Journal of Invertebrate Pathology, 104(2010), 150-152. Recuperado de https://pdfs.semanticscholar.org/13d3/3cd93ea157b8f2bc278ed906fbc123d871b5.pdf.Huber, J. (1986). Use of baculoviruses in pest management programmes. En: R. R. Granados, & B. Federici (Eds.), The Biology of Baculoviruses. (Vol. ii, Practical Application for Insect Control, pp. 181-202). Boca Raton, EE. UU.: CRC Press.Hukuhara, T., & Wijonarko, A. (2001). Enhanced fusion of a nucleopolyhedrovirus with cultured cells by a virus enhancing factor from an entomopoxvirus. Journal of Invertebrate Pathology, 77(1), 62-67.Ignoffo, C. M, Hostetter, D. L., Sikorowski, P. P., Sutter, G., & Brooks, W. M. (1977). Inactivation of representative species of entomopathogenic viruses, a bacterium, fungus and protozoan by an ultraviolet light source. Environmental Entomology, 6(3), 411-415.International Committee on Taxonomy of Viruses (ictv). (2016). Virus taxonomy: 2016 Release. Recuparado de https://talk.ictvonline.org/taxonomy.Ince, I. A., Demir, I., Demirbag, Z., & Nalcacioglu, R. (2007). A cytoplasmic polyhedrosis virus isolated from the pine processionary caterpillar, Thaumetopoea pityocampa. Journal of Microbiology and Biotechnology, 17(4), 632-637.Ishimori, N. (1934). Contribution à l'étude de la grasserie du ver a soie (Bombyx mori). Comptes Rendus des Seances de la Societe de Biologie et de ses filiales, 116, 1169-1170.Jehle, J., Schulze-Bopp, S., Undorf-Spahn, K., & Fritsch, E. (2017). Evidence for a second type of resistance against Cydia pomonella Granulovirus in Field populations of codling moths. Applied and Environmental Microbiology, 83(2), e02330-02316. doi:10.1128/AEM.02330-16.Kelly, D. (1982). Baculovirus replication. Journal of General Virology, 63, 1-13.Jehle, J. A., Lange, M., Wang, H., Hu, Z., Wang, Y., & Hauschild, R. (2006). Molecular identification and phylogenetic analysis of baculoviruses from Lepidoptera. Virology, 346(1), 180-193. doi:10.1016/j.virol.2005.10.032.Kirby, W., & Spencer, W. (1826). An introduction to entomology. Londres, Inglaterra: Longman, Hurst, Rees, Orme, and Borwn.Komárek, J., & Breindl, V. (1924). Die Wipfelkrankheit der Nonne und der Erreger derselben. Journal of Applied Entomology, 10(1), 99-162.Kozuma, K., & Hukuhara, T. (1994). Fusion characteristics of a nuclear polyhedrosis virus in cultured cells: time course and effect of a synergistic factor and pH. Journal of Invertebrate Pathology, 63(1), 63-67. doi:10.1006/ jipa.1994.1010.Kruger, D., Schneck, P., & Gelderblom, H. (2000). Helmut Ruska and the visualisation of viruses. The Lancet, 355(9216), 1713-1717.Lacey, L., Grzywacz, D., Shapiro-Ilan, D., Frutos, R., Brownbridge, M., & Goettel, M. (2015). Insect pathogens as biological control agents: back to the future. Journal of Invertebrate Pathology, 132, 1-41. doi:10.1016/j. jip.2015.07.009.LeConte, J. (1874). Hints for the promotion of economic entomology. Proceedings of the American Association for the Advancement of Science, 22, 10-22.Lasa, R., Pagola, I., Ibanez, I., Belda, J. E., Williams, T., & Caballero, P. (2007). Efficacy of Spodoptera exigua multiple nucleopolyhedrovirus as a biological insecticide for beet armyworm control in greenhouses of southern Spain. Biocontrol Science and Technology, 17(3), 221-232. doi:10.1080/09583150701211335.Lepore, L. S., Roelvink, P. R., & Granados, R. R. (1996). Enhancin, the granulosis virus protein that facilitates nucleopolyhedrovirus (npv) infections, is a metalloprotease. Journal of Invertebrate Pathology, 68(2), 131-140. doi:10.1006/jipa.1996.0070.Lewis, F. (1981). Gypsy moth nuclepolyhedrosis virus. En C. Doane, & M. L. McManus (Eds.), The gypsy moth: research toward integrated pest management (pp. 454-455). Recuperado de https://naldc.nal.usda.gov/download/ CAT82474520/PDF.Linley, J., & Nielsen, H. (1968). Transmission of a mosquito iridescent virus in Aedes taeniorhynchus: I. Laboratory experiments. Journal of Invertebrate Pathology, 12(1), 7-16.Lipsont, S. M., & Stotzky, G. (1984). Effect of proteins on reovirus adsorption to clay minerals. Applied and Environmental Microbiology, 48(3), 525-530.López-Ferber, M., Simón, O., Williams, T., & Caballero, P. (2003). Defective or effective? Mutualistic interactions between virus genotypes. Proceedings of the Royal Society of London B: Biological Sciences, 270(1530), 2249-2255. doi:10.1098/rspb.2003.2498.Marina, C. F., Feliciano, J. M., Valle, J., & Williams, T. (2000). Effect of temperature, pH, ion concentration, and chloroform treatment on the stability of invertebrate iridescent virus 6. Journal of Invertebrate Pathology, 75(1), 91-94.Martínez, A. M., Simón, O., Williams, T., & Caballero, P. (2003). Effect of optical brighteners on the insecticidal activity of a nucleopolyhedrovirus in three instars of Spodoptera frugiperda. Entomologia Experimentalis et Applicata, 109(2), 139-146. Recuperado de http:// citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.485. 406&rep=rep1&type=pdf.McWilliam, A. (2006). Environmental impact of baculoviruses. Recuperado de http://www.fao.org/docs/eims/upload/ agrotech/2003/R7299_FTR_anx3.pdf.Miele, S. A. B., Garavaglia, M. J., Belaich, M. N., & Ghiringhelli, P. D. (2011). Baculovirus: molecular insights on their diversity and conservation. International Journal of Evolutionary Biology, 2011, 379424. doi:10.4061/2011/379424.Miller, L. K. (1997). The Viruses: The baculoviruses. Nueva York, EE. UU.: Plenum Press.Mitsuhashi, W. (2009). Recent advances in studies for the application of a protein produced by entomopoxviruses (poxviridae) for insect-pest control. Japan Agricultural Research Quarterly jarq, 43(4), 289-294. Recuperado de https://www.jircas.go.jp/sites/default/files/publication/ jarq/43-04-03_0.pdf.Mitsuhashi, W., & Sato, M. (2000). Enhanced infection of a nucleopolyhedrovirus in a lepidopteran pest (Spilosoma imparilis) by spindles of a coleopteran entomopoxvirus (epv) (Anomala cuprea epv). Journal of Forest Research, 5(4), 285-287. doi:10.1007/BF02767123.Morales, L., Moscardi, F., Sosa-Gómez, D. R., Paro, F. E., & Soldorio, I. L. (2001). Fluorescent brighteners improve Anticarsia gemmatalis (Lepidoptera: Noctuidae) nucleopolyhedrovirus (AgMNPV) activity on AgMNPVsusceptible and resistant strains of the insect. Biological Control, 20(3), 247-253. doi:10.1006/bcon.2000.0904.Mori, H., & Metcalf, P. (2010). Cypoviruses. En S. Asgari, & K. N. Johnson (Eds.), Insect virology (pp. 307-323). Haverhill, Reino Unido: Caister Academic Press.Moscardi, F. (1989). Use of viruses for pest control in Brazil: the case of the nuclear polyhedrosis virus of the soybean caterpillar, Anticarsia gemmatalis. Memórias do Instituto Oswaldo Cruz, 84(3), 51-56.Moscardi, F. (1999). Assessment of the application of baculoviruses for control of Lepidoptera. Annual Review of Entomology, 44, 257-289. doi:10.1146/annurev. ento.44.1.257.Moscardi, F., de Souza, M. L., de Castro, M. E. B., Moscardi, M. L., & Szewczyk, B. (2011). Baculovirus pesticides: present state and future perspectives. En I. Ahmad, F. Ahmad, & J. Pichtel (Eds.), Microbes and microbial technology (pp. 415-445). Nueva York, EE. UU.: Springer.Mukawa, S., & Goto, C. (2007). Enhancement of nucleopolyhedrovirus infectivity against Mamestra brassicae (Lepidoptera: Noctuidae) by proteins derived from granulovirus and a fluorescent brightener. Journal of Economic Entomology, 100(4), 1075-1083.Mukawa, S., & Goto, C. (2010). Mamestra brassicae nucleopolyhedrovirus infection and enhancing effect of proteins derived from Xestia c-nigrum granulovirus in larvae of Mamestra brassicae and Helicoverpa armigera (Lepidoptera: Noctuidae) on cabbage. Journal of Economic Entomology, 103(2), 257-264.Mukawa, S., & Goto, C. (2011). Enhancing effect of proteins derived from Xestia c-nigrum granulovirus on Mamestra brassicae nucleopolyhedrovirus infection in larvae of Autographa nigrisigna (Lepidoptera: Noctuidae) on cabbage. Applied Entomology and Zoology, 46(1), 55-63.Murhammer, D. W. (Ed.). (2007). Baculovirus and insect cell expression protocols. Recuperado de https://link.springer. com/book/10.1007%2F978-1-59745-457-5.Nalcacioglu, R., Muratoğlu, H., Yeşilyurt, A., Van Oers, M. M., Vlak, J. M., & Demirbağ, Z. (2016). Enhanced insecticidal activity of Chilo iridescent virus expressing an insect specific neurotoxin. Journal of Invertebrate Pathology, 138, 104-111.Nazir, J., Haumacher, R., Ike, A. C., & Marschang, R. E. (2011). Persistence of Avian Influenza Viruses in Lake Sediment, Duck Feces, and Duck Meat. Applied and Environmental Microbiology, 77(14), 4981-4985. doi:10.1128/AEM.00415-11.Nealson, K., & Hastings, J.W. (1979). Bacterial bioluminescence: its control and ecological significance. Microbiological Reviews, 43(4), 496-518.Okuno, S., Takatsuka, J., Nakai, M., Ototake, S., Masui, A., & Kunimi, Y. (2003). Viral-enhancing activity of various stilbene-derived brighteners for a Spodoptera litura (Lepidoptera: Noctuidae) nucleopolyhedrovirus. Biological Control, 26(2), 146-152. doi:10.1016/s1049- 9644(02)00122-6.Ordóñez-García, M., Ríos-Velasco, C., Berlanga-Reyes, D. I., Acosta-Muñiz, C. H., Salas-Marina, M. Á., & Cambero- Campos, O. J. (2015). Occurrence of natural enemies of Spodoptera frugiperda (Lepidoptera: Noctuidae) in Chihuahua, Mexico. The Florida Entomologist, 98(3), 843-847. doi:10.1653/024.098.0305.O’Reilly D. R., & Miller L. K. (1991) Improvement of a baculovirus pesticide by deletion of the EGT gene. Bio/ Technology 9, 1086-1089. doi:10.1038/nbt1191-1086.Paillot, A. (1926). Sur une nouvelle maladie du noyau ou grasserie des chenilles de P. brassicae et un nouveau groupe de microorganismes parasites. Comptes Rendus de l'Académie des Sciences, 182, 180-182.Perera, S., Li, Z., Pavlik, L., & Arif, B. (2010). Entomopoxviruses. Ascoviruses. En S. Asgari & K. Johnson (Eds.), Insect virology (pp. 83-102). Norfolk, Reino Unido: Caister Academic Press.Pérez, L., Puerta, M. C., Bustillo, A., & Madrigal, A. (1988). Evaluación del Baculovirus phthorimaea VG en larvas de la polilla de la papa Phthorimaea operculella (Zeller). Revista Colombiana de Entomología, 14(2), 33-40.Pesticideinfo. (2018). PANPesticides Database. Recuperado de http://www.pesticideinfo.org.Popham, H. J., Nusawardani, T., & Bonning, B. C. (2016). Introduction to the use of baculoviruses as biological insecticides. En D. W. Murhammer (Ed.), Baculovirus and insect cell expression protocols (pp. 383-392). Recuperado de https://link.springer.com/book/10.1007 %2F978-1-59745-457-5.Possee, R. D., Griffiths, C. M., Hitchman, R. B., Chambers, A., Murguia-Meca, F., Danquah, J. ... King, L. (2010). Baculoviruses: biology, replication and exploitation. En S. Asgari, & K. Johnson. Insect virology (pp. 35-57). Norfolk, Reino Unido: Caister Academic Press.Pratissoli, D., Zanúncio, J. C., Barros, R., & Oliveira, H. N. d. (2002). Leaf consumption and duration of instars of the cassava defoliator Erinnyis ello (L., 1758) (Lepidoptera, Sphingidae). Revista Brasileira de Entomologia, 46(3), 251-254.Renault, S., Stasiak, K., Federici, B., & Bigot, Y. (2005). Commensal and mutualistic relationships of reoviruses with their parasitoid wasp hosts. Journal of Insect Physiology, 51(2), 137-148.Rezapanah, M., Shojai-Estabragh, S., Huber, J., & Jehle, J. (2008). Molecular and biological characterization of new isolates of Cydia pomonella granulovirus from Iran. Journal of Pest Science, 81, 187. doi:10.1007/s10340-008-0204-2.Rodríguez, J. M., Salas, M. L., & Viñuela, E. (1992). Genes homologous to ubiquitin-conjugating proteins and eukaryotic transcription factor SII in African swine fever virus. Virology, 186(1), 40-52.Rohrmann, G. (2011). Baculovirus molecular biology. Recuperado de https://www.ncbi.nlm.nih.gov/books/ NBK49500/.Sauphanor, B., Berling, M., Toubon, J.-F., Reyes, M., Delnatte, J., & Allemoz, P. (2006). Carpocapse des pommes cas de résistance au virus de la granulose en vergers biologiques: fruits et légumes. Phytoma-La défense des végétaux, 590, 24-27.Schmutterer, H. (1990). Properties and potential of natural pesticides from the neem tree, Azadirachta indica. Annual Review of Entomology, 35, 271-297. doi:10.1146/annurev. en.35.010190.001415.Senthil, N. K., Murugan, K., & Zhang, W. (2008). Additive interaction of Helicoverpa armigera Nucleopolyhedrovirus and Azadirachtin. BioControl, 53, 869. doi:10.1007/ s10526-007-9115-z.Senthil, N. S., & Kalaivani, K. (2005). Efficacy of nucleopolyhedrovirus and azadirachtin on Spodoptera litura Fabricius (Lepidoptera: Noctuidae). Biological Control, 34(1), 93-98. doi:10.1016/j.biocontrol.2005.03.001.Shapiro, M. (2000). Enhancement in activity of homologous and heterologous baculoviruses infectious to beet armyworm (Lepidoptera: Noctuidae) by an optical brightener. Journal of Economic Entomology, 93(3), 572- 576.Shapiro, M., El Salamouny, S., & Merle Shepard, B. (2008). Green tea extracts as ultraviolet protectants for the beet armyworm, Spodoptera exigua, nucleopolyhedrovirus. Biocontrol Science and Technology, 18(6), 591-603.Shelby, K. S., & Webb, B. A. (1999). Polydnavirus-mediated suppression of insect immunity. Journal of Insect Physiology, 45(5), 507-514.Smith, K. M., & Wyckoff, R. W. G. (1950). Structure within polyhedra associated with insect virus diseases. Nature, 166, 861-862Slavicek, J. M. (2012). Baculovirus enhancins and their role in viral pathogenicity. En M. P. Adoga (Ed.), Molecular virology (pp. 147-168). Recuperado de https://www.nrs. fs.fed.us/pubs/jrnl/2012/nrs_2012_slavicek_001.pdf.Simón, O., Williams, T., López-Ferber, M., & Caballero, P. (2005). Functional importance of deletion mutant genotypes in an insect nucleopolyhedrovirus population. Applied and Environmental Microbiology, 71(8), 4254-4262.Song, J., Wang, X., Hou, D., Huang, H., Liu, X., Deng, F., … & Wang, M. (2016). The host specificities of baculovirus per os infectivity factors. PloS One, 11(7), e0159862. doi:10.1371/journal.pone.0159862.Steinhaus, E.A. (1949). Principles of Insect Pathology. Nueva York, EE. UU.: McGraw-Hill.Stewart, L. M., Hirst, M., López Ferber, M., Merryweather, A. T., Cayley, P. J., & Posses, R. D. (1991): Construction of an improved baculovirus insecticide containing an insect specific toxin gene. Nature, 352(6330), 85-88.Strand, M. (2010). Polydnaviruses. En S. Asgari & K. Johnson (Eds.), Insect virology (pp. 171-197). Norfolk, Reino Unido: Caister Academic Press.Sun, X. (2015). History and current status of development and use of viral insecticides in China. Viruses, 7(1), 306-319.Szewczyk, B., Hoyos-Carvajal, L., Paluszek, M., Skrzecz, I., & De Souza, M. L. (2006). Baculoviruses—re-emerging biopesticides. Biotechnology Advances, 24(2), 143-160.Tanada, Y. (1959a). Descriptions and characteristics of a nuclear polyhedrosis virus and a granulosis virus of the armyworm, Pseudaletia unipuncta (Haworth) (Lepidoptera, Noctuidae). Journal of Insect Pathology, 1, 197-214Szewczyk, B., Rabalski, L., Krol, E., Sihler, W., & Lobo de Souza, M. (2009). Baculovirus biopesticides–a safe alternative to chemical protection of plants. Journal of Biopesticides, 2(2), 209-216.Tanada, Y. (1959b). Synergism between two viruses of the armyworm, Pseudaletia unipuncta (Haworth) (Lepidoptera, Noctuidae). Journal of Insect Pathology, 1, 215-231.Tijssen, P., & Bergoin, M. (1995). Densonucleosis viruses constitute an increasingly diversified subfamily among the parvoviruses. Seminars in Virology, 6(5), 347-355. doi:10.1006/smvy.1995.0041.Tomalski, M. D., & Miller, L. K. (1991). Insect paralysis by baculovirus-mediated expression of a mite neurotoxin gene. Nature, 352(6330), 82-85.Universität Mannheim. (s. f.). Vida, Marco Girolamo (c. 1485- 1566). Recuperado de http://www.uni-mannheim.de/ mateo/itali/autoren/vida_itali.html.Valicente, F., Tuelher, E., Pena, R., Andreazza, R., & Guimarães, M. (2013). Cannibalism and virus production in Spodoptera frugiperda ( JE Smith) (Lepidoptera: Noctuidae) larvae fed with two leaf substrates inoculated with baculovirus spodoptera. Neotropical Entomology, 42(2), 191-199.Valicente, F. H., Tuelher, E. d. S., Paiva, C., Gumaraes, M., Macedo, C., & Wolff, J. (2008). A new baculovirus isolate that does not cause the liquefaction of the integument in Spodoptera frugiperda dead larvae. Revista Brasileira de Milho e Sorgo, 7(1), 77-82.Van Beek, N., & Davis, D.C. (2016). Baculovirus Insecticide Production in Insect Larvae. Methods in Molecular Biology, 1350, 393-405. doi:10.1007/978-1-4939-3043-2_20.Villamizar, L., Barrera, G., Cotes, A. M. & Martínez, F. (2010). Eudragit S100 microparticles containing Spodoptera frugiperda nucleopolyehedrovirus: physicochemical characterization, photostability and in vitro virus release. Journal of Microencapsulation, 27(4), 314-324.Von Tubeuf, C. (1892). Die Krankheiten der Nonne. Naturwissenschaften Z, 1, 34-47.Williams, T., Barbosa-Solomieu, V., & Chinchar, V. G. (2005). A decade of advances in iridovirus research. Advances in Virus Research, 65, 173-248.Williams, T., & Ward, V. (2010). Iridoviruses. En S. Asgari & K. Johnson (Eds.), Insect virology (pp. 123-152). Norfolk, Reino Unido: Caister Academic Press.Xeros, N. (1952). Cytoplasmic polyhedral virus diseases. Nature, 170, 1073. doi:10.1038/1701073a0.Xu, J., & Hukuhara, T. (1992). Enhanced infection of a nuclear polyhedrosis virus in larvae of the armyworm, Pseudaletia separata, by a factor in the spheroids of an entomopoxvirus. Journal of Invertebrate Pathology, 60(3), 259-264.Zhu, R., Liu, K., Peng, J., Yang, H., & Hong, H. (2007). Optical brightener M2R destroys the peritrophic membrane of Spodoptera exigua (Lepidoptera: Noctuidae) larvae. Pest Management Science, 63(3), 296-300.Anton, S., & Homberg, U. (1999). Antennal lobe structure. Berlín, Heidelberg, Alemania: Springer. doi:10.1007/978- 3-662-07911-9_5.Aragón, S., Cotes-Prado, A. M., Borrero-Echeverry, F., Rivera, F., & Barreto-Triana, N. (2011). Optimización y validación de estrategias de manejo en campo de la polilla Guatemalteca de la papa Tecia solanivora mediante el uso de su feromona sexual [Informe técnico final]. Mosquera, Colombia: Corporación Colombiana de Investigación Agropecuaria (Corpoica).Arn, H., Städler, E., & Rauscher, S. (1975). The electroantennographic detector—a selective and sensitive tool in the gas chromatographic analysis of insect pheromones. Zeitschrift für Naturforschung C – A Journal of Biosciences, 30, 722-725. doi:10.1515/znc-1975- 11-1204.Auer, T. O., & Benton, R. (2016). Sexual circuitry in Drosophila. Current Opinion in Neurobiology, 38, 18-26. doi:10.1016/j.conb.2016.01.004.Batista-Pereira, L. G., Stein, K., De Paula, A. F., Moreira, J. A., Cruz, I., Figueiredo, M. de L., … Correa, A. G. (2006). Isolation, identification, synthesis, and field evaluation of the sex pheromone of the Brazilian population of Spodoptera frugiperda. Journal of Chemical Ecology, 32(5), 1085-1099. doi:10.1007/s10886-006-9048-5.Becerra, L., & Corredor, D. (2001). Application of an insecticidal bait to control adults of Tecia solanivora (Povolny) (Lepidoptera: Gelechiidae) in potato. Agronomía Colombiana, 18(1-3), 97-103.Bell, W. J., Parsons, C., & Martinko, E. A. (1972). Cockroach aggregation pheromones: Analysis of aggregation tendency and species specificity (Orthoptera: Blattidae). Journal of Kansas Entomological Society, 45(4), 414-421.Bell, W. J., Parsons, C., & Martinko, E. A. (1972). Cockroach aggregation pheromones: Analysis of aggregation tendency and species specificity (Orthoptera: Blattidae). Journal of Kansas Entomological Society, 45(4), 414-421.Bento, J. M., Parra, J. R., de Miranda, S. H., Adami, A. C., Vilela, E. F., & Leal, W. S. (2016). How much is a pheromone worth? F1000 Research, 5, 1763. doi:10.12688/f1000research.9195.1.Bergmann, J., González, A., & Zarbin, P. H. (2009). Insect pheromone research in South America. Journal of the Brazilian Chemical Society, 20(7), 1206-1219. doi:10.1590/S0103-50532009000700003.Berger, K. G., & Martin, S. M. (2000). Palm Oil. Nueva York, EE. UU.: Cambridge University.Binyameen, M., Anderson, P., Ignell, R., Seada, M. A., Hansson, B. S., & Schlyter, F. (2012). Spatial organization of antennal olfactory sensory neurons in the female Spodoptera littoralis moth: Differences in sensitivity and temporal characteristics. Chemical Senses, 37(7), 613- 629. doi:10.1093/chemse/bjs043.Bogich, T. L., Liebhold, A. M., & Shea, K. (2008). To sample or eradicate? A cost minimization model for monitoring and managing an invasive species. Journal of Applied Ecology, 45(4), 1134-1142. doi:10.1111/j.1365- 2664.2008.01494.x.Borrero-Echeverry, F. (2016). Social and Environmental Olfactory Signals Mediate Insect Behavioral Ecology and Evolution. Lomma, Suecia: Department of Plant Protection Biology & Swedish University of Agricultural SciencesBorrero-Echeverry, F., Becher, P. G., Birgersson, G. R., Bengtsson, M., Witzgall, P., & Saveer, A. M. (2015). Flight attraction of Spodoptera littoralis (Lepidoptera, Noctuidae) to cotton headspace and synthetic volatile blends. Frontiers in Ecology and Evolution, 3, 56. doi:10.3389/fevo.2015.00056.Bosa, C. F., Cotes-Prado, A. M., Fukumoto, T., Bengtsson, M., & Witzgall, P. (2005). Pheromone-mediated communication disruption in Guatemalan potato moth, Tecia solanivora. Entomologia Experimentalis Applicata, 114(2), 137-142. doi:10.1111/j.1570-7458.2005. 00252.x.Bosa, C. F., Cotes-Prado, A. M., Fukumoto, T., Bengtsson, M., & Witzgall, P. (2006). Disruption of Pheromone Communication in Tecia solanivora (Lepidoptera: Gelechiidae): Flight Tunnel and Field Studies. Journal of Economic Entomology, 99(4), 6.Brockerhoff, E. G., Jones, D. C., Kimberley, M. O., Suckling, D. M., & Donaldson, T. (2006). Nationwide survey for invasive wood-boring and bark beetles (Coleoptera) using traps baited with pheromones and kairomones. Forest Ecology and Management, 228(1-3), 234-240. doi:10.1016/j.foreco.2006.02.046.Bruce, T. J., & Pickett, J. A. (2011). Perception of plant volatile blends by herbivorous insects–finding the right mix. Phytochemistry, 72(13), 1605-1611. doi:10.1016/j. phytochem.2011.04.011.Buck, L., & Axel, R. (1991). A novel multigene family may encode odorant receptors: A molecular basis for odor recognition. Cell, 65(1), 175-187. doi:10.1016/0092- 8674(91)90418-x.Burkholder, W. E., & Ma, M. (1985). Pheromones for monitoring and control of stored-product insects. Annual Review of Entomology, 30, 257-272. doi:10.1146/annurev. en.30.010185.001353.Butenandt, A., Beckmann, R., Stamm, D., & Hecker, E. (1959). Über den sexuallockstoff des seidenspinners Bombyx mori. Reindarstellung und konstitution. Z. Naturforsch. B, 14, 283-284.Campion, D. G., Hall, D. R., & Prevett, P. F. (2011). Use of pheromones in crop and stored products pest management: control and monitoring. International Journal of Tropical Insect Science, 8(4-5-6), 737-741. doi:10.1017/s1742758400022852.Carraher, C., Dalziel, J., Jordan, M. D., Christie, D. L., Newcomb, R. D., & Kralicek, A. V. (2015). Towards an understanding of the structural basis for insect olfaction by odorant receptors. Insect Biochemical and Molecular Biology, 66, 31-41. doi:10.1016/j.ibmb.2015.09.010.Chinchilla, C. M., González, L., & Oehlschlager, A. (1993). Management of red ring disease in oil palm through pheromone-based trapping of Rhynchophorus palmarum (L). Ponencia presentada en International Palm Oil Congress. Kuala Lumpur, Malaysia.Clyne, P. J., Warr, C. G., Freeman, M. R., Lessing, D., Kim, J. H., & Carlson, J. R. (1999). A novel family of divergent seven-transmembrane proteins: Candidate odorant receptors in Drosophila. Neuron, 22(2), 327-338. doi:10.1016/s0896-6273(00)81093-4.Cocco, A., Deliperi, S., & Delrio, G. (2011). Evaluation of the mating disruption method against the tomato borer, Tuta absoluta (Meyrick), in greenhouse tomato crops in Sardinia (Italy). Ponencia presentada en eppo/iobc/fao/neppo Joint International Symposium on Management of Tuta absoluta (tomato borer), Agadir, Marruecos.De Bruyne, M., & Baker, T. C. (2008). Odor detection in insects: Volatile codes. Journal of Chemical Ecology, 34(7), 882-897. doi:10.1007/s10886-008-9485-4.Deisig, N., Dupuy, F., Anton, S., & Renou, M. (2014). Responses to Pheromones in a Complex Odor World: Sensory Processing and Behavior. Insects, 5(2), 399-422. doi:10.3390/insects5020399.Díaz-Montilla, A. E., Suárez-Barón, H., Gallego, G., Viera-Arroyo, W. F., & Saldamando-Benjumea, C. I. (2017). Variation in the capture of Neoleucinodes elegantalis Guenée (Lepidoptera: Crambidae) males using commercial sex pheromones on three solanaceous hosts. Revista Corpoica: Ciencia y Tecnología Agropecuaria, 18(3), 583-597. doi:10.21930/rcta.vol18_num3_art:746.Dickens, J., Billings, R., & Payne, T. (1992). Green leaf volatiles interrupt aggregation pheromone response in bark beetles infesting southern pines. Cellular and Molecular Life Science, 48(5), 523-524. doi:10.1007/ BF01928180.Dickens, J., Jang, E., Light, D., & Alford, A. (1990). Enhancement of insect pheromone responses by green leaf volatiles. Naturwissenschaften, 77(1), 29-31. doi:10.1007/ BF01131792.Dowd, P. F., & Bartelt, R. J. (1991). Host-derived volatiles as attractants and pheromone synergists for dried fruit beetle Carpophilus hemipterus. Journal of Chemical Ecology, 17(2), 285-308. doi:10.1007/BF00994333.Durand, N., Carot-Sans, G., Bozzolan, F., Rosell, G., Siaussat, D., Debernard, S., … Maibeche-Coisne, M., (2011). Degradation of pheromone and plant volatile components by a same odorant-degrading enzyme in the cotton leafworm, Spodoptera littoralis. PLoS One, 6(12), e29147. doi:10.1371/journal.pone.0029147.Eisner, T., & Meinwald, J. (Eds.) (1995). Chemical Ecology: The Chemisty of Biotic Interaction. Washington, EE. UU.: National Academy Press.El-Sayed, A. (2014). The Pherobase: Database of pheromones and semiochemicals. Recuperado de http://www. pherobase.com/about.El-Sayed, A. (2017b). Pherobase: Mass Trapping–Index-List of Species. Recuperado de http://www.pherobase.net/ database/control/control-approach-Mass trappingall. php.El-Sayed, A. (2017a). Pherobase: Lure and kill–Index-List of Species. Recuperado de http://www.pherobase.net/ database/control/control-approach-Lure and kill-all.php.El-Sayed, A. (2017c). Pherobase: Mating disruption–Index- List of Species. Recuperado de http://www.pherobase.net/ database/control/control-approach-Matingdisruptionall. phpEl-Sayed, A., Suckling, D., Byers, J., Jang, E., & Wearing, C. (2009). Potential of “lure and kill” in long-term pest management and eradication of invasive species. Journal of Economic Entomology, 102(3), 815-835. doi:10.1603/029.102.0301.El-Sayed, A. M., Suckling, D. M., Wearing, C. H., & Byers, J. A. (2006). Potential of mass trapping for long-term pest management and eradication of invasive species. Journal of Economic Entomology, 99(5), 1550-1564. doi:10.1603/0022-0493-99.5.1550.Environmental Protection Agency (epa). (2017). Pesticides. Recuperado de https://www.epa.gov/pesticides.European and Mediterranean Plant Protection Organization (eppo). (2008). Eppo Reporting Service. Recuperado de https://www.eppo.int/PUBLICATIONS/reporting/ reporting_service.htm.Esparza-Díaz, G., Olguin, A., Carta, L. K., Skantar, A. M., & Villanueva, R. T. (2013). Detection of Rhynchophorus palmarum (Coleoptera: Curculionidae) and Identification of associated nematodes in South Texas. Florida Entomologist, 96(4), 1513-1521. doi:10.1653/024.096.0433.Faleiro, J. R., & Satarkar, V. R. (2005). Attraction of food baits for use in red palm weevil Rhynchophorus ferrugineus Olivier pheromone trap. Indian Journal of Plant Protection, 33(1), 23-25.Food and Agriculture Organization of the United Nations (fao). (2017). Crops. Recuperado de http://www.fao. org/faostat/en/#data/QC.Farský, O. (1938). Nonnenkontroll -und Vorbeugungsmethode nach Professor Forst.-Ing. Ant. Dyk. Anzeiger für Schädlingskunde, 14(6), 65-67. doi:10.1007/bf02337800.Galizia, C. G. (2014). Olfactory coding in the insect brain: data and conjectures. The European Journal of Neuroscience, 39(11), 1784-1795. doi:10.1111/ejn.12558.Gaston, L. K., Shorey, H. H., & Saario, C. A. (1967). Insect population control by the use of sex pheromones to inhibit orientation between the sexes. Nature, 213, 1155. doi:10.1038/2131155a0.Lietti, M. M. M., Botto, E., & Alzogaray, R. A. (2005). Insecticide resistance in Argentine populations of Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). Neotropical Entomology, 34(1), 113-119. doi:10.1590/ S1519-566X2005000100016.Lin, H. H., Lai, J. S. Y., Chin, A. L., Chen, Y. C., & Chiang, A. S. (2007). A map of olfactory representation in the Drosophila mushroom body. Cell, 128(6), 1205-1217. doi:10.1016/j.cell.2007.03.006.Light, D. M., Knight, A. L., Henrick, C. A., Rajapaska, D., Lingren, B., Dickens, J. C., … Roitman, J. (2001). A pear-derived kairomone with pheromonal potency that attracts male and female codling moth, Cydia pomonella (L.). Naturwissenschaften, 88(8), 333-338.Linn, C. E., Campbell, M. G., & Roelofs, W. L. (1986). Male moth sensitivity to multicomponent pheromones: Critical role of female-released blend in determining the functional role of components and active space of the pheromone. Journal of Chemical Ecology, 12(3), 659-668. doi:10.1007/bf01012100.Lobo-Pinheiro, A. (2005). Efeito de densidades de armadilhas de feromonio sexual na coleta massal de Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) em tomateiros. Lavras, Brasil: Universidade Federal de Lavras.Lobos, E., Occhionero, M., Werenitzky, D., Fernández, J., González, L. M., Rodríguez, C., … Oehlschlager, A. C. (2013). Optimization of a trap for Tuta absoluta Meyrick (Lepidoptera: Gelechiidae) and trials to determine the effectiveness of mass trapping. Neotropical Entomology, 42(5), 448-457. doi:10.1007/s13744-013-0141-5.McCormick, A. L., Karlsson, M., Ochoa, C. F., Proffit, M., Bengtsson, M., Zuluaga, M. V., … Witzgall, P. (2012). Mating Disruption of Guatemalan Potato Moth Tecia solanivora by Attractive and Non-Attractive Pheromone Blends. Journal of Chemical Ecology, 38(1), 63-70. doi:10.1007/s10886-011-0051-0.Metcalf, R. L., & Metcalf, E. R. (1992). Plant kairomones in insect ecology and control. Nueva York, EE. UU.: Chapman and Hall.Michereff-Filho, M., Vilela, E. F., Attygalle, A. B., Meinwald, J., Svatoš, A., & Jham, G. N. (2000a). Field Trapping of Tomato Moth Tuta absoluta with pheromone traps. Journal of Chemical Ecology, 26(4), 875-881. doi:10.1023/A:1005452023847.Michereff-Filho, M., Vilela, E. F., Jham, G. N., Attygalle, A., Svatos, A., & Meinwald, J. (2000b). Initial studies of mating disruption of the tomato moth, Tuta absoluta (Lepidoptera: Gelechiidae) using synthetic sex pheromone. Journal of the Brazilian Chemical Society, 11(6), 621-628. doi:10.1590/S0103-50532000000600011.Miller, J. R., & Gut, L. J. (2015). Mating disruption for the 21st century: matching technology with mechanism. Environmental Entomology, 44(3), 427-453. doi:10.1093/ ee/nvv052.Morin, J. P., Lucchini, F., Araujo, J. C. A. Ferreira, J. M. S., & Fraga, L. S. (1986). Rhynchophorus palmarum control using traps made from oil palm cubes. Oléagineux, 41(2), 57-62.Moura, J. I. L., Vilela, E. F., Brasil, G. H., & Cangucu, R. (2000). Mass trapping of Rhynchophorus palmarum using pheromone in coconut plantation in Brazil. En Empresa Brasileira de Pesquisa Agropecuária (Embrapa), XXI International Congress of Entomology (pp. 154). Foz do Iguassu, Brasil: EmbrapaMünch, D., & Galizia, C. G. (2016). DoOR 2.0-Comprehensive mapping of Drosophila melanogaster odorant responses. Scientific Reports, 6, 21841. doi:10.1038/srep21841.Namiki, S., Iwabuchi, S., & Kanzaki, R. (2008). Representation of a mixture of pheromone and host plant odor by antennal lobe projection neurons of the silkmoth Bombyx mori. Journal of Comparative Physiology A-Neuroethology Sensory Neural and Behavioral Physiology, 194(5), 501-515. doi:10.1007/s00359-008-0325-3.Nesbitt, B. F., Beevor, P. S., Cork, A., Hall, D. R., Murillo, R. M., & Leal, H. R. (1985). Identification of components of the female sex pheromone of the potato tuber moth, Scrobipalpopsis solanivora. Entomologia Experimentalis et Applicata, 38(1), 81-85. doi:10.1111/j.1570-7458.1985. tb03501.x.Núñez, P., Zignago, A., Paullier, J., & Núñez, S. (2009). Feromonas sexuales para el control de la polilla del tomate Tuta absoluta (Meyrick) (Lep., Gelechiidae). Agrociencia Uruguay, 13(1), 20-27.Oehlschlager, A. C. (2016). Palm weevil pheromones – Discovery and use. Journal of Chemical Ecology, 42(7), 617-630. doi:10.1007/s10886-016-0720-0.Oehlschlager, A. (2005). Current status of trapping palm weevils and beetles. The Planter, 81(947), 123-143.Oehlschlager, A. C., Chinchilla, C. M., Castillo, G., & González, L. (2002). Control of red ring disease in oil palm by mass trapping Rhynchophorus palmarum (Colepotera: Curculionidae). Florida Entomologist, 85(3), 507-513. doi:10.1653/0015-4040(2002)085[0507:COR RDB]2.0.CO;2.Oehlschlager, A. C., Chinchilla, C. M., & González, L. M. (1993a). Optimization of a pheromone-baited trap for the American palm weevil Rhynchophorus palmarum (L). Ponencia presentada en Palm Oil Research Institute of Malaysia. International Palm Oil Congress, porim, Kuala Lumpur, Malaysia.Oehlschlager, A. C., Chinchilla, C. M., Jiron, L. F., Morgan, B., & Mexzon, R. G. (1993b). Development of an effective pheromone based trapping system for the American palm weevil, Rhynchophorus palmarum, in oil palm plantations. Journal of Economic Entomology, 86(5), 1381-1392. doi:10.1093/jee/86.5.1381.Oehlschlager, A. C., Pierce, H. D., Morgan, B., Wimalaratne, P. D. C., Slessor, K. N., King, G. G. S., … Mexzan, R. G. (1992). Chirality and field activity of Rhynchophorol, the aggregation pheromone of the American palm weevil. Naturwissenschaften, 79(3), 134-135. doi:10.1007/ BF01131543.Party, V., Hanot, C., Busser, D. S., Rochat, D., & Renou, M. (2013). Changes in odor background affect the locomotory response to pheromone in moths. PLoS One, 8, e52897. doi:10.1371/journal.pone.0052897.Pascual, A., & Préat, T. (2001). Localization of long-term memory within the Drosophila mushroom body. Science, 294(5544), 1115-1117. doi:10.1126/science.1064200.Pregitzer, P., Schubert, M., Breer, H., Hansson, B.S., Sachse, S., & Krieger, J. (2012). Plant odorants interfere with detection of sex pheromone signals by male Heliothis virescens. Frontiers in Cellular Neuroscience, 6, 42. doi:10.3389/fncel.2012.00042.Proffit, M., Khallaf, M. A., Carrasco, D., Larsson, M. C., & Anderson, P. (2015). ‘Do you remember the first time?’ Host plant preference in a moth is modulated by experiences during larval feeding and adult mating. Ecology Letter, 18(4), 365-374. doi:10.1111/ele.12419.Regnier, F. E. (1971). Semiochemicals—Structure and Function. Biology of Reproduction, 4(3), 309-326. doi:10.1093/biolreprod/4.3.309.Rochat, D., González, A. V., Mariau, D., Villanueva, A. G., & Zagatti, P. (1991). Evidence for male-produced aggregation pheromone in American palm weevil, Rhynchophorus palmarum (L.) (Coleoptera: Curculionidae). Journal of Chemical Ecology, 17(6), 1221-1230. doi:10.1007/ bf01402945.Rochat, D., González, A. V., Mariau, D., Villanueva, A. G., & Zagatti, P. (1991). Evidence for male-produced aggregation pheromone in American palm weevil, Rhynchophorus palmarum (L.) (Coleoptera: Curculionidae). Journal of Chemical Ecology, 17(6), 1221-1230. doi:10.1007/ bf01402945.Rochat, D., Malosse, C., Lettere, M., Ducrot, P. H., Zagatti, P., Renou, M., & Descoins, C. (1991). Male-produced aggregation pheromone of the american palm weevil, Rhynchophorus palmarum (L.) (Coleoptera, Curculionidae): Collection, identification, electrophysiogical activity, and laboratory bioassay. Journal of Chemical Ecology, 17(11), 2127-2141. doi:10.1007/bf00987996.Rochat, D., Ramirez-Lucas, P., Malosse, C., Aldana., R., Kakul, T., & Morin, J. P. (2000). Role of solid-phase microextraction in the identification of highly volatile pheromones of two Rhinoceros beetles Scapanes australis and Strategus aloeus (Coleoptera, Scarabaeidae, Dynastinae).885(1-2), 433-444.Romero-Frías, A., Simões-Bento, J. M., & Osorio, C. (2015). Chemical signaling between guava (Psidium guajava L., Myrtaceae) and the guava weevil (Conotrachelus psidii Marshall). Revista Facultad de Ciencias Básicas, 11(1), 102-113.Rospars, J. P., & Hildebrand, J. G. (2000). Sexually dimorphic and isomorphic glomeruli in the antennal lobes of the sphinx moth Manduca sexta. Chemical Senses, 25(2), 119- 129. doi:10.1093/chemse/25.2.119.Saveer, A. M., Becher, P. G., Birgersson, G. R., Hansson, B. S., Witzgall, P., & Bengtsson, M. (2014). Mate recognition and reproductive isolation in the sibling species Spodoptera littoralis and Spodoptera litura. Frontiers in Ecology and Evolution, 2, 18. doi:10.3389/fevo.2014.00018.Saveer, A. M., Kromann, S. H., Birgersson, G., Bengtsson, M., Lindblom, T., Balkenius, A., … Ignell, R. (2012). Floral to green: Mating switches moth olfactory coding and preference. Proceedings of the Royal Society B: Biological Sciences, 279(1737), 2314-2322. doi:10.1098/ rspb.2011.2710.Schneider, D., & Kaissling, K. E. (1957). Der bau der antenne des Seidenspinners Bombyx mori L. II. Sensillen, cuticulare bildungen und innerer bau. Zoologische Jahrbücher/Abteilung für Anatomie und Ontogenie der Tiere, 76, 224-250.Smith, R. W. (2002). Proceedings of the seminar on research and development of coconut in Latin America and the Caribbean. Kingston, Jamaica: Instituto Interamericano de Cooperación para la Agricultura (iica).Suárez-Gómez, H., & Castro-Ortega, L. A. (1990). Mass trapping of Anthonomus grandis Boheman with grandlure. Revista Colombiana de Entomología, 16(2), 62-68. doi:10.1093/jee/99.4.1245.Symonds, M. R. E., & Gitau-Clarke, C. W. (2016). The vvolution of aggregation pheromone diversity in bark beetles. Advances in Insect Physiology, 50, 195-234. doi:10.1016/bs.aiip.2015.12.003.Tinzaara, W., Dicke, M., Van Huis, A., Van Loon, J. J., & Gold, C. S. (2003). Different bioassays for investigating orientation responses of the banana weevil, Cosmopolites sordidus, show additive effects of host plant volatiles and a synthetic male-produced aggregation pheromone. Entomologia Experimentalis et Applicata, 106(3), 169-175. doi:10.1046/j.1570-7458.2003.00025.x.Tinzaara, W., Gold, C. S., Dicke, M., Van Huis, A., & Ragama, P. E. (2007). Host plant odours enhance the responses of adult banana weevil to the synthetic aggregation pheromone Cosmolure+®. International Journal of Pest Management, 53(2), 127-137. doi:10.1080/09670870 701191963.Trona, F., Casado, D., Coracini, M., Bengtsson, M., Ioriatti, C., & Witzgall, P. (2010). Flight tunnel response of codling moth Cydia pomonella to blends of codlemone, codlemone antagonists and pear ester. Physiological Entomology, 35(3), 249-254. doi:10.1111/j.1365-3032.2010.00737.x.Unbehend, M., Hanniger, S., Meagher, R. L., Heckel, D. G., & Groot, A. T. (2013). Pheromonal divergence between two strains of Spodoptera frugiperda. Journal of Chemical Ecology, 39(3), 364-376. doi:10.1007/s10886-013- 0263-6.Vander Meer, R. K., Breed, M. D., Espelie, K. E., & Winston, M. L. (1998). Pheromone communication in social insects. Boulder, EE. UU.: Westviw Press.Velásquez-Vélez, M. I., Saldamando-Benjumea, C. I., & Ríos-Diez, J. D. (2011). Reproductive isolation between two populations of Spodoptera frugiperda (Lepidoptera: Noctuidae) collected in corn and rice fields from central Colombia. Annals of the Entomological Society of America, 104(4), 826-833. doi:10.1603/an10164.Vosshall, L. B. (2008). Scent of a fly. Neuron, 59(5), 685-689. doi:10.1016/j.neuron.2008.08.014.Vosshall, L. B., Amrein, H., Morozov, P. S., Rzhetsky, A., & Axel, R. (1999). A spatial map of olfactory receptor expression in the Drosophila antenna. Cell, 96(5), 725- 736. doi:10.1016/s0092-8674(00)80582-6.Welter, S. C., Pickel, C., Millar, J. G., Cave, F., Van Steenwyk, R. A., & Dunley, J. (2005). Pheromone mating disruption offers selective management options for key pests. California Agriculture, 59(1), 16-22. doi:10.3733/ ca.v059n01p16.Wilches, D. M., Borrero-Echeverry, F., Cotes-Prado, A. M., & Aragón, S. (2011). Mating disruption in Tecia solanivora (Lepidoptera: Gelechiidae) by using pheromone dispensers in stored potatoes conditions. En Sociedad Colombiana de Entomología (Socolen) (Ed.), xxxviii Congreso de Socolen (pp. 102). Manizales, Colombia: Socolen.Witzgall, P., Kirsch, P., & Cork, A. (2010). Sex pheromones and their impact on pest management. Journal of Chemical Ecology, 36(1), 80-100. doi:10.1007/s10886-009-9737-y.Witzgall, P., Lindblom, T., Bengtsson, M., & Toth, M. (2004). The Pherolist. Recuperado de http://www.pherolist.slu. se/pherolist.php.Wood, D. L., Browne, L. E., Silverstein, R. M., & Rodin, J. O. (1966). Sex pheromones of bark beetles—I. Mass production, bio-assay, source, and isolation of the sex pheromone of Ips confusus (LeC.). Journal of Insect Physiology, 12(5), 523-536. doi:10.1016/0022- 1910(66)90091-6.Yaksi, E., & Wilson, R. I. (2010). Electrical coupling between olfactory glomeruli. Neuron, 67(6), 1034-1047. doi:10.1016/j.neuron.2010.08.041.Yew, J. Y., & Chung, H. (2015). Insect pheromones: An overview of function, form, and discovery. Progress in Lipid Research, 59, 88-105. doi:10.1016/j.plipres.2015.06.001.Zhang, Q. H., & Schlyter, F. (2003). Redundancy, synergism, and active inhibitory range of non-host volatiles in reducing pheromone attraction in European spruce bark beetle Ips typographus. Oikos, 101(2), 299-310. doi:10.1034/j.1600-0706.2003.111595.x.Adan Abrams, P. (2012). Predator-prey models. En A. Hastings & L. Gross (Eds.), Encyclopedia of Theoretical Ecology (pp. 587-594). Berkley, EE. UU.: University of California Press.Aldana, J., Aldana, R. C., & Calvache, H. (2002). Manejo de Leptopharsa gibbicarina Froeschner, insecto inductor de la Pestalotiopsis [Boletín técnico N.° 16]. Bogotá, Colombia: Cenipalma.Arias-Reverón, J. M. (1990). Notes on natural enemies attacking Lepidosaphes species [Homoptera: Diaspididae] associated with Citrus in Costa Rica. Entomophaga, 35(2), 301-303.Bacaër, N. (2011). Lotka, Volterra and the predator–prey system (1920–1926). En N. Bacaër (Ed.), A short history of mathematical population dynamics (pp. 71-76). Londres, Reino Unido: Springer London.Bartlett, B. R. (1978). Margarodidae. En C.P. Clausen (Ed.), Introduced parasites and predators of arthropod pests and weeds: a world review (pp. 132-136). Washington, D.C., EE. UU.: Agricultural Research Service, United States Department of Agriculture.Bellotti, A. C., Melo, E. L., Arias, B., Herrera, C. J., Hernández, M. P., Holguín, C. M. ... Trujillo, H. (2005, September). Biological control in the Neotropics: A selective review with emphasis on cassava. En M. S. Hoddle (Comp.), Second international symposium on biological control of arthropods (pp. 206-227). Davos, Switzerland.Bellotti, A., Herrera, C. J., Hernández, M. P., Arias, B., Guerrero, J. M., & Melo, E. L. (2011). Casssava pests in Latin America, Africa and Asia. En R. H. Howeler (Ed.), The cassava handbook, a reference manual based on the Asian regional cassava training course, held in Thailand (pp. 199-257). Cali, Colombia: Centro Internacional de Agricultura Tropical (ciat).Bergstrom, U. & Englund, G. (2004). Spatial scale, heterogeneity and functional responses. Journal of Animal Ecology, 73(3), 487-493.Berryman, A. (1999). Theoretical foundations of biological control. En B. A. Hawkins, & H. V. Cornell (Eds.), Theoretical approaches to biological control (pp. 3-21). Cambridge, Inglaterra: Cambridge University Press.Bianchi, F., Booij, C. J. H., & Tscharntke, T. (2006). Sustainable pest regulation in agricultural landscapes: A review on landscape composition, biodiversity and natural pest control. Proceedings of the Royal Society B: Biological Sciences, 273(1595), 1715-1727.Bianchi, F., Schellhorn, N. A., & Van Der Werf, W. (2009). Foraging behaviour of predators in heterogeneous landscapes: the role of perceptual ability and diet breadth. Oikos, 118(9), 1363-1372.Biobest. (2011). Biological control: Beneficial insects and mites: Delphastus-System. Recuperado de http://www.biobest. be/producten/179/3/0/0/.Bolland, H. R., Gutiérrez, J., & Flechtmann, C. H. W. (1998). World catalogue of the spider mite family (Acari: Tetranychidae). Leiden, Holanda: Brill Academic Publishers.Bueno, V. H. P. & Van Lenteren, J. C. (2002). The popularity of augmentative biological control in Latin America: history and state of affairs. Paper presented at the 1st International Symposium on Biological Control of Arthropods, Honolulu, Hawaii. Recuperado de https://www.bug wood.org/arthropod/day2/bueno.pdf.Causton, C. E. (2004). Predicting the field prey range of an introduced predator, Rodolia cardinalis Mulsant, in the Galápagos. En R. G. Van Driesche & R. Reardon (Eds.), Assessing host ranges for parasitoids and predators used for classical biological control: a guide to best practice. fhtet-2004-03 (pp. 195-223). Morgantown, EE. UU.: United States Department of Agriculture Forest Service.Chávez, Y., Chirinos, D. T., González F., G., Lemos, N., Fuentes, A., Castro, R., & Kondo, T. (2017). Tamarixia radiata (Waterston) and Cheilomenes sexmaculata (Fabricius) as biological control agents of Diaphorina citri Kuwayama in Ecuador. Chilean Journal of Agricultural Research, 77(2), 180-184. doi:10.4067/S0718- 58392017000200180.Ciomperlik, M. (2010). Crypticerya genistae scale, an invasive pest in Puerto Rico. En CPHST Biological Control Unit 2010 Annual Report (pp. 33-34). Raleigh, EE. UU.: U. S. Department of Agriculture.De Barro, P. J., Liu, S.-S., Boykin, L. M., & Dinsdale, A. B. (2011). Bemisia tabaci: A statement of species status. Annual Review of Entomology, 56, 1-19. doi:10.1146/ annurev-ento-112408-085504.Debach, P. (1946). An insecticidal check method for measuring the efficacy of entomophagous insects. Journal of Economic Entomology, 39(6), 695-697. doi:https://doi. org/10.1093/jee/39.6.695.Demite, P. R., McMurtry, J. A., & De Moraes, G. J. (2014). Phytoseiidae database: a website for taxonomic and distributional information on phytoseiid mites (Acari). Zootaxa, 3795(5), 571-577. doi:10.11646/ zootaxa.3795.5.6.De Moraes, G. J. & Mesa, N. C. (1988). Mites of the family Phytoseiidae (Acari) in Colombia, with descriptions of three new species. International Journal of Acarology, 14(2), 71-88. doi:10.1080/01647958808683790.De Vis, R., & Barrera, A. J. (1999). Use of two predators Phytoseiulus persimilis Athias-Henriot (Acari: Phytoseiidae) and Neoseiulus californicus (McGregor) (Acari: Phytoseiidae) for the biological control of Tetranychus urticae Koch (Acari: Tetranychidae) in roses in the Bogota plateau. ISHS Acta Horticulturae (International Symposium on Cut Flowers in the Tropics), 482, 259-268. doi:10.17660/ActaHortic.1999.482.38.Eilenberg, J., Hajek, A., & Lomer, C. (2001). Suggestions for unifying the terminology in biological control. Biocontrol, 46(4), 387-400. doi:10.1023/A:1014193329979.Etienne, J. & Matile-Ferrero, D. (2008). Crypticerya genistae (Hempel), nouveau danger en Guadeloupe (Hemiptera, Coccoidea, Monophlebidae). Bulletin de la Société Entomologique d’Egypte, 113(4), 517-520.Flint, M. L., Dreistadt, S. H., & Clark, J. K. (1998). Natural enemies handbook: The illustrated guide to biological pest control. UC Division of Agriculture and Natural Sciences. Berkeley EE. UU.: University of California Press.Freeman, B. E. & Smith, D. C. (1990). Variation of density-dependence with spatial scale in the leaf-mining fly Liriomyza commelinae (Diptera, Agromyzidae). Ecological Entomology, 15(3), 265-274. doi:10.1111/j.1365-2311.1990.tb00808.x.Gaimari, S. D., Quintero, E. M., & Kondo, T. (2012). First report of Syneura cocciphila (Coquillett, 1895) (Diptera: Phoridae), as a predator of the fluted scale Crypticerya multicicatrices Kondo & Unruh, 2009 (Hemiptera: Monophlebidae). Boletín del Museo de Entomología de la Universidad del Valle, 13(2), 26-28.García-Morales, M., Denno, B. D., Miller, D. R., Miller, G. L., Ben-Dov, Y., & Hardy, N. B. (2016). ScaleNet: A literature-based model of scale insect biology and systematics. Database: The Journal of Biological Databases and Curation, pii: bav118. doi:10.1093/database/bav118.Geister, J., & Díaz, J. M. (1997). A field guide to the oceanic barrier reefs and atolls of the southwest Caribbean (Archipelago of San Andres and Providencia, Colombia). En H. A. Lessios & I. G. Macintyre (Eds.), Proceedings of the 8th International Coral Reef Symposium Vol. 1 (pp. 235- 262). Ciudad de Panamá: Smithsonian Tropical Research Institute.Girling, D. J., Bennet, F. D., & Yassen, M. (1977). Biological control of the green mite Mononychellus tanajoa (Bondar) (Acarina: Tetranychidae) in Africa. En T. Brekelbaum, A. Bellotti, & J. C. Lozano (Eds.), Proceedings of the Cassava Protection Workshop, 7-12 november, 1977 (pp. 165-170). Cali, Colombia: Centro Internacional de Agricultura Tropical (ciat).González F. G., & Kondo, T. (2014). Geographical distribution and phenotypic variation of Anovia punica Gordon (Coleoptera: Coccinellidae: Noviini), a predatory ladybeetle of fluted scales (Hemiptera: Coccoidea: Monophlebidae). Insecta Mundi, 0398, 1-6.González, G., López, R., & Kondo, T. (2012). First report of Delphastus quinculus Gordon and Diomus seminulus (Mulsant) (Coleoptera: Coccinellidae) feeding on eggs and first-instar nymphs of Crypticerya multicicatrices Kondo & Unruh (Hemiptera: Monophlebidae). Insecta Mundi, 0268, 1-6.Gordon, R. D. (1972). The tribe Noviini in the new world (Coleoptera: Coccinellidae). Journal of the Washington Academy of Sciences, 62(1): 23-31.Gordon, R. D. (1985). The Coccinellidae (Coleoptera) of America north of Mexico. Journal of The New York Entomological Society, 93(1), 1-912.Harris, K. M. (1973). Aphidophagous Cecidomyiidae (Diptera): taxonomy, biology and assessments of field populations. Bulletin of Entomological Research, 63(2), 305- 325. doi:https://doi.org/10.1017/S0007485300039080.Hartnoll, R. G., Baine, M. S. P., Grandas, Y., James J., & Atkin, H. (2006). Population biology of the black land crab, Gecarcinus ruricola, in the San Andres archipelago, western Caribbean. Journal of Crustacean Biology, 26(3), 316-325.Hawkins, B. A., Mills, N. J., Jervis, M. A., & Price, P. W. (1999). Is the biological control of insects a natural phenomenon? Oikos, 86(3), 493-506.Heinz, K. M., Brazzle, J. R., Parrella, M. P., & Pickett, C. H. (1999). Field evaluations of augmentative releases of Delphastus catalinae (Horn) (Coleoptera: Coccinellidae) for suppression of Bemisia argentifolii Bellows & Perring (Homoptera: Aleyrodidae) infesting cotton. Biological Control, 16(3), 241-251. doi:10.1006/bcon.1999.0750.Heinz, K. M. & Parrella, M. P. (1994). Biological control of Bemisia argentifolii (Homoptera, Aleyrodidae) infesting Euphorbia pulcherrima - evaluations of releases of Encarsia luteola (Hymenoptera, Aphelinidae) and Delphastus pusillus (Coleoptera, Coccinellidae). Environmental Entomology, 23(5), 1346-1353. doi:https://doi.org/10.1093/ee/ 23.5.1346.Heinz, K. M. & Zalom, F. G. (1996). Performance of the predator Delphastus pusillus on Bemisia resistant and susceptible tomato lines. Entomologia Experimentalis et Applicata, 81(3), 345-352. doi:10.1046/j.1570- 7458.1996.00105.x.Hemchandra, O., Kalita, J., & Singh, K. (2010). Biodiversity of aphidophagous coccinellids and their role as bioindicators in agro-forest ecosystem. The Bioscan, 1(special issue), 115-122.Herren, H. R. (1982). Distribution and economic importance of Phenacoccus manihoti and Mononychellus tanajoa in Africa. En H. R. Herren, R. N. Hennessey, & R. Bitterli (Eds.), Biological control and host plant resistance to control the cassava mealybug and green mite in Africa. Proceeding of an International Workshop, December 6-10, 1982 (pp. 3-5). Ibadan, Nigeria: International Institute of Tropical Agriculture (iita).Hodek, I., Honek, A., & Van Emden, H. F. (Eds.). (2012). Ecology and behaviour of the ladybird beetles (Coccinellidae) (pp. 605). Oxford, Reino Unido: John Wiley & Sons.Hodges, G. S. (2008). Icerya genistae Hempel (Hemiptera: Margarodidae): an emerging pest in south Florida. En M. Branco, J. C. Franco, & C. J. Hodgson (Eds.), Proceedings of the xi International Symposium on Scale Insect Studies, Oeiras, Portugal, 24-27 September 2007 (p. 157). Lisboa, Portugal: ISA Press.Hodges, G. S. (2008). Icerya genistae Hempel (Hemiptera: Margarodidae): an emerging pest in south Florida. En M. Branco, J. C. Franco, & C. J. Hodgson (Eds.), Proceedings of the xi International Symposium on Scale Insect Studies, Oeiras, Portugal, 24-27 September 2007 (p. 157). Lisboa, Portugal: ISA Press.Hoelmer, K. A., & Pickett, C. H. (2003). Geographic origin and taxonomic history of Delphastus spp. (Coleoptera: Coccinellidae) in commercial culture. Biocontrol Science and Technology, 13(5), 529-535. doi:10.1080/09583150 31000141018.Hodges, G. S., Hodges, A. C., & Unruh, C. M. (2008). A new exotic pest for Florida’s natural areas: Crypticerya genistae (Hemiptera: Monophlebidae). Florida Entomologist, 91(2), 335-337.Holling, C. S. (1961). Principles of insect predation. Annual Review of Entomology, 6, 163-182. doi:10.1146/annurev. en.06.010161.001115.Howeler, R. H. (2011). Recent trends in production and utilization of cassava in Asia. En R. H. Howeler (Ed.), The Cassava Handbook, A Reference Manual Based on the Asian Regional Cassava Training Course, Held in Thailand (pp. 1-22). Cali, Colombia: Centro Internacional de Agricultura Tropical (ciat).Hoy, M. A. (2008). Augmentative Biological Control. En J. L. Capinera (Ed.), Encyclopedia of Entomology (pp. 327-334). Dordrecht, Holanda: Springer.Hughes-Schrader, S. & Monahan, D. F. (1966). Hermaphroditism in Icerya zeteki Cockerell, and the mechanism of gonial reduction in iceryine coccids (Coccoidea: Margarodidae Morrison). Chromosoma, 20(1), 15-31. doi:10.1007/BF00331895.Hunter, C. D. (1998). Suppliers of beneficial organisms in North America. EE. UU., Sacramento, EE. UU.: California Environmental Protection Agency.Ingram, W. R. (1982). Potential for the biocontrol of green cassava mites in Africa. En H.R. Herren, R. N. Hennessey, & R. Bitterli (Eds.), Biological control and host plant resistance to control the cassava mealybug and green mite in Africa. Proceeding of an International workshop, December 6-10, 1982 (pp.103-115). Ibadan, Nigeria: International Institute of Tropical Agriculture (iita).Ives, A. R., Kareiva, P., & Perry, R. (1993). Response of a predator to variation in prey density at 3 hierarchical scales: Lady beetles feeding on aphids. Ecology, 74(7), 1929-1938. doi:10.2307/1940836.Kondo, T., González, G., Tauber, C., Guzmán-Sarmiento, Y. C., Vinasco-Mondragon, A. F., & Forero, D. (2015). A checklist of natural enemies of Diaphorina citri Kuwayama (Hemiptera: Liviidae) in the department of Valle del Cauca, Colombia and the World. Insecta Mundi, 0457, 1-14.Kondo, T., Gullan, P. J., Peronti, A. L. B. G., Ramos-Portilla, A. A., Caballero, A., & Pretelt, N. V. (2016a). First records of the iceryine scale insects Crypticerya brasiliensis (Hempel) and Crypticerya genistae (Hempel) (Hemiptera: Monophlebidae) for Colombia. Insecta Mundi, 0480, 1-9.Kondo, T., Gullan, P. J., Watson, G. W., Bustillo Pardey, A. E., & Montes, L. G. (2015). New distribution and host records for white coconut scale, Parlagena bennetti Williams (Hemiptera: Diaspididae). Insecta Mundi, 0422, 1–6.Kondo, T., Gullan, P., & Ramos Portilla, A. A. (2012a). Report of new invasive scale insects (Hemiptera: Coccoidea), Crypticerya multicicatrices Kondo & Unruh (Monophlebidae) and Maconellicoccus hirsutus (Green) (Pseudococcidae), on the islands of San Andres and Providencia, Colombia, with an updated taxonomic key to iceryine scale insects of South America. Insecta Mundi, 0265, 1-17.Kondo, T., Gullan, P., González, G. (2014). An Overview of a fortuitous and Efficient biological control of the Colombian fluted scale, Crypticerya multicicatrices Kondo & Unruh (Hemiptera: Monophlebidae: Iceryini), on San Andres Island, Colombia. Acta Zoologica Bulgarica, supp., 6, 87-93.Kondo, T., Peronti, A.L., Kozár, F., & Szita, E. (2013). Chapter 17. The citrus orthezia, Praelongorthezia praelonga (Douglas) (Hemiptera: Ortheziidae), a potential invasive species. En J. E. Peña (Ed.), Potential invasive pests of agricultural crops (pp. 301-319). Wallingford, Reino Unido: CAB International.Kondo T., Ramos-Portilla, A. A., Peronti, A. L. B. G., & Gullan, P. J. (2016b). Known distribution and pest status of fluted scale insects (Hemiptera: Monophlebidae: Iceryini) in South America. Redia, Journal of Zoology, 99, 187-195. doi:http://dx.doi.org/10.19263/REDIA-99.16.24.Kondo, T., & Unruh, C. (2009). A new species of Crypticerya Cockerell (Hemiptera: Monophlebidae) from Colombia, with a key to species of the tribe Iceryini found in South America. Neotropical Entomology, 38(1), 92-100. doi:10.1590/S1519-566X2009000100009.Krivan, V. (2008). Dispersal dynamics: Distribution of lady beetles (Coleoptera: Coccinellidae). European Journal of Entomology, 105(3), 405-409. doi:10.14411/ eje.2008.051.Landis, D. A., Wratten, S. D., & Gurr, G. M. (2000). Habitat management to conserve natural enemies of arthropod pests in agriculture. Annual Review of Entomology, 45, 175-201. doi:10.1146/annurev.ento.45.1.175.Le Caltagirone, A., & Doutt, R. L. (1989). The history of the vedalia beetle importation to California and its impact on the development of biological control. Annual Review of Entomology, 34, 1-16. doi:10.1146/annurev. en.34.010189.000245.Legaspi, J. C., Legaspi, B. C., Simmons, A. M., & Soumare, M. (2008). Life table analysis for immatures and female adults of the predatory beetle, Delphastus catalinae, feeding on whiteflies under three constant temperatures. Journal of Insect Science, 8, 7. doi:10.1673/031.008.0701.Lima, I. M. M. (1999). Ciclo de vida de Zagloba beaumonti Casey, 1899 (Coleoptera: Coccinellidae) como predador de Diaspis echinocacti (Bouché, 1833) (Hemiptera: Diaspididae): Duração, sobrevivência e fertilidade (tesis de doctorado). Universidade Federal do Paraná, Curitiba, PR, Brasil.Lyon, W. F. (1973). A plant-feeding mite Mononychellus tanajoa (Bondar) (Acarina: Tetranychidae) new to the African continent threatens cassava (Manihot esculenta Crantz) in Uganda, East Africa. PANS Pest Articles and News Summaries, 19(1), 36-37. doi:10.1080/09670877309412727.McMurtry, J. A., De Moraes, G. J., & Sourassou, N. F. (2013). Revision of the lifestyles of phytoseiid mites (Acari: Phytoseiidae) and implications for biological control strategies. Systematic and Applied Acarology, 18(4), 297- 320. doi:10.11158/saa.18.4.1.Mead, F. W., & Fasulo, T. R. (2010). Asian citrus psyllid, Diaphorina citri Kuwayama (Insecta: Hemiptera: Psyllidae). Recuperado de http://www.crec.ifas.ufl.edu/extension/ greening/pdf/asiaticcitruspsyllid.pdf.Michaud, J. P. (2001). Numerical response of Olla v-nigrum (Coleoptera: Coccinellidae) to infestations of Asian citrus psyllid (Hemiptera: Psyllidae) in Florida. Florida Entomologist, 84(4), 608-612. doi:10.2307/3496392.Michaud, J. P. (2002). Invasion of the Florida citrus ecosystem by Harmonia axyridis (Coleoptera: Coccinellidae) and asymmetric competition with a native species, Cycloneda sanguinea. Environmental Entomology, 31(5), 827-835. doi:10.1603/0046-225X-31.5.827.Michaud, J. P. & Olsen, L. E. (2004). Suitability of Asian citrus psyllid, Diaphorina citri, as prey for ladybeetles. BioControl, 49(4), 417-431. doi:10.1023/B:BICO.0000034605. 53030.db.Muñoz, K., Manrique, M. B., Sotelo-Cardona, P., Gaimari, S. D., & Kondo, T. (2018). Notes on the morphology and biology of Syneura cocciphila (Coquillett) (Diptera: Phoridae) a predator of Crypticerya multicicatrices Kondo & Unruh (Hemiptera: Monophlebidae). Journal of Insect Science, 18(1), 1-5. doi:10.1093/jisesa/iex110.Nachman, G. (2006a). The effects of prey patchiness, predator aggregation, and mutual interference on the functional response of Phytoseiulus persimilis feeding on Tetranychus urticae (Acari: Phytoseiidae, Tetranychidae). Experimental and Applied Acarology, 38(2-3), 87-111. doi:10.1007/s10493-006-7209-4.Nachman, G. (2006b). A functional response model of a predator population foraging in a patchy habitat. Journal of Animal Ecology, 75(4), 948-958. doi:10.1111/j.1365- 2656.2006.01114.x.Nicholls, C. I., Parrella, M. P., & Altieri, M. A. (1998). Advances and perspectives in the biological control of greenhouse pests with special reference to Colombia. Integrated Pest Management Reviews, 3(2), 99-109. doi:10.1023/A:1009695730407.Parsa, S., Hazzi, N. A., Chen, Q., Lu, F., Campo, B. V. H., Yaninek, J. S., & Vásquez-Ordóñez, A. A. (2015). Potential geographic distribution of two invasive cassava green mites. Experimental and Applied Acarology, 65(2), 195-204. doi:10.1007/s10493-014-9868-x.Pérez, R., García-González, J., & Cotes, A. M. (2008). Effect of a biopesticide on the predatory activity of Delphastus pusillus (Coleoptera: Coccinellidae). Revista Colombiana de Entomología, 34(2), 176-181.Pimentel, D. (2005). Environmental and economic costs of the application of pesticides primarily in the United States. Environment, Development and Sustainability, 7(2), 229-252. doi:10.1007/s10668-005-7314-2.Pinchao, E. C., Kondo, T., & González F., G. (2015). Rodolia cardinalis (Mulsant) (Coleoptera: Coccinellidae), a new predator of Crypticerya multicicatrices Kondo and Unruh (Hemiptera: Monophlebidae). Insecta Mundi, 0431, 1-7.Pinchao, E. C., Sotelo, P., González, G., & Kondo, T. (2017). Biological data on Anovia punica Gordon (Coleoptera: Coccinellidae), a predator of Crypticerya multicicatrices Kondo & Unruh (Hemiptera: Monophlebidae). Neotropical Entomology, 1-10. doi:https://doi.org/10.1007/s13744- 017-0561-8.Pires, E., Soares, M., Nogueira, R. M., Zanuncio, J. C., Moreira, P. S., & Oliveira, M. A. (2015). Seven decades of studies with Asopinae predators in Brazil. Bioscience Journal, 31(5), 1530-1549. doi:10.14393/BJ-v31n5a2015-27335.Rice, R. A., & Greenberg, R. (2000). Cacao cultivation and the conservation of biological diversity. Ambio: A Journal of the Human Environment, 29(3), 167-173. doi:10.1579/0044-7447-29.3.167.Rincón, D. F., Cañas, L. A., & Hoy, C. W. (2016). Intraplant spatial interaction between Delphastus catalinae (Coleoptera: Coccinellidae) and Bemisia tabaci biotype B (Hemiptera: Aleyrodidae) and its effect on predation rates. Biological Control, 95, 13-22. doi:10.1016/j. biocontrol.2015.12.010.Rincón, D. F., Cañas, L. A., & Hoy, C. W. (2017). Modeling changes in predator functional response to prey across spatial scales. Theoretical Ecology, 10(4), 403-415. doi:10.1007/s12080-017-0338-z.Rincón, D. F., Hoy, C. W., & Cañas, L. (2015). Generating within-plant spatial distributions of an insect herbivore based on aggregation patterns and per-node infestation probabilities. Environmental Entomology, 44(2), 194-209. doi:10.1093/ee/nvu022.Rincón-Vitova Insectaries, Inc. (2011). Dephastus cataliane: Whitefly predator. Recuperado de http://www.rin convitova.com/bulletins_product_pdf/Delphastus_ BUL.pdf.Rodas, C. A., Serna, R., Bolaños, M. D., Granados, G. M., Wingfield, M. J., & Hurley, B. P. (2014). Biology, incidence and host susceptibility of Pineus borneri (Hemiptera: Adelgidae) in Colombian pine plantations. Southern Forests: A Journal of Forest Science, 77(3), 165-171. doi:10 .2989/20702620.2014.1001662.Rosenheim, J. A., Limburg, D. D., & Colfer, R. G. (1999). Impact of generalist predators on a biological control agent, Chrysoperla carnea: Direct observations. Ecological Applications, 9(2), 409-417. doi:10.1890/1051-0761(19 99)009[0409:IOGPOA]2.0.CO;2.Safarzoda, S., Bahlai, C. A., Fox, A. F., & Landis, D. A. (2014). The role of natural enemy foraging guilds in controlling cereal aphids in Michigan wheat. Plos One, 9(12), e114230. doi:10.1371/journal.pone.0114230.Shivankar, V. J., & Rao, C. N. (2010). Psyllids and their management. Pest Management in Horticultural Ecosystems, 16(1), 1-4.Silva-Gómez, M., Quiroz-Gamboa, J. A., Yepes, F. C., Maya, M. F., Santos, A., & Hoyos-Carvajal, L. M. (2013). Incidence evaluation of Crypticerya multicicatrices and Maconellicoccus hirsutus in Colombian Seaflower Biosphere Reserve. Agricultural Sciences, 4(12), 654-665. doi:10.4236/as.2013.412088.Smith, L. & Bellotti, A. C. (1996). Successful biocontrol projects with emphasis on the neotropics. Recuperado de http:// web.entomology.cornell.edu/shelton/cornell-biocontrolconf/ talks/bellotti.html.Sotelo, P., & Kondo, T. (2017). On the biology of the Colombian fluted scale, Crypticerya multicicatrices Kondo & Unruh (Hemiptera: Monophlebidae). Neotropical Entomology, 46(4), 433-441. doi:10.1007/s13744-016- 0463-1.Stiling, P., & Cornelissen, T. (2005). What makes a successful biocontrol agent? A meta-analysis of biological control agent performance. Biological Control, 34(3), 236-246. doi:10.1016/j.biocontrol.2005.02.017.Stiling, P., Throckmorton, A., Silvanima, J., & Strong, D. R. (1991). Does spatial scale affect the incidence of density dependence: A field-test with insect parasitoids. Ecology, 72(6), 2143-2154. doi:10.2307/1941566.Suárez-Rubio, M., & Suárez, M. F. (2004). The use of the copepod Mesocyclops longisezus as a biological control agent for Aedes aegypti in Cali, Colombia. Journal of the American Mosquito Control Association, 20(4), 401-404.Symondson, W. O. C., Sunderland, K. D., & Greenstone, M. H. (2002). Can generalist predators be effective biocontrol agents? Annual Review of Entomology, 47, 561- 594. doi:10.1146/annurev.ento.47.091201.145240.Urano, S., Shima, K., Hongo, K., & Susuki, Y. (2003). A simple criterion for successful biological control on annual crops. Population Ecology, 45(2), 97-103. doi:10.1007/ s10144-003-0142-z.Van Lenteren, J. C. (2012). The state of commercial augmentative biological control: plenty of natural enemies, but a frustrating lack of uptake. Biocontrol, 57(1), 1-20. doi:10.1007/s10526-011-9395-1.Van Lenteren, J. C., & Bueno, V. H. P. (2003). Augmentative biological control of arthropods in Latin America. Biocontrol, 48(2), 123-139. doi:10.1023/A:1022645210394.Van Lenteren, J. C., Bolckmans, K., Köhl, J., Ravensberg, W. J., & Urbaneja, A. (2018). Biological control using invertebrates and microorganisms: plenty of new opportunities. Biocontrol, 63(1), 39-59. doi:10.1007/s10526-017-9801-4.Vélez, R. (1997). Plagas agrícolas de impacto económico en Colombia: bionomía y manejo integrado. Medellín, Colombia: Editorial Universidad de Antioquia.Yaninek, J. S. & Herren, H. R. (1988). Introduction and spread of the cassava green mite, Mononychellus tanajoa (Bondar) (Acari: Tetranychidae), an exotic pest in Africa, and the search for appropriate control methods; a review. Bulletin of Entomological Research, 78(1), 1-13.Yaninek, J. S., Mégevy, B., de Moraes, G. J., Bakker, F., Braun, A., & Herren, H. R. (1991). Establishment of the neotropical predator Amblyseius idaeus (Acari: Phytoseiidae) in Benin, West Africa. Biocontrol Science and Technology, 1(4), 323- 330. doi:10.1080/09583159109355211.Yaninek, J. S., Onzo, A., & Ojo, J. B. (1993). Continent-wide releases of neotropical phytoseiids against the exotic cassava green mite in Africa. Experimental and Applied Acarology, 17(1-2), 145-160. doi:10.1007/BF00156950.Yaninek, S. (2007). Biological control of the cassava green mite in Africa: Overcoming challenges to implementation. En C. Vincent, M.S. Goettel, & G. Lazarovits (Eds.), Biological control: A global perspective (pp. 28-37). Oxfordshire, Inglaterra: CAB International.Yaninek, S. & Hanna, R. (2003). Cassava green mite in Africa–A unique example of successful classical biological control of a mite pest on a continental Scale. En P. Neuenschwander, C. Borgemeister, & J. Langewald (Eds.), Biological control in IPM systems in Africa (pp. 61- 75). Oxfordshire, Inglaterra: CAB International.Yaseen, M. (1982). Exploration for Phenacoccus manihoti and Mononychellus tanajoa natural enemies: The challenge, the achievements. Proceedings Workshop on Biological Control and Resistance Breeding to Control Cassava Mealybug (Phenacoccus manihoti) and Green Spider Mite (Mononychellus tanajoa) in Africa. Ibadan, Nigeria: International Institute of Tropical Agriculture.Yaseen, M. & Bennett, F. D. (1976). Distribution, biology and population dynamics of the green cassava mite in the Neotropics. En J. H. Cock, R. MacIntyre, & M. Graham (Eds.), Proceedings of the Fourth Symposium of the International Society for Tropical Root Crops (pp. 196-202). Cali, Colombia: Centro Internacional de Agricultura Tropical (ciat).Zanuncio, J. C., Tavares, W. S., Fernandes, B. V., Wilcken, C. F., & Zanuncio, T. V. (2014). Production and use of Heteroptera predators for the biological control of eucalyptus pests in Brazil. Ekoloji, 23(91), 98-104. doi:10.5053/ekoloji.2014.9112.Abraham, Y., Moore, D., & Godwin, G. (1990). Rearing and aspects of biology of Cephalonomia stephanoderis and Prorops nasuta (Hymenoptera: Bethylidae) parasitoids of the coffee berry borer, Hypothenemus hampei (Coleoptera: Scolytidae). Bulletin of Entomological Research, 80(2), 121- 128. doi:10.1017/S000748530001333X.Aluja, M. (1994). Bionomics and management of Anastrepha. Annual Review of Entomology, 39, 155-178. doi:10.1146/ annurev.en.39.010194.001103.Aluja, M. (1999). Fruit fly (Diptera: Tephritidae) research in Latin America: myths, realities and dreams. Anais da Sociedade Entomológica do Brasil, 28(4), 565-594. doi:10.1590/S0301-80591999000400001.Aluja, M., López, M., & Sivinski, J. (1998). Ecological evidence for Diapause in four native and one exotic species of larval-pupal fruit fly (Diptera: Tephritidae) parasitoids tropical environments. Annals of the Entomological Society of America, 91(6), 821-833. doi:10.1093/aesa/91.6.821.Aluja, M., Sivinski, J., Ovruski, S., Guillen, L., Lopez, M., Cancino, J., … Ruíz, L.(2009). Colonization and domestication of seven species of native New World hymenopterous larval-prepupal and pupal fruit fly (Diptera: Tephritidae) parasitoids. Biocontrol Science and Technology, 19(Supl. 1), 49-79. doi:10.1080/09583150802377373.Aragón, S., Rodríguez, D., & Cantor, F. (2008). Release criteria of Encarsia formosa Gahan (Hymenoptera: Aphelinidae) for the control of Trialeurodes vaporariorum (Westwood)(Hemiptera: Aleyrodidae) on tomato. Agronomía Colombiana, 26(2), 277-284.Augier, L., Gastaminza, G., Lizondo, M., Argañaraz, M., & Willink, E. (2006). Presencia de Diaphorina citri (Hemiptera: Psyllidae) en el Noroeste Argentino (noa). Revista de la Sociedad Entomológica Argentina, 65(3-4), 67-68.Bakthavatsalam, N., Tandon, P., & Bhagat, D. (2013). Trichogrammatids: Behavioural Ecology. En: S. Sithanantham, C. R. Ballal, S. K. Jalali, & N. Bakthavatsalam (Eds.), Biological Control of Insect Pests Using Egg Parasitoids (pp. 77-104). Nueva Delhi, India: Springer. doi:10.1007/978-81-322-1181-5.Baranowski, R., Glenn, H., & Sivinski, J. (1993). Biological control of the Caribbean fruit fly (Diptera: Tephritidae). Florida Entomologist, 76(2) 245-251. doi:10.2307/3495721Barbosa, P. (1998). Agroecosystems and conservation biological control. En Conservation biological control. San Diego, EE. UU.: Academic Presss. doi:10.1016/B978- 012078147-8/50049-9.Bellotti, A., & Arias, B. (1977). Biology, ecology and biological control of the cassava hornworm (Erinnyis ello). En T. Brekelbaum, A. Bellotti, & J. C. Lozano (Eds.), Cassava Protection Workshop (1977, Cali, Colombia), Proceedings (pp. 227-232). Cali, Colombia: Centro Internacional de Agricultura Tropical (ciat).Bellotti, A. C., Arias, B., & Guzmán, O. (1992). Biological control of the cassava hornworm Erinnyis ello (Lepidoptera: Sphingidae). Florida Entomologist, 75(4), 506-515. doi:10.2307/3496132.Bellotti, A. C., Melo-Molina, E. L., Arias, V., Herrera- Fernández, C., Hernández, M., Holguín, A., … Trujillo- García, H. (2005). Biological control in the neotropics: a selective review with emphasis on cassava. En M. S. Hoddle (Ed.), Proceedings of International Symposium on Biological Control of Arthropods (2, 2005, Davos, Switzerland) (pp. 206-227). Riverside, EE. UU.: University of California.Bennett, F. (1969). Tachinid flies as biological control agents for sugarcane moth borers. En J. Williams, J. Metcalfe, R. Mungomery & R. Mathes (Eds.), Pests of Sugar Cane (pp. 117-148). Amsterdam, Holanda: Elsevier.Bento, J. M. S., De Moraes, G., Bellotti, A. C., Castillo, J., Warumby, J. F., & Lapointe, S. L. (1999). Introduction of parasitoids for the control of the cassava mealybug Phenacoccus herreni (Hemiptera: Pseudococcidae) in north-eastern Brazil. Bulletin of Entomological Research, 89(5), 403-410. doi:10.1017/S000748539900053X.Bento, J. M. S., De Moraes, G., De Matos, A., & Bellotti, A. C. (2000). Classical biological control of the mealybug Phenacoccus herreni (Hemiptera: Pseudococcidae) in northeastern Brazil. Environmental Entomology, 29(2), 355-359. doi:10.1603/0046-225X(2000)029[0355:CB COTM]2.0.CO;2.Beserra, E. B., Querino, R. B., & Parra, J. R. (2003). Occurrence of gynandromorphism in Trichogramma pretiosum Riley (Hymenoptera: Trichogrammatidae). Neotropical Entomology, 32(2), 507-509. doi:10.1590/ S1519-566X2003000300021.Betrem, J. (1961). Cephalonomia stephanoderis nov. spec. (Hym., Bethylidae). Entomologie Bergculturer, 21(10), 183-184.Boivin, G. (2009). Reproduction and immature development of egg parasitoids. En F. L. Consoli, J. R. Parra, & R. A. Zucchi (Eds.), Egg parasitoids in agroecosystems with emphasis on Trichogramma (pp. 1-23). Berlín, Alemania: Springer.Bueno, R. C. O. F., Bueno, A. F., Parra, J. R. P., Vieira, S. S., & Oliveira, L. J. (2010). Biological characteristics and parasitism capacity of Trichogramma pretiosum Riley (Hymenoptera, Trichogrammatidae) on eggs of Spodoptera frugiperda ( JE Smith) (Lepidoptera, Noctuidae). Revista Brasileira de Entomologia, 54(2), 322-327. doi:10.1590/ S0085-56262010000200016.Byrne, D., Bellows, T., & Parrella, M. (1990). Whitheflies in agricultural systems. En D. Gerling (Ed.), Whiteflies: Their bionomis, pest status and management (pp. 227-261). Andover, EE. UU.: Intercept.Cantor, F., Rodríguez, D., & Cure, J. (2011). Dispersion of Encarsia formosa (Hymenoptera: Aphelinidae) parasitizing Trialeurodes vaporariorum (Hemiptera: Aleyrodidae) on greenhouse tomato crops. Revista Colombiana de Entomología, 37(2), 210-216.Carrejo, N. S., & González, R. (1999). Parasitoids reared from species of Anastrepha (Diptera: Tephritidae) in Valle del Cauca, Colombia. Florida Entomologist, 82(1), 113-118. doi:10.2307/3495842.Carvajal-Yepes, M., Olaya, C., Lozano, I., Cuervo, M., Castano, M., & Cuellar, W. J. (2014). Unraveling complex viral infections in cassava (Manihot esculenta Crantz) from Colombia. Virus Research, 186, 76-86. doi:10.1016/j. virusres.2013.12.011.Colazza, S., Peri, E., Salerno, G., & Conti, E. (2009). Host searching by egg parasitoids: exploitation of host chemical cues. En F. Consoli, J. Parra & R. Zucchi (Eds.), Egg Parasitoids in Agroecosystems with Emphasis on Trichogramma (pp. 97-147). Dordrecht, Holanda: Springer.Cox, J. M., & Williams, D. (1981). An account of Cassava mealybugs (Hemiptera: Pseudococcidae) with a description of a new species. Bulletin of Entomological Research, 71(2), 247-258. doi:10.1017/S0007485300008270.De Vis, R., Fuentes, L., & van Lenteren, J. (2002). Life history of Amitus fuscipennis (Hym., Platygastridae) as parasitoid of the greenhouse whitefly Trialeurodes vaporariorum (Hom., Aleyrodidae) on tomato as function of temperature. Journal of Applied Entomology, 126(1), 24- 33. doi:10.1046/j.1439-0418.2002.00591.x.De Vis, R. M., & Van Lenteren, J. C. (2008). Biological control of Trialeurodes vaporariorum by Encarsia formosa on tomato in unheated greenhouses in the high altitude tropics. Bulletin Insectology, 61(1), 43-57.Díaz, F., Endersby, N. M., & Hoffmann, A. A. (2015). Genetic structure of the whitefly Bemisia tabaci populations in Colombia following a recent invasion. Insect Science, 22(4), 483-494. doi:10.1111/1744-7917.12129.Díaz, M. F., Ramírez, A., & Poveda, K. (2012). Efficiency of different egg parasitoids and increased floral diversity for the biological control of noctuid pests. Biologial Control, 60(2), 182-191. doi:10.1016/j.biocontrol.2011.11.001.Dorn, B., Mattiacci, L., Bellotti, A. C., & Dorn, S. (2003). Host specificity and daytime activity of parasitoids of the Latin American cassava mealybug, Phenacoccus herreni (Sternorrhyncha: Pseudococcidae). Bulletin de la Societé Entomologique Suisse, 76, 293-300.Duncan, R. E., Ulmer, B. J., Peña, J. E., & Lapointe, S. L. (2007). Reproductive biology of Fidiobia dominica (Hymenoptera: Platygastridae), an egg parasitoid of Diaprepes abbreviatus (Coleoptera: Curculionidae). Environmental Entomology, 36(2), 376-382.Ebratt-Ravelo, E. E., Rubio-González, L. T., Costa, V. A., Castro-Ávila, Á. P., Zambrano-Gómez, E. M., & Ángel- Díaz, J. E. (2011a). Diaphorina citri (Kuwayama, 1907) and Tamarixia radiata (Waterson, 1922) in citrus crops of Cundinamarca, Colombia. Agronomía Colombiana, 29(3), 487-493.Ebratt-Ravelo, E. E., Rubio-González, L. T., Costa, V. A., Zambrano-Gómez, E. M., Castro-Ávila, Á. P., & Santamaría-Galindo, M. Y. (2011b). Record of Tamarixia radiata (Waterston, 1922) (Hymenoptera: Eulophidae) in Colombia. Revista Facultad Nacional de Agronomía, 64(2), 6141-6146.Echeverry, O. (1999). Determinación del impacto de Phymastichus coffea La Salle (Hymenoptera: Eulophidae) sobre poblaciones de broca del café Hypothenemus hampei (Ferrari) (Coleoptera: Scolytidae), en la zona cafetera. Palmira, Colombia: Universidad Nacional de Colombia, Sede Palmira.European and Mediterranean Plant Protection Organization (eppo). (2005). Data Sheets on Quarantine Pests: Diaphorina citri. Recuperado de http://www.eppo.org/ QUARANTINE/insects/Diaphorina_citri/DIAACI_ ds.pdf .Estrada, G. D., & Soto, A. (2011). Fidiobia sp. (Hymenoptera: Platygastridae) parasitism on Compsus sp. (Coleoptera: Curculionidae). Boletín Científico. Centro de Museos. Museo de Historia Natural, 15(2), 201-205.Étienne, J., & Aubert, B. (1980). Biological control of psyllid vectors of greening disease on Reunion Island. En E. C. Calavan, S. M. Garnsey & L. W. Timmer (Eds.) Proceedings of the 8th Conference International Organization of Citrus Virologists (pp. 118-121). Riverside, EE. UU.: International Organization of Citrus Virologists.Étienne, J., Quilici, S., Marival, D., & Franck, A. (2001). Biological control of Diaphorina citri (Hemiptera: Psyllidae) in Guadeloupe by imported Tamarixia radiata (Hymenoptera: Eulophidae). Fruits, 56(5), 307-315. doi:10.1051/fruits:2001131.Evans, G. A., & Castillo, J. A. (1998). Parasites of Aleurotrachelus socialis (Homoptera: Aleyrodidae) from Colombia including descriptions of two new species (Hymenoptera: Aphelinidae: Platygastridae). The Florida Entomologist, 81(2), 171-178. doi:10.2307/3496083.Evans, G. A., & Peña, J. E. (2005). A new Fidiobia species (Hymenoptera: Platygastridae) reared from eggs of Diaprepes doublierii (Coleoptera: Curculionidae) from Dominica. Florida Entomologist, 88(1), 61-66.Geetha, N., & Balakrishnan, R. (2010). Dispersal pattern of Trichogramma chilonis Ishii in sugarcane field. Biological Control, 24(1), 1-7.Gifford, J., & Mann, G. (1967). Biology, Rearing, and A Trial Release of Apanteles flavipes in the Florida Everglades to Control the Sugarcane Borer. Journal of Economic Entomology, 60(1), 44-47. doi:10.1093/jee/60.1.44.Godfray, H. C. J. (1994). Parasitoids: behavioral and evolutionary ecology. Princeton, EE. UU.: Princeton University Press.Gold, C. S., Altieri, M. A., & Bellotti, A. C. (1989b). The effects of intercropping and mixed varieties of predators and parasitoids of cassava whiteflies (Hemiptera: Aleyrodidae) in Colombia. Bulletin of Entomological Research, 79(1), 115-121. doi:10.1017/S0007485300018629.Guimarães, J. A., & Zucchi, R. A. (2004). Parasitism behavior of three species of Eucoilinae (Hymenoptera: Cynipoidea: Figitidae) fruit fly parasitoids (Diptera) in Brazil. Neotropical Entomology, 33(2), 217-224. doi:10.1590/ S1519-566X2004000200012.Hagen, K. S., & Franz, J. M. (1973). A history of biological control. En: R. F. Smith, T. E. Mittler, C. N. Smith (Eds.), A History of Entomology (pp. 433-477). Palo Alto, EE. UU.: Annual Reviews.Halbert, S. E., & Manjunath, K. L. (2004). Asian citrus psyllids (Sternorrhyncha: Psyllidae) and greening disease of citrus: a literature review and assessment of risk in Florida. Florida Entomologist, 87(3), 330-353. doi:10.1653/0015-4040(2004)087[0330:ACPSPA]2.0. CO;2.Halbert, S. E., & Núñez, C. A. (2004). Distribution of the Asian citrus psyllid, Diaphorina citri Kuwayama (Rhynchota: Psyllidae) in the Caribbean basin. Florida Entomologist, 87(3), 401-402. doi:10.1653/0015- 4040(2004)087[0401:DOTACP]2.0.CO;2.Hargreaves, H. (1926). Notes on the coffee berry-borer (Stephanoderes hampei, Ferr.) in Uganda. Bulletin of Entomological Research, 16(4), 347-354. doi:10.1017/ S0007485300028637.Hargreaves, H. (1935). Stephanoderes hampei Ferr., coffee berry-borer, in Uganda. The East African Agricultural Journal, 1(3), 218-224. doi:10.1080/03670074.1935.11 663651.Herrera, F., & Bellotti, A. (1986). Desarrollo y comportamiento de Epidinocarsis (= Apoanagyrus) diversicornis Howard (Encyrtidae) enemigo natural de Phenacoccus herreni Cox y Williams (Pseudococcidae). Acta Agronómica, 36(4), 47-58.Hidalgo, R., Oliveira, S., Fagundes, F., Rossoni, C., Perassa, D., & Avalo, M. (2015). Parasitism and biological aspects of Tetrastichus howardi (Hymenoptera: Eulophidae) on Erinnyis ello (Lepidoptera: Sphingidae) pupae. Ciência Rural, 45(2), 185-188. doi: 10.1590/0103- 8478cr20130896.Jalali, S. (2013). Natural Occurrence, Host Range and Distribution of Trichogrammatid Egg Parasitoids. En S. Sithanantham, C. Ballal, S. Jalali & N. Bakthavatsalam (Eds.) Biological Control of Insect Pests Using Egg Parasitoids (pp.67-76). Nueva Delhi, India: Springer. doi:10.1007/978-81-322-1181-5_4.Jaramillo, J., Bustillo, A., Montoya, E., & Borgemeister, C. (2005). Biological control of the coffee berry borer Hypothenemus hampei (Coleoptera: Curculionidae) by Phymastichus coffea (Hymenoptera: Eulophidae) in Colombia. Bulletin of Entomological Research, 95(5), 467- 472. doi:10.1079/BER2005378.Jarjees, E. A., & Merritt, D. J. (2002). Development of Trichogramma australicum Girault (Hymenoptera: Trichogrammatidae) in Helicoverpa (Lepidoptera: Noctuidae) host eggs. Austral Entomology, 41(4), 310- 315. doi:10.1046/j.1440-6055.2002.00319.x.Kalyebi, A., Overholt, W., Schulthess, F., Mueke, J., Hassan, S., & Sithanantham, S. (2005). Functional response of six indigenous trichogrammatid egg parasitoids (Hymenoptera: Trichogrammatidae) in Kenya: influence of temperature and relative humidity. Biological Control, 32(1), 164-171. doi:10.1016/j.biocontrol.2004.09.006.Koch, V. J. M. (1973). Abondance de Hypothenemus hampei Ferr., scolyte des graines de cafe, en fonction de sa plantehote et de son parasite Cephalonomia stephanoderis Betrem, en Cote d'Ivoire. Wageningen, Holanda: Mededelingen Landbouwhogeschool.LaSalle, J. (1990). A new genus and species of Tetrastichinae (Hymenoptera: Eulophidae) parasitic on the coffee berry borer, Hypothenemus hampei (Ferrari) (Coleoptera: Scolytidae). Bulletin of Entomological Research, 80(1), 7-10. doi:10.1017/S0007485300045843.LaSalle, J. (1994). North American genera of Tetrastichinae (Hymenoptera: Eulophidae). Journal of Natural History, 28(1), 109-236. doi:10.1080/00222939400770091.Le Pelley, R. H. (1968). Pests of coffee. Londres, Inglaterra: Longmans, Green and Co.Löhr, B., Varela, A., & Santos, B. (1990). Exploration for natural enemies of the cassava mealybug, Phenacoccus manihoti (Homoptera: Pseudococcidae), in South America for the biological control of this introduced pest in Africa. Bulletin Entomological Research, 80(4), 417-425. doi:10.1017/S0007485300050677.López, M., Aluja, M., & Sivinski, J. (1999). Hymenopterous larval–pupal and pupal parasitoids of Anastrepha flies (Diptera: Tephritidae) in Mexico. Biological Control, 15(2), 119-129. doi:10.1006/bcon.1999.0711.López, V., Baker, P., Cock, J., & Orozco, J. (1997). Dossier on Phymastichus coffea (Hymenoptera: Eulophidae Tetrastichinae) a potential biological control agent for Hypothenemus hampei (Ferrari)(Coleoptera: Scolytidae) in Colombia. Chinchiná, Colombia: Cenicafé, cabi, iibc.Ma, C. S., & Chen, Y. W. (2006). Effects of constant temperature, exposure period, and age on diapause induction in Trichogramma dendrolimi. Biological Control, 36(3), 267-273. doi:10.1016/j.biocontrol.2005.11.013.Mann, R., & Stelinski, L. (2010). An Asian citrus psyllid parasitoid, Tamarixia radiata (Waterston) (Insecta: Hymenoptera: Eulophidae). Recuperado de https://edis. ifas.ufl.edu/pdffiles/IN/IN85800.pdf.Manzano, M. R., Martínez, M., Andrés, W., & Vélez-Mera, C.A. (2009). Bemisia tabaci biotype B in bean. Acta Agronómica, 58(4), 251-259.Manzano, M., Van Lenteren, J., & Cardona, C. (2002a). Intrinsic rate of population increase of Amitus fuscipennis MacGown and Nebeker (Hym., Platygastridae) according to climatic conditions and bean cultivar. Journal of Applied Entomology, 126(1), 34-39. doi:10.1046/j.1439- 0418.2002.00602.x.Manzano, M. R., Van Lenteren, J., & Cardona, C. (2003b). Influence of pesticide treatments on the dynamics of whiteflies and associated parasitoids in snap bean fields. Biological Control, 48(6), 685-693. doi:10.1023/A:1026350120466.Manzano, M. R., Van Lenteren, J. C., Cardona, C., & Drost, Y. C. (2000). Developmental time, sex ratio, and longevity of Amitus fuscipennis MacGown & Nebeker (Hymenoptera: Platygastridae) on the greenhouse whitefly. Biological Control, 18(2), 94-100. doi:10.1006/ bcon.2000.0826.Mejía, M., Bustillo, P., Orozco, H., & Cháves, C. (2000). Effect of four insecticides and Beauveria bassiana on Prorops nasuta (Hymenoptera: Bethylidae) parasitoid of the coffee berry borer. Revista Colombiana de Entomología, 26, 117-123.Metcalfe, J., & Brenière, J. (1969). Egg parasites (Trichogramma spp.) for control of sugar cane moth borers. En J. Williams, J. Metcalfe, R. Mungomery, & R. Mathes (Eds.), Pests of Sugar Cane (pp. 81-115). Amsterdam, Holanda: Elsevier.Michaud, J. (2004). Natural mortality of Asian citrus psyllid (Homoptera: Psyllidae) in central Florida. Biological Control, 29(2), 260-269. doi:10.1016/S1049-9644(03)00161-0.Moore, D., & Prior, C. (1988). Present status of biological control of the coffee berry borer Hypothenemus hampei. En Proceedings of Brighton Crop Protection Conference Pests and Diseases (pp. 1119-1124). Brighton, Inglaterra: British Crop Protection Council.Muirhead, K., Austin, A., & Sallam, M. (2008). The systematics and biology of Cotesia nonagriae (Olliff ) stat. rev. (Hymenoptera: Braconidae: Microgastrinae), a newly recognized member of the Cotesia flavipes species complex. Zootaxa, 1846, 35-46.Muirhead, K. A., Murphy, N. P., Sallam, N., Donnellan, S. C., & Austin, A. D. (2012). Phylogenetics and genetic diversity of the Cotesia flavipes complex of parasitoid wasps (Hymenoptera: Braconidae), biological control agents of lepidopteran stemborers. Molecular Phylogenetics and Evolution, 63(3), 904-914. doi:10.1016/j.ympev.2012.03.003.Navas-Castillo, J., López-Moya, J. J., & Aranda, M. A. (2014). Whitefly-transmitted rna viruses that affect intensive vegetable production. Annals of Applied Biology, 165,(2), 155-171. doi:10.1111/aab.12147.Neuenschwander, P., Herren, H., Harpaz, I., Badulescu, D., & Akingbohungbe, A. (1988). Biological control of the cassava mealybug, Phenacoccus manihoti, by the exotic parasitoid Epidinocarsis lopezi in Africa. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 318(1189), 319-333. doi:10.1098/ rstb.1988.0012.Nicholls, C. I., Parrella, M. P., & Altieri, M. A. (1998). Advances and perspectives in the biological control of greenhouse pests with special reference to Colombia. Integrated Pest Management Reviews, 3(2), 99-109. doi:10.1023/A:1009695730407.Norrbom, A. L., & McAlpine, J. F. (1996). A revision of the Neotropical species of Dasiops Rondani (Diptera: Lonchaeidae) attacking Passiflora (Passifloraceae). Memoirs of the Entomological Society of Washington, 18, 189-211.Noyes, J. (2011). Universal Chalcidoidea. Recuperado de http://www.nhm.ac.uk/our-science/data/chalcidoids/ database/.O’Brien, C., & Wibmer, G. (1982). Annotated checklist of the weevils (Curculionidae sensu lato) of North America, Central America, and the West Indies (Coleoptera: Curculionoidea). Memoirs of the American Entomological Institute, 34(i-ix), 1-382.O’Brien, C. W., & Peña, J. (2012). Two species of Compsus Schoenherr, new citrus pests from Colombia (Coleoptera: Curculionidae: Entiminae). Insecta Mundi, 0227, 1-13.Fargues, J., Maniania, N. K., Delmas, J. C., & Smits, D. (1992). Influence de la température sur la croissance in vitro d’hyphomycètes entomopathogènes. Agronomie, 12(7), 557-564.Ferchault de Réaumur, R.-A. (1734). Mémoires pour servir à l’histoire des insectes. Recuperado de http://fondosdigitales. us.es/fondos/libros/6742/16/memoires-pour-servirlhistoire- des-insectes-par-m-de-reaumur-tome-secondsuite- de-lhistoire-des-chenilles-des-papillons-etlhistoire- des-insectes-envenis-des-chenilles/.Kurstak, S., Belloncik, S., & Brailovsky, C. (1969). Transformation de cellules L de souris par un virus d'invertébrés: le virus de la densonucléose (vdn). Comptes Rendus de l'Académie des Sciences, 269, 1716-1719.Pasteur, L. (1870). Études sur la maladie des vers à soie. París, Francia: Gauthier-Villars.Fabre, J. (1879). Souvenirs entomologiques. Etudes sur l'instinct et les moeurs des insectes. París, Francias: Librairie CH. Delagrave.Mariau, D. (1968). Méthodes de lutte contre le Rhynchophore. Oléagineux, 23(7), 443-446.Borbon, M. O. (1989). Bioécologie d'un ravageur des baies de caféier, Hypothenemus hampei Ferr.(Coleoptera; Scolytidae) et de ses parasitoides au Togo [tesis de doctorado]. Université Paul Sabatier, Toulouse, FranciaAttribution-NonCommercial-ShareAlike 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-sa/4.0/http://purl.org/coar/access_right/c_abf2Control biológico de fitopatógenos, insectos y ácaros: agentes de control biológico. V. 1Plagas de las plantasControl biológico de plagasFitopatologíaControl de insectosBioplaguicidasTransversalInvestigadorProfesionalTécnicoProductorCientíficoC.I. TibaitatáC.I. PalmiraC.I. La LibertadC.I. CaribiaC.I. El MiraColombiabookLibro resultado de investigaciónhttp://purl.org/coar/resource_type/c_2f33info:eu-repo/semantics/bookhttps://purl.org/redcol/resource_type/LIBhttp://purl.org/coar/version/c_970fb48d4fbd8a85LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repository.agrosavia.co/bitstream/20.500.12324/33829/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52open accessTHUMBNAILVer_documento_33829.pdf.jpgVer_documento_33829.pdf.jpgGenerated Thumbnailimage/jpeg4767https://repository.agrosavia.co/bitstream/20.500.12324/33829/15/Ver_documento_33829.pdf.jpg0cfe3c26054b83d0f123e3c697663fa7MD515open accessORIGINALVer_documento_33829.pdfVer_documento_33829.pdfapplication/pdf28996625https://repository.agrosavia.co/bitstream/20.500.12324/33829/14/Ver_documento_33829.pdff10a42731362cb06b2ec0679143362a5MD514open access20.500.12324/33829oai:repository.agrosavia.co:20.500.12324/338292024-07-09 15:15:54.114open accessAgrosavia - Corporación colombiana de investigación agropecuariabac@agrosavia.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |