Estudios del microbioma y su aplicación en el control biológico de fitopatógenos

A pesar de que el control biológico de fitopatógenos ha sido una alternativa exitosa que ha permitido seleccionar microorganismos para la generación de bioproductos y entender múltiples mecanismos biológicos, ya no puede considerarse como una estrategia definida solamente a partir de la selección de...

Full description

Autores:
Caro Quintero, Alejandro
González Almario, Carolina
Balbín Suárez, Alicia
Wisniewski, Michael
Berg, Gabriele
Smalla, Kornelia
Cotes Prado, Alba Marina
Tipo de recurso:
Part of book
Fecha de publicación:
2018
Institución:
Agrosavia
Repositorio:
Agrosavia
Idioma:
spa
OAI Identifier:
oai:repository.agrosavia.co:20.500.12324/34069
Acceso en línea:
http://hdl.handle.net/20.500.12324/34069
Palabra clave:
Enfermedades de las plantas - H20
Control biológico
Microorganismos
Organismos patógenos
Control de enfermedades de plantas
Transversal
Rights
License
Attribution-NonCommercial-ShareAlike 4.0 International
id Agrosavia2_c0851ac8bf20815c80733efefafbde8f
oai_identifier_str oai:repository.agrosavia.co:20.500.12324/34069
network_acronym_str Agrosavia2
network_name_str Agrosavia
repository_id_str
dc.title.spa.fl_str_mv Estudios del microbioma y su aplicación en el control biológico de fitopatógenos
dc.title.translated.eng.fl_str_mv Microbiome studies in the biological control of plant pathogens
title Estudios del microbioma y su aplicación en el control biológico de fitopatógenos
spellingShingle Estudios del microbioma y su aplicación en el control biológico de fitopatógenos
Enfermedades de las plantas - H20
Control biológico
Microorganismos
Organismos patógenos
Control de enfermedades de plantas
Transversal
title_short Estudios del microbioma y su aplicación en el control biológico de fitopatógenos
title_full Estudios del microbioma y su aplicación en el control biológico de fitopatógenos
title_fullStr Estudios del microbioma y su aplicación en el control biológico de fitopatógenos
title_full_unstemmed Estudios del microbioma y su aplicación en el control biológico de fitopatógenos
title_sort Estudios del microbioma y su aplicación en el control biológico de fitopatógenos
dc.creator.fl_str_mv Caro Quintero, Alejandro
González Almario, Carolina
Balbín Suárez, Alicia
Wisniewski, Michael
Berg, Gabriele
Smalla, Kornelia
Cotes Prado, Alba Marina
dc.contributor.author.none.fl_str_mv Caro Quintero, Alejandro
González Almario, Carolina
Balbín Suárez, Alicia
Wisniewski, Michael
Berg, Gabriele
Smalla, Kornelia
Cotes Prado, Alba Marina
dc.subject.fao.spa.fl_str_mv Enfermedades de las plantas - H20
topic Enfermedades de las plantas - H20
Control biológico
Microorganismos
Organismos patógenos
Control de enfermedades de plantas
Transversal
dc.subject.agrovoc.spa.fl_str_mv Control biológico
Microorganismos
Organismos patógenos
Control de enfermedades de plantas
dc.subject.red.spa.fl_str_mv Transversal
description A pesar de que el control biológico de fitopatógenos ha sido una alternativa exitosa que ha permitido seleccionar microorganismos para la generación de bioproductos y entender múltiples mecanismos biológicos, ya no puede considerarse como una estrategia definida solamente a partir de la selección de una gama de microorganismos cultivables ni entenderse como una serie de interacciones en una sola dirección: planta-patógeno o planta-patógeno-agente controlador. Gracias al desarrollo de tecnologías de secuenciación masiva y de las ciencias ómicas, se ha logrado tener en cuenta el resto de la comunidad microbiana (hoy llamada microbioma), mediante el estudio independiente del cultivo de las comunidades establecidas en los distintos tejidos, sus genes y sus interacciones. A partir del conocimiento del microbioma de las plantas se han logrado identificar los microorganismos que están presentes en los diferentes tejidos, cuáles son sus posibles funciones, cómo expresan estas funciones frente a distintas condiciones ambientales y cuál es su posible rol en la salud de las plantas, la salud humana y la producción agrícola. Con base en esto, y dada la relevancia actual del microbioma, en este capítulo se repasa brevemente su estudio, desde sus orígenes hasta su aplicación en el control biológico de patógenos de plantas y en el desarrollo de nuevas estrategias de manejo de enfermedades limitantes en cultivos de importancia económica.
publishDate 2018
dc.date.accessioned.none.fl_str_mv 2018-12-03T15:40:25Z
dc.date.available.none.fl_str_mv 2018-12-03T15:40:25Z
dc.date.issued.none.fl_str_mv 2018
dc.type.localeng.eng.fl_str_mv book part
dc.type.local.spa.fl_str_mv Capítulo
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_3248
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bookPart
dc.type.redcol.none.fl_str_mv https://purl.org/redcol/resource_type/CAP_LIB
dc.type.version.none.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
format http://purl.org/coar/resource_type/c_3248
dc.identifier.isbn.none.fl_str_mv 978-958-740-253-7 (e-book)
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12324/34069
dc.identifier.reponame.spa.fl_str_mv reponame:Biblioteca Digital Agropecuaria de Colombia
dc.identifier.repourl.none.fl_str_mv repourl:https://repository.agrosavia.co
dc.identifier.instname.spa.fl_str_mv instname:Corporación colombiana de investigación agropecuaria AGROSAVIA
identifier_str_mv 978-958-740-253-7 (e-book)
reponame:Biblioteca Digital Agropecuaria de Colombia
repourl:https://repository.agrosavia.co
instname:Corporación colombiana de investigación agropecuaria AGROSAVIA
url http://hdl.handle.net/20.500.12324/34069
dc.language.iso.none.fl_str_mv spa
language spa
dc.relation.citationstartpage.none.fl_str_mv 256
256
dc.relation.citationendpage.none.fl_str_mv 293
293
dc.relation.references.spa.fl_str_mv Abdelfattah, A., Wisniewski, M., Droby, S., & Schena, L. (2016). Spatial and compositional variation in the fungal communities of organic and conventionally grown apple fruit at the consumer point-of-purchase. Horticulture Research, 3, 16047. doi:10.1038/hortres.2016.47.
Adesemoye, A. O., Torbert, H. A., & Kloepper, J. W. (2009). Plant growth-promoting rhizobacteria allow reduced application rates of chemical fertilizers. Microbial Ecology, 58(4), 921-929. doi:10.1007/s00248-009-9531-y.
Agler, M. T., Ruhe, J., Kroll, S., Morhenn, C., Kim, S.- T., Weigel, D., & Kemen, E. M. (2016). Microbial hub taxa link host and abiotic factors to plant microbiome variation. PLoS Biology, 14(1), 1002352. doi:10. 1371/journal.pbio.1002352.
Alavi, P., Starcher, M. R., Thallinger, G. G., Zachow, C., Muller, H., & Berg, G. (2014). Stenotrophomonas comparative genomics reveals genes and functions that differentiate beneficial and pathogenic bacteria. BMC Genomics, 15, 482. doi:10.1186/1471-2164 -15-482.
Alavi, P., Starcher, M. R., Zachow, C., Müller, H., & Berg, G. (2013). Root-microbe systems: the effect and mode of interaction of Stress Protecting Agent (spa) Stenotrophomonas rhizophila DSM14405(T). Frontiers in Plant Science, 4, 141. doi:10.3389/fpls.2013.00141.
Alivisatos, A. P., Blaser, M. J., Brodie, E. L., Chun, M., Dangl, J. L., Donohue, T. J., ... Taha, S. A. (2015). A unified initiative to harness Earth’s microbiomes. Science 350(6260), 507-508. doi:10.1126/science.aac8480.
Aliye, N., Fininsa, C., & Hiskias, Y. (2008). Evaluation of rhizosphere bacterial antagonists for their potential to bioprotect potato (Solanum tuberosum) against bacterial wilt (Ralstonia solanacearum). Biological Control, 47(3), 282-288. doi:10.1016/j.biocontrol.2008.09.003.
Andrews, J. H. (1992). Biological control in the phyllosphere. Annual Review of Phytopathology, 30, 603-635. doi:10. 1146/annurev.py.30.090192.003131.
Arias, F., Gómez, L., Suárez, E., & Rendón, S. (2015). Inteligencia de mercados para la cadena de uchuva colombiana (Physalis peruviana). Revista Oidles, 9(18). Recuperado de http://www.eumed.net/rev/oidles/18/uchuva.html.
Armstrong, G., & Armstrong, J. K. (1981). Formae speciales and races of Fusarium oxysporum causing wilt diseases. In P. E. Nelson, T. A. Toussoun, & R. J. Cook (Eds.), Fusarium: diseases, biology, and taxonomy (pp. 391-399). Pensilvania: Penn State University Press.
Badri, D. V., & Vivanco, J. M. (2009). Regulation and function of root exudates. Plant, Cell & Environment, 32(6), 666- 681. doi:10.1111/j.1365-3040.2008.01926.x.
Bakken, L. R. (1997). Culturable and nonculturable bacteria in soil. En J. D. Van Elsas, J. T. Trevors, & E. M. H. Wellington (Eds.), Modern soil microbiology (pp. 47-61). Nueva York, EE. UU.: CRC Press.
Bakker, M. G., Manter, D. K., Sheflin, A. M., Weir, T. L., & Vivanco, J. M. (2012). Harnessing the rhizosphere microbiome through plant breeding and agricultural management. Plant and Soil, 360(1-2), 1-13. doi:10.1007/ s11104-012-1361-x.
Balaguera, L. H. E., Ramírez, L. V., & Herrera, A. (2014). Fisiología y bioquímica del fruto de uchuva (Physalis peruviana L.) durante la maduración y poscosecha. En C. P. Pássaro Carvalho & D. A. Moreno (Eds.), Physalis peruviana L.: fruta andina para el mundo (pp. 113-131). Murcia, España: Cebas - csic.
Barak, J. D., & Schroeder, B. K. (2012). Interrelationships of food safety and plant pathology: the life cycle of human pathogens in plants. Annual Review of Phytopathology, 50, 241-266. doi:10.1146/annurev-phyto-081211-172936.
Barnard, R. L., Osborne, C. A., & Firestone, M. K. (2013). Responses of soil bacterial and fungal communities to extreme desiccation and rewetting. The ISME Journal, 7(11), 2229-2241. doi:10.1038/ismej.2013.104.
Beckman, C. H. (1987). The nature of wilt diseases of plants. Maryland, EE. UU.: APS Press.
Berendsen, R. L., Pieterse, C. M. J., & Bakker, P. A. (2012). The rhizosphere microbiome and plant health. Trends in Plant Science, 17(8), 478-486. doi10.1016/j. tplants.2012.04.001.
Berg, G. (2009). Plant–microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Applied Microbiology and Biotechnology, 84(1), 11-18. doi:10.1007/s00253-009- 2092-7.
Berg, G., Eberl, L., & Hartmann, A. (2005). The rhizosphere as a reservoir for opportunistic human pathogenic bacteria. Environmental Microbiology, 7(11), 1673-1685. doi:10.1111/j.1462-2920.2005.00891.x.
Berg, G., Erlacher, A., Smalla, K., & Krause, R. (2014a). Vegetable microbiomes: is there a connection among opportunistic infections, human health and our ‘gut feeling’? Microbial Biotechnology, 7(6), 487-495. doi:10.1111 /1751-7915.12159.
Berg, G., Grube, M., Schloter, M., & Smalla, K. (2014b). The plant microbiome and its importance for plant and human health. Frontiers in Microbiology, 5, 491. doi:10.3389/ fmicb.2014.00491.
Berg, G., Grube, M., Schloter, M., & Smalla, K. (2014c). Unraveling the plant microbiome: looking back and future perspectives. Frontiers in Microbiology, 5, 148. doi:10.3389/fmicb.2014.00148.
Berg, G., Hartenberger, K., Liebminger, S., & Zachow, C. (2012). Antagonistic endophytes from mistletoes as bioresource to control plant as well as clean room pathogens. IOBC/wprs Bulletin, 78, 29-32. Recuperado de https:// goo.gl/QSKqM1.
Berg, G., Rybakova, D., Grube, M., & Köberl, M. (2016). The plant microbiome explored: implications for experimental botany. Journal of Experimental Botany, 67(4), 995-1002. doi:10.1093/jxb/erv466.
Berg, G., & Smalla, K. (2009). Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiology Ecology, 68(1), 1-13. doi:10.1111/j.1574- 6941.2009.00654.x.
Berg, G., Zachow, C., Müller, H., Philipps, J., & Tilcher, R. (2013). Next-generation bio-products sowing the seeds of success for sustainable agriculture. Agronomy, 3(4), 648. doi:10.3390/agronomy3040648.
Bernal, P. (10 de junio de 2016). Microbioma: el ‘nuevo órgano’ del cuerpo humano que compartimos con la mayoría de seres. El Diario. Recuperado de https://goo.gl/xVVLRw.
Bhatti, K. H., Ahmed, N.-u.-D., Shah, A., Iqbal, M., Iqbal, T., & Jiahe, W. (2011). Transgenic tobacco with rice zincfinger gene OsLOL2 exhibits an enhanced resistance against bacterial-wilt. Australasian Plant Pathology, 40(2), 133-140. doi:10.1007/s13313-010-0022-x.
Blaser, M., Bork, P., Fraser, C., Knight, R., & Wang, J. (2013). The microbiome explored: recent insights and future challenges. Nature Reviews Microbiology, 11(3), 213-217. doi:10.1038/nrmicro2973.
Bloemberg, G. V., & Lugtenberg, B. J. J. (2001). Molecular basis of plant growth promotion and biocontrol by rhizobacteria. Current Opinion in Plant Biology, 4(4), 343- 350. doi:10.1016/S1369-5266(00)00183-7.
Bulgarelli, D., Rott, M., Schlaeppi, K., Ver Loren van Themaat, E., Ahmadinejad, N., Assenza, F., ... SchulzeLefert, P. (2012). Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature, 488(7409), 91-95. doi:10.1038/nature11336.
Bulgarelli, D., Schlaeppi, K., Spaepen, S., Ver Loren van Themaat, E., & Schulze-Lefert, P. (2013). Structure and functions of the bacterial microbiota of plants. Annual Review of Plant Biology, 64, 807-838. doi:10.1146/ annurev-arplant-050312-120106.
Busby, P. E., Peay, K. G., & Newcombe, G. (2016). Common foliar fungi of Populus trichocarpa modify Melampsora rust disease severity. New Phytologist, 209(4), 1681-1692. doi:10.1111/nph.13742.
Busby, P. E., Soman, C., Wagner, M. R., Friesen, M. L., Kremer, J., Bennett, A., ... Dangl, J. L. (2017). Research priorities for harnessing plant microbiomes in sustainable agriculture. PLoS Biology, 15(3), e2001793. doi:10.1371/ journal.pbio.2001793.
Caitilyn, A., Prior, P., & Hayward, A. C. (Eds.). (2005). Bacterial wilt disease and the Ralstonia solanacearum species complex. Saint Paul, EE. UU.: American Phytopathological Society.
Camatti-Sartori, V., Da Silva-Ribeiro, R. T., ValdebenitoSanhueza, R. M., Pagnocca, F. C., Echeverrigaray, S., & Azevedo, J. L. (2005). Endophytic yeasts and filamentous fungi associated with southern Brazilian apple (Malus domestica) orchards subjected to conventional, integrated or organic cultivation. Journal of Basic Microbiology, 45(5), 397-402. doi:10.1002/jobm.200410547.
Cardenas, P. A., Cooper, P. J., Cox, M. J., Chico, M., Arias, C., Moffatt, M. F., & Cookson, W. O. (2012). Upper airways microbiota in antibiotic-naïve wheezing and healthy infants from the tropics of rural Ecuador. PLoS One, 7(10), e46803. doi:10.1371/journal.pone.0046803.
Cellier, G., & Prior, P. (2010). Deciphering phenotypic diversity of Ralstonia solanacearum strains pathogenic to potato. Phytopathology, 100(11), 1250-1261. doi:10.1094/ PHYTO-02-10-0059.
Cook, R. J. (2007). Tell me again what it is that you do. Annual Review of Phytopathology, 45, 1-23. doi:10.1146/ annurev.phyto.45.062806.094415.
Copeland, J. K., Yuan, L., Layeghifard, M., Wang, P. W., & Guttman, D. S. (2015). Seasonal community succession of the phyllosphere microbiome. Molecular Plant-Microbe Interactions Journal, 28(3), 274-285. doi:10.1094/MPMI10-14-0331-FI.
Corporación Colombia Internacional. (2007). Sistema de inteligencia de mercados (Perfil producto N°. 34). Recuperado de http://bibliotecadigital.agronet.gov.co/ bitstream/11348/5287/2/2006327162612_uchuva_ CCI_actualizaci%C3%B3n.pdf
Darwin, C. (2010). Chapter I. Domestic dogs and cats. En The variation of animals and plants under domestication (pp. 15-48). Cambridge, Inglaterra: Cambridge University Press. doi:10.1017/CBO9780511709500.
DeAngelis, K. M., Pold, G., Topçuoğlu, B. D., Van Diepen, L. T. A., Varney, R. M., Blanchard, J. L., ... Frey, S. D. (2015). Long-term forest soil warming alters microbial communities in temperate forest soils. Frontiers in Microbiology, 6. doi:10.3389/fmicb.2015.00104.
De Carvalho, M. P., Gulotta, G., Do Amaral, M. W., Lünsdorf, H., Sasse, F., & Abraham, W.-R. (2016). Coprinuslactone protects the edible mushroom Coprinus comatus against biofilm infections by blocking both quorum-sensing and MurA. Environmental Microbiology, 18(11), 4254-4264. doi:10.1111/1462-2920.13560.
Dominguez-Bello, M. G., Costello, E. K., Contreras, M., Magris, M., Hidalgo, G., Fierer, N., & Knight, R. (2010). Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proceedings of the National Academy of Sciences USA, 107(26), 11971-11975. doi:10.1073/ pnas.1002601107.
Doornbos, R. F., Van Loon, L. C., & Bakker, P. A. H. M. (2012). Impact of root exudates and plant defense signaling on bacterial communities in the rhizosphere. A review. Agronomy for Sustainable Development, 32(1), 227- 243. doi:10.1007/s13593-011-0028-y.
Egamberdieva, D., Kucharova, Z., Davranov, K., Berg, G., Makarova, N., Azarova, T., ... Lugtenberg, B. (2011). Bacteria able to control foot and root rot and to promote growth of cucumber in salinated soils. Biology and Fertility Soils, 47(2), 197-205. doi:10.1007/s00374-010-0523-3.
Elsayed, T. R., Nour, E. H., Jacquiod, S., Sørensen, S. J., & Smalla, K. (en prensa). Deciphering the complex interaction between Ralstonia solanacearum and antagonists during tomato wilt biocontrol: rhizosphere microbiome shifts as mode of action? Frontiers in Microbiology.
Elser, J. J., Bracken, M. E. S., Cleland, E. E., Gruner, D. S., Harpole, W. S., Hillebrand, H., ... Smith, J.E. (2007). Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecology Letters, 10(12), 1135-1142. doi:10.1111/j.1461-0248.2007.01113.x.
Fischer, G., Almanza-Merchán, P. J., & Miranda, D. (2014). Importancia y cultivo de la uchuva (Physalis peruviana L.). Revista Brasileira de Fruticultura, 36(1), 01-15. doi:10.1590/0100-2945-441/13.
Friesen, M. L., Porter, S. S., Stark, S. C., Von Wettberg, E. J., Sachs, J. L., & Martínez-Romero, E. (2011). Microbially mediated plant functional traits. Annual Review of Ecology, Evolution, and Systematics, 42, 23-46. doi:10.1146/ annurev-ecolsys-102710-145039.
Fungal Barcoding. (2017). Fungal Barcoding Database. Recuperado de http://www.fungalbarcoding.org. Garibaldi, A.,
Gilardi, G., & Gullino, M. L. (2004). First report of Fusarium oxysporum causing vascular wilt of lamb’s lettuce (Valerianella olitoria) in italy. Plant Disease, 88(1), 83-83. doi:10.1094/PDIS.2004.88.1.83C.
Gilbert, J. A., Jansson, J. K., & Knight, R. (2014). The Earth Microbiome project: successes and aspirations. BMC Biololy, 12, 69. doi:10.1186/s12915-014-0069-1.
Gilbert, J. A., Meyer, F., Jansson, J., Gordon, J., Pace, N., Tiedje, ... Knight, R. (2010). The earth microbiome project: Meeting report of the “1st EMP meeting on sample selection and acquisition” at argonne national laboratory october 6(th) 2010. Standards in Genomic Sciences 3,(3), 249-253. doi:10.4056/aigs.1443528.
González, C., & Barrero, M. (Eds.). (2011). Estudio de la marchitez vascular de la uchuva para el mejoramiento genético del cultivo. Bogotá: Corporación Colombiana de Investigación Agropecuaria (Corpoica) y Cámara de Comercio de Bogotá.
Google Académico. (s. f.). Estadisticas. Recuperado de https://scholar.google.com/citations?view_op=metrics_ intro&hl=es#d=gs_hdr_drw&p=&u=.
Gordon, T. R., & Martyn, R. D. (1997). The evolutionary biology of Fusarium oxysporum. Annual Review of Phytopathology, 35, 111-128. doi:10.1146/annurev. phyto.35.1.111.
Götz, M., Gomes, N. C. M., Dratwinski, A., Costa, R., Berg, G., Peixoto, ... Smalla, K. (2006). Survival of gfptagged antagonistic bacteria in the rhizosphere of tomato plants and their effects on the indigenous bacterial community. FEMS Microbiology Ecology, 56(2), 207-218. doi:10.1111/j.1574-6941.2006.00093.x.
Grey, B. E., & Steck, T. R. (2001). The viable but nonculturable state of Ralstonia solanacearum may be involved in long-term survival and plant infection. Applied and Environmental Microbiology, 67(9), 3866-3872. doi:10.1128/AEM.67.9.3866-3872.2001.
Grover, A., Azmi, W., Gadewar, A. V., Pattanayak, D., Naik, P. S., Shekhawat, G. S., & Chakrabarti, S. K. (2006). Genotypic diversity in a localized population of Ralstonia solanacearum as revealed by random amplified polymorphic dna markers. Journal of Applied Microbiology, 101(4), 798-806. doi:10.1111/j.1365- 2672.2006.02974.x.
Grube, M., Cardinale, M., De Castro, J. V., Jr., Müller, H., & Berg, G. (2009). Species-specific structural and functional diversity of bacterial communities in lichen symbioses. The ISME journal, 3(9), 1105. doi:10.1038/ ismej.2009.63.
Guo, J.-H., Qi, H.-Y., Guo, Y.-H., Ge, H.-L., Gong, L.- Y., Zhang, L.-X., & Sun, P.-H. (2004). Biocontrol of tomato wilt by plant growth-promoting rhizobacteria. Biological Control, 29(1), 66-72. doi:10.1016/S1049- 9644(03)00124-5.
Haglund, W., & Kraft, J. (2001). Fusarium wilt. In J. M. Kraft, & F. L. Pfleger (Eds.), Compendium of pea diseases and pests (pp. 13-14 ). Saint Paul, EE. UU.: APS Press.
Haichar, F. Z., Marol, C., Berge, O., Rangel-Castro, J. I., Prosser, J. I., Balesdent, J., ... Achouak, W. (2008). Plant host habitat and root exudates shape soil bacterial community structure. The ISME Journal, 2(12), 1221- 1230.
Haiser, H. J., Gootenberg, D. B., Chatman, K., Sirasani, G., Balskus, E. P., & Turnbaugh, P. J. (2013). Predicting and manipulating cardiac drug inactivation by the human gut bacterium Eggerthella lenta. Science, 341(6143), 295-298. doi:10.1126/science.1235872.
Hartmann, A., Rothballer, M., & Schmid, M. (2008). Lorenz Hiltner, a pioneer in rhizosphere microbial ecology and soil bacteriology research. Plant and Soil 312(1-2), 7-14. doi:10.1007/s11104-007-9514-z.
Hashem, M., Alamri, S. A., Hesham, A. E.-L., Al-Qahtani, F. M. H., & Kilany, M. (2014). Biocontrol of apple blue mould by new yeast strains: Cryptococcus albidus KKUY0017 and Wickerhamomyces anomalus KKUY0051 and their mode of action. Biocontrol Science and Technology, 24(10), 1137-1152. doi:10.1080/09583157.2014.926857.
Hayward, A. C. (1991). Biology and epidemiology of bacterial wilt caused by Pseudomonas Solanacearum. Annual Review of Phytopathology, 29, 65-87. doi:10.1146/annurev. py.29.090191.000433.
Heckman, D. S., Geiser, D. M., Eidell, B. R., Stauffer, R. L., Kardos, N. L., & Hedges, S. B. (2001). Molecular evidence for the early colonization of land by fungi and plants. Science, 293(5532), 1129-1133. doi:10.1126/ science.1061457.
Holden, N., Pritchard, L., & Toth, I. (2009). Colonization outwith the colon: plants as an alternative environmental reservoir for human pathogenic enterobacteria. fems Microbiology Review, 33(4), 689-703. doi:10.1111/ j.1574-6976.2008.00153.x.
Hu, H. Q., Li, X. S., & He, H. (2010). Characterization of an antimicrobial material from a newly isolated Bacillus amyloliquefaciens from mangrove for biocontrol of Capsicum bacterial wilt. Biological Control, 54(3), 359- 365. doi:10.1016/j.biocontrol.2010.06.015.
Human Microbiome Project Consortium. (2012). Structure, function and diversity of the healthy human microbiome. Nature, 486(7402), 207-214. doi:10.1038/nature11234.
Irikiin, Y., Nishiyama, M., Otsuka, S., & Senoo, K. (2006). Rhizobacterial community-level, sole carbon source utilization pattern affects the delay in the bacterial wilt of tomato grown in rhizobacterial community model system. Applied Soil Ecology, 34(1), 27-32. doi:10.1016/j. apsoil.2005.12.003.
Jackson, R. W. (Ed.). (2009). Plant pathogenic bacteria: Genomics and molecular biology. Norfolk, Reino Unido: Caister Academic Press.
Kaestli, M., Schmid, M., Mayo, M., Rothballer, M., Harrington, G., Richardson, L., ... Currie, B. J. (2012). Out of the ground: aerial and exotic habitats of the melioidosis bacterium Burkholderia pseudomallei in grasses in Australia. Environmental Microbiology, 14(8), 2058-2070. doi:10.1111/j.1462-2920.2011.02671.x.
Kembel, S. W., O’Connor, T. K., Arnold, H. K., Hubbell, S. P., Wright, S. J., & Green, J. L. (2014). Relationships between phyllosphere bacterial communities and plant functional traits in a neotropical forest. Proceedings of the National Academy of Sciences, 111(38), 13715-13720. doi:10.1073/pnas.1216057111.
Köberl, M., Müller, H., Ramadan, E. M., & Berg, G. (2011). Desert farming benefits from microbial potential in arid soils and promotes diversity and plant health. PLoS One, 6(9), e24452. doi:10.1371/journal.pone.0024452.
Köberl, M., Schmidt, R., Ramadan, E. M., Bauer, R., & Berg, G. (2013). The microbiome of medicinal plants: diversity and importance for plant growth, quality and health. Frontiers in Microbiology, 4, 400. doi:10.3389/ fmicb.2013.00400.
Kouki, S., Saidi, N., Ben Rajeb, A., Brahmi, M., Bellila, A., Fumio, M., ... Ouzari, H. (2012). Control of Fusarium wilt of tomato caused by Fusarium oxysporum F. sp. radicis-lycopersici using mixture of vegetable and Posidonia oceanica compost. Applied and Environmental Soil Science, 2012, 1-11. doi:10.1155/2012/239639.
Leach, J. E., Triplett, L. R., Argueso, C. T., & Trivedi, P. (2017). Communication in the Phytobiome. Cell, 169(4), 587-596. doi:10.1016/j.cell.2017.04.025.
Lebeis, S. L. (2015). Greater than the sum of their parts: characterizing plant microbiomes at the community-level. Current Opinion in Plant Biology, 24, 82-86. doi:10.1016/j. pbi.2015.02.004.
Lebeis, S. L., Rott, M., Dangl, J. L., & Schulze-Lefert, P. (2012). Culturing a plant microbiome community at the cross-Rhodes. New Phytologist, 196(2), 341-344. doi:10.1111/j.1469-8137.2012.04336.x.
Lehman, R., Cambardella, C., Stott, D., Acosta-Martinez, V., Manter, D., Buyer, J., ... Karlen, D. (2015). Understanding and enhancing soil biological health: The solution for reversing soil degradation. Sustainability, 7(1), 988-1027. doi:10.3390/su7010988.
Leveau, J. H. J. (2007). The magic and menace of metagenomics: prospects for the study of plant growth-promoting rhizobacteria. European Journal of Plant Pathology, 119(3), 279-300. doi:10.1007/s10658-007-9186-9.
Lindow, S. E., & Brandl, M. T. (2003). Microbiology of the Phyllosphere. Applied and Environmental Microbiology, 69(4), 1875-1883. doi:10.1128/aem.69.4.1875-1883.2003.
Lugtenberg, B., & Kamilova, F. (2009). Plant-GrowthPromoting Rhizobacteria. Annual Review of Microbiology, 63, 541-556. doi:10.1146/annurev. micro.62.081307.162918.
Lugtenberg, B. J. J., Chin-A-Woeng, T. F. C., & Bloemberg, G. V. (2002). Microbe–plant interactions: principles and mechanisms. Antonie Van Leeuwenhoek, 81(1-4), 373- 383. doi:10.1023/A:1020596903142.
Lundberg, D. S., Lebeis, S. L., Paredes, S. H., Yourstone, S., Gehring, J., Malfatti, S., ... Dangl, J. L. (2012). Defining the core Arabidopsis thaliana root microbiome. Nature 488, 86-90. doi:10.1038/nature11237.
Lyte, M. (2013). Microbial endocrinology in the microbiomegut-brain axis: How bacterial production and utilization of neurochemicals influence behavior. PLoS Pathogens, 9(11), e1003726. doi:10.1371/journal.ppat.1003726.
Mann, C. (1991). Lynn Margulis: Science s unruly earth mother. Science, 252 (5004), 378-381. doi:10.1126/ science.252.5004.378.
Massart, S., Martínez-Medina, M., & Jijakli, M. H. (2015). Biological control in the microbiome era: Challenges and opportunities. Biological Control, 89, 98-108. doi:10.1016/j.biocontrol.2015.06.003.
Mendes, L. W., Kuramae, E. E., Navarrete, A. A., Van Veen, J. A., & Tsai, S. M. (2014). Taxonomical and functional microbial community selection in soybean rhizosphere. The ISME Journal, 8(8), 1577-1587. doi:10.1038/ ismej.2014.17.
Mendes, L. W., Tsai, S. M., Navarrete, A. A., De Hollander, M., Van Veen, J. A., & Kuramae, E. E. (2015). Soil-borne microbiome: Linking diversity to function. Microbial Ecology, 70(1), 255-265. doi:10.1007/s00248-014-0559-2.
Mendes, R., Kruijt, M., De Bruijn, I., Dekkers, E., Van der Voort, M., Schneider, J. H. M., ... Raaijmakers, J. M. (2011). Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science, 332(6033), 1097- 1100. doi:10.1126/science.1203980.
Menzies, J. D. (1959). Occurrence and transfer of abiological factor in soil that suppresses potato scab. Phytopathology, 49, 648-652.
Messiha, N. A. S., Van Bruggen, A. H. C., Franz, E., Janse, J. D., Schoeman-Weerdesteijn, M. E., Termorshuizen, A. J., & Van Diepeningen, A. D. (2009). Effects of soil type, management type and soil amendments on the survival of the potato brown rot bacterium Ralstonia solanacearum. Applied Soil Ecology, 43(2-3), 206-215. doi:10.1016/j. apsoil.2009.07.008.
Messiha, N. A. S., Van Diepeningen, A. D., Farag, N. S., Abdallah, S. A., Janse, J. D., & Van Bruggen, A. H. C. (2007). Stenotrophomonas maltophilia: a new potential biocontrol agent of Ralstonia solanacearum, causal agent of potato brown rot. European Journal of Plant Pathology, 118(3), 211-225. doi:10.1007/s10658-007-9136-6.
Michielse, C. B., & Rep, M. (2009). Pathogen profile update: Fusarium oxysporum. Molecular Plant Pathology, 10(3), 311-324. doi:10.1111/j.1364-3703.2009.00538.x.
Morriën, E., Hannula, S. E., Snoek, L. B., Helmsing, N. R., Zweers, H., de Hollander, M., ... Van der Putten, W. H. (2017). Soil networks become more connected and take up more carbon as nature restoration progresses. Nature Communications, 8, 14349. doi:10.1038/ncomms14349.
Mueller, U. G., & Sachs, J. L. (2015). Engineering microbiomes to improve plant and animal health. Trends in Microbiology, 23(10), 606-617. doi:10.1016/j.tim.2015.07.009.
Muyzer, G., & Smalla, K. (1998). Application of denaturing gradient gel electrophoresis (dgge) and temperature gradient gel electrophoresis (tgge) in microbial ecology. Antonie Van Leeuwenhoek, 73(1), 127-141. doi:10.1023/A:1000669317571.
Nakahara, H., Mori, T., Sadakari, N., Matsusaki, H., & Matsuzoe, N. (2016). Selection of effective nonpathogenic Ralstonia solanacearum as biocontrol agents against bacterial wilt in eggplant. Journal of Plant Diseases and Protection, 123(3), 119-124. doi:10.1007/s41348- 016-0019-y.
NCBI. (2017). GenBank. Recuperado de https://www.ncbi. nlm.nih.gov/genbank/.
Nguyen, M. T., & Ranamukhaarachchi, S. L., (2010). Soilborne antagonists for biological control of bacterial wilt disease caused by Ralstonia solanacearum in tomato and pepper. Journal of Plant Pathology, 92(2), 395-405. doi:10.4454/jpp.v92i2.183.
Nion, Y. A., & Toyota, K. (2015). Recent trends in control methods for bacterial wilt diseases caused by Ralstonia solanacearum. Microbes Environments, 30(1), 1-11. doi:10.1264/jsme2.ME14144.
Nogales, A., Nobre, T., Valadas, V., Ragonezi, C., Döring, M., Polidoros, A., Arnholdt-& Schmitt, B. (2016). Can functional hologenomics aid tackling current challenges in plant breeding? Briefings in Functional Genomics, 15(4), 288-297. doi:10.1093/bfgp/elv030.
Obregón, D., Lancheros, O., Forero de La-Rotta, M.C., Miranda, D., & Chavez, B. (2007). Efecto de los tratamientos químicos y biológicos sobre el marchitamiento vascular de la uchuva (Physalis peruviana L.), ocasionada por el hongo Fusarium oxysporum Schlecht. Ponencia presentada en 2.° Congreso Colombiano de Horticultura. Bogotá, Colombia.
Ofek, M., Hadar, Y., & Minz, D. (2012). Ecology of root colonizing Massilia (Oxalobacteraceae). plos One, 7(7), e40117. doi:10.1371/journal.pone.0040117.
Opelt, K., Berg, C., & Berg, G. (2007). The bryophyte genus Sphagnum is a reservoir for powerful and extraordinary antagonists and potentially facultative human pathogens. FEMS Microbiology Ecology, 61(1), 38-53. doi:10.1111/ j.1574-6941.2007.00323.x.
Ortiz, N., Armada, E., Duque, E., Roldán, A., & Azcón, R. (2015). Contribution of arbuscular mycorrhizal fungi and/or bacteria to enhancing plant drought tolerance under natural soil conditions: Effectiveness of autochthonous or allochthonous strains. Journal of Plant Physiology, 174, 87-96. doi:10.1016/j.jplph.2014.08.019.
Palmer, C., Bik, E. M., DiGiulio, D. B., Relman, D. A., & Brown, P. O. (2007). Development of the human infant intestinal microbiota. PLoS Biology, 5(7), e177. doi:10.1371/journal.pbio.0050177.
Panke-Buisse, K., Poole, A. C., Goodrich, J. K., Ley, R. E., & Kao-Kniffin, J. (2015). Selection on soil microbiomes reveals reproducible impacts on plant function. The ISME Journal, 9(4), 980-989. doi:10.1038/ismej.2014.196.
Pera, J., & Calvet, C. (1989). Suppression of Fusarium wilt of carnation in a composted pine bark and a composted olive pumice. Plant Disease, 73(8), 699-700. doi:10.1094/ PD-73-0699.
Philippot, L., Hallin, S., Börjesson, G., & Baggs, E. M. (2009). Biochemical cycling in the rhizosphere having an impact on global change. Plant and Soil, 321, 61-81. doi:10.1007/ s11104-008-9796-9.
Phytobiomes (2016). Phytobiomes: A roadmap for research and translation. Recuperado de https://goo.gl/haofjs.
Ramesh, R., Joshi, A. A., & Ghanekar, M. P. (2009). Pseudomonads: major antagonistic endophytic bacteria to suppress bacterial wilt pathogen, Ralstonia solanacearum in the eggplant (Solanum melongena L.). World Journal of Microbiology and Biotechnology, 25(1), 47-55. doi:10.1007/ s11274-008-9859-3.
Ravel, J., Gajer, P., Abdo, Z., Schneider, G. M., Koenig, S. S. K., McCulle, S. L., ... Forney, L. J. (2011). Vaginal microbiome of reproductive-age women. Proceedings of the National Academy of Sciences of the United States of America, 108(Suppl. 1), 4680-4687. doi:10.1073/ pnas.1002611107.
Redacción Economía (4 de febrero de 2016). Frutas que ProColombia ofrecerá a los alemanes. El Espectador. Recuperado de https://goo.gl/X5q4so.
Reid, A., & Greene, S. E. (2013). How microbes can help feed the world. Recuperado de https://goo.gl/GpqkQD.
Reuveni, M., Sheglov, D., Sheglov, N., Ben-Arie, R., & Prusky, D. (2002). Sensitivity of red delicious apple fruit at various phenologic stages to infection by Alternaria alternata and moldy-core control. European Journal of Plant Pathology, 108(5), 421-427. doi:10.1023/A:1016063626633.
Roder, A., Hoffmann, E., Hagemann, M., & Berg, G. (2005). Synthesis of the compatible solutes glucosylglycerol and trehalose by salt-stressed cells of Stenotrophomonas strains. FEMS Microbiology Letters, 243(1), 219-226. doi:10.1016/j.femsle.2004.12.005.
Rout, M. E., & Southworth, D. (2013). The root microbiome influences scales from molecules to ecosystems: The unseen majority. American Journal of Botany, 100(9), 1689-1691. doi:10.3732/ajb.1300291.
Ryan, R. P., Monchy, S., Cardinale, M., Taghavi, S., Crossman, L., Avison, M. B., ... Dow, J. M. (2009). The versatility and adaptation of bacteria from the genus Stenotrophomonas. Nature Reviews. Microbiology, 7(7), 514-525. doi:10.1038/nrmicro2163.
Santhanam, R., Luu, V. T., Weinhold, A., Goldberg, J., Oh, Y., & Baldwin, I. T. (2015). Native root-associated bacteria rescue a plant from a sudden-wilt disease that emerged during continuous cropping. Proceedings of the National Academy of Sciences of the United States of America, 112(36), E5013-E5020. doi:10.1073/pnas.1505765112.
Scherwinski, K., Grosch, R., & Berg, G. (2008). Effect of bacterial antagonists on lettuce: active biocontrol of Rhizoctonia solani and negligible, short-term effects on nontarget microorganisms. FEMS Microbiology Ecology, 64(1), 106-116. doi:10.1111/j.1574-6941.2007.00421.x.
Schlaeppi, K., & Bulgarelli, D. (2014). The plant microbiome at work. Molecular Plant-Microbe Interactions MPMI, 28(3), 212-217. doi:10.1094/MPMI-10-14-0334-FI.
Schmid, F., Moser, G., Müller, H., & Berg, G. (2011). Functional and structural microbial diversity in organic and conventional viticulture: Organic farming benefits natural biocontrol agents. Applied and Environmental Microbiology, 77(6), 2188-2191. doi:10.1128/aem.02187-10.
Schönfeld, J., Gelsomino, A., Van Overbeek, L. S., Gorissen, A., Smalla, K., & Van Elsas, J. D. (2003). Effects of compost addition and simulated solarisation on the fate of Ralstonia solanacearum biovar 2 and indigenous bacteria in soil. FEMS Microbiology Ecology, 43(1), 63-74. doi:10.1111/j.1574-6941.2003.tb01046.x.
Selosse, M.-A., Bessis, A., & Pozo, M. J. (2014). Microbial priming of plant and animal immunity: symbionts as developmental signals. Trends in Microbiology, 22(11), 607-613. doi:10.1016/j.tim.2014.07.003.
Sender, R., Fuchs, S., & Milo, R. (2016). Revised estimates for the number of human and bacteria. Cells in the Body. PLoS Biology, 14(8), e1002533. doi:10.1371/journal. pbio.1002533.
Shen, Z., Ruan, Y., Xue, C., Zhong, S., Li, R., & Shen, Q. (2015). Soils naturally suppressive to banana Fusarium wilt disease harbor unique bacterial communities. Plant and Soil, 393(1), 21-33. doi:10.1007/s11104-015-2474-9.
Singh, B. K., Bardgett, R. D., Smith, P., & Reay, D. S. (2010). Microorganisms and climate change: terrestrial feedbacks and mitigation options. Nature Reviews. Microbiology, 8(11), 779-790. doi:10.1038/nrmicro2439.
Soman, C., Li, D., Wander, M. M., & Kent, A. D. (2017). Long-term fertilizer and crop-rotation treatments differentially affect soil bacterial community structure. Plant and Soil, 413(1-2), 145-159. doi:10.1007/s11 104-016-3083-y
Stulberg, E., Fravel, D., Proctor, L. M., Murray, D. M., LoTempio, J., Chrisey, L., ... Records, A. (2016). An assessment of US microbiome research. Nature Microbiology, 1(1), 1-7. doi:10.1038/nmicrobiol.2015.15.
Swanson, J. K., Yao, J., Tans-Kersten, J., & Allen, C. (2005). Behavior of Ralstonia solanacearum race 3 biovar 2 during latent and active infection of geranium. Phytopathology, 95(2), 136-143. doi:10.1094/PHYTO-95-0136.
Szczech, M., Rondomański, W., Brzeski, M. W., Smolińska, U., & Kotowski, J. F. (1993). Suppressive effect of a commercial earthworm compost on some root infecting pathogens of cabbage and tomato. Biological Agriculture & Horticulture, 10(1), 47-52. doi:10.1080/01448765.19 93.9754650.
Tan, H. M., Cao, L. X., He, Z. F., Su, G. J., Lin, B., & Zhou, S. N. (2006). Isolation of endophytic actinomycetes from different cultivars of tomato and their activities against Ralstonia solanacearum in vitro. World Journal of Microbiology and Biotechnology, 22(12), 1275-1280. doi:10.1007/s11274-006-9172-y.
Tang, W. H. W., Wang, Z., Levison , B. S., Koeth , R. A., Britt , E. B., Fu, X., ... Hazen , S.L. (2013). Intestinal microbial metabolism of Phosphatidylcholine and cardiovascular risk. The New England Journal of Medicine, 368(17), 1575-1584. doi:10.1056/NEJMoa1109400.
Teplitski, M., Warriner, K., Bartz, J., & Schneider, K. R. (2011). Untangling metabolic and communication networks: interactions of enterics with phytobacteria and their implications in produce safety. Trends in Microbiology, 19(3), 121-127. doi:10.1016/j.tim.2010.11.007.
Theis, K. R., Dheilly, N. M., Klassen, J. L., Brucker, R. M., Baines, J. F., Bosch, T. C. G., ... Bordenstein, S. R. (2016). Getting the hologenome concept right: an ecoevolutionary framework for hosts and their microbiomes. mSystems, 1(2), e00028-16. doi:10.11 28/mSystems.00028-16.
Toju, H., Tanabe, A. S., Yamamoto, S., & Sato, H. (2012). High-Coverage its primers for the dna-based identification of ascomycetes and basidiomycetes in environmental samples. PLoS One, 7(7), e40863. http:// doi.org/10.1371/journal.pone.0040863
Turnbaugh, P. J., Ley, R. E., Hamady, M., Fraser-Liggett, C., Knight, R., & Gordon, J. I. (2007). The human microbiome project: exploring the microbial part of ourselves in a changing world. Nature, 449(7164), 804- 810. doi:10.1038/nature06244.
Turner, T. R., James, E. K., & Poole, P. S. (2013). The plant microbiome. Genome Biology, 14(6), 209. doi:10.1186/ gb-2013-14-6-209.
Tyler, H. L., & Triplett, E. W. (2008). Plants as a habitat for beneficial and/or human pathogenic bacteria. Annual Review of Phytopathology, 46(1), 53-73. doi:10.1146/ annurev.phyto.011708.103102. Van Baarlen, P.,
Van Belkum, A., Summerbell, R. C., Crous, P. W., & Thomma, B. P. (2007). Molecular mechanisms of pathogenicity: how do pathogenic microorganisms develop cross-kingdom host jumps? fems Microbiology Reviews, 31(3), 239-277. doi:10.1111/j.1574-6976.2007.00065.x.
Van Elsas, J. D., Chiurazzi, M., Mallon, C. A., Elhottovā, D., Krištůfek, V., & Salles, J. F. (2012). Microbial diversity determines the invasion of soil by a bacterial pathogen. Proceedings of the National Academy of Sciences of the United States of America, 109(4), 1159-1164. doi:10.1073/ pnas.1109326109.
Van Elsas, J. D., Kastelein, P., De Vries, P. M., & Van Overbeek, L. S. (2001). Effects of ecological factors on the survival and physiology of Ralstonia solanacearum bv. 2 in irrigation water. Canadian Journal of Microbiology, 47(9), 842-854. doi:10.1139/w01-084. Van Overbeek, L. S.,
Van Doorn, J., Wichers, J. H., Van Amerongen, A., Van Roermund, H. J., & Willemsen, P. T. (2014). The arable ecosystem as battleground for emergence of new human pathogens. Frontiers in Microbiology, 5, 104. doi:10.3389/fmicb.2014.00104
Vandenkoornhuyse, P., Quaiser, A., Duhamel, M., Le Van, A., & Dufresne, A. (2015). The importance of the microbiome of the plant holobiont. The New Phytologist, 206(4), 1196-1206. doi:10.1111/nph.13312.
Vorholt, J. A. (2012). Microbial life in the phyllosphere. Nature Reviews. Microbiology, 10(12), 828-840. doi:10.1038/ nrmicro2910.
Wagner, M. R., Lundberg, D. S., Coleman-Derr, D., Tringe, S. G., Dangl, J. L., & Mitchell-Olds, T. (2014). Natural soil microbes alter flowering phenology and the intensity of selection on flowering time in a wild Arabidopsis relative. Ecology Letters, 17(6), 717-726. doi:10.1111/ele.12276.
Wei, Z., Huang, J., Tan, S., Mei, X., Shen, Q., & Xu, Y. (2013). The congeneric strain Ralstonia pickettii QL-A6 of Ralstonia solanacearum as an effective biocontrol agent for bacterial wilt of tomato. Biological Control, 65(2), 278- 285. doi:10.1016/j.biocontrol.2012.12.010.
Wei, Z., Yang, T., Friman, V.-P., Xu, Y., Shen, Q., & Jousset, A. (2015). Trophic network architecture of rootassociated bacterial communities determines pathogen invasion and plant health. Nature Communications, 6, 8413. doi:10.1038/ncomms9413.
Weller, D. M., Raaijmakers, J. M., Gardener, B. B., & Thomashow, L. S. (2002). Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annual Review of Phytopathology 40, 309-348. doi:10.1146/annurev.phyto.40.030402.110010.
Whitman, W. B., Coleman, D. C., & Wiebe, W. J. (1998). Prokaryotes: The unseen majority. Proceedings of the National Academy of Sciences, 95(12), 6578-6583. doi:10.1073/pnas.95.12.6578.
Widder, S., Allen, R. J., Pfeiffer, T., Curtis, T. P., Wiuf, C., Sloan, W. T., ... Soyer, O. S. (2016). Challenges in microbial ecology: building predictive understanding of community function and dynamics. The ISME Journal, 10(11), 2557-2568. doi:10.1038/ismej.2016.45.
Wisniewski, M., Droby, S., Norelli, J., Liu, J., & Schena, L. (2016). Alternative management technologies for postharvest disease control: The journey from simplicity to complexity. Postharvest Biology and Technology, 122, 3-10. doi:10.1016/j.postharvbio.2016.05.012.
Wubs, E. R. J., Van der Putten, W. H., Bosch, M., & Bezemer, T. M. (2016). Soil inoculation steers restoration of terrestrial ecosystems. Nature Plants, 2(8), 16107. doi:10.1038/nplants.2016.107.
Xue, Q.-Y., Chen, Y., Li, S.-M., Chen, L.-F., Ding, G.-C., Guo, D.-W., Guo, J.-H. (2009). Evaluation of the strains of Acinetobacter and Enterobacter as potential biocontrol agents against Ralstonia wilt of tomato. Biological Control, 48(3), 252-258. doi:10.1016/j.biocontrol.2008.11.004.
Yabuuchi, E., Kosako, Y., Yano, I., Hotta, H., & Nishiuchi, Y. (1995). Transfer of two Burkholderia and an Alcaligenes species to Ralstonia gen. Microbiology and Immunology, 39(11), 897-904. doi:10.1111/j.1348-0421.1995. tb03275.x.
Yatsunenko, T., Rey, F. E., Manary, M. J., Trehan, I., Dominguez-Bello, M.G., Contreras, M., ... Gordon, J. I. (2012). Human gut microbiome viewed across age and geography. Nature, 486(7402), 222-227. doi:10.1038/ nature11053.
Zachow, C., Berg, C., Müller, H., Meincke, R., KomonZelazowska, M., Druzhinina, I. S., ... Berg, G. (2009). Fungal diversity in the rhizosphere of endemic plant species of Tenerife (Canary Islands): relationship to vegetation zones and environmental factors. The isme Journal, 3(1), 79. doi:10.1038/ismej.2008.87.
Zacky, F. A., & Ting, A. S. Y. (2013). Investigating the bioactivity of cells and cell-free extracts of Streptomyces griseus towards Fusarium oxysporum f. sp. cubense race 4. Biological Control, 66(3), 204-208. doi:10.1016/j. biocontrol.2013.06.001.
dc.relation.ispartofbook.spa.fl_str_mv 33829 ; Control biológico de fitopatógenos, insectos y ácaros: agentes de control biológico. V. 1 
dc.rights.*.fl_str_mv Attribution-NonCommercial-ShareAlike 4.0 International
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
rights_invalid_str_mv Attribution-NonCommercial-ShareAlike 4.0 International
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://purl.org/coar/access_right/c_abf2
dc.format.mimetype.none.fl_str_mv application/pdf
dc.coverage.country.spa.fl_str_mv Colombia
dc.publisher.spa.fl_str_mv ‎‎Corporación colombiana de investigación agropecuaria - AGROSAVIA
institution Agrosavia
bitstream.url.fl_str_mv https://repository.agrosavia.co/bitstream/20.500.12324/34069/2/license.txt
https://repository.agrosavia.co/bitstream/20.500.12324/34069/3/Cap%c3%adtulo%204%20mini.png
https://repository.agrosavia.co/bitstream/20.500.12324/34069/5/Ver_Documento_34069.pdf.jpg
https://repository.agrosavia.co/bitstream/20.500.12324/34069/4/Ver_Documento_34069.pdf
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
691c5352d03e4b4958a3e192484f3cfc
05bdd42e8a817d5707c1014bb780bc47
7fe9e596ffb9235c60bc23541394491d
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Agrosavia - Corporación colombiana de investigación agropecuaria
repository.mail.fl_str_mv bac@agrosavia.co
_version_ 1810045267591823360
spelling Caro Quintero, Alejandro051c00a1-04dc-40d9-b978-09e78ebf14c0González Almario, Carolina05626418-76d8-4824-a4fb-e86ab27c5003600Balbín Suárez, Aliciad875ed53-cb97-4860-859d-5a0ed619286fWisniewski, Michaelf4cb37c7-26f3-4eeb-8c04-18c9fd64c4e7Berg, Gabriele1480f3cd-6900-4600-a55c-a2559eae3a8eSmalla, Korneliaaa1aefd2-88d4-48a8-af23-c82f4ce6ad3fCotes Prado, Alba Marina8e81a379-2909-4b7e-a52b-afcee7b4894f6002018-12-03T15:40:25Z2018-12-03T15:40:25Z2018978-958-740-253-7 (e-book)http://hdl.handle.net/20.500.12324/34069reponame:Biblioteca Digital Agropecuaria de Colombiarepourl:https://repository.agrosavia.coinstname:Corporación colombiana de investigación agropecuaria AGROSAVIAA pesar de que el control biológico de fitopatógenos ha sido una alternativa exitosa que ha permitido seleccionar microorganismos para la generación de bioproductos y entender múltiples mecanismos biológicos, ya no puede considerarse como una estrategia definida solamente a partir de la selección de una gama de microorganismos cultivables ni entenderse como una serie de interacciones en una sola dirección: planta-patógeno o planta-patógeno-agente controlador. Gracias al desarrollo de tecnologías de secuenciación masiva y de las ciencias ómicas, se ha logrado tener en cuenta el resto de la comunidad microbiana (hoy llamada microbioma), mediante el estudio independiente del cultivo de las comunidades establecidas en los distintos tejidos, sus genes y sus interacciones. A partir del conocimiento del microbioma de las plantas se han logrado identificar los microorganismos que están presentes en los diferentes tejidos, cuáles son sus posibles funciones, cómo expresan estas funciones frente a distintas condiciones ambientales y cuál es su posible rol en la salud de las plantas, la salud humana y la producción agrícola. Con base en esto, y dada la relevancia actual del microbioma, en este capítulo se repasa brevemente su estudio, desde sus orígenes hasta su aplicación en el control biológico de patógenos de plantas y en el desarrollo de nuevas estrategias de manejo de enfermedades limitantes en cultivos de importancia económica.application/pdfspa‎‎Corporación colombiana de investigación agropecuaria - AGROSAVIAAttribution-NonCommercial-ShareAlike 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-sa/4.0/http://purl.org/coar/access_right/c_abf2Estudios del microbioma y su aplicación en el control biológico de fitopatógenosMicrobiome studies in the biological control of plant pathogensEnfermedades de las plantas - H20Control biológicoMicroorganismosOrganismos patógenosControl de enfermedades de plantasTransversalTécnicoProfesionalInvestigadorCientíficobook partCapítulohttp://purl.org/coar/resource_type/c_3248info:eu-repo/semantics/bookParthttps://purl.org/redcol/resource_type/CAP_LIBhttp://purl.org/coar/version/c_970fb48d4fbd8a85Colombia256256293293Abdelfattah, A., Wisniewski, M., Droby, S., & Schena, L. (2016). Spatial and compositional variation in the fungal communities of organic and conventionally grown apple fruit at the consumer point-of-purchase. Horticulture Research, 3, 16047. doi:10.1038/hortres.2016.47.Adesemoye, A. O., Torbert, H. A., & Kloepper, J. W. (2009). Plant growth-promoting rhizobacteria allow reduced application rates of chemical fertilizers. Microbial Ecology, 58(4), 921-929. doi:10.1007/s00248-009-9531-y.Agler, M. T., Ruhe, J., Kroll, S., Morhenn, C., Kim, S.- T., Weigel, D., & Kemen, E. M. (2016). Microbial hub taxa link host and abiotic factors to plant microbiome variation. PLoS Biology, 14(1), 1002352. doi:10. 1371/journal.pbio.1002352.Alavi, P., Starcher, M. R., Thallinger, G. G., Zachow, C., Muller, H., & Berg, G. (2014). Stenotrophomonas comparative genomics reveals genes and functions that differentiate beneficial and pathogenic bacteria. BMC Genomics, 15, 482. doi:10.1186/1471-2164 -15-482.Alavi, P., Starcher, M. R., Zachow, C., Müller, H., & Berg, G. (2013). Root-microbe systems: the effect and mode of interaction of Stress Protecting Agent (spa) Stenotrophomonas rhizophila DSM14405(T). Frontiers in Plant Science, 4, 141. doi:10.3389/fpls.2013.00141.Alivisatos, A. P., Blaser, M. J., Brodie, E. L., Chun, M., Dangl, J. L., Donohue, T. J., ... Taha, S. A. (2015). A unified initiative to harness Earth’s microbiomes. Science 350(6260), 507-508. doi:10.1126/science.aac8480.Aliye, N., Fininsa, C., & Hiskias, Y. (2008). Evaluation of rhizosphere bacterial antagonists for their potential to bioprotect potato (Solanum tuberosum) against bacterial wilt (Ralstonia solanacearum). Biological Control, 47(3), 282-288. doi:10.1016/j.biocontrol.2008.09.003.Andrews, J. H. (1992). Biological control in the phyllosphere. Annual Review of Phytopathology, 30, 603-635. doi:10. 1146/annurev.py.30.090192.003131.Arias, F., Gómez, L., Suárez, E., & Rendón, S. (2015). Inteligencia de mercados para la cadena de uchuva colombiana (Physalis peruviana). Revista Oidles, 9(18). Recuperado de http://www.eumed.net/rev/oidles/18/uchuva.html.Armstrong, G., & Armstrong, J. K. (1981). Formae speciales and races of Fusarium oxysporum causing wilt diseases. In P. E. Nelson, T. A. Toussoun, & R. J. Cook (Eds.), Fusarium: diseases, biology, and taxonomy (pp. 391-399). Pensilvania: Penn State University Press.Badri, D. V., & Vivanco, J. M. (2009). Regulation and function of root exudates. Plant, Cell & Environment, 32(6), 666- 681. doi:10.1111/j.1365-3040.2008.01926.x.Bakken, L. R. (1997). Culturable and nonculturable bacteria in soil. En J. D. Van Elsas, J. T. Trevors, & E. M. H. Wellington (Eds.), Modern soil microbiology (pp. 47-61). Nueva York, EE. UU.: CRC Press.Bakker, M. G., Manter, D. K., Sheflin, A. M., Weir, T. L., & Vivanco, J. M. (2012). Harnessing the rhizosphere microbiome through plant breeding and agricultural management. Plant and Soil, 360(1-2), 1-13. doi:10.1007/ s11104-012-1361-x.Balaguera, L. H. E., Ramírez, L. V., & Herrera, A. (2014). Fisiología y bioquímica del fruto de uchuva (Physalis peruviana L.) durante la maduración y poscosecha. En C. P. Pássaro Carvalho & D. A. Moreno (Eds.), Physalis peruviana L.: fruta andina para el mundo (pp. 113-131). Murcia, España: Cebas - csic.Barak, J. D., & Schroeder, B. K. (2012). Interrelationships of food safety and plant pathology: the life cycle of human pathogens in plants. Annual Review of Phytopathology, 50, 241-266. doi:10.1146/annurev-phyto-081211-172936.Barnard, R. L., Osborne, C. A., & Firestone, M. K. (2013). Responses of soil bacterial and fungal communities to extreme desiccation and rewetting. The ISME Journal, 7(11), 2229-2241. doi:10.1038/ismej.2013.104.Beckman, C. H. (1987). The nature of wilt diseases of plants. Maryland, EE. UU.: APS Press.Berendsen, R. L., Pieterse, C. M. J., & Bakker, P. A. (2012). The rhizosphere microbiome and plant health. Trends in Plant Science, 17(8), 478-486. doi10.1016/j. tplants.2012.04.001.Berg, G. (2009). Plant–microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Applied Microbiology and Biotechnology, 84(1), 11-18. doi:10.1007/s00253-009- 2092-7.Berg, G., Eberl, L., & Hartmann, A. (2005). The rhizosphere as a reservoir for opportunistic human pathogenic bacteria. Environmental Microbiology, 7(11), 1673-1685. doi:10.1111/j.1462-2920.2005.00891.x.Berg, G., Erlacher, A., Smalla, K., & Krause, R. (2014a). Vegetable microbiomes: is there a connection among opportunistic infections, human health and our ‘gut feeling’? Microbial Biotechnology, 7(6), 487-495. doi:10.1111 /1751-7915.12159.Berg, G., Grube, M., Schloter, M., & Smalla, K. (2014b). The plant microbiome and its importance for plant and human health. Frontiers in Microbiology, 5, 491. doi:10.3389/ fmicb.2014.00491.Berg, G., Grube, M., Schloter, M., & Smalla, K. (2014c). Unraveling the plant microbiome: looking back and future perspectives. Frontiers in Microbiology, 5, 148. doi:10.3389/fmicb.2014.00148.Berg, G., Hartenberger, K., Liebminger, S., & Zachow, C. (2012). Antagonistic endophytes from mistletoes as bioresource to control plant as well as clean room pathogens. IOBC/wprs Bulletin, 78, 29-32. Recuperado de https:// goo.gl/QSKqM1.Berg, G., Rybakova, D., Grube, M., & Köberl, M. (2016). The plant microbiome explored: implications for experimental botany. Journal of Experimental Botany, 67(4), 995-1002. doi:10.1093/jxb/erv466.Berg, G., & Smalla, K. (2009). Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiology Ecology, 68(1), 1-13. doi:10.1111/j.1574- 6941.2009.00654.x.Berg, G., Zachow, C., Müller, H., Philipps, J., & Tilcher, R. (2013). Next-generation bio-products sowing the seeds of success for sustainable agriculture. Agronomy, 3(4), 648. doi:10.3390/agronomy3040648.Bernal, P. (10 de junio de 2016). Microbioma: el ‘nuevo órgano’ del cuerpo humano que compartimos con la mayoría de seres. El Diario. Recuperado de https://goo.gl/xVVLRw.Bhatti, K. H., Ahmed, N.-u.-D., Shah, A., Iqbal, M., Iqbal, T., & Jiahe, W. (2011). Transgenic tobacco with rice zincfinger gene OsLOL2 exhibits an enhanced resistance against bacterial-wilt. Australasian Plant Pathology, 40(2), 133-140. doi:10.1007/s13313-010-0022-x.Blaser, M., Bork, P., Fraser, C., Knight, R., & Wang, J. (2013). The microbiome explored: recent insights and future challenges. Nature Reviews Microbiology, 11(3), 213-217. doi:10.1038/nrmicro2973.Bloemberg, G. V., & Lugtenberg, B. J. J. (2001). Molecular basis of plant growth promotion and biocontrol by rhizobacteria. Current Opinion in Plant Biology, 4(4), 343- 350. doi:10.1016/S1369-5266(00)00183-7.Bulgarelli, D., Rott, M., Schlaeppi, K., Ver Loren van Themaat, E., Ahmadinejad, N., Assenza, F., ... SchulzeLefert, P. (2012). Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature, 488(7409), 91-95. doi:10.1038/nature11336.Bulgarelli, D., Schlaeppi, K., Spaepen, S., Ver Loren van Themaat, E., & Schulze-Lefert, P. (2013). Structure and functions of the bacterial microbiota of plants. Annual Review of Plant Biology, 64, 807-838. doi:10.1146/ annurev-arplant-050312-120106.Busby, P. E., Peay, K. G., & Newcombe, G. (2016). Common foliar fungi of Populus trichocarpa modify Melampsora rust disease severity. New Phytologist, 209(4), 1681-1692. doi:10.1111/nph.13742.Busby, P. E., Soman, C., Wagner, M. R., Friesen, M. L., Kremer, J., Bennett, A., ... Dangl, J. L. (2017). Research priorities for harnessing plant microbiomes in sustainable agriculture. PLoS Biology, 15(3), e2001793. doi:10.1371/ journal.pbio.2001793.Caitilyn, A., Prior, P., & Hayward, A. C. (Eds.). (2005). Bacterial wilt disease and the Ralstonia solanacearum species complex. Saint Paul, EE. UU.: American Phytopathological Society.Camatti-Sartori, V., Da Silva-Ribeiro, R. T., ValdebenitoSanhueza, R. M., Pagnocca, F. C., Echeverrigaray, S., & Azevedo, J. L. (2005). Endophytic yeasts and filamentous fungi associated with southern Brazilian apple (Malus domestica) orchards subjected to conventional, integrated or organic cultivation. Journal of Basic Microbiology, 45(5), 397-402. doi:10.1002/jobm.200410547.Cardenas, P. A., Cooper, P. J., Cox, M. J., Chico, M., Arias, C., Moffatt, M. F., & Cookson, W. O. (2012). Upper airways microbiota in antibiotic-naïve wheezing and healthy infants from the tropics of rural Ecuador. PLoS One, 7(10), e46803. doi:10.1371/journal.pone.0046803.Cellier, G., & Prior, P. (2010). Deciphering phenotypic diversity of Ralstonia solanacearum strains pathogenic to potato. Phytopathology, 100(11), 1250-1261. doi:10.1094/ PHYTO-02-10-0059.Cook, R. J. (2007). Tell me again what it is that you do. Annual Review of Phytopathology, 45, 1-23. doi:10.1146/ annurev.phyto.45.062806.094415.Copeland, J. K., Yuan, L., Layeghifard, M., Wang, P. W., & Guttman, D. S. (2015). Seasonal community succession of the phyllosphere microbiome. Molecular Plant-Microbe Interactions Journal, 28(3), 274-285. doi:10.1094/MPMI10-14-0331-FI.Corporación Colombia Internacional. (2007). Sistema de inteligencia de mercados (Perfil producto N°. 34). Recuperado de http://bibliotecadigital.agronet.gov.co/ bitstream/11348/5287/2/2006327162612_uchuva_ CCI_actualizaci%C3%B3n.pdfDarwin, C. (2010). Chapter I. Domestic dogs and cats. En The variation of animals and plants under domestication (pp. 15-48). Cambridge, Inglaterra: Cambridge University Press. doi:10.1017/CBO9780511709500.DeAngelis, K. M., Pold, G., Topçuoğlu, B. D., Van Diepen, L. T. A., Varney, R. M., Blanchard, J. L., ... Frey, S. D. (2015). Long-term forest soil warming alters microbial communities in temperate forest soils. Frontiers in Microbiology, 6. doi:10.3389/fmicb.2015.00104.De Carvalho, M. P., Gulotta, G., Do Amaral, M. W., Lünsdorf, H., Sasse, F., & Abraham, W.-R. (2016). Coprinuslactone protects the edible mushroom Coprinus comatus against biofilm infections by blocking both quorum-sensing and MurA. Environmental Microbiology, 18(11), 4254-4264. doi:10.1111/1462-2920.13560.Dominguez-Bello, M. G., Costello, E. K., Contreras, M., Magris, M., Hidalgo, G., Fierer, N., & Knight, R. (2010). Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proceedings of the National Academy of Sciences USA, 107(26), 11971-11975. doi:10.1073/ pnas.1002601107.Doornbos, R. F., Van Loon, L. C., & Bakker, P. A. H. M. (2012). Impact of root exudates and plant defense signaling on bacterial communities in the rhizosphere. A review. Agronomy for Sustainable Development, 32(1), 227- 243. doi:10.1007/s13593-011-0028-y.Egamberdieva, D., Kucharova, Z., Davranov, K., Berg, G., Makarova, N., Azarova, T., ... Lugtenberg, B. (2011). Bacteria able to control foot and root rot and to promote growth of cucumber in salinated soils. Biology and Fertility Soils, 47(2), 197-205. doi:10.1007/s00374-010-0523-3.Elsayed, T. R., Nour, E. H., Jacquiod, S., Sørensen, S. J., & Smalla, K. (en prensa). Deciphering the complex interaction between Ralstonia solanacearum and antagonists during tomato wilt biocontrol: rhizosphere microbiome shifts as mode of action? Frontiers in Microbiology.Elser, J. J., Bracken, M. E. S., Cleland, E. E., Gruner, D. S., Harpole, W. S., Hillebrand, H., ... Smith, J.E. (2007). Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecology Letters, 10(12), 1135-1142. doi:10.1111/j.1461-0248.2007.01113.x.Fischer, G., Almanza-Merchán, P. J., & Miranda, D. (2014). Importancia y cultivo de la uchuva (Physalis peruviana L.). Revista Brasileira de Fruticultura, 36(1), 01-15. doi:10.1590/0100-2945-441/13.Friesen, M. L., Porter, S. S., Stark, S. C., Von Wettberg, E. J., Sachs, J. L., & Martínez-Romero, E. (2011). Microbially mediated plant functional traits. Annual Review of Ecology, Evolution, and Systematics, 42, 23-46. doi:10.1146/ annurev-ecolsys-102710-145039.Fungal Barcoding. (2017). Fungal Barcoding Database. Recuperado de http://www.fungalbarcoding.org. Garibaldi, A.,Gilardi, G., & Gullino, M. L. (2004). First report of Fusarium oxysporum causing vascular wilt of lamb’s lettuce (Valerianella olitoria) in italy. Plant Disease, 88(1), 83-83. doi:10.1094/PDIS.2004.88.1.83C.Gilbert, J. A., Jansson, J. K., & Knight, R. (2014). The Earth Microbiome project: successes and aspirations. BMC Biololy, 12, 69. doi:10.1186/s12915-014-0069-1.Gilbert, J. A., Meyer, F., Jansson, J., Gordon, J., Pace, N., Tiedje, ... Knight, R. (2010). The earth microbiome project: Meeting report of the “1st EMP meeting on sample selection and acquisition” at argonne national laboratory october 6(th) 2010. Standards in Genomic Sciences 3,(3), 249-253. doi:10.4056/aigs.1443528.González, C., & Barrero, M. (Eds.). (2011). Estudio de la marchitez vascular de la uchuva para el mejoramiento genético del cultivo. Bogotá: Corporación Colombiana de Investigación Agropecuaria (Corpoica) y Cámara de Comercio de Bogotá.Google Académico. (s. f.). Estadisticas. Recuperado de https://scholar.google.com/citations?view_op=metrics_ intro&hl=es#d=gs_hdr_drw&p=&u=.Gordon, T. R., & Martyn, R. D. (1997). The evolutionary biology of Fusarium oxysporum. Annual Review of Phytopathology, 35, 111-128. doi:10.1146/annurev. phyto.35.1.111.Götz, M., Gomes, N. C. M., Dratwinski, A., Costa, R., Berg, G., Peixoto, ... Smalla, K. (2006). Survival of gfptagged antagonistic bacteria in the rhizosphere of tomato plants and their effects on the indigenous bacterial community. FEMS Microbiology Ecology, 56(2), 207-218. doi:10.1111/j.1574-6941.2006.00093.x.Grey, B. E., & Steck, T. R. (2001). The viable but nonculturable state of Ralstonia solanacearum may be involved in long-term survival and plant infection. Applied and Environmental Microbiology, 67(9), 3866-3872. doi:10.1128/AEM.67.9.3866-3872.2001.Grover, A., Azmi, W., Gadewar, A. V., Pattanayak, D., Naik, P. S., Shekhawat, G. S., & Chakrabarti, S. K. (2006). Genotypic diversity in a localized population of Ralstonia solanacearum as revealed by random amplified polymorphic dna markers. Journal of Applied Microbiology, 101(4), 798-806. doi:10.1111/j.1365- 2672.2006.02974.x.Grube, M., Cardinale, M., De Castro, J. V., Jr., Müller, H., & Berg, G. (2009). Species-specific structural and functional diversity of bacterial communities in lichen symbioses. The ISME journal, 3(9), 1105. doi:10.1038/ ismej.2009.63.Guo, J.-H., Qi, H.-Y., Guo, Y.-H., Ge, H.-L., Gong, L.- Y., Zhang, L.-X., & Sun, P.-H. (2004). Biocontrol of tomato wilt by plant growth-promoting rhizobacteria. Biological Control, 29(1), 66-72. doi:10.1016/S1049- 9644(03)00124-5.Haglund, W., & Kraft, J. (2001). Fusarium wilt. In J. M. Kraft, & F. L. Pfleger (Eds.), Compendium of pea diseases and pests (pp. 13-14 ). Saint Paul, EE. UU.: APS Press.Haichar, F. Z., Marol, C., Berge, O., Rangel-Castro, J. I., Prosser, J. I., Balesdent, J., ... Achouak, W. (2008). Plant host habitat and root exudates shape soil bacterial community structure. The ISME Journal, 2(12), 1221- 1230.Haiser, H. J., Gootenberg, D. B., Chatman, K., Sirasani, G., Balskus, E. P., & Turnbaugh, P. J. (2013). Predicting and manipulating cardiac drug inactivation by the human gut bacterium Eggerthella lenta. Science, 341(6143), 295-298. doi:10.1126/science.1235872.Hartmann, A., Rothballer, M., & Schmid, M. (2008). Lorenz Hiltner, a pioneer in rhizosphere microbial ecology and soil bacteriology research. Plant and Soil 312(1-2), 7-14. doi:10.1007/s11104-007-9514-z.Hashem, M., Alamri, S. A., Hesham, A. E.-L., Al-Qahtani, F. M. H., & Kilany, M. (2014). Biocontrol of apple blue mould by new yeast strains: Cryptococcus albidus KKUY0017 and Wickerhamomyces anomalus KKUY0051 and their mode of action. Biocontrol Science and Technology, 24(10), 1137-1152. doi:10.1080/09583157.2014.926857.Hayward, A. C. (1991). Biology and epidemiology of bacterial wilt caused by Pseudomonas Solanacearum. Annual Review of Phytopathology, 29, 65-87. doi:10.1146/annurev. py.29.090191.000433.Heckman, D. S., Geiser, D. M., Eidell, B. R., Stauffer, R. L., Kardos, N. L., & Hedges, S. B. (2001). Molecular evidence for the early colonization of land by fungi and plants. Science, 293(5532), 1129-1133. doi:10.1126/ science.1061457.Holden, N., Pritchard, L., & Toth, I. (2009). Colonization outwith the colon: plants as an alternative environmental reservoir for human pathogenic enterobacteria. fems Microbiology Review, 33(4), 689-703. doi:10.1111/ j.1574-6976.2008.00153.x.Hu, H. Q., Li, X. S., & He, H. (2010). Characterization of an antimicrobial material from a newly isolated Bacillus amyloliquefaciens from mangrove for biocontrol of Capsicum bacterial wilt. Biological Control, 54(3), 359- 365. doi:10.1016/j.biocontrol.2010.06.015.Human Microbiome Project Consortium. (2012). Structure, function and diversity of the healthy human microbiome. Nature, 486(7402), 207-214. doi:10.1038/nature11234.Irikiin, Y., Nishiyama, M., Otsuka, S., & Senoo, K. (2006). Rhizobacterial community-level, sole carbon source utilization pattern affects the delay in the bacterial wilt of tomato grown in rhizobacterial community model system. Applied Soil Ecology, 34(1), 27-32. doi:10.1016/j. apsoil.2005.12.003.Jackson, R. W. (Ed.). (2009). Plant pathogenic bacteria: Genomics and molecular biology. Norfolk, Reino Unido: Caister Academic Press.Kaestli, M., Schmid, M., Mayo, M., Rothballer, M., Harrington, G., Richardson, L., ... Currie, B. J. (2012). Out of the ground: aerial and exotic habitats of the melioidosis bacterium Burkholderia pseudomallei in grasses in Australia. Environmental Microbiology, 14(8), 2058-2070. doi:10.1111/j.1462-2920.2011.02671.x.Kembel, S. W., O’Connor, T. K., Arnold, H. K., Hubbell, S. P., Wright, S. J., & Green, J. L. (2014). Relationships between phyllosphere bacterial communities and plant functional traits in a neotropical forest. Proceedings of the National Academy of Sciences, 111(38), 13715-13720. doi:10.1073/pnas.1216057111.Köberl, M., Müller, H., Ramadan, E. M., & Berg, G. (2011). Desert farming benefits from microbial potential in arid soils and promotes diversity and plant health. PLoS One, 6(9), e24452. doi:10.1371/journal.pone.0024452.Köberl, M., Schmidt, R., Ramadan, E. M., Bauer, R., & Berg, G. (2013). The microbiome of medicinal plants: diversity and importance for plant growth, quality and health. Frontiers in Microbiology, 4, 400. doi:10.3389/ fmicb.2013.00400.Kouki, S., Saidi, N., Ben Rajeb, A., Brahmi, M., Bellila, A., Fumio, M., ... Ouzari, H. (2012). Control of Fusarium wilt of tomato caused by Fusarium oxysporum F. sp. radicis-lycopersici using mixture of vegetable and Posidonia oceanica compost. Applied and Environmental Soil Science, 2012, 1-11. doi:10.1155/2012/239639.Leach, J. E., Triplett, L. R., Argueso, C. T., & Trivedi, P. (2017). Communication in the Phytobiome. Cell, 169(4), 587-596. doi:10.1016/j.cell.2017.04.025.Lebeis, S. L. (2015). Greater than the sum of their parts: characterizing plant microbiomes at the community-level. Current Opinion in Plant Biology, 24, 82-86. doi:10.1016/j. pbi.2015.02.004.Lebeis, S. L., Rott, M., Dangl, J. L., & Schulze-Lefert, P. (2012). Culturing a plant microbiome community at the cross-Rhodes. New Phytologist, 196(2), 341-344. doi:10.1111/j.1469-8137.2012.04336.x.Lehman, R., Cambardella, C., Stott, D., Acosta-Martinez, V., Manter, D., Buyer, J., ... Karlen, D. (2015). Understanding and enhancing soil biological health: The solution for reversing soil degradation. Sustainability, 7(1), 988-1027. doi:10.3390/su7010988.Leveau, J. H. J. (2007). The magic and menace of metagenomics: prospects for the study of plant growth-promoting rhizobacteria. European Journal of Plant Pathology, 119(3), 279-300. doi:10.1007/s10658-007-9186-9.Lindow, S. E., & Brandl, M. T. (2003). Microbiology of the Phyllosphere. Applied and Environmental Microbiology, 69(4), 1875-1883. doi:10.1128/aem.69.4.1875-1883.2003.Lugtenberg, B., & Kamilova, F. (2009). Plant-GrowthPromoting Rhizobacteria. Annual Review of Microbiology, 63, 541-556. doi:10.1146/annurev. micro.62.081307.162918.Lugtenberg, B. J. J., Chin-A-Woeng, T. F. C., & Bloemberg, G. V. (2002). Microbe–plant interactions: principles and mechanisms. Antonie Van Leeuwenhoek, 81(1-4), 373- 383. doi:10.1023/A:1020596903142.Lundberg, D. S., Lebeis, S. L., Paredes, S. H., Yourstone, S., Gehring, J., Malfatti, S., ... Dangl, J. L. (2012). Defining the core Arabidopsis thaliana root microbiome. Nature 488, 86-90. doi:10.1038/nature11237.Lyte, M. (2013). Microbial endocrinology in the microbiomegut-brain axis: How bacterial production and utilization of neurochemicals influence behavior. PLoS Pathogens, 9(11), e1003726. doi:10.1371/journal.ppat.1003726.Mann, C. (1991). Lynn Margulis: Science s unruly earth mother. Science, 252 (5004), 378-381. doi:10.1126/ science.252.5004.378.Massart, S., Martínez-Medina, M., & Jijakli, M. H. (2015). Biological control in the microbiome era: Challenges and opportunities. Biological Control, 89, 98-108. doi:10.1016/j.biocontrol.2015.06.003.Mendes, L. W., Kuramae, E. E., Navarrete, A. A., Van Veen, J. A., & Tsai, S. M. (2014). Taxonomical and functional microbial community selection in soybean rhizosphere. The ISME Journal, 8(8), 1577-1587. doi:10.1038/ ismej.2014.17.Mendes, L. W., Tsai, S. M., Navarrete, A. A., De Hollander, M., Van Veen, J. A., & Kuramae, E. E. (2015). Soil-borne microbiome: Linking diversity to function. Microbial Ecology, 70(1), 255-265. doi:10.1007/s00248-014-0559-2.Mendes, R., Kruijt, M., De Bruijn, I., Dekkers, E., Van der Voort, M., Schneider, J. H. M., ... Raaijmakers, J. M. (2011). Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science, 332(6033), 1097- 1100. doi:10.1126/science.1203980.Menzies, J. D. (1959). Occurrence and transfer of abiological factor in soil that suppresses potato scab. Phytopathology, 49, 648-652.Messiha, N. A. S., Van Bruggen, A. H. C., Franz, E., Janse, J. D., Schoeman-Weerdesteijn, M. E., Termorshuizen, A. J., & Van Diepeningen, A. D. (2009). Effects of soil type, management type and soil amendments on the survival of the potato brown rot bacterium Ralstonia solanacearum. Applied Soil Ecology, 43(2-3), 206-215. doi:10.1016/j. apsoil.2009.07.008.Messiha, N. A. S., Van Diepeningen, A. D., Farag, N. S., Abdallah, S. A., Janse, J. D., & Van Bruggen, A. H. C. (2007). Stenotrophomonas maltophilia: a new potential biocontrol agent of Ralstonia solanacearum, causal agent of potato brown rot. European Journal of Plant Pathology, 118(3), 211-225. doi:10.1007/s10658-007-9136-6.Michielse, C. B., & Rep, M. (2009). Pathogen profile update: Fusarium oxysporum. Molecular Plant Pathology, 10(3), 311-324. doi:10.1111/j.1364-3703.2009.00538.x.Morriën, E., Hannula, S. E., Snoek, L. B., Helmsing, N. R., Zweers, H., de Hollander, M., ... Van der Putten, W. H. (2017). Soil networks become more connected and take up more carbon as nature restoration progresses. Nature Communications, 8, 14349. doi:10.1038/ncomms14349.Mueller, U. G., & Sachs, J. L. (2015). Engineering microbiomes to improve plant and animal health. Trends in Microbiology, 23(10), 606-617. doi:10.1016/j.tim.2015.07.009.Muyzer, G., & Smalla, K. (1998). Application of denaturing gradient gel electrophoresis (dgge) and temperature gradient gel electrophoresis (tgge) in microbial ecology. Antonie Van Leeuwenhoek, 73(1), 127-141. doi:10.1023/A:1000669317571.Nakahara, H., Mori, T., Sadakari, N., Matsusaki, H., & Matsuzoe, N. (2016). Selection of effective nonpathogenic Ralstonia solanacearum as biocontrol agents against bacterial wilt in eggplant. Journal of Plant Diseases and Protection, 123(3), 119-124. doi:10.1007/s41348- 016-0019-y.NCBI. (2017). GenBank. Recuperado de https://www.ncbi. nlm.nih.gov/genbank/.Nguyen, M. T., & Ranamukhaarachchi, S. L., (2010). Soilborne antagonists for biological control of bacterial wilt disease caused by Ralstonia solanacearum in tomato and pepper. Journal of Plant Pathology, 92(2), 395-405. doi:10.4454/jpp.v92i2.183.Nion, Y. A., & Toyota, K. (2015). Recent trends in control methods for bacterial wilt diseases caused by Ralstonia solanacearum. Microbes Environments, 30(1), 1-11. doi:10.1264/jsme2.ME14144.Nogales, A., Nobre, T., Valadas, V., Ragonezi, C., Döring, M., Polidoros, A., Arnholdt-& Schmitt, B. (2016). Can functional hologenomics aid tackling current challenges in plant breeding? Briefings in Functional Genomics, 15(4), 288-297. doi:10.1093/bfgp/elv030.Obregón, D., Lancheros, O., Forero de La-Rotta, M.C., Miranda, D., & Chavez, B. (2007). Efecto de los tratamientos químicos y biológicos sobre el marchitamiento vascular de la uchuva (Physalis peruviana L.), ocasionada por el hongo Fusarium oxysporum Schlecht. Ponencia presentada en 2.° Congreso Colombiano de Horticultura. Bogotá, Colombia.Ofek, M., Hadar, Y., & Minz, D. (2012). Ecology of root colonizing Massilia (Oxalobacteraceae). plos One, 7(7), e40117. doi:10.1371/journal.pone.0040117.Opelt, K., Berg, C., & Berg, G. (2007). The bryophyte genus Sphagnum is a reservoir for powerful and extraordinary antagonists and potentially facultative human pathogens. FEMS Microbiology Ecology, 61(1), 38-53. doi:10.1111/ j.1574-6941.2007.00323.x.Ortiz, N., Armada, E., Duque, E., Roldán, A., & Azcón, R. (2015). Contribution of arbuscular mycorrhizal fungi and/or bacteria to enhancing plant drought tolerance under natural soil conditions: Effectiveness of autochthonous or allochthonous strains. Journal of Plant Physiology, 174, 87-96. doi:10.1016/j.jplph.2014.08.019.Palmer, C., Bik, E. M., DiGiulio, D. B., Relman, D. A., & Brown, P. O. (2007). Development of the human infant intestinal microbiota. PLoS Biology, 5(7), e177. doi:10.1371/journal.pbio.0050177.Panke-Buisse, K., Poole, A. C., Goodrich, J. K., Ley, R. E., & Kao-Kniffin, J. (2015). Selection on soil microbiomes reveals reproducible impacts on plant function. The ISME Journal, 9(4), 980-989. doi:10.1038/ismej.2014.196.Pera, J., & Calvet, C. (1989). Suppression of Fusarium wilt of carnation in a composted pine bark and a composted olive pumice. Plant Disease, 73(8), 699-700. doi:10.1094/ PD-73-0699.Philippot, L., Hallin, S., Börjesson, G., & Baggs, E. M. (2009). Biochemical cycling in the rhizosphere having an impact on global change. Plant and Soil, 321, 61-81. doi:10.1007/ s11104-008-9796-9.Phytobiomes (2016). Phytobiomes: A roadmap for research and translation. Recuperado de https://goo.gl/haofjs.Ramesh, R., Joshi, A. A., & Ghanekar, M. P. (2009). Pseudomonads: major antagonistic endophytic bacteria to suppress bacterial wilt pathogen, Ralstonia solanacearum in the eggplant (Solanum melongena L.). World Journal of Microbiology and Biotechnology, 25(1), 47-55. doi:10.1007/ s11274-008-9859-3.Ravel, J., Gajer, P., Abdo, Z., Schneider, G. M., Koenig, S. S. K., McCulle, S. L., ... Forney, L. J. (2011). Vaginal microbiome of reproductive-age women. Proceedings of the National Academy of Sciences of the United States of America, 108(Suppl. 1), 4680-4687. doi:10.1073/ pnas.1002611107.Redacción Economía (4 de febrero de 2016). Frutas que ProColombia ofrecerá a los alemanes. El Espectador. Recuperado de https://goo.gl/X5q4so.Reid, A., & Greene, S. E. (2013). How microbes can help feed the world. Recuperado de https://goo.gl/GpqkQD.Reuveni, M., Sheglov, D., Sheglov, N., Ben-Arie, R., & Prusky, D. (2002). Sensitivity of red delicious apple fruit at various phenologic stages to infection by Alternaria alternata and moldy-core control. European Journal of Plant Pathology, 108(5), 421-427. doi:10.1023/A:1016063626633.Roder, A., Hoffmann, E., Hagemann, M., & Berg, G. (2005). Synthesis of the compatible solutes glucosylglycerol and trehalose by salt-stressed cells of Stenotrophomonas strains. FEMS Microbiology Letters, 243(1), 219-226. doi:10.1016/j.femsle.2004.12.005.Rout, M. E., & Southworth, D. (2013). The root microbiome influences scales from molecules to ecosystems: The unseen majority. American Journal of Botany, 100(9), 1689-1691. doi:10.3732/ajb.1300291.Ryan, R. P., Monchy, S., Cardinale, M., Taghavi, S., Crossman, L., Avison, M. B., ... Dow, J. M. (2009). The versatility and adaptation of bacteria from the genus Stenotrophomonas. Nature Reviews. Microbiology, 7(7), 514-525. doi:10.1038/nrmicro2163.Santhanam, R., Luu, V. T., Weinhold, A., Goldberg, J., Oh, Y., & Baldwin, I. T. (2015). Native root-associated bacteria rescue a plant from a sudden-wilt disease that emerged during continuous cropping. Proceedings of the National Academy of Sciences of the United States of America, 112(36), E5013-E5020. doi:10.1073/pnas.1505765112.Scherwinski, K., Grosch, R., & Berg, G. (2008). Effect of bacterial antagonists on lettuce: active biocontrol of Rhizoctonia solani and negligible, short-term effects on nontarget microorganisms. FEMS Microbiology Ecology, 64(1), 106-116. doi:10.1111/j.1574-6941.2007.00421.x.Schlaeppi, K., & Bulgarelli, D. (2014). The plant microbiome at work. Molecular Plant-Microbe Interactions MPMI, 28(3), 212-217. doi:10.1094/MPMI-10-14-0334-FI.Schmid, F., Moser, G., Müller, H., & Berg, G. (2011). Functional and structural microbial diversity in organic and conventional viticulture: Organic farming benefits natural biocontrol agents. Applied and Environmental Microbiology, 77(6), 2188-2191. doi:10.1128/aem.02187-10.Schönfeld, J., Gelsomino, A., Van Overbeek, L. S., Gorissen, A., Smalla, K., & Van Elsas, J. D. (2003). Effects of compost addition and simulated solarisation on the fate of Ralstonia solanacearum biovar 2 and indigenous bacteria in soil. FEMS Microbiology Ecology, 43(1), 63-74. doi:10.1111/j.1574-6941.2003.tb01046.x.Selosse, M.-A., Bessis, A., & Pozo, M. J. (2014). Microbial priming of plant and animal immunity: symbionts as developmental signals. Trends in Microbiology, 22(11), 607-613. doi:10.1016/j.tim.2014.07.003.Sender, R., Fuchs, S., & Milo, R. (2016). Revised estimates for the number of human and bacteria. Cells in the Body. PLoS Biology, 14(8), e1002533. doi:10.1371/journal. pbio.1002533.Shen, Z., Ruan, Y., Xue, C., Zhong, S., Li, R., & Shen, Q. (2015). Soils naturally suppressive to banana Fusarium wilt disease harbor unique bacterial communities. Plant and Soil, 393(1), 21-33. doi:10.1007/s11104-015-2474-9.Singh, B. K., Bardgett, R. D., Smith, P., & Reay, D. S. (2010). Microorganisms and climate change: terrestrial feedbacks and mitigation options. Nature Reviews. Microbiology, 8(11), 779-790. doi:10.1038/nrmicro2439.Soman, C., Li, D., Wander, M. M., & Kent, A. D. (2017). Long-term fertilizer and crop-rotation treatments differentially affect soil bacterial community structure. Plant and Soil, 413(1-2), 145-159. doi:10.1007/s11 104-016-3083-yStulberg, E., Fravel, D., Proctor, L. M., Murray, D. M., LoTempio, J., Chrisey, L., ... Records, A. (2016). An assessment of US microbiome research. Nature Microbiology, 1(1), 1-7. doi:10.1038/nmicrobiol.2015.15.Swanson, J. K., Yao, J., Tans-Kersten, J., & Allen, C. (2005). Behavior of Ralstonia solanacearum race 3 biovar 2 during latent and active infection of geranium. Phytopathology, 95(2), 136-143. doi:10.1094/PHYTO-95-0136.Szczech, M., Rondomański, W., Brzeski, M. W., Smolińska, U., & Kotowski, J. F. (1993). Suppressive effect of a commercial earthworm compost on some root infecting pathogens of cabbage and tomato. Biological Agriculture & Horticulture, 10(1), 47-52. doi:10.1080/01448765.19 93.9754650.Tan, H. M., Cao, L. X., He, Z. F., Su, G. J., Lin, B., & Zhou, S. N. (2006). Isolation of endophytic actinomycetes from different cultivars of tomato and their activities against Ralstonia solanacearum in vitro. World Journal of Microbiology and Biotechnology, 22(12), 1275-1280. doi:10.1007/s11274-006-9172-y.Tang, W. H. W., Wang, Z., Levison , B. S., Koeth , R. A., Britt , E. B., Fu, X., ... Hazen , S.L. (2013). Intestinal microbial metabolism of Phosphatidylcholine and cardiovascular risk. The New England Journal of Medicine, 368(17), 1575-1584. doi:10.1056/NEJMoa1109400.Teplitski, M., Warriner, K., Bartz, J., & Schneider, K. R. (2011). Untangling metabolic and communication networks: interactions of enterics with phytobacteria and their implications in produce safety. Trends in Microbiology, 19(3), 121-127. doi:10.1016/j.tim.2010.11.007.Theis, K. R., Dheilly, N. M., Klassen, J. L., Brucker, R. M., Baines, J. F., Bosch, T. C. G., ... Bordenstein, S. R. (2016). Getting the hologenome concept right: an ecoevolutionary framework for hosts and their microbiomes. mSystems, 1(2), e00028-16. doi:10.11 28/mSystems.00028-16.Toju, H., Tanabe, A. S., Yamamoto, S., & Sato, H. (2012). High-Coverage its primers for the dna-based identification of ascomycetes and basidiomycetes in environmental samples. PLoS One, 7(7), e40863. http:// doi.org/10.1371/journal.pone.0040863Turnbaugh, P. J., Ley, R. E., Hamady, M., Fraser-Liggett, C., Knight, R., & Gordon, J. I. (2007). The human microbiome project: exploring the microbial part of ourselves in a changing world. Nature, 449(7164), 804- 810. doi:10.1038/nature06244.Turner, T. R., James, E. K., & Poole, P. S. (2013). The plant microbiome. Genome Biology, 14(6), 209. doi:10.1186/ gb-2013-14-6-209.Tyler, H. L., & Triplett, E. W. (2008). Plants as a habitat for beneficial and/or human pathogenic bacteria. Annual Review of Phytopathology, 46(1), 53-73. doi:10.1146/ annurev.phyto.011708.103102. Van Baarlen, P.,Van Belkum, A., Summerbell, R. C., Crous, P. W., & Thomma, B. P. (2007). Molecular mechanisms of pathogenicity: how do pathogenic microorganisms develop cross-kingdom host jumps? fems Microbiology Reviews, 31(3), 239-277. doi:10.1111/j.1574-6976.2007.00065.x.Van Elsas, J. D., Chiurazzi, M., Mallon, C. A., Elhottovā, D., Krištůfek, V., & Salles, J. F. (2012). Microbial diversity determines the invasion of soil by a bacterial pathogen. Proceedings of the National Academy of Sciences of the United States of America, 109(4), 1159-1164. doi:10.1073/ pnas.1109326109.Van Elsas, J. D., Kastelein, P., De Vries, P. M., & Van Overbeek, L. S. (2001). Effects of ecological factors on the survival and physiology of Ralstonia solanacearum bv. 2 in irrigation water. Canadian Journal of Microbiology, 47(9), 842-854. doi:10.1139/w01-084. Van Overbeek, L. S.,Van Doorn, J., Wichers, J. H., Van Amerongen, A., Van Roermund, H. J., & Willemsen, P. T. (2014). The arable ecosystem as battleground for emergence of new human pathogens. Frontiers in Microbiology, 5, 104. doi:10.3389/fmicb.2014.00104Vandenkoornhuyse, P., Quaiser, A., Duhamel, M., Le Van, A., & Dufresne, A. (2015). The importance of the microbiome of the plant holobiont. The New Phytologist, 206(4), 1196-1206. doi:10.1111/nph.13312.Vorholt, J. A. (2012). Microbial life in the phyllosphere. Nature Reviews. Microbiology, 10(12), 828-840. doi:10.1038/ nrmicro2910.Wagner, M. R., Lundberg, D. S., Coleman-Derr, D., Tringe, S. G., Dangl, J. L., & Mitchell-Olds, T. (2014). Natural soil microbes alter flowering phenology and the intensity of selection on flowering time in a wild Arabidopsis relative. Ecology Letters, 17(6), 717-726. doi:10.1111/ele.12276.Wei, Z., Huang, J., Tan, S., Mei, X., Shen, Q., & Xu, Y. (2013). The congeneric strain Ralstonia pickettii QL-A6 of Ralstonia solanacearum as an effective biocontrol agent for bacterial wilt of tomato. Biological Control, 65(2), 278- 285. doi:10.1016/j.biocontrol.2012.12.010.Wei, Z., Yang, T., Friman, V.-P., Xu, Y., Shen, Q., & Jousset, A. (2015). Trophic network architecture of rootassociated bacterial communities determines pathogen invasion and plant health. Nature Communications, 6, 8413. doi:10.1038/ncomms9413.Weller, D. M., Raaijmakers, J. M., Gardener, B. B., & Thomashow, L. S. (2002). Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annual Review of Phytopathology 40, 309-348. doi:10.1146/annurev.phyto.40.030402.110010.Whitman, W. B., Coleman, D. C., & Wiebe, W. J. (1998). Prokaryotes: The unseen majority. Proceedings of the National Academy of Sciences, 95(12), 6578-6583. doi:10.1073/pnas.95.12.6578.Widder, S., Allen, R. J., Pfeiffer, T., Curtis, T. P., Wiuf, C., Sloan, W. T., ... Soyer, O. S. (2016). Challenges in microbial ecology: building predictive understanding of community function and dynamics. The ISME Journal, 10(11), 2557-2568. doi:10.1038/ismej.2016.45.Wisniewski, M., Droby, S., Norelli, J., Liu, J., & Schena, L. (2016). Alternative management technologies for postharvest disease control: The journey from simplicity to complexity. Postharvest Biology and Technology, 122, 3-10. doi:10.1016/j.postharvbio.2016.05.012.Wubs, E. R. J., Van der Putten, W. H., Bosch, M., & Bezemer, T. M. (2016). Soil inoculation steers restoration of terrestrial ecosystems. Nature Plants, 2(8), 16107. doi:10.1038/nplants.2016.107.Xue, Q.-Y., Chen, Y., Li, S.-M., Chen, L.-F., Ding, G.-C., Guo, D.-W., Guo, J.-H. (2009). Evaluation of the strains of Acinetobacter and Enterobacter as potential biocontrol agents against Ralstonia wilt of tomato. Biological Control, 48(3), 252-258. doi:10.1016/j.biocontrol.2008.11.004.Yabuuchi, E., Kosako, Y., Yano, I., Hotta, H., & Nishiuchi, Y. (1995). Transfer of two Burkholderia and an Alcaligenes species to Ralstonia gen. Microbiology and Immunology, 39(11), 897-904. doi:10.1111/j.1348-0421.1995. tb03275.x.Yatsunenko, T., Rey, F. E., Manary, M. J., Trehan, I., Dominguez-Bello, M.G., Contreras, M., ... Gordon, J. I. (2012). Human gut microbiome viewed across age and geography. Nature, 486(7402), 222-227. doi:10.1038/ nature11053.Zachow, C., Berg, C., Müller, H., Meincke, R., KomonZelazowska, M., Druzhinina, I. S., ... Berg, G. (2009). Fungal diversity in the rhizosphere of endemic plant species of Tenerife (Canary Islands): relationship to vegetation zones and environmental factors. The isme Journal, 3(1), 79. doi:10.1038/ismej.2008.87.Zacky, F. A., & Ting, A. S. Y. (2013). Investigating the bioactivity of cells and cell-free extracts of Streptomyces griseus towards Fusarium oxysporum f. sp. cubense race 4. Biological Control, 66(3), 204-208. doi:10.1016/j. biocontrol.2013.06.001.33829 ; Control biológico de fitopatógenos, insectos y ácaros: agentes de control biológico. V. 1 LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repository.agrosavia.co/bitstream/20.500.12324/34069/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52open accessTHUMBNAILCapítulo 4 mini.pngCapítulo 4 mini.pngimage/png31268https://repository.agrosavia.co/bitstream/20.500.12324/34069/3/Cap%c3%adtulo%204%20mini.png691c5352d03e4b4958a3e192484f3cfcMD53open accessVer_Documento_34069.pdf.jpgVer_Documento_34069.pdf.jpgimage/jpeg25315https://repository.agrosavia.co/bitstream/20.500.12324/34069/5/Ver_Documento_34069.pdf.jpg05bdd42e8a817d5707c1014bb780bc47MD55open accessORIGINALVer_Documento_34069.pdfVer_Documento_34069.pdfapplication/pdf11314934https://repository.agrosavia.co/bitstream/20.500.12324/34069/4/Ver_Documento_34069.pdf7fe9e596ffb9235c60bc23541394491dMD54open access20.500.12324/34069oai:repository.agrosavia.co:20.500.12324/340692024-06-14 14:28:11.459open accessAgrosavia - Corporación colombiana de investigación agropecuariabac@agrosavia.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=