Los hongos endófitos en el control biológico de fitopatógenos e insectos plaga

Los endófitos constituyen un grupo de microorganismos que viven dentro de las plantas, los cuales mantienen asociaciones ligeramente perceptibles con sus plantas hospederas por al menos parte de su ciclo de vida. Su amplia biodiversidad, así como su capacidad de síntesis de metabolitos secundarios,...

Full description

Autores:
Aragón Rodríguez, Sandra Milena
Beltrán Acosta, Camilo Rubén
Tipo de recurso:
Part of book
Fecha de publicación:
2018
Institución:
Agrosavia
Repositorio:
Agrosavia
Idioma:
spa
OAI Identifier:
oai:repository.agrosavia.co:20.500.12324/34157
Acceso en línea:
http://hdl.handle.net/20.500.12324/34157
Palabra clave:
Enfermedades de las plantas - H20
Control biológico
Formulaciones
Interacción biológica
Mecanismos de acción
Agentes de control biológico
Transversal
Rights
License
Attribution-NonCommercial-ShareAlike 4.0 International
id Agrosavia2_a1665f6aeac9391eec727e245a3ea575
oai_identifier_str oai:repository.agrosavia.co:20.500.12324/34157
network_acronym_str Agrosavia2
network_name_str Agrosavia
repository_id_str
dc.title.spa.fl_str_mv Los hongos endófitos en el control biológico de fitopatógenos e insectos plaga
dc.title.translated.eng.fl_str_mv Endophytic fungi in biological control of phytopathogens and insect pests
title Los hongos endófitos en el control biológico de fitopatógenos e insectos plaga
spellingShingle Los hongos endófitos en el control biológico de fitopatógenos e insectos plaga
Enfermedades de las plantas - H20
Control biológico
Formulaciones
Interacción biológica
Mecanismos de acción
Agentes de control biológico
Transversal
title_short Los hongos endófitos en el control biológico de fitopatógenos e insectos plaga
title_full Los hongos endófitos en el control biológico de fitopatógenos e insectos plaga
title_fullStr Los hongos endófitos en el control biológico de fitopatógenos e insectos plaga
title_full_unstemmed Los hongos endófitos en el control biológico de fitopatógenos e insectos plaga
title_sort Los hongos endófitos en el control biológico de fitopatógenos e insectos plaga
dc.creator.fl_str_mv Aragón Rodríguez, Sandra Milena
Beltrán Acosta, Camilo Rubén
dc.contributor.author.none.fl_str_mv Aragón Rodríguez, Sandra Milena
Beltrán Acosta, Camilo Rubén
dc.subject.fao.spa.fl_str_mv Enfermedades de las plantas - H20
topic Enfermedades de las plantas - H20
Control biológico
Formulaciones
Interacción biológica
Mecanismos de acción
Agentes de control biológico
Transversal
dc.subject.agrovoc.spa.fl_str_mv Control biológico
Formulaciones
Interacción biológica
Mecanismos de acción
Agentes de control biológico
dc.subject.red.spa.fl_str_mv Transversal
description Los endófitos constituyen un grupo de microorganismos que viven dentro de las plantas, los cuales mantienen asociaciones ligeramente perceptibles con sus plantas hospederas por al menos parte de su ciclo de vida. Su amplia biodiversidad, así como su capacidad de síntesis de metabolitos secundarios, promoción de crecimiento e inducción de resistencia sistémica, entre otras características, hacen de los hongos endófitos una alternativa de alto potencial para su aplicación en el manejo de insectos plaga y enfermedades en cultivos de importancia agrícola en Colombia y en el resto del mundo. Sin embargo, el estudio de microorganismos endófitos es un área relativamente nueva en la investigación: su biología y las bases moleculares de la interacción plantaendófito se encuentran aún poco exploradas para el caso de los hongos que colonizan plantas vasculares, lo cual reduce el espectro de desarrollo de nuevos productos a base de endófitos, dada la dificultad de generar una formulación que garantice la permanencia del hongo fuera de la planta hospedera y permita la penetración del mismo en diferentes momentos de desarrollo de esta. En este capítulo, se tratarán temas relacionados con su mecanismo de acción, patrones de colonización, formulación y técnicas de aplicación en campo y algunos casos exitosos del uso de hongos endófitos comercialmente disponibles para el manejo de algunos fitopatógenos e insectos plaga.
publishDate 2018
dc.date.accessioned.none.fl_str_mv 2018-12-05T14:19:41Z
dc.date.available.none.fl_str_mv 2018-12-05T14:19:41Z
dc.date.issued.none.fl_str_mv 2018
dc.type.localeng.eng.fl_str_mv book part
dc.type.local.spa.fl_str_mv Capítulo
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_3248
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bookPart
dc.type.redcol.none.fl_str_mv https://purl.org/redcol/resource_type/CAP_LIB
dc.type.version.none.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
format http://purl.org/coar/resource_type/c_3248
dc.identifier.isbn.none.fl_str_mv 978-958-740-254-4 (e-book)
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12324/34157
dc.identifier.reponame.spa.fl_str_mv reponame:Biblioteca Digital Agropecuaria de Colombia
dc.identifier.repourl.none.fl_str_mv repourl:https://repository.agrosavia.co
dc.identifier.instname.spa.fl_str_mv instname:Corporación colombiana de investigación agropecuaria AGROSAVIA
identifier_str_mv 978-958-740-254-4 (e-book)
reponame:Biblioteca Digital Agropecuaria de Colombia
repourl:https://repository.agrosavia.co
instname:Corporación colombiana de investigación agropecuaria AGROSAVIA
url http://hdl.handle.net/20.500.12324/34157
dc.language.iso.none.fl_str_mv spa
language spa
dc.relation.citationstartpage.none.fl_str_mv 850
dc.relation.citationendpage.none.fl_str_mv 877
dc.relation.references.spa.fl_str_mv Akello, J., Dubois, T., Coyne, D., & Kyamanywa, S. (2008). Endophytic Beauveria bassiana in banana (Musa spp.) reduces banana weevil (Cosmopolites sordidus) fitness and damage. Crop Protection, 27(11), 1437-1441. doi:10.1016/j.cropro.2008.07.003.
Anjitha, G. (2017). Role of endophytes in insect control. Acta Scientific Agriculture, 1(4), 1-3. Recuperado de https:// actascientific.com/ASAG/pdf/ASAG-01-0025.pdf.
Aragón, S. M. (2016). How entomopathogenic endophytic fungi modulate plant-insect interactions (tesis doctoral). Universidad de Gotinga, Gotinga, Alemania.
Arnold, A. E., Mejía, L. C., Kyllo, D., Rojas, E. I., Maynard, Z., … Herre, E. A. (2003). Fungal endophytes limit pathogen damage in a tropical tree. Proceedings of the National Academy of Sciences of the United States of America, 100(26), 15649-15654. doi:10.1073/pnas.2533483100
Azevedo, J. L., Maccheroni Jr, W., Pereira, J. O., & de Araújo, W. L. (2000). Endophytic microorganisms: a review on insect control and recent advances on tropical plants. Electronic Journal of Biotechnology, 3(1) 15-16. doi:10.4067/s0717-34582000000100004.
Backman, P. A., & Sikora, R. A. (2008). Endophytes: An emerging tool for biological control. Biological Control, 46(1), 1-3. doi:10.1016/j.biocontrol.2008.03.009.
Bailey, B., Bae, H., Crozier, J., Thomas, S., Samuels, G. J., Vinyard, B. T., & Holmes, K. (2008). Antibiosis, mycoparasitism, and colonization success for endophytic Trichoderma isolates with biological control potential in Theobroma cacao. Biological Control, 46(1), 24-35. doi:10.1016/j.biocontrol.2008.01.003.
Battaglia, D., Bossi, S., Cascone, P., Digilio, M. C., Prieto, J. D., Fanti, P., ... Trotta, V. (2013). Tomato below ground– above ground interactions: Trichoderma longibrachiatum affects the performance of Macrosiphum euphorbiae and its natural antagonists. Molecular Plant-Microbe Interactions, 26(10), 1249-1256. doi:10.1094/MPMI-02-13-0059-R.
Behie, S. W., Jones, S. J., & Bidochka, M. J. (2015). Plant tissue localization of the endophytic insect pathogenic fungi Metarhizium and Beauveria. Fungal Ecology, 13, 112-119. doi:10.1016/j.funeco.2014.08.001.
Bischoff, J., & White, J.F., Jr. (2005). Evolutionary development of the Clavicipitaceae. En: J. Dighton, J. F. White, & P. Oudemans (Eds.), The fungal community: Its organization and role in the ecosystem (pp. 505-518, 3. a ed.). Boca Raton, EE. UU.: Taylor & Francis.
Biswas, C., Dey, P., Satpathy, S., & Satya, P. (2012). Establishment of the fungal entomopathogen Beauveria bassiana as a season long endophyte in jute (Corchorus olitorius) and its rapid detection using scar marker. BioControl, 57(4), 565-571. doi:10.1007/s10526-011- 9424-0.
Bolwerk, A., Lagopodi, A. L., Lugtenberg, B. J. J., & Bloemberg, G. V. (2005). Visualization of interactions between a pathogenic and a beneficial Fusarium strain during biocontrol of tomato foot and root rot. Molecular Plant-Microbe Interactions, 18(7), 710-721. doi:10.1094/ MPMI-18-0710.
Camino-Sánchez, F. J., Zafra-Gómez, A., Ruiz-García, J., Bermúdez-Peinado, R., Ballesteros, O., Navalon, A., & Vílchez, J. L. (2011). UNE-EN ISO/IEC 17025:2005 accredited method for the determination of 121 pesticide residues in fruits and vegetables by gas chromatographytandem mass spectrometry.Journal of Food Composition and Analysis, 23(3), 427-440. doi:10.1016/j.jfca.2010.11.009.
Card, S., Johnson, L., Teasdale, S., & Caradus, J. (2016). Deciphering endophyte behaviour: the link between endophyte biology and efficacious biological control agents. FEMS Microbiology Ecology, 92(8), fiw114. doi.10.1093/femsec/fiw114.
Clay, K., & Schardl, C. L. (2002). Evolutionary origins and ecological consequences of endophyte symbiosis with grasses. The American Naturalist, 160(Suppl. 4), 99-127. doi:10.1086/342161.
Crowder, D. W., & Harwood, J. D. (2014). Promoting biological control in a rapidly changing world. Biological Control, 75, 1-7. doi:10.1016/j.biocontrol.2014.04.009.
De Souza, J. T., Bailey, B. A., Pomella, A. W. V., Erbe, E. F., Murphy, C. A., Bae, H., & Hebbar, P. K. (2008). Colonization of cacao seedlings by Trichoderma stromaticum, a mycoparasite of the witches' broom pathogen, and its influence on plant growth and resistance. Biological Control, 46(1), 36-45. doi:10.1016/j. biocontrol.2008.01.010.
De Souza, J. T., Pomella, A. W. V., Bowers, J. H., Pirovani, C. P., Loguercio, L. L., & Hebbar, K. P. (2006). Genetic and biological diversity of Trichoderma stromaticum, a mycoparasite of the cacao witches'-broom pathogen. Phytopathology, 96(1), 61-67. doi:10.1094/ PHYTO-96-0061
Dicke, M., Van Loon, J. J. a., & Soler, R. (2009). Chemical complexity of volatiles from plants induced by multiple attack. Nature Chemical Biology, 5(5), 317-324. doi:10.1038/nchembio.169.
Duijff, B. J., Pouhair, D., Olivain, C., Alabouvette, C., & Lemanceau, P. (1998). Implication of systemic induced resistance in the suppression of Fusarium wilt of tomato by Pseudomonas fluorescens WCS417r and by nonpathogenic Fusarium oxysporum Fo47. European Journal of Plant Pathology, 104(9), 903-910. doi:10.1023/A:1008626212305.
Dutta, D., Puzari, K.C., Gogoi, R., & Dutta, P. (2014). Endophytes: exploitation as a tool in plant protection. Brazilian Archives of Biology and Technology, 57(5), 621- 629. doi:10.1590/S1516-8913201402043.
European Food Safety Authority (EFSA). (2012). Conclusion on the peer review of the pesticide risk assessment of the active substance Metarhizium anisopliae var. anisopliae Bipesco 5/F52. European Food Safety Authority Journal, 10(1), 2498. doi:10.2903/j.efsa.2012.2498.
European Food Safety Authority (EFSA). (2013). Conclusion on the peer review of the pesticide risk assessment of the active substances Beauveria bassiana strains ATCC-74040 and GHA1. European Food Safety Authority Journal, 11(1), 3031. doi:10.2903/j.efsa.2013.3031.
Faeth, S. H., Gardner, D. R., Hayes, C. J., Jani, A., Wittlinger, S. K., & Jones, T. A. (2006). Temporal and spatial variation in alkaloid levels in Achnatherum robustum, a native grass infected with the endophyte Neotyphodium. Journal of Chemical Ecology, 32(2), 307-324. doi:10.1007/ s10886-005-9003-x
Faeth, S. H., & Sullivan, T. J. (2003). Mutualistic asexual endophytes in a native grass are usually parasitic. The American Naturalist, 161(2), 310-325. doi:10.1086/345937.
Feldmann, F., & Hommes, M. (2013). Endophytes for plant protection: the registration process at a glance. En: C. Schneider, C. Leifert, & F. Feldmann (Eds.), Endophytes for plant protection: the state of the art (pp. 214-222). Braunschweig, Alemania: Deutsche Phytomedizinische Gesellschaft.
Fuchs, J. G., Moënne-Loccoz, Y., & Défago, G. (1997). Nonpathogenic Fusarium oxysporum strain Fo47 induces resistance to Fusarium wilt in tomato. Plant Disease, 81(5), 492-496. doi:10.1094/PDIS.1997.81.5.492.
Garrido-Jurado, I., Resquín-Romero, G., Amarilla, S. P., Ríos-Moreno, A., Carrasco, L., & Quesada-Moraga, E. (2017). Transient endophytic colonization of melon plants by entomopathogenic fungi after foliar application for the control of Bemisia tabaci Gennadius (Hemiptera: Aleyrodidae). Journal of Pest Science, 90(1), 319-330. doi:10.1007/s10340-016-0767-2.
Gunatilaka, A. A. L. (2006). Natural products from plantassociated microorganisms: Distribution, structural diversity, bioactivity, and implications of their occurrence. Journal of Natural Products, 69(3), 509-526. doi:10.1021/ np058128n.
Herre, E. A., Mejía, L. C., Kyllo, D. A., Rojas, E., Maynard, Z., Butler, A., & Van Bael, S. A. (2007). Ecological implications of anti-pathogen effects of tropical fungal endophytes and mycorrhizae. Ecology, 88(3), 550-558. doi:10.1890/05-1606.
Hu, G., & Leger, R. J. S. (2002). Field studies using a recombinant mycoinsecticide (Metarhizium anisopliae) reveal that it is rhizosphere competent. Applied and Environmental Microbiology, 68(12), 6383-6387. doi:10.1128/AEM.68.12.6383.
Jaber, L. R., & Ownley, B. H. (2018). Can we use entomopathogenic fungi as endophytes for dual biological control of insect pests and plant pathogens? Biological Control, 116, 36-45. doi:10.1016/j. biocontrol.2017.01.018.
Jaber, L. R., & Vidal, S. (2009). Interactions between an endophytic fungus, aphids and extrafloral nectaries: Do endophytes induce extrafloral-mediated defences in Vicia faba? Functional Ecology, 23(4): 707-714. doi:10.1111/ j.1365-2435.2009.01554.x.
Jacobson, R. J., Chandler, D., J. Fenlon, J., & Russell, K. M. (2001). Compatibility of Beauveria bassiana (Balsamo) Vuillemin with Amblyseius cucumeris Oudemans (Acarina: Phytoseiidae) to control Frankliniella occidentalis Pergande (Thysanoptera: Thripidae) on Cucumber plants. Biocontrol Science and Technology, 11(3), 391-400. doi:10.1080/09583150120055808.
Jaimes, Y. Y., Moreno, C. A., & Cotes, A. M. (2009). Inducción de resistencia sistémica contra Fusarium oxysporum en tomate por Trichoderma koningiopsis th003. Acta Biológica Colombiana, 14(3), 111-120. Recuperado de https://revistas.unal.edu.co/index.php/actabiol/article/ view/1344/14224.
Jaimes, Y., & Aranzazu, F. (2010). Manejo de las enfermedades del cacao (Theobroma cacao L.) en Colombia, con énfasis en monilia (Moniliophthora roreri). Recuperado de http:// www.fedecacao.com.co/site/images/recourses/pub_ doctecnicos/fedecacao-pub-doc_04A.pdf.
Jallow, M. F. A., Dugassa-Gobena, D., & Vidal, S. (2008). Influence of an endophytic fungus on host plant selection by a polyphagous moth via volatile spectrum changes. Arthropod-Plant Interactions, 2(1), 53-62. doi:10.1007/ s11829-008-9033-8.
Jani, A. J., Faeth, S. H., & Gardner, D. (2010). Asexual endophytes and associated alkaloids alter arthropod community structure and increase herbivore abundances on a native grass. Ecology Letters, 13(1), 106-117. doi:10.1111/j.1461-0248.2009.01401.x.
Krell, V., Jakobs-Schoenwandt, D., Vidal, S., & Patel, A. V. (2018). Encapsulation of Metarhizium brunneum enhances endophytism in tomato plants. Biological Control, 116, 62- 73. doi:10.1016/j.biocontrol.2017.05.004.
Kumar, J., Schafer, P., Huckelhoven, R., Langen, G., Baltruschat, H., Stein, E., Nagarajan, S., & Kogel, K.-H. (2002). Bipolaris sorokiniana, a cereal pathogen of global concern: cytological and molecular approaches towards better control. Molecular Plant Pathology, 3(4), 185-195. doi:10.1046/j.1364-3703.2002.00120.x.
Landa, B. B., López-Díaz, C., Jiménez-Fernández, D., MontesBorrego, M., Muñoz-Ledesma, F. J., Ortiz-Urquiza, A., & Quesada-Moraga, E. (2013). In-planta detection and monitorization of endophytic colonization by a Beauveria bassiana strain using a new-developed nested and quantitative PCR-based assay and confocal laser scanning microscopy. Journal of Invertebrate Pathology, 114(2), 128- 138. doi:10.1016/j.jip.2013.06.007.
Lopez, D. C., & Sword, G. A. (2015). The endophytic fungal entomopathogens Beauveria bassiana and Purpureocillium lilacinum enhance the growth of cultivated cotton (Gossypium hirsutum) and negatively affect survival of the cotton bollworm (Helicoverpa zea). Biological Control, 89, 53-60. doi:10.1016/j.biocontrol.2015.03.010.
Macías-Rubalcava, M. L., Hernández-Bautista, B. E., Oropeza, F., Duarte, G., González, M. C., Glenn, A. E., Hanlin, R. T., & Anaya, A. L. (2010). Allelochemical Effects of Volatile Compounds and Organic Extracts from Muscodor yucatanensis, a Tropical Endophytic Fungus from Bursera simaruba. Journal of Chemical Ecology, 36(10), 1122-1131. doi:10.1007/s10886-010-9848-5.
Martin, J. H., Mifsud, D., & Rapisarda, C. (2000). The whiteflies (Hemiptera: Aleyrodidae) of Europe and mediterranean basin. Bulletin of Entomological Research, 90(5), 407-448. doi:10.1017/S0007485300000547.
Mayoral, F., Benuzzi, M., & Ladurner, E. (2006). Efficacy of the Beauveria bassiana strain ATCC 74040 (Naturalis®) against whiteflies on protected crops. iobc/wprs Bulletin, 29(4), 83-88.
Mejía, L. C., Herre, E. A., Sparks, J. P., Winter, K., García, M. N., Van Bael, S. A., … Bulgheresi, S. (2014). Pervasive effects of a dominant foliar endophytic fungus on host genetic and phenotypic expression in a tropical tree. Frontiers in Microbiology, 5, 479. doi:10.3389/ fmicb.2014.00479.
Michaud, J. P., Pell, J. K., & Vega, F. E. (2017). When insect endosymbionts and plant endophytes mediate biological control outcomes. Biological Control, 116, 1-2. doi:10.1016/j.biocontrol.2017.11.003.
Moon, Y. -S., Donzelli, B. G. G., Krasnoff, S. B., McLane, H., Griggs, M. H., Cooke, P., … Churchill, A. C. L. (2008). Agrobacterium-mediated disruption of a nonribosomal peptide synthetase gene in the invertebrate pathogen Metarhizium anisopliae reveals a peptide spore factor. Applied and Environmental Microbiology, 74(14), 4366- 4380. doi:10.1128/AEM.00285-08
Nielsen, C., Vestergaard, S., Harding, S., Wolsted, C., & Eilenberg, J. (2006). Biocontrol science and technology biological control of Strophosoma spp. (Coleoptera : Curculionidae) in greenery (Abies procera) plantations using Hyphomycetes. Biocontrol Science and Technology, 16(6), 583-598. doi:10.1080/09583150500532824.
Ownley, B. H., Griffin, M. R., Klingeman, W. E., Gwinn, K. D., Moulton, J. K., & Pereira, R. M. (2008). Beauveria bassiana: endophytic colonization and plant disease control. Journal of Invertebrate Pathology, 98(3), 267-270. doi:10.1016/j.jip.2008.01.010.
Ownley, B. H., Gwinn, K. D., & Vega, F. E. (2010). Endophytic fungal entomopathogens with activity against plant pathogens: Ecology and evolution. BioControl, 55(1), 113-128. doi:10.1007/s10526-009-9241-x.
Parsa, S., Ortiz, V., & Vega, F. E. (2013). Establishing fungal entomopathogens as endophytes: Towards endophytic biological control. Journal of Visualized Experiments, 74, e50360. doi:10.3791/50360.
Patel, A. (2014). Introduction. En: Jakobs-Schönwandt, D., Döring, M., Patel, A., (Eds.), Application Techniques of Endophytes (pp. 17-22). Bielefeld, Alemania: Fachhochschule Bielefeld.
Pieterse, C. M. J., Poelman, E. H., Van Wees, S. C. M., & Dicke, M. (2013). Induced plant responses to microbes and insects. Frontiers in Plant Science, 4, 475. doi:10.3389/ fpls.2013.00475.
Poelman, E. H., Bruinsma, M., Zhu, F., Weldegergis, B. T., Boursault, A. E., Jongema, Y., … Dicke, M. (2012). Hyperparasitoids use herbivore-induced plant volatiles to locate their parasitoid host. Plos Biology, 10(11), e1001435. doi:10.1371/journal.pbio.1001435.
Posada, F., Aime, M. C., Peterson, S. W., Rehner, S. A., & Vega, F. E. (2007). Inoculation of coffee plants with the fungal entomopathogen Beauveria bassiana (Ascomycota: Hypocreales). Mycological Research, 111(6), 748-757. doi:10.1016/j.mycres.2007.03.006.
Quesada-Moraga, E., Landa, B. B., Muñoz-Ledesma, J., Jiménez-Diáz, R. M., & Santiago-Álvarez, C. (2006a). Endophytic colonisation of opium poppy, Papaver somniferum, by an entomopathogenic Beauveria bassiana strain. Mycopathologia, 161(5), 323-329. doi:10.1007/ s11046-006-0014-0.
Quesada-Moraga, E., Ruiz-García, A., & Santiago-Alvarez, C. (2006b). Laboratory evaluation of entomopathogenic fungi Beauveria bassiana and Metarhizium anisopliae against puparia and adults of Ceratitis capitata (Diptera: Tephritidae). Journal of Economic Entomology, 99(6), 1955-1966. doi:10.1603/0022-0493-99.6.1955.
Ravensberg, W. J. (2015). Commercialisation of microbes: Present situation and future prospects. En: B. Lugtenberg (Ed.), Principles of plant-microbe interactions: Microbes for sustainable agriculture (pp. 309-317). Leiden, Holanda: Springer International Publishing. doi:10.1007/978-3- 319-08575-3_32.
Resquín-Romero, G., Garrido-Jurado, I., Delso, C., RíosMoreno, A., & Quesada-Moraga, E. (2016). Transient endophytic colonizations of plants improve the outcome of foliar applications of mycoinsecticides against chewing insects. Journal of Invertebrate Pathology, 136, 23-31. doi:10.1016/J.JIP.2016.03.003.
Ríos-Moreno, A., Carpio, A., Garrido-Jurado, I., ArroyoManzanares, N., Lozano-Tovar, M. D., & Arce, L. (2016a). Production of destruxins by Metarhizium strains under different stress conditions and their detection by using UHPLC-MS/MS. Biocontrol Science and Technology, 26(9), 1298-1311. doi:10.1080/09583157.2016.119 5336.
Ríos-Moreno, A., Grarrido-Jurado, I., Resquín-Romero, G., Arroyo-Manzanares, N., Arce, L., & Quesada-Moraga, E. (2016b). Destruxin A production by Metarhizium brunneum strains during transient endophytic colonization of Solanum tuberosum. Biocontrol Science and Technology, 26(11), 1574-1585. doi:10.1080/09583157. 2016.1223274.
Rodriguez-Saona, C., Blaauw, D. R., & Isaacs, R. (2012). Manipulation of natural enemies in agroecosystems: Habitat and semiochemicals for sustainable insect pest control. En: M. L. Larramendy & S. Soloneski (Eds.), Integrated Pest Management and Pest Control – Current and Future Tactics (pp. 89-126). Rijeka, Croacia: InTech.
Rodriguez, R. J., White, J. F., Arnold, A. E., & Redman, R. S. (2009). Fungal endophytes: diversity and functional roles. The new Phytologist, 182(2), 314-330. doi:10.1111/ j.1469-8137.2009.02773.x.
Rohlfs, M., & Churchill, A. C. L. (2011). Fungal secondary metabolites as modulators of interactions with insects and other arthropods. Fungal Genetics and Biology, 48(1), 23-34. doi:10.1016/J.FGB.2010.08.008.
Saikkonen, K., Faeth, S. H., Helander, M., & Sullivan, T. J. (1998). Fungal endophytes: A continuum of interactions with host plants. Annual Review of Ecology and Systematics, 29, 319-343. doi:10.1146/annurev.ecolsys.29.1.319.
Saikkonen, K., Helander, M., Faeth, S. H., Schulthess, F., & Wilson, D. (1999). Endophyte-grass-herbivore interactions: the case of Neotyphodium endophytes in Arizona fescue populations. Oecologia, 121(3), 411-420. doi:10.1007/s004420050946.
Saikkonen, K., Helander, M., Ranta, H., Neuvonen, S., Virtanen, T., Suomela, J., & Vuorinen, P. (1996). Endophyte-mediated interactions between woody plants and insect herbivores? Entomologia Experimentalis et Applicata, 80, 269-271. doi:10.1111/j.1570-7458.1996.tb00932.x
Saikkonen, K., Ion, D., & Gyllenberg, M. (2002). The persistence of vertically transmitted fungi in grass metapopulations. Proceedings of the Royal Society B: Biological Sciences, 269(1498), 1397-1403. doi:10.1098/ rspb.2002.2006.
Sánchez-Fernández, R. E., Sánchez-Ortiz, B. L., SandovalEspinosa, Y. K., Ulloa-Benítez, Á., Armendáriz-Guillén, B., García-Méndez, M. C., & Macías-Rubalcava, M. L. (2013). Hongos endófitos: fuente potencial de metabolitos secundarios bioactivos con utilidad en agricultura y medicina. TIP: Revista Especializada en Ciencias Químico-Biológicas, 16(2), 132-146. doi:10.1016/ S1405-888X(13)72084-9.
Scott, R., & Carris, L. (1996). Endophytic fungi in grasses and woody plants: systematics, ecology, and evolution. Minnesota, EE. UU.: APS Press.
Schulz, B., & Boyle, C. (2005). The endophytic continuum. Mycological Research, 109(6), 661-686. doi:10.1017/ S095375620500273X.
Schulz, B., & Boyle, C. (2006). What are Endophytes? En: B. Schulz, C. Boyle, & T. Sieber (Eds.), Microbial Root Endophytes (Soil Biology, vol. 9, pp. 1-14). Berlín, Alemania: Springer. doi:10.1007/3-540-33526-9.
Singh, L. P., Gill, S. S., & Tuteja, N. (2011). Unraveling the role of fungal symbionts in plant abiotic stress tolerance. Plant Signaling & Behavior, 6(2), 175-191. doi:10.4161/ psb.6.2.14146.
Stone, J. K., Bacon, C. W., & White Jr, J. F. (2000). An overview of endophytic microbes: Endophytism defined. En: C. W. Bacon & J. F. White (Eds.), Microbial Endophytes (pp. 4-5). Nueva York, EE. UU.: Marcel Dekker.
Strobel, G., & Daisy, B. (2003). Bioprospecting for microbial endophytes and their natural products. Microbiology and Molecular Biology Reviews, 67(4), 491-502. doi:10.1128/ MMBR.67.4.491-502.2003.
Sun, X., & Guo, L. G. (2012). Endophytic fungal diversity: review of traditional and molecular techniques. Mycology, 3(1), 65-76. doi:10.1080/21501203.2012.656724.
Szendrei, Z., & Rodriguez-Saona, C. (2010). A metaanalysis of insect pest behavioral manipulation with plant volatiles. Entomologia Experimentalis et Applicata, 134(3), 201-210. doi:10.1111/j.1570-7458.2009.00954.x
Tanaka, A., Tapper, B. A., Popay, A., Parker, E. J., & Scott, B. (2005). A symbiosis expressed non-ribosomal peptide synthetase from a mutualistic fungal endophyte of perennial ryegrass confers protection to the symbiotum from insect herbivory. Molecular Microbiology, 57(4), 1036-1050. doi:10.1111/j.1365-2958.2005.04747.x
Ten Hoopen, G. M., Deberdt, P., Mbenoun, M., & Cilas, C. (2012). Modelling cacao pod growth: implications for disease control. Annals of Applied Biology, 160(3), 260- 272. doi:10.1111/j.1744-7348.2012.00539.x.
Ten Hoopen, G. M., & Krauss, U. (2016). Biological control of cacao diseases. En: B. A. Bailey & L. W. Meinhardt (Eds.), Cacao diseases (pp. 511-566). Cham, Suiza: Springer. doi:10.1007/978-3-319-24789-2_17.
Thakur, A., Kaur, S., Kaur, A., & Singh, V. (2013). Enhanced resistance to Spodoptera litura in endophyte infected cauliflower plants. Environmental Entomology, 42(2), 240- 246. doi:10.1603/EN12001.
Vega, F. E. (2008). Insect pathology and fungal endophytes. Journal of Invertebrate Pathology, 98(3), 277-279. doi:10.1016/j.jip.2008.01.008.
Vega, F. E., Goettel, M. S., Blackwell, M., Chandler, D., Jackson, M. A., Keller, S., … Roy, H. E. (2009). Fungal entomopathogens: new insights on their ecology. Fungal Ecology, 2(4), 149-159. doi:10.1016/J. FUNECO.2009.05.001.
Verma, S., Varma, A., Rexer, K.-H., Hassel, A., Kost, G., Sarbhoy, A., … Franken, P. (1998). Piriformospora indica, gen. et sp. nov., a New root-colonizing fungus. Mycologia, 90(5), 896-896. doi:10.2307/3761331.
Vidal, S., & Jaber, L. R. (2015). Entomopathogenic fungi as endophytes: plant–endophyte–herbivore interactions and prospects for use in biological control. Current Science, 109(1), 46-54.
Waller, F., Achatz, B., Baltruschat, H., Fodor, J., Becker, K., Fischer, M., … Kogel, K. -H. (2005). The endophytic fungus Piriformospora indica reprograms barley to saltstress tolerance, disease resistance, and higher yield. Proceedings of the National Academy of Sciences of the United States of America, 102(38), 13386-13391. doi: 10.1073/pnas.0504423102
Wang, Y., & Guo, L. (2007). A comparative study of endophytic fungi in needles, bark, and xylem of Pinus tabulaeformis. Canadian Journal of Botany, 85(10), 911- 917. doi:10.1139/B07-084
Webber, J. (1981). A natural control of Dutch elm disease. Nature, 292, 449-451. doi:10.1038/292449a0.
Zhang, L. (2014). Colonization pattern of crop plants by endophytic fungi (tesis doctoral). Universidad de Gotinga, Gotinga, Alemania.
dc.relation.ispartofbook.spa.fl_str_mv 33519 ; Control biológico de fitopatógenos, insectos y ácaros: aplicaciones y perspectivas. V. 2
dc.rights.*.fl_str_mv Attribution-NonCommercial-ShareAlike 4.0 International
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
rights_invalid_str_mv Attribution-NonCommercial-ShareAlike 4.0 International
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://purl.org/coar/access_right/c_abf2
dc.format.mimetype.none.fl_str_mv application/pdf
dc.coverage.country.spa.fl_str_mv Colombia
dc.publisher.spa.fl_str_mv ‎‎Corporación colombiana de investigación agropecuaria - AGROSAVIA
institution Agrosavia
bitstream.url.fl_str_mv https://repository.agrosavia.co/bitstream/20.500.12324/34157/2/license.txt
https://repository.agrosavia.co/bitstream/20.500.12324/34157/5/Ver_Documento_34157.pdf
https://repository.agrosavia.co/bitstream/20.500.12324/34157/6/Ver_Documento_34157.pdf.jpg
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
fae700392b0d160a7bdfe43a0c6fe79e
640b537e7d3ca5271d0aff7ebd88cad3
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Agrosavia - Corporación colombiana de investigación agropecuaria
repository.mail.fl_str_mv bac@agrosavia.co
_version_ 1814380247646208000
spelling Aragón Rodríguez, Sandra Milena53623a4c-4fe8-46bb-a669-02a5b2d0fb8f600Beltrán Acosta, Camilo Rubén4a1de6b0-5c4d-4300-9dc7-ab6c196b10ee6002018-12-05T14:19:41Z2018-12-05T14:19:41Z2018978-958-740-254-4 (e-book)http://hdl.handle.net/20.500.12324/34157reponame:Biblioteca Digital Agropecuaria de Colombiarepourl:https://repository.agrosavia.coinstname:Corporación colombiana de investigación agropecuaria AGROSAVIALos endófitos constituyen un grupo de microorganismos que viven dentro de las plantas, los cuales mantienen asociaciones ligeramente perceptibles con sus plantas hospederas por al menos parte de su ciclo de vida. Su amplia biodiversidad, así como su capacidad de síntesis de metabolitos secundarios, promoción de crecimiento e inducción de resistencia sistémica, entre otras características, hacen de los hongos endófitos una alternativa de alto potencial para su aplicación en el manejo de insectos plaga y enfermedades en cultivos de importancia agrícola en Colombia y en el resto del mundo. Sin embargo, el estudio de microorganismos endófitos es un área relativamente nueva en la investigación: su biología y las bases moleculares de la interacción plantaendófito se encuentran aún poco exploradas para el caso de los hongos que colonizan plantas vasculares, lo cual reduce el espectro de desarrollo de nuevos productos a base de endófitos, dada la dificultad de generar una formulación que garantice la permanencia del hongo fuera de la planta hospedera y permita la penetración del mismo en diferentes momentos de desarrollo de esta. En este capítulo, se tratarán temas relacionados con su mecanismo de acción, patrones de colonización, formulación y técnicas de aplicación en campo y algunos casos exitosos del uso de hongos endófitos comercialmente disponibles para el manejo de algunos fitopatógenos e insectos plaga.application/pdfspa‎‎Corporación colombiana de investigación agropecuaria - AGROSAVIAAttribution-NonCommercial-ShareAlike 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-sa/4.0/http://purl.org/coar/access_right/c_abf2Los hongos endófitos en el control biológico de fitopatógenos e insectos plagaEndophytic fungi in biological control of phytopathogens and insect pestsEnfermedades de las plantas - H20Control biológicoFormulacionesInteracción biológicaMecanismos de acciónAgentes de control biológicoTransversalTécnicoProfesionalInvestigadorCientíficobook partCapítulohttp://purl.org/coar/resource_type/c_3248info:eu-repo/semantics/bookParthttps://purl.org/redcol/resource_type/CAP_LIBhttp://purl.org/coar/version/c_970fb48d4fbd8a85Colombia850877Akello, J., Dubois, T., Coyne, D., & Kyamanywa, S. (2008). Endophytic Beauveria bassiana in banana (Musa spp.) reduces banana weevil (Cosmopolites sordidus) fitness and damage. Crop Protection, 27(11), 1437-1441. doi:10.1016/j.cropro.2008.07.003.Anjitha, G. (2017). Role of endophytes in insect control. Acta Scientific Agriculture, 1(4), 1-3. Recuperado de https:// actascientific.com/ASAG/pdf/ASAG-01-0025.pdf.Aragón, S. M. (2016). How entomopathogenic endophytic fungi modulate plant-insect interactions (tesis doctoral). Universidad de Gotinga, Gotinga, Alemania.Arnold, A. E., Mejía, L. C., Kyllo, D., Rojas, E. I., Maynard, Z., … Herre, E. A. (2003). Fungal endophytes limit pathogen damage in a tropical tree. Proceedings of the National Academy of Sciences of the United States of America, 100(26), 15649-15654. doi:10.1073/pnas.2533483100Azevedo, J. L., Maccheroni Jr, W., Pereira, J. O., & de Araújo, W. L. (2000). Endophytic microorganisms: a review on insect control and recent advances on tropical plants. Electronic Journal of Biotechnology, 3(1) 15-16. doi:10.4067/s0717-34582000000100004.Backman, P. A., & Sikora, R. A. (2008). Endophytes: An emerging tool for biological control. Biological Control, 46(1), 1-3. doi:10.1016/j.biocontrol.2008.03.009.Bailey, B., Bae, H., Crozier, J., Thomas, S., Samuels, G. J., Vinyard, B. T., & Holmes, K. (2008). Antibiosis, mycoparasitism, and colonization success for endophytic Trichoderma isolates with biological control potential in Theobroma cacao. Biological Control, 46(1), 24-35. doi:10.1016/j.biocontrol.2008.01.003.Battaglia, D., Bossi, S., Cascone, P., Digilio, M. C., Prieto, J. D., Fanti, P., ... Trotta, V. (2013). Tomato below ground– above ground interactions: Trichoderma longibrachiatum affects the performance of Macrosiphum euphorbiae and its natural antagonists. Molecular Plant-Microbe Interactions, 26(10), 1249-1256. doi:10.1094/MPMI-02-13-0059-R.Behie, S. W., Jones, S. J., & Bidochka, M. J. (2015). Plant tissue localization of the endophytic insect pathogenic fungi Metarhizium and Beauveria. Fungal Ecology, 13, 112-119. doi:10.1016/j.funeco.2014.08.001.Bischoff, J., & White, J.F., Jr. (2005). Evolutionary development of the Clavicipitaceae. En: J. Dighton, J. F. White, & P. Oudemans (Eds.), The fungal community: Its organization and role in the ecosystem (pp. 505-518, 3. a ed.). Boca Raton, EE. UU.: Taylor & Francis.Biswas, C., Dey, P., Satpathy, S., & Satya, P. (2012). Establishment of the fungal entomopathogen Beauveria bassiana as a season long endophyte in jute (Corchorus olitorius) and its rapid detection using scar marker. BioControl, 57(4), 565-571. doi:10.1007/s10526-011- 9424-0.Bolwerk, A., Lagopodi, A. L., Lugtenberg, B. J. J., & Bloemberg, G. V. (2005). Visualization of interactions between a pathogenic and a beneficial Fusarium strain during biocontrol of tomato foot and root rot. Molecular Plant-Microbe Interactions, 18(7), 710-721. doi:10.1094/ MPMI-18-0710.Camino-Sánchez, F. J., Zafra-Gómez, A., Ruiz-García, J., Bermúdez-Peinado, R., Ballesteros, O., Navalon, A., & Vílchez, J. L. (2011). UNE-EN ISO/IEC 17025:2005 accredited method for the determination of 121 pesticide residues in fruits and vegetables by gas chromatographytandem mass spectrometry.Journal of Food Composition and Analysis, 23(3), 427-440. doi:10.1016/j.jfca.2010.11.009.Card, S., Johnson, L., Teasdale, S., & Caradus, J. (2016). Deciphering endophyte behaviour: the link between endophyte biology and efficacious biological control agents. FEMS Microbiology Ecology, 92(8), fiw114. doi.10.1093/femsec/fiw114.Clay, K., & Schardl, C. L. (2002). Evolutionary origins and ecological consequences of endophyte symbiosis with grasses. The American Naturalist, 160(Suppl. 4), 99-127. doi:10.1086/342161.Crowder, D. W., & Harwood, J. D. (2014). Promoting biological control in a rapidly changing world. Biological Control, 75, 1-7. doi:10.1016/j.biocontrol.2014.04.009.De Souza, J. T., Bailey, B. A., Pomella, A. W. V., Erbe, E. F., Murphy, C. A., Bae, H., & Hebbar, P. K. (2008). Colonization of cacao seedlings by Trichoderma stromaticum, a mycoparasite of the witches' broom pathogen, and its influence on plant growth and resistance. Biological Control, 46(1), 36-45. doi:10.1016/j. biocontrol.2008.01.010.De Souza, J. T., Pomella, A. W. V., Bowers, J. H., Pirovani, C. P., Loguercio, L. L., & Hebbar, K. P. (2006). Genetic and biological diversity of Trichoderma stromaticum, a mycoparasite of the cacao witches'-broom pathogen. Phytopathology, 96(1), 61-67. doi:10.1094/ PHYTO-96-0061Dicke, M., Van Loon, J. J. a., & Soler, R. (2009). Chemical complexity of volatiles from plants induced by multiple attack. Nature Chemical Biology, 5(5), 317-324. doi:10.1038/nchembio.169.Duijff, B. J., Pouhair, D., Olivain, C., Alabouvette, C., & Lemanceau, P. (1998). Implication of systemic induced resistance in the suppression of Fusarium wilt of tomato by Pseudomonas fluorescens WCS417r and by nonpathogenic Fusarium oxysporum Fo47. European Journal of Plant Pathology, 104(9), 903-910. doi:10.1023/A:1008626212305.Dutta, D., Puzari, K.C., Gogoi, R., & Dutta, P. (2014). Endophytes: exploitation as a tool in plant protection. Brazilian Archives of Biology and Technology, 57(5), 621- 629. doi:10.1590/S1516-8913201402043.European Food Safety Authority (EFSA). (2012). Conclusion on the peer review of the pesticide risk assessment of the active substance Metarhizium anisopliae var. anisopliae Bipesco 5/F52. European Food Safety Authority Journal, 10(1), 2498. doi:10.2903/j.efsa.2012.2498.European Food Safety Authority (EFSA). (2013). Conclusion on the peer review of the pesticide risk assessment of the active substances Beauveria bassiana strains ATCC-74040 and GHA1. European Food Safety Authority Journal, 11(1), 3031. doi:10.2903/j.efsa.2013.3031.Faeth, S. H., Gardner, D. R., Hayes, C. J., Jani, A., Wittlinger, S. K., & Jones, T. A. (2006). Temporal and spatial variation in alkaloid levels in Achnatherum robustum, a native grass infected with the endophyte Neotyphodium. Journal of Chemical Ecology, 32(2), 307-324. doi:10.1007/ s10886-005-9003-xFaeth, S. H., & Sullivan, T. J. (2003). Mutualistic asexual endophytes in a native grass are usually parasitic. The American Naturalist, 161(2), 310-325. doi:10.1086/345937.Feldmann, F., & Hommes, M. (2013). Endophytes for plant protection: the registration process at a glance. En: C. Schneider, C. Leifert, & F. Feldmann (Eds.), Endophytes for plant protection: the state of the art (pp. 214-222). Braunschweig, Alemania: Deutsche Phytomedizinische Gesellschaft.Fuchs, J. G., Moënne-Loccoz, Y., & Défago, G. (1997). Nonpathogenic Fusarium oxysporum strain Fo47 induces resistance to Fusarium wilt in tomato. Plant Disease, 81(5), 492-496. doi:10.1094/PDIS.1997.81.5.492.Garrido-Jurado, I., Resquín-Romero, G., Amarilla, S. P., Ríos-Moreno, A., Carrasco, L., & Quesada-Moraga, E. (2017). Transient endophytic colonization of melon plants by entomopathogenic fungi after foliar application for the control of Bemisia tabaci Gennadius (Hemiptera: Aleyrodidae). Journal of Pest Science, 90(1), 319-330. doi:10.1007/s10340-016-0767-2.Gunatilaka, A. A. L. (2006). Natural products from plantassociated microorganisms: Distribution, structural diversity, bioactivity, and implications of their occurrence. Journal of Natural Products, 69(3), 509-526. doi:10.1021/ np058128n.Herre, E. A., Mejía, L. C., Kyllo, D. A., Rojas, E., Maynard, Z., Butler, A., & Van Bael, S. A. (2007). Ecological implications of anti-pathogen effects of tropical fungal endophytes and mycorrhizae. Ecology, 88(3), 550-558. doi:10.1890/05-1606.Hu, G., & Leger, R. J. S. (2002). Field studies using a recombinant mycoinsecticide (Metarhizium anisopliae) reveal that it is rhizosphere competent. Applied and Environmental Microbiology, 68(12), 6383-6387. doi:10.1128/AEM.68.12.6383.Jaber, L. R., & Ownley, B. H. (2018). Can we use entomopathogenic fungi as endophytes for dual biological control of insect pests and plant pathogens? Biological Control, 116, 36-45. doi:10.1016/j. biocontrol.2017.01.018.Jaber, L. R., & Vidal, S. (2009). Interactions between an endophytic fungus, aphids and extrafloral nectaries: Do endophytes induce extrafloral-mediated defences in Vicia faba? Functional Ecology, 23(4): 707-714. doi:10.1111/ j.1365-2435.2009.01554.x.Jacobson, R. J., Chandler, D., J. Fenlon, J., & Russell, K. M. (2001). Compatibility of Beauveria bassiana (Balsamo) Vuillemin with Amblyseius cucumeris Oudemans (Acarina: Phytoseiidae) to control Frankliniella occidentalis Pergande (Thysanoptera: Thripidae) on Cucumber plants. Biocontrol Science and Technology, 11(3), 391-400. doi:10.1080/09583150120055808.Jaimes, Y. Y., Moreno, C. A., & Cotes, A. M. (2009). Inducción de resistencia sistémica contra Fusarium oxysporum en tomate por Trichoderma koningiopsis th003. Acta Biológica Colombiana, 14(3), 111-120. Recuperado de https://revistas.unal.edu.co/index.php/actabiol/article/ view/1344/14224.Jaimes, Y., & Aranzazu, F. (2010). Manejo de las enfermedades del cacao (Theobroma cacao L.) en Colombia, con énfasis en monilia (Moniliophthora roreri). Recuperado de http:// www.fedecacao.com.co/site/images/recourses/pub_ doctecnicos/fedecacao-pub-doc_04A.pdf.Jallow, M. F. A., Dugassa-Gobena, D., & Vidal, S. (2008). Influence of an endophytic fungus on host plant selection by a polyphagous moth via volatile spectrum changes. Arthropod-Plant Interactions, 2(1), 53-62. doi:10.1007/ s11829-008-9033-8.Jani, A. J., Faeth, S. H., & Gardner, D. (2010). Asexual endophytes and associated alkaloids alter arthropod community structure and increase herbivore abundances on a native grass. Ecology Letters, 13(1), 106-117. doi:10.1111/j.1461-0248.2009.01401.x.Krell, V., Jakobs-Schoenwandt, D., Vidal, S., & Patel, A. V. (2018). Encapsulation of Metarhizium brunneum enhances endophytism in tomato plants. Biological Control, 116, 62- 73. doi:10.1016/j.biocontrol.2017.05.004.Kumar, J., Schafer, P., Huckelhoven, R., Langen, G., Baltruschat, H., Stein, E., Nagarajan, S., & Kogel, K.-H. (2002). Bipolaris sorokiniana, a cereal pathogen of global concern: cytological and molecular approaches towards better control. Molecular Plant Pathology, 3(4), 185-195. doi:10.1046/j.1364-3703.2002.00120.x.Landa, B. B., López-Díaz, C., Jiménez-Fernández, D., MontesBorrego, M., Muñoz-Ledesma, F. J., Ortiz-Urquiza, A., & Quesada-Moraga, E. (2013). In-planta detection and monitorization of endophytic colonization by a Beauveria bassiana strain using a new-developed nested and quantitative PCR-based assay and confocal laser scanning microscopy. Journal of Invertebrate Pathology, 114(2), 128- 138. doi:10.1016/j.jip.2013.06.007.Lopez, D. C., & Sword, G. A. (2015). The endophytic fungal entomopathogens Beauveria bassiana and Purpureocillium lilacinum enhance the growth of cultivated cotton (Gossypium hirsutum) and negatively affect survival of the cotton bollworm (Helicoverpa zea). Biological Control, 89, 53-60. doi:10.1016/j.biocontrol.2015.03.010.Macías-Rubalcava, M. L., Hernández-Bautista, B. E., Oropeza, F., Duarte, G., González, M. C., Glenn, A. E., Hanlin, R. T., & Anaya, A. L. (2010). Allelochemical Effects of Volatile Compounds and Organic Extracts from Muscodor yucatanensis, a Tropical Endophytic Fungus from Bursera simaruba. Journal of Chemical Ecology, 36(10), 1122-1131. doi:10.1007/s10886-010-9848-5.Martin, J. H., Mifsud, D., & Rapisarda, C. (2000). The whiteflies (Hemiptera: Aleyrodidae) of Europe and mediterranean basin. Bulletin of Entomological Research, 90(5), 407-448. doi:10.1017/S0007485300000547.Mayoral, F., Benuzzi, M., & Ladurner, E. (2006). Efficacy of the Beauveria bassiana strain ATCC 74040 (Naturalis®) against whiteflies on protected crops. iobc/wprs Bulletin, 29(4), 83-88.Mejía, L. C., Herre, E. A., Sparks, J. P., Winter, K., García, M. N., Van Bael, S. A., … Bulgheresi, S. (2014). Pervasive effects of a dominant foliar endophytic fungus on host genetic and phenotypic expression in a tropical tree. Frontiers in Microbiology, 5, 479. doi:10.3389/ fmicb.2014.00479.Michaud, J. P., Pell, J. K., & Vega, F. E. (2017). When insect endosymbionts and plant endophytes mediate biological control outcomes. Biological Control, 116, 1-2. doi:10.1016/j.biocontrol.2017.11.003.Moon, Y. -S., Donzelli, B. G. G., Krasnoff, S. B., McLane, H., Griggs, M. H., Cooke, P., … Churchill, A. C. L. (2008). Agrobacterium-mediated disruption of a nonribosomal peptide synthetase gene in the invertebrate pathogen Metarhizium anisopliae reveals a peptide spore factor. Applied and Environmental Microbiology, 74(14), 4366- 4380. doi:10.1128/AEM.00285-08Nielsen, C., Vestergaard, S., Harding, S., Wolsted, C., & Eilenberg, J. (2006). Biocontrol science and technology biological control of Strophosoma spp. (Coleoptera : Curculionidae) in greenery (Abies procera) plantations using Hyphomycetes. Biocontrol Science and Technology, 16(6), 583-598. doi:10.1080/09583150500532824.Ownley, B. H., Griffin, M. R., Klingeman, W. E., Gwinn, K. D., Moulton, J. K., & Pereira, R. M. (2008). Beauveria bassiana: endophytic colonization and plant disease control. Journal of Invertebrate Pathology, 98(3), 267-270. doi:10.1016/j.jip.2008.01.010.Ownley, B. H., Gwinn, K. D., & Vega, F. E. (2010). Endophytic fungal entomopathogens with activity against plant pathogens: Ecology and evolution. BioControl, 55(1), 113-128. doi:10.1007/s10526-009-9241-x.Parsa, S., Ortiz, V., & Vega, F. E. (2013). Establishing fungal entomopathogens as endophytes: Towards endophytic biological control. Journal of Visualized Experiments, 74, e50360. doi:10.3791/50360.Patel, A. (2014). Introduction. En: Jakobs-Schönwandt, D., Döring, M., Patel, A., (Eds.), Application Techniques of Endophytes (pp. 17-22). Bielefeld, Alemania: Fachhochschule Bielefeld.Pieterse, C. M. J., Poelman, E. H., Van Wees, S. C. M., & Dicke, M. (2013). Induced plant responses to microbes and insects. Frontiers in Plant Science, 4, 475. doi:10.3389/ fpls.2013.00475.Poelman, E. H., Bruinsma, M., Zhu, F., Weldegergis, B. T., Boursault, A. E., Jongema, Y., … Dicke, M. (2012). Hyperparasitoids use herbivore-induced plant volatiles to locate their parasitoid host. Plos Biology, 10(11), e1001435. doi:10.1371/journal.pbio.1001435.Posada, F., Aime, M. C., Peterson, S. W., Rehner, S. A., & Vega, F. E. (2007). Inoculation of coffee plants with the fungal entomopathogen Beauveria bassiana (Ascomycota: Hypocreales). Mycological Research, 111(6), 748-757. doi:10.1016/j.mycres.2007.03.006.Quesada-Moraga, E., Landa, B. B., Muñoz-Ledesma, J., Jiménez-Diáz, R. M., & Santiago-Álvarez, C. (2006a). Endophytic colonisation of opium poppy, Papaver somniferum, by an entomopathogenic Beauveria bassiana strain. Mycopathologia, 161(5), 323-329. doi:10.1007/ s11046-006-0014-0.Quesada-Moraga, E., Ruiz-García, A., & Santiago-Alvarez, C. (2006b). Laboratory evaluation of entomopathogenic fungi Beauveria bassiana and Metarhizium anisopliae against puparia and adults of Ceratitis capitata (Diptera: Tephritidae). Journal of Economic Entomology, 99(6), 1955-1966. doi:10.1603/0022-0493-99.6.1955.Ravensberg, W. J. (2015). Commercialisation of microbes: Present situation and future prospects. En: B. Lugtenberg (Ed.), Principles of plant-microbe interactions: Microbes for sustainable agriculture (pp. 309-317). Leiden, Holanda: Springer International Publishing. doi:10.1007/978-3- 319-08575-3_32.Resquín-Romero, G., Garrido-Jurado, I., Delso, C., RíosMoreno, A., & Quesada-Moraga, E. (2016). Transient endophytic colonizations of plants improve the outcome of foliar applications of mycoinsecticides against chewing insects. Journal of Invertebrate Pathology, 136, 23-31. doi:10.1016/J.JIP.2016.03.003.Ríos-Moreno, A., Carpio, A., Garrido-Jurado, I., ArroyoManzanares, N., Lozano-Tovar, M. D., & Arce, L. (2016a). Production of destruxins by Metarhizium strains under different stress conditions and their detection by using UHPLC-MS/MS. Biocontrol Science and Technology, 26(9), 1298-1311. doi:10.1080/09583157.2016.119 5336.Ríos-Moreno, A., Grarrido-Jurado, I., Resquín-Romero, G., Arroyo-Manzanares, N., Arce, L., & Quesada-Moraga, E. (2016b). Destruxin A production by Metarhizium brunneum strains during transient endophytic colonization of Solanum tuberosum. Biocontrol Science and Technology, 26(11), 1574-1585. doi:10.1080/09583157. 2016.1223274.Rodriguez-Saona, C., Blaauw, D. R., & Isaacs, R. (2012). Manipulation of natural enemies in agroecosystems: Habitat and semiochemicals for sustainable insect pest control. En: M. L. Larramendy & S. Soloneski (Eds.), Integrated Pest Management and Pest Control – Current and Future Tactics (pp. 89-126). Rijeka, Croacia: InTech.Rodriguez, R. J., White, J. F., Arnold, A. E., & Redman, R. S. (2009). Fungal endophytes: diversity and functional roles. The new Phytologist, 182(2), 314-330. doi:10.1111/ j.1469-8137.2009.02773.x.Rohlfs, M., & Churchill, A. C. L. (2011). Fungal secondary metabolites as modulators of interactions with insects and other arthropods. Fungal Genetics and Biology, 48(1), 23-34. doi:10.1016/J.FGB.2010.08.008.Saikkonen, K., Faeth, S. H., Helander, M., & Sullivan, T. J. (1998). Fungal endophytes: A continuum of interactions with host plants. Annual Review of Ecology and Systematics, 29, 319-343. doi:10.1146/annurev.ecolsys.29.1.319.Saikkonen, K., Helander, M., Faeth, S. H., Schulthess, F., & Wilson, D. (1999). Endophyte-grass-herbivore interactions: the case of Neotyphodium endophytes in Arizona fescue populations. Oecologia, 121(3), 411-420. doi:10.1007/s004420050946.Saikkonen, K., Helander, M., Ranta, H., Neuvonen, S., Virtanen, T., Suomela, J., & Vuorinen, P. (1996). Endophyte-mediated interactions between woody plants and insect herbivores? Entomologia Experimentalis et Applicata, 80, 269-271. doi:10.1111/j.1570-7458.1996.tb00932.xSaikkonen, K., Ion, D., & Gyllenberg, M. (2002). The persistence of vertically transmitted fungi in grass metapopulations. Proceedings of the Royal Society B: Biological Sciences, 269(1498), 1397-1403. doi:10.1098/ rspb.2002.2006.Sánchez-Fernández, R. E., Sánchez-Ortiz, B. L., SandovalEspinosa, Y. K., Ulloa-Benítez, Á., Armendáriz-Guillén, B., García-Méndez, M. C., & Macías-Rubalcava, M. L. (2013). Hongos endófitos: fuente potencial de metabolitos secundarios bioactivos con utilidad en agricultura y medicina. TIP: Revista Especializada en Ciencias Químico-Biológicas, 16(2), 132-146. doi:10.1016/ S1405-888X(13)72084-9.Scott, R., & Carris, L. (1996). Endophytic fungi in grasses and woody plants: systematics, ecology, and evolution. Minnesota, EE. UU.: APS Press.Schulz, B., & Boyle, C. (2005). The endophytic continuum. Mycological Research, 109(6), 661-686. doi:10.1017/ S095375620500273X.Schulz, B., & Boyle, C. (2006). What are Endophytes? En: B. Schulz, C. Boyle, & T. Sieber (Eds.), Microbial Root Endophytes (Soil Biology, vol. 9, pp. 1-14). Berlín, Alemania: Springer. doi:10.1007/3-540-33526-9.Singh, L. P., Gill, S. S., & Tuteja, N. (2011). Unraveling the role of fungal symbionts in plant abiotic stress tolerance. Plant Signaling & Behavior, 6(2), 175-191. doi:10.4161/ psb.6.2.14146.Stone, J. K., Bacon, C. W., & White Jr, J. F. (2000). An overview of endophytic microbes: Endophytism defined. En: C. W. Bacon & J. F. White (Eds.), Microbial Endophytes (pp. 4-5). Nueva York, EE. UU.: Marcel Dekker.Strobel, G., & Daisy, B. (2003). Bioprospecting for microbial endophytes and their natural products. Microbiology and Molecular Biology Reviews, 67(4), 491-502. doi:10.1128/ MMBR.67.4.491-502.2003.Sun, X., & Guo, L. G. (2012). Endophytic fungal diversity: review of traditional and molecular techniques. Mycology, 3(1), 65-76. doi:10.1080/21501203.2012.656724.Szendrei, Z., & Rodriguez-Saona, C. (2010). A metaanalysis of insect pest behavioral manipulation with plant volatiles. Entomologia Experimentalis et Applicata, 134(3), 201-210. doi:10.1111/j.1570-7458.2009.00954.xTanaka, A., Tapper, B. A., Popay, A., Parker, E. J., & Scott, B. (2005). A symbiosis expressed non-ribosomal peptide synthetase from a mutualistic fungal endophyte of perennial ryegrass confers protection to the symbiotum from insect herbivory. Molecular Microbiology, 57(4), 1036-1050. doi:10.1111/j.1365-2958.2005.04747.xTen Hoopen, G. M., Deberdt, P., Mbenoun, M., & Cilas, C. (2012). Modelling cacao pod growth: implications for disease control. Annals of Applied Biology, 160(3), 260- 272. doi:10.1111/j.1744-7348.2012.00539.x.Ten Hoopen, G. M., & Krauss, U. (2016). Biological control of cacao diseases. En: B. A. Bailey & L. W. Meinhardt (Eds.), Cacao diseases (pp. 511-566). Cham, Suiza: Springer. doi:10.1007/978-3-319-24789-2_17.Thakur, A., Kaur, S., Kaur, A., & Singh, V. (2013). Enhanced resistance to Spodoptera litura in endophyte infected cauliflower plants. Environmental Entomology, 42(2), 240- 246. doi:10.1603/EN12001.Vega, F. E. (2008). Insect pathology and fungal endophytes. Journal of Invertebrate Pathology, 98(3), 277-279. doi:10.1016/j.jip.2008.01.008.Vega, F. E., Goettel, M. S., Blackwell, M., Chandler, D., Jackson, M. A., Keller, S., … Roy, H. E. (2009). Fungal entomopathogens: new insights on their ecology. Fungal Ecology, 2(4), 149-159. doi:10.1016/J. FUNECO.2009.05.001.Verma, S., Varma, A., Rexer, K.-H., Hassel, A., Kost, G., Sarbhoy, A., … Franken, P. (1998). Piriformospora indica, gen. et sp. nov., a New root-colonizing fungus. Mycologia, 90(5), 896-896. doi:10.2307/3761331.Vidal, S., & Jaber, L. R. (2015). Entomopathogenic fungi as endophytes: plant–endophyte–herbivore interactions and prospects for use in biological control. Current Science, 109(1), 46-54.Waller, F., Achatz, B., Baltruschat, H., Fodor, J., Becker, K., Fischer, M., … Kogel, K. -H. (2005). The endophytic fungus Piriformospora indica reprograms barley to saltstress tolerance, disease resistance, and higher yield. Proceedings of the National Academy of Sciences of the United States of America, 102(38), 13386-13391. doi: 10.1073/pnas.0504423102Wang, Y., & Guo, L. (2007). A comparative study of endophytic fungi in needles, bark, and xylem of Pinus tabulaeformis. Canadian Journal of Botany, 85(10), 911- 917. doi:10.1139/B07-084Webber, J. (1981). A natural control of Dutch elm disease. Nature, 292, 449-451. doi:10.1038/292449a0.Zhang, L. (2014). Colonization pattern of crop plants by endophytic fungi (tesis doctoral). Universidad de Gotinga, Gotinga, Alemania.33519 ; Control biológico de fitopatógenos, insectos y ácaros: aplicaciones y perspectivas. V. 2LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repository.agrosavia.co/bitstream/20.500.12324/34157/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52open accessORIGINALVer_Documento_34157.pdfVer_Documento_34157.pdfapplication/pdf1875606https://repository.agrosavia.co/bitstream/20.500.12324/34157/5/Ver_Documento_34157.pdffae700392b0d160a7bdfe43a0c6fe79eMD55open accessTHUMBNAILVer_Documento_34157.pdf.jpgVer_Documento_34157.pdf.jpgimage/jpeg25131https://repository.agrosavia.co/bitstream/20.500.12324/34157/6/Ver_Documento_34157.pdf.jpg640b537e7d3ca5271d0aff7ebd88cad3MD56open access20.500.12324/34157oai:repository.agrosavia.co:20.500.12324/341572024-06-17 09:42:45.146open accessAgrosavia - Corporación colombiana de investigación agropecuariabac@agrosavia.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=