El control biológico en un contexto de manejo integrado de enfermedades
El suelo es un sistema biológico complejo y dinámico que constituye el pilar fundamental del manejo integrado, debido a las relaciones que en él existen entre la diversidad microbiana, por una parte, y su funcionamiento y estabilidad, por otra. El manejo integrado de enfermedades consiste en la util...
- Autores:
-
Cotes Prado, Alba Marina
Elad, Yigal
- Tipo de recurso:
- Part of book
- Fecha de publicación:
- 2018
- Institución:
- Agrosavia
- Repositorio:
- Agrosavia
- Idioma:
- spa
- OAI Identifier:
- oai:repository.agrosavia.co:20.500.12324/34082
- Acceso en línea:
- http://hdl.handle.net/20.500.12324/34082
- Palabra clave:
- Conservación de la naturaleza y recursos de la tierra - P01
Plagas de las plantas - H10
Biodiversidad
Control biológico
Suelo
Transversal
- Rights
- License
- Attribution-NonCommercial-ShareAlike 4.0 International
id |
Agrosavia2_96b4b5e0b4269ae8ac3de066192fcb5e |
---|---|
oai_identifier_str |
oai:repository.agrosavia.co:20.500.12324/34082 |
network_acronym_str |
Agrosavia2 |
network_name_str |
Agrosavia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
El control biológico en un contexto de manejo integrado de enfermedades |
dc.title.translated.eng.fl_str_mv |
Biological control in the context of integrated plant diseases management |
title |
El control biológico en un contexto de manejo integrado de enfermedades |
spellingShingle |
El control biológico en un contexto de manejo integrado de enfermedades Conservación de la naturaleza y recursos de la tierra - P01 Plagas de las plantas - H10 Biodiversidad Control biológico Suelo Transversal |
title_short |
El control biológico en un contexto de manejo integrado de enfermedades |
title_full |
El control biológico en un contexto de manejo integrado de enfermedades |
title_fullStr |
El control biológico en un contexto de manejo integrado de enfermedades |
title_full_unstemmed |
El control biológico en un contexto de manejo integrado de enfermedades |
title_sort |
El control biológico en un contexto de manejo integrado de enfermedades |
dc.creator.fl_str_mv |
Cotes Prado, Alba Marina Elad, Yigal |
dc.contributor.author.none.fl_str_mv |
Cotes Prado, Alba Marina Elad, Yigal |
dc.subject.fao.spa.fl_str_mv |
Conservación de la naturaleza y recursos de la tierra - P01 Plagas de las plantas - H10 |
topic |
Conservación de la naturaleza y recursos de la tierra - P01 Plagas de las plantas - H10 Biodiversidad Control biológico Suelo Transversal |
dc.subject.agrovoc.spa.fl_str_mv |
Biodiversidad Control biológico Suelo |
dc.subject.red.spa.fl_str_mv |
Transversal |
description |
El suelo es un sistema biológico complejo y dinámico que constituye el pilar fundamental del manejo integrado, debido a las relaciones que en él existen entre la diversidad microbiana, por una parte, y su funcionamiento y estabilidad, por otra. El manejo integrado de enfermedades consiste en la utilización oportuna de diferentes componentes que representan otras tantas tácticas adecuadas para el cultivo. Estos componentes incluyen la selección y preparación del terreno, el control biológico, el uso de cultivares resistentes, la resistencia inducida, el priming, la rotación de cultivos, la diversidad botánica y genética (inter e intraespecífica), la modificación del medio ambiente y, si es necesario, la aplicación de plaguicidas. Estos componentes deben aplicarse de manera coordinada e integrada para maximizar sus beneficios y deben ser compatibles con las prácticas culturales esenciales para el cultivo; sin embargo, la integración de los diferentes componentes exige un alto nivel, es intensiva en conocimiento técnico, experiencia y destreza, y requiere de una mejor comunicación con los productores y de tecnologías innovadoras que mejoren la efectividad del programa de manejo. Aquí discutimos los enfoques y métodos disponibles, identificamos algunos de los desafíos y oportunidades, y recomendamos la interacción entre científicos de diferentes disciplinas, asistentes técnicos y productores, para desarrollar e implementar programas de manejo integrado de enfermedades. |
publishDate |
2018 |
dc.date.accessioned.none.fl_str_mv |
2018-12-04T21:18:48Z |
dc.date.available.none.fl_str_mv |
2018-12-04T21:18:48Z |
dc.date.issued.none.fl_str_mv |
2018 |
dc.type.localeng.eng.fl_str_mv |
book part |
dc.type.local.spa.fl_str_mv |
Capítulo |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_3248 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/bookPart |
dc.type.redcol.none.fl_str_mv |
https://purl.org/redcol/resource_type/CAP_LIB |
dc.type.version.none.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
format |
http://purl.org/coar/resource_type/c_3248 |
dc.identifier.isbn.none.fl_str_mv |
978-958-740-254-4 (e-book) |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/20.500.12324/34082 |
dc.identifier.reponame.spa.fl_str_mv |
reponame:Biblioteca Digital Agropecuaria de Colombia |
dc.identifier.repourl.none.fl_str_mv |
repourl:https://repository.agrosavia.co |
dc.identifier.instname.spa.fl_str_mv |
instname:Corporación colombiana de investigación agropecuaria AGROSAVIA |
identifier_str_mv |
978-958-740-254-4 (e-book) reponame:Biblioteca Digital Agropecuaria de Colombia repourl:https://repository.agrosavia.co instname:Corporación colombiana de investigación agropecuaria AGROSAVIA |
url |
http://hdl.handle.net/20.500.12324/34082 |
dc.language.iso.none.fl_str_mv |
spa |
language |
spa |
dc.relation.citationstartpage.none.fl_str_mv |
794 |
dc.relation.citationendpage.none.fl_str_mv |
821 |
dc.relation.references.spa.fl_str_mv |
Abo-Elyousr, K. A. M., Ibrahim, Y. E., & Balabel, N. M. (2012). Induction of disease defensive enzymes in response to treatment with acibenzolar-S-methyl (ASM) and Pseudomonas fluorescens Pf2 and inoculation with Ralstonia solanacearum race 3, biovar 2 (phylotype ii). Journal of Phytopathology, 160(7-8), 382-389. doi:10.1111/j.1439-0434.2012.01915.x. Ahmad, S., Gordon-Weeks, R., Pickett, J., & Ton, J. (2010). Natural variation in priming of basal resistance: from evolutionary origin to agricultural exploitation. Molecular Plant Pathology, 11(6), 817-827. doi:10.1111/j.1364- 3703.2010.00645.x. Andow, D. (1983). The extent of monoculture and its effects on insect pest populations with particular reference to wheat and cotton. Agriculture, Ecosystems & Environment, 9(1), 25-35. doi:10.1016/0167-8809(83)90003-8. Ayliffe, M., Singh, R., & Lagudah, E. (2008). Durable resistance to wheat stem rust needed. Current Opinion in Plant Biology, 11(2), 187-192. doi:10.1016/j. pbi.2008.02.001. Balmer, A., Pastor, V., Gamir, J., Flors, V., & Mauch-Mani, B. (2015). The ‘prime-ome’: towards a holistic approach to priming. Trends in Plant Science, 20(7), 443-452. doi:10.1016/j.tplants.2015.04.002 Bardgett, R. (2005). The biology of soil: a community and ecosystem approach. Nueva York, EE. UU.: Oxford University. Bateman, D. F., & Basham, H. G. (1976). Degradation of plant cell walls and membranes by microbial enzymes. En R. Heitefuss & P. H., Williams (Eds.), Physiological plant pathology (pp. 316-355). Berlín, Alemania: Springer. doi:10.1007/978-3-642-66279-9_13. Berendsen, R. L., Pieterse, C. M. J., & Bakker, P. A. H. M. (2012). The rhizosphere microbiome and plant health. Trends in Plant Science, 17(8), 478-486. doi:10.1016/j. tplants.2012.04.001. Berg, G., Grube, M., Schloter, M., & Smalla, K. (2014a). The plant microbiome and its importance for plant and human health. Frontiers in Microbiology, 5, 491. doi.10.3389/ fmicb.2014.00491. Berg, G., Grube, M., Schloter, M., & Smalla, K. (2014b). Unraveling the plant microbiome: looking back and future perspectives. Frontiers in Microbiology, 5, 777-780. doi:10.3389/fmicb.2014.00148. Berg, G., Rybakova, D., Grube, M., & Koberl, M. (2016). The plant microbiome explored: implications for experimental botany. Journal of Experimental Botany, 67(4), 995-1002. doi:10.1093/jxb/erv466. Berg, G., & Smalla, K. (2009). Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiology Ecology, 68(1), 1-13. doi:10.1111/j.1574- 6941.2009.00654.x. Bhattarai, A., Bhattarai, B., & Pandey, S. (2015). Variation of soil microbial population in different soil horizons. Journal of Microbiology, 2(2), 00044. doi:10.15406/ jmen.2015.02.00044. Blagodatskaya, E. & Kuzyakov, Y. (2013). Active microorganisms in soil: Critical review of estimation criteria and approaches. Soil Biology and Biochemistry, 67, 192-211. doi:10.1016/j.soilbio.2013.08.024. Booth, A. (2014). Symbiosis, selection, and individuality. Biology & Philosophy, 29(5), 657-673. doi:10.1007/ s10539-014-9449-8 Bordenstein, S. R., & Theis, K. R. (2015). Host biology in light of the microbiome: Ten principles of holobionts and hologenomes. PLoS Biol, 13(8), e1002226. doi:10.1371/ journal.pbio.1002226 Boudreau, M. A. (2013). Diseases in intercropping systems. Annual Review of Phytopathology, 51, 499-519. doi:10.1146/annurev-phyto-082712-102246 Brooker, R. W., Karley, A. J., Newton, A. C., Pakeman, R. J., Schöb, C., & Pugnaire, F. (2015). Facilitation and sustainable agriculture: a mechanistic approach to reconciling crop production and conservation. Functional Ecology, 30(1), 98-107. doi:10.1111/1365-2435.12496. Burdon, J. J., Thrall, P. H., & Ericson, L. (2006). The current and future dynamics of disease in plant communities. Annual Review of Phytopathology, 44, 19-39. doi:10.1146/ annurev.phyto.43.040204.140238. Burke, D., & Kraft, J. (1974). Responses of beans and peas to root pathogens accumulated during monoculture of each crop species. Phytopathology, 64, 546-549. Cardinale, B. J., Srivastava, D. S., Emmett Duffy, J., Wright, J. P., Downing, A. L., ... Jouseau, C. (2006). Effects of biodiversity on the functioning of trophic groups and ecosystems. Nature, 443, 989-992. doi:10.1038/ nature05202. Compant, S., Duffy, B., Nowak, J., Clément, C., & Barka, E. A. (2005). Use of plant growth-promoting bacteria for biocontrol of plant diseases: Principles, mechanisms of action, and future prospects. Applied and Environmental Microbiology, 71(9), 4951-4959. doi:10.1128/ aem.71.9.4951-4959.2005. Cotes, A., Cárdenas, A., & Pinzón, H. (2001). Effect of seed priming in the presence of Trichoderma koningii on seed and seedling disease induced in tomato by Rhizoctonia solani and Fusarium oxysporum f. sp. lycopersici. IOBC WPRS Bulletin, 24: 259-264. Cotuna, O., Paraschivu, M., Paraschivu, A., & Sărățeanu, V. (2015). The influence of tillage, crop rotation and residue management on tan spot (Drechslera tritici-repentis. Died. Shoemaker) in winter wheat. Research Journal of Agricultural Science, 47(2), 13-21. Chen, Y. H., Gols, R., Stratton, C. A., Brevik, K. A., & Benrey, B. (2015). Complex tritrophic interactions in response to crop domestication: predictions from the wild. Entomology Experimentalis et Applicata, 157(1), 40- 59. doi:10.1111/eea.12344. Da Rocha, A. B. & Hammerschmidt, R. (2005). History and perspectives on the use of disease resistance inducers in horticultural crops. HortTechnology, 15(3), 518-529. Davidson, S. (2005). Going organic. Ecos, 127, 8-12. De Nobili, M., Contin, M., Mondini, C., & Brookes, P. C. (2001). Soil microbial biomass is triggered into activity by trace amounts of substrate. Soil Biology and Biochemistry, 33(9), 1163-1170. doi:10.1016/S0038-0717(01) 00020-7. De Vrese, M., & Schrezenmeir, J. (2008). Probiotics, prebiotics, and synbiotics. En U. Stahl, U. E. B. Donalies, & E. Nevoigt (Eds.), Food Biotechnol (pp. 1-66). Berlín, Alemania: Springer. doi:10.1007/10_2008_097. De Vries, F. T., Thébault, E., Liiri, M., Birkhofer, K., Tsiafouli, M. A., Bjørnlund, L., … Bardgett, R. D. (2013). Soil food web properties explain ecosystem services across European land use systems. Proceedings of the National Academy of Sciences, 110(35), 14296-14301. doi:10.1073/ pnas.1305198110. Delmas, C., Fabre, F., Jolivet, J., Mazet, I. D., Richart S., Delière, L., & Delmotte, F. (2016). Adaptation of a plant pathogen to partial host resistance: selection for greater aggressiveness in grapevine downy mildew. Evolutionary Applications, 9(5), 709-725. doi:10.1111/eva.12368. Dent, D. (2000). Insect pest management. Massachusetts, EE. UU.: CABI. Dent, D. (2005). Overview of agrobiologicals and alternatives to synthetic pesticides. En J. N. Pretty (Ed.), The pesticide detox: Towards a more sustainable agriculture (pp. 70-82). Londres, Inglaterra: Earthscan Publications Ltd. Dias, T., Dukes, A., & Antunes, P. M. (2014). Accounting for soil biotic effects on soil health and crop productivity in the design of crop rotations. Journal of Science of Food and Agriculture, 95(3), 447-454. doi:10.1002/jsfa.6565. Elad, Y., David, D. R., Harel, Y. M., Borenshtein, M., Kalifa, H. B., Silber, A., & Graber, E. R. (2010). Induction of systemic resistance in plants by biochar, a soil-applied carbon sequestering agent. Phytopathology, 100(9), 913- 921. doi:10.1094/PHYTO-100-9-0913. Elad, Y., & Shtienberg, D. (1997). Integrated management of foliar diseases in greenhouse vegetables according to principles of a decision support system Greenman. IOBC WPRS Bulletin, 20(4), 71-76. Fierer, N., Strickland, M. S., Liptzin, D., Bradford, M. A., & Cleveland, C. C. (2009). Global patterns in belowground communities. Ecology Letters, 12(11), 1238-1249. doi:10.1111/j.1461-0248.2009.01360.x. Garbeva, P., Van Veen, J. A., & Van Elsas, J. D. (2004). Microbial diversity in soil: Selection of microbial populations by plant and soil type and implications for disease suppressiveness. Annual Review of Phytopathology, 42, 243-270. doi:10.1146/annurev.phyto.42.012604.135455. Gassmann, A. J., Petzold-Maxwell, J. L., Clifton, E. H., Dunbar, M. W., Hoffmann, A. M., Ingber, D. A., & Keweshan, R. S. (2014). Field-evolved resistance by western corn rootworm to multiple Bacillus thuringiensis toxins in transgenic maize. Proceedings of the National Academy of Sciences, 111(14), 5141-5146. doi:10.1073/ pnas.1317179111. Gebhardt, M. R., Daniel, T. C., Schweizer, E. E., & Allmaras, R. R. (1985). Conservation tillage. Science, 230(4726), 625-630. doi:10.1126/science.230.4726.625. Gil, S. V., Pedelini, R., Oddino, C., Zuza, M., Marinelli, A., & March, G. J. (2008). The role of potential biocontrol agents in the management of peanut root rot in Argentina. Journal of Plant Pathology, 90(1), 35-41. Goellner, K., & Conrath, U. (2008). Priming: it’s all the world to induced disease resistance. European Journal of Plant Pathology, 121(3), 233-242. doi:10.1007/s10658-007- 9251-4. Gould, F., Kennedy, G. G., & Johnson, M. T. (1991). Effects of natural enemies on the rate of herbivore adaptation to resistant host plants. Entomologia Experimentalis et Applicata, 58(1), 1-14. doi:10.1111/j.1570-7458.1991. tb01445.x. Guerrero, R., Margulis, L., & Berlanga, M. (2013). Symbiogenesis: the holobiont as a unit of evolution. International Microbiology, 16, 133-143. doi:10.2436/20.1501.01.188 Hance, T., Van Baaren, J., Vernon, P., & Boivin, G. (2007). Impact of extreme temperatures on parasitoids in a climate change perspective. Annual Review of Entomology, 52, 107-126. doi:10.1146/annurev.ento.52.110405.091333. Helgason, T., Daniell, T. J., Husband, R., Fitter, A. H., & Young, J. P. W. (1998). Ploughing up the wood-wide web? Nature, 394(6692), 431. doi:10.1038/28764. Herms, D. A., & Mattson, W. J. (1992). The dilemma of plants: To grow or defend. The Quarterly Review of Biology, 67(3), 283-335. doi:10.1086/417659. Hochmuth, R., & Sprenkel, R. (2008). Exclusion methods for managing greenhouse vegetable pests. ENY-846 (IN730). Gainesville, EE. UU.: University of Florida. Höper, H., Steinberg, C., & Alabouvette, C. (1995). Involvement of clay type and pH in the mechanisms of soil suppressiveness to Fusarium wilt of flax. Soil Biology and Biochemistry, 27(7), 955-967. doi:10.1016/0038- 0717(94)00238-V. Hu, J., Wei, Z., Friman, V.-P., Gu, S.-h., Wang, X.-f., Eisenhauer, N., ... Jousset, A. (2016). Probiotic diversity enhances rhizosphere microbiome function and plant disease suppression. mBio, 7(8), e01790-16. doi:10.1128/ mBio.01790-16. Huang, H. C., Kodama, F., Akashi, K., & Konno, K. (2002). Impact of crop rotation on soilborne diseases and yield of kidney bean: A case study in northern Japan. Plant Pathology Bulletin, 11, 87-96. Huber, D. (1994). The influence of mineral nutrition on vegetable diseases. Horticultura Brasileira, 12, 206-220. Jacqmin, B., Cotes, A., Lepoivre, P., & Semal, J. (1993). Effect of the combination of seed priming and Trichoderma treatment on incidence of damping-off agents. Mededelingen van de Faculteit Landbouwkundige en Toegepaste Biologische Wetenschappen (Rijksuniversiteit te Gent), 58(3b), 1321-1328. Johnsen, K., Jacobsen, C. S., Torsvik, V., & Sørensen, J. (2001). Pesticide effects on bacterial diversity in agricultural soils – a review. Biology and Fertility Soils, 33(6), 443-453. doi:10.1007/s003740100351. Katz, V. A., Thulke, O. U., & Conrath, U. (1998). A benzothiadiazole primes parsley cells for augmented elicitation of defense responses. Plant Physiology, 117, 1333-1339. doi:10.1104/pp.117.4.1333. Kauss, H., Theisinger-Hinkel, E., Mindermann, R., & Conrath, U. (1992). Dichloroisonicotinic and salicylic acid, inducers of systemic acquired resistance, enhance fungal elicitor responses in parsley cells. The Plant Journal, 2(5), 655-660. doi:10.1111/j.1365-313X.1992. tb00134.x. Kelman, A., McGuire, R., & Tzeng, K. (1989). Reducing the severity of bacterial soft rot by increasing the concentration of calcium in potato tubers. En A. W. Engelhard (Ed.), Soilborne plant pathogens: management of diseases with macro- and microelements (pp. 102-123). Saint Paul, Minnesota, EE. UU.: APS Press. Kessler, A., & Ian, T. B. (2004). Herbivore-induced plant vaccination. Part I. The orchestration of plant defenses in nature and their fitness consequences in the wild tobacco Nicotiana attenuata. The Plant Journal, 38(4), 639-649. doi:10.1111/j.1365-313X.2004.02076.x. Klein, E., Ofek, M., Katan, J., Minz, D., & Gamliel, A. (2012). Soil suppressiveness to Fusarium disease: Shifts in root microbiome associated with reduction of pathogen root colonization. Phytopathology, 103(1), 23-33. doi:10.1094/ PHYTO-12-11-0349. Knops, J. M. H., Tilman, D., Haddad, N. M., Naeem, S., Mitchell, C. E., Haarstad, J., ... Groth, J. (2002). Effects of plant species richness on invasion dynamics, disease outbreaks, insect abundances and diversity. Ecology Letters, 2(5), 286-293. doi:10.1046/j.1461- 0248.1999.00083.x. Koul, O., & Cuperus, G. W. (2007). Ecologically based integrated pest management. Wallingford, Inglaterra: CABI Publishing. Kuć, J. (1982). Induced immunity to plant disease. Bioscience, 32(11), 854-860. doi:10.2307/1309008. Lehman, R., Cambardella, C., Stott, D., Acosta-Martinez, V., Manter, D., Buyer, J., ... Karlen, D. (2015). Understanding and enhancing soil biological health: The solution for reversing soil degradation. Sustainability, 7(1), 1-40. ithourgidis, A. S., Dordas, C. A., Damalas, C. A., & Vlachostergios, D. N. (2011). Annual intercrops: an alternative pathway for sustainable agriculture. Australian Journal of Crop Science, 5(4), 396-410. Liu, G. D., Simonne, E. H., Morgan, T. K., & Hochmuth, J. G. (2015). Soil and fertilizer management for vegetable production in Florida. Gainesville, EE. UU.: UF/IFAS Extension University of Florida. Liu, X., Chen, M., Collins, H. L., Onstad, D. W., Roush, R. T., Zhang, Q., ... Shelton, A. M. (2014). Natural enemies delay insect resistance to -bt crops. PLoS One, 9(3), e90366. doi:10.1371/journal.pone.0090366. Locey, K. J., & Lennon, J. T. (2016). Scaling laws predict global microbial diversity. Proceedings of the National Academy of Sciences, 113(21), 5970-5975. doi:10.1073/ pnas.1521291113. Loyd, A. L., Benson, D. M., & Ivors, K. L. (2014). Phytophthora populations in nursery irrigation water in relationship to pathogenicity and infection frequency of Rhododendron and Pieris. Plant Disease, 98(9), 1213-1220. doi:10.1094/ PDIS-11-13-1157-RE. Luna, E., Bruce, T. J. A., Roberts, M. R., Flors, V., & Ton, J. (2012). Next-generation systemic acquired resistance. Plant Physiology, 158(2), 844-853. doi:10.1104/ pp.111.187468. Lyon, G. (2007). Agents That Can Elicit Induced Resistance. En D. R. Walters, A. Newton, & G. Lyon (Eds.), Induced resistance for plant disease control: A sustainable approach to crop protection (pp. 9-29). Oxford, Inglaterra: Blackwell Publishing. doi:10.1002/9781118371848.ch2. Maloy, O. C. (2005). Plant Disease Management. The Plant Health Instructor. doi.10.1094/PHI-I-2005-0202-01. Martinez-Medina, A., Flors, V., Heil, M., Mauch-Mani, B., Pieterse, C.M.J., Pozo, M.J., ... Conrath, U. (2016). Recognizing plant defense priming. Trends in Plant Science, 21(10), 818-822. doi.10.1016/j.tplants.2016.07.009. Mauch-Mani, B., Baccelli, I., Luna, E., & Flors, V. (2017). Defense priming: An adaptive part of induced resistance. Annual Review of Plant Biology, 68, 485-512. doi:10.1146/ annurev-arplant-042916-041132. McGrath, M. T. (2012). Managing plant diseases with crop rotation. Recuperado de https://www.sare.org/LearningCenter/Books/Crop-Rotation-on-Organic-Farms/ Text-Version/Physical-and-Biological-Processes-InCrop-Production/Managing-Plant-Diseases-WithCrop-Rotation. Mendes, R., Garbeva, P., & Raaijmakers, J. M. (2013). The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiology Review, 37(5), 634-663. doi:10.1111/1574-6976.12028. Mendes, R., Kruijt, M., de Bruijn, I., Dekkers, E., Van der Voort, M., Schneider, J.H., ... Raaijmakers, J. M. (2011). Deciphering the rhizosphere microbiome for diseasesuppressive bacteria. Science, 332(6033), 1097-1100. doi:10.1126/science.1203980. Mitchell, C., Brennan, R. M., Graham, J., & Karley, A. J. (2016). Plant defense against herbivorous pests: Exploiting resistance and tolerance traits for sustainable crop protection. Frontiers in Plant Science, 7, 1132. doi:10.3389/fpls.2016.01132. Mitter, B., Pfaffenbichler, N., Flavell, R., Compant, S., Antonielli, L., Petric, A., ... Sessitsch, A. (2017). A new approach to modify plant microbiomes and traits by introducing beneficial bacteria at flowering into progeny seeds. Frontiers in Microbiology, 8, 11. doi:10.3389/ fmicb.2017.00011. Moreno, C., Castillo, F., González, A., Bernal, D., Jaimes, Y., Chaparro, M., ... Cotes, A. (2009). Biological and molecular characterization of the response of tomato plants treated with Trichoderma koningiopsis. Physiological and Molecular Plant Pathology, 74(2), 111-120. doi:10.1016/j.pmpp.2009.10.001. Moreno, L. G., & Alvarado, G. (2000). La Variedad Colombia: Veinte años de adopción y comportamiento frente a nuevas razas de la roya del cafeto. Manizales, Colombia: Centro Nacional de Investigaciones de Café (Cenicafé). Moya-Elizondo, E. A., & Jacobsen, B. J. (2016). Integrated management of Fusarium crown rot of wheat using fungicide seed treatment, cultivar resistance, and induction of systemic acquired resistance (sar). Biological Control, 92: 153-163. doi:10.1016/j.biocontrol.2015.10.006. Muola, A., Weber, D., Malm, L. E., Egan, P. A., Glinwood, R., Parachnowitsch, A. L., & Stenberg, J. A. (2017). Direct and pollinator-mediated effects of herbivory on strawberry and the potential for improved resistance. Frontiers in Plant Science, 8, 823. doi:10.3389/fpls.2017.00823. Myresiotis, C. K., Karaoglanidis, G. S., Vryzas, Z., & Papadopoulou-Mourkidou, E. (2012). Evaluation of plant-growth-promoting rhizobacteria, acibenzolar-Smethyl and hymexazol for integrated control of Fusarium crown and root rot on tomato. Pest Management Science, 68(3), 404-411. doi.10.1002/ps.2277. Oostendorp, M., Kunz, W., Dietrich, B., & Staub, T. (2001). Induced disease resistance in plants by chemicals. European Journal of Plant Pathology, 107(1), 19-28. doi:10.1023/A:1008760518772. Organización de las Naciones Unidas para la Alimentación y la Agricultura (FAO). (2018). How to practice integrated pest management. Recuperado de http://www.fao. org/agriculture/crops/thematic-sitemap/theme/spi/ scpi-home/managing-ecosystems/integrated-pestmanagement/ipm-how/en/. Orozco-Mosqueda, M. C., Rocha-Granados, M. C., Glick, B. R., & Santoyo, G. (2018). Microbiome engineering to improve biocontrol and plant growth-promoting mechanisms. Microbiology Research, 208, 25-31. doi:10.1016/j.micres.2018.01.005. Paparella, S., Araújo, S. S., Rossi, G., Wijayasinghe, M., Carbonera, D., & Balestrazzi, A. (2015). Seed priming: state of the art and new perspectives. Plant Cell Reports, 34(8), 1281-1293. doi:10.1007/s00299-015-1784-y Paret, M., Dufault, N., Momol, T., Marois, J., & Olson, S. (2015). Integrated disease management for vegetable crops in Florida. Florida, EE. UU.: UF/IFAS Extension University of Florida. Perazzolli, M., Roatti, B., Bozza, E., & Pertot, I. (2011). Trichoderma harzianum T39 induces resistance against downy mildew by priming for defense without costs for grapevine. Biological Control, 58(1), 74-82. doi:10.1016/j. biocontrol.2011.04.006. Peshin, R., & Dhawan, A. K. (2009). Integrated pest management. Volume 1: Innovation-development process. Dordrecht, Holanda: Springer. doi:10.1007/978-1- 4020-8992-3. Peterson, J. A., Ode, P. J., Oliveira-Hofman, C., & Harwood, J. D. (2016). Integration of plant defense traits with biological control of arthropod pests: Challenges and opportunities. Frontiers in Plant Science, 7, 1794. doi:10.3389/fpls.2016.01794. Philippot, L., Raaijmakers, J. M., Lemanceau, P., & Van der Putten, W. H. (2013). Going back to the roots: the microbial ecology of the rhizosphere. Nature Reviews Microbiology, 11, 789-799. doi:10.1038/nrmicro3109 Pieterse, C. M. J., de Jonge, R., & Berendsen, R. L. (2016). The Soil-Borne Supremacy. Trends in Plant Science, 21(3), 171-173. doi:10.1016/j.tplants.2016.01.018. Pineda, A., Kaplan, I., & Bezemer, T. M. (2017). Steering soil microbiomes to suppress aboveground insect pests. Trends in Plant Science, 22(9), 770-778. doi:10.1016/j. tplants.2017.07.002. Pinto, K. M. S., do Nascimento, L. C., de Souza-Gomes, E. C., da Silva, H. F., & dos Reis-Miranda, J. (2012). Efficiency of resistance elicitors in the management of grapevine downy mildew Plasmopara viticola: epidemiological, biochemical and economic aspects. European Journal of Plant Pathology, 134(4), 745-754. doi:10.1007/s10658- 012-0050-1. Zilber-Rosenberg, I., & Rosenberg, E. (2008). Role of microorganisms in the evolution of animals and plants: the hologenome theory of evolution. FEMS Microbiology Review, 32(5), 723-735. doi:10.1111/j.1574- 6976.2008.00123.x. Zotarelli, L., Dukes, M., Liu, G., Simonne, E. H., & Agehara, S. (2017). Principles and practices of irrigation management for vegetables. Gainesville, EE. UU.: UF/ IFAS Extension University of Florida. Postma, J., Scheper, R. W. A., & Schilder, M. T. (2010). Effect of successive cauliflower plantings and Rhizoctonia solani ag 2-1 inoculations on disease suppressiveness of a suppressive and a conducive soil. Soil Biology and Biochemistry, 42(5), 804-812. doi:10.1016/j. soilbio.2010.01.017 Pushpalatha, H. G., Sudisha, J., Geetha, N. P., Amruthesh, K. N., & Shekar-Shetty, H. (2011). Thiamine seed treatment enhances lox expression, promotes growth and induces downy mildew disease resistance in pearl millet. Biologia Plantarum, 55(3), 522-527. doi:10.1007/s10535-011- 0118-3. Ramírez-Carrasco, G., Martínez-Aguilar, K., & AlvarezVenegas, R. (2017). Transgenerational defense priming for crop protection against plant pathogens: A hypothesis. Frontiers in Plant Science, 8, 696. doi:10.3389/ fpls.2017.00696. Rasmann, S., De Vos, M., Casteel, C. L., Tian, D., Halitschke, R., Sun, J. Y., ... Jander, G. (2012). Herbivory in the previous generation primes plants for enhanced insect resistance. Plant Physiology, 158(2), 854-863. doi:10.1104/pp.111.187831. Raubuch, M., Behr, K., Roose, K., & Joergensen, R. G. (2010). Specific respiration rates, adenylates, and energy budgets of soil microorganisms after addition of transgenic Btmaize straw. Pedobiologia, 53(3), 191-196. doi:10.1016/j. pedobi.2009.10.001. Razdan, V. K., & Sabitha, M. (2009). Integrated disease management: Concepts and practices. En R. Peshin & A. K. Dhawan, (Eds.), Integrated pest management: Innovation-development process: Volume 1 (pp. 369-389). Dordrecht, Holanda: Springer. doi:10.1007/978-1- 4020-8992-3_15. Regliński, T., Rodenburg, N., Taylor, J. T., Northcott, G. L., Chee, A. A., Spiers, T. M., & Hill, R. A. (2012). Trichoderma atroviride promotes growth and enhances systemic resistance to Diplodia pinea in radiata pine (Pinus radiata) seedlings. Forest Pathology, 42(1), 75-78. doi:10.1111/j.1439-0329.2010.00710.x. Resende, M. L. V., Nojosa, G. B. A., Cavalcanti, L. S., Aguilar, M. A. G., Silva, L. H. C. P., Perez, J. O., ... Castro, R. M. (2002). Induction of resistance in cocoa against Crinipellis perniciosa and Verticillium dahliae by acibenzolarS- methyl (asm). Plant Pathology, 51(5), 621-628. doi:10.1046/j.1365-3059.2002.00754.x. Roesch, L. F. W., Fulthorpe, R. R., Riva, A., Casella, G., Hadwin, A. K. M., Kent, A. D., ... Triplett, E. W. (2007). Pyrosequencing enumerates and contrasts soil microbial diversity. The Isme Journal, 1, 283-290. doi:10.1038/ ismej.2007.53 Rosenberg, E., & Zilber-Rosenberg, I. (2016). Microbes drive evolution of animals and plants: The hologenome concept. mBio, 7(2), e01395-15. doi:10.1128/mBio.01395-15. Rosenthal, G. A., & Berenbaum, M. R. (2012). Herbivores: their interactions with secondary plant metabolites: ecological and evolutionary processes. Massachusetts, EE. UU.: Academic Press. doi:10.1016/C2009-0-03210-3. Sánchez, J., & Gallego, E. (2001). Pythium spp. present in irrigation water in the poniente region of almería (south-eastern Spain). Mycopathologia, 150(1), 29-38. doi:10.1023/A:1010815624490. Savant, N. K., Snyder, G. H., & Datnoff, L. E. (1996). Silicon management and sustainable rice production. Advances in agronomy, 58, 151-199. doi:10.1016/S0065- 2113(08)60255-2. Schikora, A., Schenk, S. T., & Hartmann, A. (2016). Beneficial effects of bacteria-plant communication based on quorum sensing molecules of the N-acyl homoserine lactone group. Plant Molecular Biology, 90(6), 605-612. doi:10.1007/s11103-016-0457-8. Schippers, B., Bakker, A. W., & Bakker, P. A. (1987). Interactions of deleterious and beneficial rhizosphere microorganisms and the effect of cropping practices. Annual Review of Phytopathology, 25, 339-358. doi:10.1146/annurev.py.25.090187.002011. Shetty, R., Jensen, B., Shetty, N. P., Hansen, M., Hansen, C. W., Starkey, K. R., & Jørgensen, H. J. L. (2012). Silicon induced resistance against powdery mildew of roses caused by Podosphaera pannosa. Plant Patholgoy, 61(1), 120-131. doi:10.1111/j.1365-3059.2011.02493.x. Shtienberg, D. (2007). Rational management of Botrytisincited diseases: Integration of control measures and use of warning systems. En Y. Elad, B. Williamson, P. Tudzynski, & N. Delen (Eds.), Botrytis: Biology, pathology and control (pp. 335-347). Dordrecht, Holanda: Springer. doi:10.1007/978-1-4020-2626-3_18. Shtienberg, D., & Elad, Y. (1997). Incorporation of weather forecasting in integrated, biological-chemical management of Botrytis cinerea. Phytopathology, 87(3), 332-340. doi:10.1094/PHYTO.1997.87.3.332. Simpson, W. R., Faville, M. J., Moraga, R. A., Williams, W. M., Mcmanus, M. T., & Johnson, R. D. (2014). Epichloë fungal endophytes and the formation of synthetic symbioses in Hordeeae (=Triticeae) grasses. Journal of Systematics and Evolution, 52(6), 794-806. doi:10.1111/ jse.12107002E Slaughter, A., Daniel, X., Flors, V., Luna, E., Hohn, B., & Mauch-Mani, B. (2011). Descendants of primed Arabidopsis plants exhibit resistance to biotic stress. Plant Physiology, 158(2), 835-843. doi:10.1104/pp.111.191593. Smith, R. F., & Van den Bosch, R. (1967). Integrated control. En Kilgore, W. W. & Doutt, R. L. (Eds.), Pest control: biological, physical, and selected chemical methods (pp. 295– 340). Nueva York, EE. UU.: Academic Press. Spoel, S. H., & Dong, X. (2012). How do plants achieve immunity? Defence without specialized immune cells. Nature reviews immunology, 12, 89-100. doi:10.1038/ nri3141. Srivastava, P., George, S., Marois, J. J., Wright, D. L., & Walker, D. R. (2011). Saccharin-induced systemic acquired resistance against rust (Phakopsora pachyrhizi) infection in soybean: Effects on growth and development. Crop Protection, 30(6), 726-732. doi:10.1016/j. cropro.2011.02.023. Stacey, D. (2003). Climate and biological control in organic crops. International Journal of Pest Management, 49(3), 205-214. doi:10.1080/0967087031000085042. Stenberg, J., A., Lehrman, A., & Björkman, C. (2011). Hostplant genotype mediates supply and demand of animal food in an omnivorous insect. Ecological Entomology, 36(4), 442-449. doi:10.1111/j.1365-2311.2011.01285.x. Stenberg, J. A. (2017). A conceptual framework for integrated pest management. Trends in Plant Science, 22(9), 759- 769. doi:10.1016/j.tplants.2017.06.010. Stenberg, J. A., Heil, M., Åhman, I., & Björkman, C. (2015). Optimizing crops for biocontrol of pests and disease. Trends in Plant Science, 20(11), 698-712. doi:10.1016/j. tplants.2015.08.007. Stenberg, J. A., & Muola, A. (2017). How should plant resistance to herbivores be measured? Frontiers in Plant Science, 8, 663. doi:10.3389/fpls.2017.00663 Stern, V. M. R. F., Smith, R., Van den Bosch, R., & Hagen, K. (1959). The integration of chemical and biological control of the spotted alfalfa aphid: the integrated control concept. Hilgardia, 29(2), 81-101. doi:10.3733/hilg.v29n02p081. Tamiru, A., Bruce, T., Woodcock, C., Caulfield, J. C., Midega, C., Ogol, C., ... Khan, Z. R. (2011). Maize landraces recruit egg and larval parasitoids in response to egg deposition by a herbivore. Ecology Letters, 14(11), 1075- 1083. doi:10.1111/j.1461-0248.2011.01674.x. Thaler, J. S., Olsen, E. L., & Kaplan, I. (2015). Jasmonateinduced plant defenses and prey availability impact the preference and performance of an omnivorous stink bug, Podisus maculiventris. Arthropod-plant interactions, 9(2), 141-148. doi:10.1007/s11829-015-9357-0 Theis, K. R., Dheilly, N. M., Klassen, J. L., Brucker, R. M., Baines, J. F., Bosch, T. C. G., ... Bordenstein, S. R. (2016). Getting the hologenome concept right: An eco-evolutionary framework for hosts and their microbiomes. mSystems, 1(2), e00028-16. doi:10.1128/ mSystems.00028-16. Tucci, M., Ruocco, M., De Masi, L., De Palma, M., & Lorito, M. (2011). The beneficial effect of Trichoderma spp. on tomato is modulated by the plant genotype. Molecular Plant Pathology, 12(4), 341-354. doi:10.1111/j.1364- 3703.2010.00674.x. United States Departmen of Agriculture (USDA). (2018). Healthy soil for life. Recuperado de https://www.nrcs. usda.gov/wps/portal/nrcs/main/soils/health/. Van De Fliert, E., Asmunati, R., & Tantowijoyo, W. (2000). Participatory approaches and scaling-up. Documento presentado en ciat Workshop “Working with farmers: the key to adoption of forage technologies. Citeseer. Cayagan de Oro City, Mindanao, Filipinas. Van Der Heijden, M. G. A., Bardgett, R. D., & Van Straalen, N. M. (2007). The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecology Letters, 11(3), 296-310. doi:10.1111/ j.1461-0248.2007.01139.x. Van Hulten, M., Pelser, M., Van Loon, L. C., Pieterse, C. M. J., & Ton, J. (2006). Costs and benefits of priming for defense in Arabidopsis. Proceedings of the National Academy of Sciences, 103(14), 5602-5607. doi:10.1073/ pnas.0510213103. Van Opstal, E. J., & Bordenstein, S. R. (2015). Rethinking heritability of the microbiome. Science, 349(6253), 1172- 1173. doi:10.1126/science.aab3958. Walker, J. C. (1969). Disease control through exclusion and eradication. En J. C. Walker (Ed.), Plant Pathology (pp. 714-740). Nueva York, EE. UU.: McGraw-Hill Book Company. Walters, D. R., & Fountaine, J. M. (2009). Practical application of induced resistance to plant diseases: an appraisal of effectiveness under field conditions. The Journal of Agricultural Science, 147(5), 523-535. doi:10.1017/ S0021859609008806. Willer, H., & Lernoud, J. (2017). The World of Organic Agriculture. Frick, Suiza: Statistics and Emerging Trends. Woltz, S. S., & Jones, J. P. (1973). Interactions in source of nitrogen fertilizer and liming procedure in the control of Fusarium. HortScience, 8, 137-138. Worrall, D., Holroyd G. H., Moore J. P., Glowacz, M., Croft, P., Taylor J. E., ... Roberts M. R., (2011). Treating seeds with activators of plant defence generates longlasting priming of resistance to pests and pathogens. Yoshioka, Y., Ichikawa, H., Naznin, H. A., Kogure, A., & Hyakumachi, M. (2012). Systemic resistance induced in Arabidopsis thaliana by Trichoderma asperellum SKT-1, a microbial pesticide of seedborne diseases of rice. Pest Management Science, 68(1), 60-66. doi:10.1002/ ps.2220. |
dc.relation.references.none.fl_str_mv |
New Phytology, 193(3), 770-778. doi:10.1111/j.1469- 8137.2011.03987.x. |
dc.relation.ispartofbook.spa.fl_str_mv |
33519 ; Control biológico de fitopatógenos, insectos y ácaros: Aplicaciones y perspectivas V. 2. |
dc.rights.*.fl_str_mv |
Attribution-NonCommercial-ShareAlike 4.0 International |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ |
rights_invalid_str_mv |
Attribution-NonCommercial-ShareAlike 4.0 International http://creativecommons.org/licenses/by-nc-sa/4.0/ http://purl.org/coar/access_right/c_abf2 |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.coverage.country.spa.fl_str_mv |
Colombia |
dc.publisher.spa.fl_str_mv |
Corporación colombiana de investigación agropecuaria - AGROSAVIA |
dc.publisher.place.spa.fl_str_mv |
Bogotá (Colombia) |
institution |
Agrosavia |
bitstream.url.fl_str_mv |
https://repository.agrosavia.co/bitstream/20.500.12324/34082/2/license.txt https://repository.agrosavia.co/bitstream/20.500.12324/34082/5/Ver_Documento_34082.pdf https://repository.agrosavia.co/bitstream/20.500.12324/34082/6/Ver_Documento_34082.pdf.jpg |
bitstream.checksum.fl_str_mv |
8a4605be74aa9ea9d79846c1fba20a33 b713c1d5efa91215bc6074cf41f6e48f e77b25bbac220e10308cd9053204ef78 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Agrosavia - Corporación colombiana de investigación agropecuaria |
repository.mail.fl_str_mv |
bac@agrosavia.co |
_version_ |
1814380149551923200 |
spelling |
Cotes Prado, Alba Marina8e81a379-2909-4b7e-a52b-afcee7b4894f600Elad, Yigalf9c63e8f-be44-4d6f-88dc-1c9bf544f84a6002018-12-04T21:18:48Z2018-12-04T21:18:48Z2018978-958-740-254-4 (e-book)http://hdl.handle.net/20.500.12324/34082reponame:Biblioteca Digital Agropecuaria de Colombiarepourl:https://repository.agrosavia.coinstname:Corporación colombiana de investigación agropecuaria AGROSAVIAEl suelo es un sistema biológico complejo y dinámico que constituye el pilar fundamental del manejo integrado, debido a las relaciones que en él existen entre la diversidad microbiana, por una parte, y su funcionamiento y estabilidad, por otra. El manejo integrado de enfermedades consiste en la utilización oportuna de diferentes componentes que representan otras tantas tácticas adecuadas para el cultivo. Estos componentes incluyen la selección y preparación del terreno, el control biológico, el uso de cultivares resistentes, la resistencia inducida, el priming, la rotación de cultivos, la diversidad botánica y genética (inter e intraespecífica), la modificación del medio ambiente y, si es necesario, la aplicación de plaguicidas. Estos componentes deben aplicarse de manera coordinada e integrada para maximizar sus beneficios y deben ser compatibles con las prácticas culturales esenciales para el cultivo; sin embargo, la integración de los diferentes componentes exige un alto nivel, es intensiva en conocimiento técnico, experiencia y destreza, y requiere de una mejor comunicación con los productores y de tecnologías innovadoras que mejoren la efectividad del programa de manejo. Aquí discutimos los enfoques y métodos disponibles, identificamos algunos de los desafíos y oportunidades, y recomendamos la interacción entre científicos de diferentes disciplinas, asistentes técnicos y productores, para desarrollar e implementar programas de manejo integrado de enfermedades.application/pdfspaCorporación colombiana de investigación agropecuaria - AGROSAVIABogotá (Colombia)Attribution-NonCommercial-ShareAlike 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-sa/4.0/http://purl.org/coar/access_right/c_abf2El control biológico en un contexto de manejo integrado de enfermedadesBiological control in the context of integrated plant diseases managementConservación de la naturaleza y recursos de la tierra - P01Plagas de las plantas - H10BiodiversidadControl biológicoSueloTransversalTécnicoProfesionalInvestigadorCientíficobook partCapítulohttp://purl.org/coar/resource_type/c_3248info:eu-repo/semantics/bookParthttps://purl.org/redcol/resource_type/CAP_LIBhttp://purl.org/coar/version/c_970fb48d4fbd8a85Colombia794821Abo-Elyousr, K. A. M., Ibrahim, Y. E., & Balabel, N. M. (2012). Induction of disease defensive enzymes in response to treatment with acibenzolar-S-methyl (ASM) and Pseudomonas fluorescens Pf2 and inoculation with Ralstonia solanacearum race 3, biovar 2 (phylotype ii). Journal of Phytopathology, 160(7-8), 382-389. doi:10.1111/j.1439-0434.2012.01915.x.Ahmad, S., Gordon-Weeks, R., Pickett, J., & Ton, J. (2010). Natural variation in priming of basal resistance: from evolutionary origin to agricultural exploitation. Molecular Plant Pathology, 11(6), 817-827. doi:10.1111/j.1364- 3703.2010.00645.x.Andow, D. (1983). The extent of monoculture and its effects on insect pest populations with particular reference to wheat and cotton. Agriculture, Ecosystems & Environment, 9(1), 25-35. doi:10.1016/0167-8809(83)90003-8.Ayliffe, M., Singh, R., & Lagudah, E. (2008). Durable resistance to wheat stem rust needed. Current Opinion in Plant Biology, 11(2), 187-192. doi:10.1016/j. pbi.2008.02.001.Balmer, A., Pastor, V., Gamir, J., Flors, V., & Mauch-Mani, B. (2015). The ‘prime-ome’: towards a holistic approach to priming. Trends in Plant Science, 20(7), 443-452. doi:10.1016/j.tplants.2015.04.002Bardgett, R. (2005). The biology of soil: a community and ecosystem approach. Nueva York, EE. UU.: Oxford University.Bateman, D. F., & Basham, H. G. (1976). Degradation of plant cell walls and membranes by microbial enzymes. En R. Heitefuss & P. H., Williams (Eds.), Physiological plant pathology (pp. 316-355). Berlín, Alemania: Springer. doi:10.1007/978-3-642-66279-9_13.Berendsen, R. L., Pieterse, C. M. J., & Bakker, P. A. H. M. (2012). The rhizosphere microbiome and plant health. Trends in Plant Science, 17(8), 478-486. doi:10.1016/j. tplants.2012.04.001.Berg, G., Grube, M., Schloter, M., & Smalla, K. (2014a). The plant microbiome and its importance for plant and human health. Frontiers in Microbiology, 5, 491. doi.10.3389/ fmicb.2014.00491.Berg, G., Grube, M., Schloter, M., & Smalla, K. (2014b). Unraveling the plant microbiome: looking back and future perspectives. Frontiers in Microbiology, 5, 777-780. doi:10.3389/fmicb.2014.00148.Berg, G., Rybakova, D., Grube, M., & Koberl, M. (2016). The plant microbiome explored: implications for experimental botany. Journal of Experimental Botany, 67(4), 995-1002. doi:10.1093/jxb/erv466.Berg, G., & Smalla, K. (2009). Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiology Ecology, 68(1), 1-13. doi:10.1111/j.1574- 6941.2009.00654.x.Bhattarai, A., Bhattarai, B., & Pandey, S. (2015). Variation of soil microbial population in different soil horizons. Journal of Microbiology, 2(2), 00044. doi:10.15406/ jmen.2015.02.00044.Blagodatskaya, E. & Kuzyakov, Y. (2013). Active microorganisms in soil: Critical review of estimation criteria and approaches. Soil Biology and Biochemistry, 67, 192-211. doi:10.1016/j.soilbio.2013.08.024.Booth, A. (2014). Symbiosis, selection, and individuality. Biology & Philosophy, 29(5), 657-673. doi:10.1007/ s10539-014-9449-8Bordenstein, S. R., & Theis, K. R. (2015). Host biology in light of the microbiome: Ten principles of holobionts and hologenomes. PLoS Biol, 13(8), e1002226. doi:10.1371/ journal.pbio.1002226Boudreau, M. A. (2013). Diseases in intercropping systems. Annual Review of Phytopathology, 51, 499-519. doi:10.1146/annurev-phyto-082712-102246Brooker, R. W., Karley, A. J., Newton, A. C., Pakeman, R. J., Schöb, C., & Pugnaire, F. (2015). Facilitation and sustainable agriculture: a mechanistic approach to reconciling crop production and conservation. Functional Ecology, 30(1), 98-107. doi:10.1111/1365-2435.12496.Burdon, J. J., Thrall, P. H., & Ericson, L. (2006). The current and future dynamics of disease in plant communities. Annual Review of Phytopathology, 44, 19-39. doi:10.1146/ annurev.phyto.43.040204.140238.Burke, D., & Kraft, J. (1974). Responses of beans and peas to root pathogens accumulated during monoculture of each crop species. Phytopathology, 64, 546-549.Cardinale, B. J., Srivastava, D. S., Emmett Duffy, J., Wright, J. P., Downing, A. L., ... Jouseau, C. (2006). Effects of biodiversity on the functioning of trophic groups and ecosystems. Nature, 443, 989-992. doi:10.1038/ nature05202.Compant, S., Duffy, B., Nowak, J., Clément, C., & Barka, E. A. (2005). Use of plant growth-promoting bacteria for biocontrol of plant diseases: Principles, mechanisms of action, and future prospects. Applied and Environmental Microbiology, 71(9), 4951-4959. doi:10.1128/ aem.71.9.4951-4959.2005.Cotes, A., Cárdenas, A., & Pinzón, H. (2001). Effect of seed priming in the presence of Trichoderma koningii on seed and seedling disease induced in tomato by Rhizoctonia solani and Fusarium oxysporum f. sp. lycopersici. IOBC WPRS Bulletin, 24: 259-264.Cotuna, O., Paraschivu, M., Paraschivu, A., & Sărățeanu, V. (2015). The influence of tillage, crop rotation and residue management on tan spot (Drechslera tritici-repentis. Died. Shoemaker) in winter wheat. Research Journal of Agricultural Science, 47(2), 13-21.Chen, Y. H., Gols, R., Stratton, C. A., Brevik, K. A., & Benrey, B. (2015). Complex tritrophic interactions in response to crop domestication: predictions from the wild. Entomology Experimentalis et Applicata, 157(1), 40- 59. doi:10.1111/eea.12344.Da Rocha, A. B. & Hammerschmidt, R. (2005). History and perspectives on the use of disease resistance inducers in horticultural crops. HortTechnology, 15(3), 518-529.Davidson, S. (2005). Going organic. Ecos, 127, 8-12.De Nobili, M., Contin, M., Mondini, C., & Brookes, P. C. (2001). Soil microbial biomass is triggered into activity by trace amounts of substrate. Soil Biology and Biochemistry, 33(9), 1163-1170. doi:10.1016/S0038-0717(01) 00020-7.De Vrese, M., & Schrezenmeir, J. (2008). Probiotics, prebiotics, and synbiotics. En U. Stahl, U. E. B. Donalies, & E. Nevoigt (Eds.), Food Biotechnol (pp. 1-66). Berlín, Alemania: Springer. doi:10.1007/10_2008_097.De Vries, F. T., Thébault, E., Liiri, M., Birkhofer, K., Tsiafouli, M. A., Bjørnlund, L., … Bardgett, R. D. (2013). Soil food web properties explain ecosystem services across European land use systems. Proceedings of the National Academy of Sciences, 110(35), 14296-14301. doi:10.1073/ pnas.1305198110.Delmas, C., Fabre, F., Jolivet, J., Mazet, I. D., Richart S., Delière, L., & Delmotte, F. (2016). Adaptation of a plant pathogen to partial host resistance: selection for greater aggressiveness in grapevine downy mildew. Evolutionary Applications, 9(5), 709-725. doi:10.1111/eva.12368.Dent, D. (2000). Insect pest management. Massachusetts, EE. UU.: CABI.Dent, D. (2005). Overview of agrobiologicals and alternatives to synthetic pesticides. En J. N. Pretty (Ed.), The pesticide detox: Towards a more sustainable agriculture (pp. 70-82). Londres, Inglaterra: Earthscan Publications Ltd.Dias, T., Dukes, A., & Antunes, P. M. (2014). Accounting for soil biotic effects on soil health and crop productivity in the design of crop rotations. Journal of Science of Food and Agriculture, 95(3), 447-454. doi:10.1002/jsfa.6565.Elad, Y., David, D. R., Harel, Y. M., Borenshtein, M., Kalifa, H. B., Silber, A., & Graber, E. R. (2010). Induction of systemic resistance in plants by biochar, a soil-applied carbon sequestering agent. Phytopathology, 100(9), 913- 921. doi:10.1094/PHYTO-100-9-0913.Elad, Y., & Shtienberg, D. (1997). Integrated management of foliar diseases in greenhouse vegetables according to principles of a decision support system Greenman. IOBC WPRS Bulletin, 20(4), 71-76.Fierer, N., Strickland, M. S., Liptzin, D., Bradford, M. A., & Cleveland, C. C. (2009). Global patterns in belowground communities. Ecology Letters, 12(11), 1238-1249. doi:10.1111/j.1461-0248.2009.01360.x.Garbeva, P., Van Veen, J. A., & Van Elsas, J. D. (2004). Microbial diversity in soil: Selection of microbial populations by plant and soil type and implications for disease suppressiveness. Annual Review of Phytopathology, 42, 243-270. doi:10.1146/annurev.phyto.42.012604.135455.Gassmann, A. J., Petzold-Maxwell, J. L., Clifton, E. H., Dunbar, M. W., Hoffmann, A. M., Ingber, D. A., & Keweshan, R. S. (2014). Field-evolved resistance by western corn rootworm to multiple Bacillus thuringiensis toxins in transgenic maize. Proceedings of the National Academy of Sciences, 111(14), 5141-5146. doi:10.1073/ pnas.1317179111.Gebhardt, M. R., Daniel, T. C., Schweizer, E. E., & Allmaras, R. R. (1985). Conservation tillage. Science, 230(4726), 625-630. doi:10.1126/science.230.4726.625.Gil, S. V., Pedelini, R., Oddino, C., Zuza, M., Marinelli, A., & March, G. J. (2008). The role of potential biocontrol agents in the management of peanut root rot in Argentina. Journal of Plant Pathology, 90(1), 35-41.Goellner, K., & Conrath, U. (2008). Priming: it’s all the world to induced disease resistance. European Journal of Plant Pathology, 121(3), 233-242. doi:10.1007/s10658-007- 9251-4.Gould, F., Kennedy, G. G., & Johnson, M. T. (1991). Effects of natural enemies on the rate of herbivore adaptation to resistant host plants. Entomologia Experimentalis et Applicata, 58(1), 1-14. doi:10.1111/j.1570-7458.1991. tb01445.x.Guerrero, R., Margulis, L., & Berlanga, M. (2013). Symbiogenesis: the holobiont as a unit of evolution. International Microbiology, 16, 133-143. doi:10.2436/20.1501.01.188Hance, T., Van Baaren, J., Vernon, P., & Boivin, G. (2007). Impact of extreme temperatures on parasitoids in a climate change perspective. Annual Review of Entomology, 52, 107-126. doi:10.1146/annurev.ento.52.110405.091333.Helgason, T., Daniell, T. J., Husband, R., Fitter, A. H., & Young, J. P. W. (1998). Ploughing up the wood-wide web? Nature, 394(6692), 431. doi:10.1038/28764.Herms, D. A., & Mattson, W. J. (1992). The dilemma of plants: To grow or defend. The Quarterly Review of Biology, 67(3), 283-335. doi:10.1086/417659.Hochmuth, R., & Sprenkel, R. (2008). Exclusion methods for managing greenhouse vegetable pests. ENY-846 (IN730). Gainesville, EE. UU.: University of Florida.Höper, H., Steinberg, C., & Alabouvette, C. (1995). Involvement of clay type and pH in the mechanisms of soil suppressiveness to Fusarium wilt of flax. Soil Biology and Biochemistry, 27(7), 955-967. doi:10.1016/0038- 0717(94)00238-V.Hu, J., Wei, Z., Friman, V.-P., Gu, S.-h., Wang, X.-f., Eisenhauer, N., ... Jousset, A. (2016). Probiotic diversity enhances rhizosphere microbiome function and plant disease suppression. mBio, 7(8), e01790-16. doi:10.1128/ mBio.01790-16.Huang, H. C., Kodama, F., Akashi, K., & Konno, K. (2002). Impact of crop rotation on soilborne diseases and yield of kidney bean: A case study in northern Japan. Plant Pathology Bulletin, 11, 87-96.Huber, D. (1994). The influence of mineral nutrition on vegetable diseases. Horticultura Brasileira, 12, 206-220.Jacqmin, B., Cotes, A., Lepoivre, P., & Semal, J. (1993). Effect of the combination of seed priming and Trichoderma treatment on incidence of damping-off agents. Mededelingen van de Faculteit Landbouwkundige en Toegepaste Biologische Wetenschappen (Rijksuniversiteit te Gent), 58(3b), 1321-1328.Johnsen, K., Jacobsen, C. S., Torsvik, V., & Sørensen, J. (2001). Pesticide effects on bacterial diversity in agricultural soils – a review. Biology and Fertility Soils, 33(6), 443-453. doi:10.1007/s003740100351.Katz, V. A., Thulke, O. U., & Conrath, U. (1998). A benzothiadiazole primes parsley cells for augmented elicitation of defense responses. Plant Physiology, 117, 1333-1339. doi:10.1104/pp.117.4.1333.Kauss, H., Theisinger-Hinkel, E., Mindermann, R., & Conrath, U. (1992). Dichloroisonicotinic and salicylic acid, inducers of systemic acquired resistance, enhance fungal elicitor responses in parsley cells. The Plant Journal, 2(5), 655-660. doi:10.1111/j.1365-313X.1992. tb00134.x.Kelman, A., McGuire, R., & Tzeng, K. (1989). Reducing the severity of bacterial soft rot by increasing the concentration of calcium in potato tubers. En A. W. Engelhard (Ed.), Soilborne plant pathogens: management of diseases with macro- and microelements (pp. 102-123). Saint Paul, Minnesota, EE. UU.: APS Press.Kessler, A., & Ian, T. B. (2004). Herbivore-induced plant vaccination. Part I. The orchestration of plant defenses in nature and their fitness consequences in the wild tobacco Nicotiana attenuata. The Plant Journal, 38(4), 639-649. doi:10.1111/j.1365-313X.2004.02076.x.Klein, E., Ofek, M., Katan, J., Minz, D., & Gamliel, A. (2012). Soil suppressiveness to Fusarium disease: Shifts in root microbiome associated with reduction of pathogen root colonization. Phytopathology, 103(1), 23-33. doi:10.1094/ PHYTO-12-11-0349.Knops, J. M. H., Tilman, D., Haddad, N. M., Naeem, S., Mitchell, C. E., Haarstad, J., ... Groth, J. (2002). Effects of plant species richness on invasion dynamics, disease outbreaks, insect abundances and diversity. Ecology Letters, 2(5), 286-293. doi:10.1046/j.1461- 0248.1999.00083.x.Koul, O., & Cuperus, G. W. (2007). Ecologically based integrated pest management. Wallingford, Inglaterra: CABI Publishing.Kuć, J. (1982). Induced immunity to plant disease. Bioscience, 32(11), 854-860. doi:10.2307/1309008.Lehman, R., Cambardella, C., Stott, D., Acosta-Martinez, V., Manter, D., Buyer, J., ... Karlen, D. (2015). Understanding and enhancing soil biological health: The solution for reversing soil degradation. Sustainability, 7(1), 1-40.ithourgidis, A. S., Dordas, C. A., Damalas, C. A., & Vlachostergios, D. N. (2011). Annual intercrops: an alternative pathway for sustainable agriculture. Australian Journal of Crop Science, 5(4), 396-410.Liu, G. D., Simonne, E. H., Morgan, T. K., & Hochmuth, J. G. (2015). Soil and fertilizer management for vegetable production in Florida. Gainesville, EE. UU.: UF/IFAS Extension University of Florida.Liu, X., Chen, M., Collins, H. L., Onstad, D. W., Roush, R. T., Zhang, Q., ... Shelton, A. M. (2014). Natural enemies delay insect resistance to -bt crops. PLoS One, 9(3), e90366. doi:10.1371/journal.pone.0090366.Locey, K. J., & Lennon, J. T. (2016). Scaling laws predict global microbial diversity. Proceedings of the National Academy of Sciences, 113(21), 5970-5975. doi:10.1073/ pnas.1521291113.Loyd, A. L., Benson, D. M., & Ivors, K. L. (2014). Phytophthora populations in nursery irrigation water in relationship to pathogenicity and infection frequency of Rhododendron and Pieris. Plant Disease, 98(9), 1213-1220. doi:10.1094/ PDIS-11-13-1157-RE.Luna, E., Bruce, T. J. A., Roberts, M. R., Flors, V., & Ton, J. (2012). Next-generation systemic acquired resistance. Plant Physiology, 158(2), 844-853. doi:10.1104/ pp.111.187468.Lyon, G. (2007). Agents That Can Elicit Induced Resistance. En D. R. Walters, A. Newton, & G. Lyon (Eds.), Induced resistance for plant disease control: A sustainable approach to crop protection (pp. 9-29). Oxford, Inglaterra: Blackwell Publishing. doi:10.1002/9781118371848.ch2.Maloy, O. C. (2005). Plant Disease Management. The Plant Health Instructor. doi.10.1094/PHI-I-2005-0202-01.Martinez-Medina, A., Flors, V., Heil, M., Mauch-Mani, B., Pieterse, C.M.J., Pozo, M.J., ... Conrath, U. (2016). Recognizing plant defense priming. Trends in Plant Science, 21(10), 818-822. doi.10.1016/j.tplants.2016.07.009.Mauch-Mani, B., Baccelli, I., Luna, E., & Flors, V. (2017). Defense priming: An adaptive part of induced resistance. Annual Review of Plant Biology, 68, 485-512. doi:10.1146/ annurev-arplant-042916-041132.McGrath, M. T. (2012). Managing plant diseases with crop rotation. Recuperado de https://www.sare.org/LearningCenter/Books/Crop-Rotation-on-Organic-Farms/ Text-Version/Physical-and-Biological-Processes-InCrop-Production/Managing-Plant-Diseases-WithCrop-Rotation.Mendes, R., Garbeva, P., & Raaijmakers, J. M. (2013). The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiology Review, 37(5), 634-663. doi:10.1111/1574-6976.12028.Mendes, R., Kruijt, M., de Bruijn, I., Dekkers, E., Van der Voort, M., Schneider, J.H., ... Raaijmakers, J. M. (2011). Deciphering the rhizosphere microbiome for diseasesuppressive bacteria. Science, 332(6033), 1097-1100. doi:10.1126/science.1203980.Mitchell, C., Brennan, R. M., Graham, J., & Karley, A. J. (2016). Plant defense against herbivorous pests: Exploiting resistance and tolerance traits for sustainable crop protection. Frontiers in Plant Science, 7, 1132. doi:10.3389/fpls.2016.01132.Mitter, B., Pfaffenbichler, N., Flavell, R., Compant, S., Antonielli, L., Petric, A., ... Sessitsch, A. (2017). A new approach to modify plant microbiomes and traits by introducing beneficial bacteria at flowering into progeny seeds. Frontiers in Microbiology, 8, 11. doi:10.3389/ fmicb.2017.00011.Moreno, C., Castillo, F., González, A., Bernal, D., Jaimes, Y., Chaparro, M., ... Cotes, A. (2009). Biological and molecular characterization of the response of tomato plants treated with Trichoderma koningiopsis. Physiological and Molecular Plant Pathology, 74(2), 111-120. doi:10.1016/j.pmpp.2009.10.001.Moreno, L. G., & Alvarado, G. (2000). La Variedad Colombia: Veinte años de adopción y comportamiento frente a nuevas razas de la roya del cafeto. Manizales, Colombia: Centro Nacional de Investigaciones de Café (Cenicafé).Moya-Elizondo, E. A., & Jacobsen, B. J. (2016). Integrated management of Fusarium crown rot of wheat using fungicide seed treatment, cultivar resistance, and induction of systemic acquired resistance (sar). Biological Control, 92: 153-163. doi:10.1016/j.biocontrol.2015.10.006.Muola, A., Weber, D., Malm, L. E., Egan, P. A., Glinwood, R., Parachnowitsch, A. L., & Stenberg, J. A. (2017). Direct and pollinator-mediated effects of herbivory on strawberry and the potential for improved resistance. Frontiers in Plant Science, 8, 823. doi:10.3389/fpls.2017.00823.Myresiotis, C. K., Karaoglanidis, G. S., Vryzas, Z., & Papadopoulou-Mourkidou, E. (2012). Evaluation of plant-growth-promoting rhizobacteria, acibenzolar-Smethyl and hymexazol for integrated control of Fusarium crown and root rot on tomato. Pest Management Science, 68(3), 404-411. doi.10.1002/ps.2277.Oostendorp, M., Kunz, W., Dietrich, B., & Staub, T. (2001). Induced disease resistance in plants by chemicals. European Journal of Plant Pathology, 107(1), 19-28. doi:10.1023/A:1008760518772.Organización de las Naciones Unidas para la Alimentación y la Agricultura (FAO). (2018). How to practice integrated pest management. Recuperado de http://www.fao. org/agriculture/crops/thematic-sitemap/theme/spi/ scpi-home/managing-ecosystems/integrated-pestmanagement/ipm-how/en/.Orozco-Mosqueda, M. C., Rocha-Granados, M. C., Glick, B. R., & Santoyo, G. (2018). Microbiome engineering to improve biocontrol and plant growth-promoting mechanisms. Microbiology Research, 208, 25-31. doi:10.1016/j.micres.2018.01.005.Paparella, S., Araújo, S. S., Rossi, G., Wijayasinghe, M., Carbonera, D., & Balestrazzi, A. (2015). Seed priming: state of the art and new perspectives. Plant Cell Reports, 34(8), 1281-1293. doi:10.1007/s00299-015-1784-yParet, M., Dufault, N., Momol, T., Marois, J., & Olson, S. (2015). Integrated disease management for vegetable crops in Florida. Florida, EE. UU.: UF/IFAS Extension University of Florida.Perazzolli, M., Roatti, B., Bozza, E., & Pertot, I. (2011). Trichoderma harzianum T39 induces resistance against downy mildew by priming for defense without costs for grapevine. Biological Control, 58(1), 74-82. doi:10.1016/j. biocontrol.2011.04.006.Peshin, R., & Dhawan, A. K. (2009). Integrated pest management. Volume 1: Innovation-development process. Dordrecht, Holanda: Springer. doi:10.1007/978-1- 4020-8992-3.Peterson, J. A., Ode, P. J., Oliveira-Hofman, C., & Harwood, J. D. (2016). Integration of plant defense traits with biological control of arthropod pests: Challenges and opportunities. Frontiers in Plant Science, 7, 1794. doi:10.3389/fpls.2016.01794.Philippot, L., Raaijmakers, J. M., Lemanceau, P., & Van der Putten, W. H. (2013). Going back to the roots: the microbial ecology of the rhizosphere. Nature Reviews Microbiology, 11, 789-799. doi:10.1038/nrmicro3109Pieterse, C. M. J., de Jonge, R., & Berendsen, R. L. (2016). The Soil-Borne Supremacy. Trends in Plant Science, 21(3), 171-173. doi:10.1016/j.tplants.2016.01.018.Pineda, A., Kaplan, I., & Bezemer, T. M. (2017). Steering soil microbiomes to suppress aboveground insect pests. Trends in Plant Science, 22(9), 770-778. doi:10.1016/j. tplants.2017.07.002.Pinto, K. M. S., do Nascimento, L. C., de Souza-Gomes, E. C., da Silva, H. F., & dos Reis-Miranda, J. (2012). Efficiency of resistance elicitors in the management of grapevine downy mildew Plasmopara viticola: epidemiological, biochemical and economic aspects. European Journal of Plant Pathology, 134(4), 745-754. doi:10.1007/s10658- 012-0050-1.Zilber-Rosenberg, I., & Rosenberg, E. (2008). Role of microorganisms in the evolution of animals and plants: the hologenome theory of evolution. FEMS Microbiology Review, 32(5), 723-735. doi:10.1111/j.1574- 6976.2008.00123.x.Zotarelli, L., Dukes, M., Liu, G., Simonne, E. H., & Agehara, S. (2017). Principles and practices of irrigation management for vegetables. Gainesville, EE. UU.: UF/ IFAS Extension University of Florida.Postma, J., Scheper, R. W. A., & Schilder, M. T. (2010). Effect of successive cauliflower plantings and Rhizoctonia solani ag 2-1 inoculations on disease suppressiveness of a suppressive and a conducive soil. Soil Biology and Biochemistry, 42(5), 804-812. doi:10.1016/j. soilbio.2010.01.017Pushpalatha, H. G., Sudisha, J., Geetha, N. P., Amruthesh, K. N., & Shekar-Shetty, H. (2011). Thiamine seed treatment enhances lox expression, promotes growth and induces downy mildew disease resistance in pearl millet. Biologia Plantarum, 55(3), 522-527. doi:10.1007/s10535-011- 0118-3.Ramírez-Carrasco, G., Martínez-Aguilar, K., & AlvarezVenegas, R. (2017). Transgenerational defense priming for crop protection against plant pathogens: A hypothesis. Frontiers in Plant Science, 8, 696. doi:10.3389/ fpls.2017.00696.Rasmann, S., De Vos, M., Casteel, C. L., Tian, D., Halitschke, R., Sun, J. Y., ... Jander, G. (2012). Herbivory in the previous generation primes plants for enhanced insect resistance. Plant Physiology, 158(2), 854-863. doi:10.1104/pp.111.187831.Raubuch, M., Behr, K., Roose, K., & Joergensen, R. G. (2010). Specific respiration rates, adenylates, and energy budgets of soil microorganisms after addition of transgenic Btmaize straw. Pedobiologia, 53(3), 191-196. doi:10.1016/j. pedobi.2009.10.001.Razdan, V. K., & Sabitha, M. (2009). Integrated disease management: Concepts and practices. En R. Peshin & A. K. Dhawan, (Eds.), Integrated pest management: Innovation-development process: Volume 1 (pp. 369-389). Dordrecht, Holanda: Springer. doi:10.1007/978-1- 4020-8992-3_15.Regliński, T., Rodenburg, N., Taylor, J. T., Northcott, G. L., Chee, A. A., Spiers, T. M., & Hill, R. A. (2012). Trichoderma atroviride promotes growth and enhances systemic resistance to Diplodia pinea in radiata pine (Pinus radiata) seedlings. Forest Pathology, 42(1), 75-78. doi:10.1111/j.1439-0329.2010.00710.x.Resende, M. L. V., Nojosa, G. B. A., Cavalcanti, L. S., Aguilar, M. A. G., Silva, L. H. C. P., Perez, J. O., ... Castro, R. M. (2002). Induction of resistance in cocoa against Crinipellis perniciosa and Verticillium dahliae by acibenzolarS- methyl (asm). Plant Pathology, 51(5), 621-628. doi:10.1046/j.1365-3059.2002.00754.x.Roesch, L. F. W., Fulthorpe, R. R., Riva, A., Casella, G., Hadwin, A. K. M., Kent, A. D., ... Triplett, E. W. (2007). Pyrosequencing enumerates and contrasts soil microbial diversity. The Isme Journal, 1, 283-290. doi:10.1038/ ismej.2007.53Rosenberg, E., & Zilber-Rosenberg, I. (2016). Microbes drive evolution of animals and plants: The hologenome concept. mBio, 7(2), e01395-15. doi:10.1128/mBio.01395-15.Rosenthal, G. A., & Berenbaum, M. R. (2012). Herbivores: their interactions with secondary plant metabolites: ecological and evolutionary processes. Massachusetts, EE. UU.: Academic Press. doi:10.1016/C2009-0-03210-3.Sánchez, J., & Gallego, E. (2001). Pythium spp. present in irrigation water in the poniente region of almería (south-eastern Spain). Mycopathologia, 150(1), 29-38. doi:10.1023/A:1010815624490.Savant, N. K., Snyder, G. H., & Datnoff, L. E. (1996). Silicon management and sustainable rice production. Advances in agronomy, 58, 151-199. doi:10.1016/S0065- 2113(08)60255-2.Schikora, A., Schenk, S. T., & Hartmann, A. (2016). Beneficial effects of bacteria-plant communication based on quorum sensing molecules of the N-acyl homoserine lactone group. Plant Molecular Biology, 90(6), 605-612. doi:10.1007/s11103-016-0457-8.Schippers, B., Bakker, A. W., & Bakker, P. A. (1987). Interactions of deleterious and beneficial rhizosphere microorganisms and the effect of cropping practices. Annual Review of Phytopathology, 25, 339-358. doi:10.1146/annurev.py.25.090187.002011.Shetty, R., Jensen, B., Shetty, N. P., Hansen, M., Hansen, C. W., Starkey, K. R., & Jørgensen, H. J. L. (2012). Silicon induced resistance against powdery mildew of roses caused by Podosphaera pannosa. Plant Patholgoy, 61(1), 120-131. doi:10.1111/j.1365-3059.2011.02493.x.Shtienberg, D. (2007). Rational management of Botrytisincited diseases: Integration of control measures and use of warning systems. En Y. Elad, B. Williamson, P. Tudzynski, & N. Delen (Eds.), Botrytis: Biology, pathology and control (pp. 335-347). Dordrecht, Holanda: Springer. doi:10.1007/978-1-4020-2626-3_18.Shtienberg, D., & Elad, Y. (1997). Incorporation of weather forecasting in integrated, biological-chemical management of Botrytis cinerea. Phytopathology, 87(3), 332-340. doi:10.1094/PHYTO.1997.87.3.332.Simpson, W. R., Faville, M. J., Moraga, R. A., Williams, W. M., Mcmanus, M. T., & Johnson, R. D. (2014). Epichloë fungal endophytes and the formation of synthetic symbioses in Hordeeae (=Triticeae) grasses. Journal of Systematics and Evolution, 52(6), 794-806. doi:10.1111/ jse.12107002ESlaughter, A., Daniel, X., Flors, V., Luna, E., Hohn, B., & Mauch-Mani, B. (2011). Descendants of primed Arabidopsis plants exhibit resistance to biotic stress. Plant Physiology, 158(2), 835-843. doi:10.1104/pp.111.191593.Smith, R. F., & Van den Bosch, R. (1967). Integrated control. En Kilgore, W. W. & Doutt, R. L. (Eds.), Pest control: biological, physical, and selected chemical methods (pp. 295– 340). Nueva York, EE. UU.: Academic Press.Spoel, S. H., & Dong, X. (2012). How do plants achieve immunity? Defence without specialized immune cells. Nature reviews immunology, 12, 89-100. doi:10.1038/ nri3141.Srivastava, P., George, S., Marois, J. J., Wright, D. L., & Walker, D. R. (2011). Saccharin-induced systemic acquired resistance against rust (Phakopsora pachyrhizi) infection in soybean: Effects on growth and development. Crop Protection, 30(6), 726-732. doi:10.1016/j. cropro.2011.02.023.Stacey, D. (2003). Climate and biological control in organic crops. International Journal of Pest Management, 49(3), 205-214. doi:10.1080/0967087031000085042.Stenberg, J., A., Lehrman, A., & Björkman, C. (2011). Hostplant genotype mediates supply and demand of animal food in an omnivorous insect. Ecological Entomology, 36(4), 442-449. doi:10.1111/j.1365-2311.2011.01285.x.Stenberg, J. A. (2017). A conceptual framework for integrated pest management. Trends in Plant Science, 22(9), 759- 769. doi:10.1016/j.tplants.2017.06.010.Stenberg, J. A., Heil, M., Åhman, I., & Björkman, C. (2015). Optimizing crops for biocontrol of pests and disease. Trends in Plant Science, 20(11), 698-712. doi:10.1016/j. tplants.2015.08.007.Stenberg, J. A., & Muola, A. (2017). How should plant resistance to herbivores be measured? Frontiers in Plant Science, 8, 663. doi:10.3389/fpls.2017.00663Stern, V. M. R. F., Smith, R., Van den Bosch, R., & Hagen, K. (1959). The integration of chemical and biological control of the spotted alfalfa aphid: the integrated control concept. Hilgardia, 29(2), 81-101. doi:10.3733/hilg.v29n02p081.Tamiru, A., Bruce, T., Woodcock, C., Caulfield, J. C., Midega, C., Ogol, C., ... Khan, Z. R. (2011). Maize landraces recruit egg and larval parasitoids in response to egg deposition by a herbivore. Ecology Letters, 14(11), 1075- 1083. doi:10.1111/j.1461-0248.2011.01674.x.Thaler, J. S., Olsen, E. L., & Kaplan, I. (2015). Jasmonateinduced plant defenses and prey availability impact the preference and performance of an omnivorous stink bug, Podisus maculiventris. Arthropod-plant interactions, 9(2), 141-148. doi:10.1007/s11829-015-9357-0Theis, K. R., Dheilly, N. M., Klassen, J. L., Brucker, R. M., Baines, J. F., Bosch, T. C. G., ... Bordenstein, S. R. (2016). Getting the hologenome concept right: An eco-evolutionary framework for hosts and their microbiomes. mSystems, 1(2), e00028-16. doi:10.1128/ mSystems.00028-16.Tucci, M., Ruocco, M., De Masi, L., De Palma, M., & Lorito, M. (2011). The beneficial effect of Trichoderma spp. on tomato is modulated by the plant genotype. Molecular Plant Pathology, 12(4), 341-354. doi:10.1111/j.1364- 3703.2010.00674.x.United States Departmen of Agriculture (USDA). (2018). Healthy soil for life. Recuperado de https://www.nrcs. usda.gov/wps/portal/nrcs/main/soils/health/. Van De Fliert, E., Asmunati, R., & Tantowijoyo, W. (2000). Participatory approaches and scaling-up. Documento presentado en ciat Workshop “Working with farmers: the key to adoption of forage technologies. Citeseer. Cayagan de Oro City, Mindanao, Filipinas.Van Der Heijden, M. G. A., Bardgett, R. D., & Van Straalen, N. M. (2007). The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecology Letters, 11(3), 296-310. doi:10.1111/ j.1461-0248.2007.01139.x.Van Hulten, M., Pelser, M., Van Loon, L. C., Pieterse, C. M. J., & Ton, J. (2006). Costs and benefits of priming for defense in Arabidopsis. Proceedings of the National Academy of Sciences, 103(14), 5602-5607. doi:10.1073/ pnas.0510213103.Van Opstal, E. J., & Bordenstein, S. R. (2015). Rethinking heritability of the microbiome. Science, 349(6253), 1172- 1173. doi:10.1126/science.aab3958.Walker, J. C. (1969). Disease control through exclusion and eradication. En J. C. Walker (Ed.), Plant Pathology (pp. 714-740). Nueva York, EE. UU.: McGraw-Hill Book Company.Walters, D. R., & Fountaine, J. M. (2009). Practical application of induced resistance to plant diseases: an appraisal of effectiveness under field conditions. The Journal of Agricultural Science, 147(5), 523-535. doi:10.1017/ S0021859609008806.Willer, H., & Lernoud, J. (2017). The World of Organic Agriculture. Frick, Suiza: Statistics and Emerging Trends.Woltz, S. S., & Jones, J. P. (1973). Interactions in source of nitrogen fertilizer and liming procedure in the control of Fusarium. HortScience, 8, 137-138.Worrall, D., Holroyd G. H., Moore J. P., Glowacz, M., Croft, P., Taylor J. E., ... Roberts M. R., (2011). Treating seeds with activators of plant defence generates longlasting priming of resistance to pests and pathogens.Yoshioka, Y., Ichikawa, H., Naznin, H. A., Kogure, A., & Hyakumachi, M. (2012). Systemic resistance induced in Arabidopsis thaliana by Trichoderma asperellum SKT-1, a microbial pesticide of seedborne diseases of rice. Pest Management Science, 68(1), 60-66. doi:10.1002/ ps.2220.New Phytology, 193(3), 770-778. doi:10.1111/j.1469- 8137.2011.03987.x.33519 ; Control biológico de fitopatógenos, insectos y ácaros: Aplicaciones y perspectivas V. 2.LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repository.agrosavia.co/bitstream/20.500.12324/34082/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52open accessORIGINALVer_Documento_34082.pdfVer_Documento_34082.pdfapplication/pdf5267578https://repository.agrosavia.co/bitstream/20.500.12324/34082/5/Ver_Documento_34082.pdfb713c1d5efa91215bc6074cf41f6e48fMD55open accessTHUMBNAILVer_Documento_34082.pdf.jpgVer_Documento_34082.pdf.jpgimage/jpeg23051https://repository.agrosavia.co/bitstream/20.500.12324/34082/6/Ver_Documento_34082.pdf.jpge77b25bbac220e10308cd9053204ef78MD56open access20.500.12324/34082oai:repository.agrosavia.co:20.500.12324/340822024-06-25 09:07:55.31open accessAgrosavia - Corporación colombiana de investigación agropecuariabac@agrosavia.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |