Bacterias entomopatógenas en el control biológico de insectos

Este capítulo presenta una revisión de las bacterias entomopatógenas que han sido utilizadas para el control microbiológico de insectos considerados como plaga, incluyendo su identificación, modo de acción y uso en el control de plagas. En general, las bacterias entomopatógenas deben ser ingeridas y...

Full description

Autores:
Grijalba Bernal, Erika Paola
Hurst, Mark
Ibarra, Jorge E.
Jurat Fuentes, Juan Luis
Jackson, Trevor
Tipo de recurso:
Part of book
Fecha de publicación:
2018
Institución:
Agrosavia
Repositorio:
Agrosavia
Idioma:
spa
OAI Identifier:
oai:repository.agrosavia.co:20.500.12324/34070
Acceso en línea:
http://hdl.handle.net/20.500.12324/34070
Palabra clave:
Plagas de las plantas - H10
Bacillus thuringiensis
Bacteria
Serratia
Yersinia
Organismos patógenos
Insectos dañinos
Agentes de control biológico
Transversal
Rights
License
Attribution-NonCommercial-ShareAlike 4.0 International
id Agrosavia2_866480c409d29e939966e5cd06d70cde
oai_identifier_str oai:repository.agrosavia.co:20.500.12324/34070
network_acronym_str Agrosavia2
network_name_str Agrosavia
repository_id_str
dc.title.spa.fl_str_mv Bacterias entomopatógenas en el control biológico de insectos
dc.title.translated.eng.fl_str_mv Entomopathogenic bacteria in insect biological control
title Bacterias entomopatógenas en el control biológico de insectos
spellingShingle Bacterias entomopatógenas en el control biológico de insectos
Plagas de las plantas - H10
Bacillus thuringiensis
Bacteria
Serratia
Yersinia
Organismos patógenos
Insectos dañinos
Agentes de control biológico
Transversal
title_short Bacterias entomopatógenas en el control biológico de insectos
title_full Bacterias entomopatógenas en el control biológico de insectos
title_fullStr Bacterias entomopatógenas en el control biológico de insectos
title_full_unstemmed Bacterias entomopatógenas en el control biológico de insectos
title_sort Bacterias entomopatógenas en el control biológico de insectos
dc.creator.fl_str_mv Grijalba Bernal, Erika Paola
Hurst, Mark
Ibarra, Jorge E.
Jurat Fuentes, Juan Luis
Jackson, Trevor
dc.contributor.author.none.fl_str_mv Grijalba Bernal, Erika Paola
Hurst, Mark
Ibarra, Jorge E.
Jurat Fuentes, Juan Luis
Jackson, Trevor
dc.subject.fao.spa.fl_str_mv Plagas de las plantas - H10
topic Plagas de las plantas - H10
Bacillus thuringiensis
Bacteria
Serratia
Yersinia
Organismos patógenos
Insectos dañinos
Agentes de control biológico
Transversal
dc.subject.agrovoc.spa.fl_str_mv Bacillus thuringiensis
Bacteria
Serratia
Yersinia
Organismos patógenos
Insectos dañinos
Agentes de control biológico
dc.subject.red.spa.fl_str_mv Transversal
description Este capítulo presenta una revisión de las bacterias entomopatógenas que han sido utilizadas para el control microbiológico de insectos considerados como plaga, incluyendo su identificación, modo de acción y uso en el control de plagas. En general, las bacterias entomopatógenas deben ser ingeridas y actúan mediante la liberación de toxinas y/o penetración de las células del intestino medio, antes de la invasión del hemocele para multiplicarse en el cadáver del insecto. Las bacterias entomopatógenas Gram-positivas tienen la capacidad de formar esporas, dentro de las que se encuentra el bien conocido Bacillus thuringiensis (Bt), así como patógenos de insectos de los géneros Paenibacillus y Lysinibacillus. En contraste, los entomopatógenos Gram-negativos no forman esporas e incluyen aislamientos de los géneros Serratia, Yersinia, Photorhabdus, Chromobacterium, entre otros. Muchas bacterias entomopatógenas pueden ser producidas por fermentación, y se ha logrado llevar a cabo su producción masiva y comercialización. Por su parte, Bt ha sido el caso más exitoso de todos los controles microbianos con cepas activas sobre lepidópteros, coleópteros y dípteros, utilizadas en el control de plagas a gran escala; además, sus genes de toxinas han sido usados para la protección de plantas en cultivos transgénicos. Asimismo, los bioplaguicidas bacterianos también han sido el pilar para la producción de cultivos orgánicos. Aunque las bacterias entomopatógenas han sido los agentes de control microbiológico más exitosos a la fecha, el enorme rango de diversidad microbiana sugiere que aún hay muchas cepas y toxinas por descubrir.
publishDate 2018
dc.date.accessioned.none.fl_str_mv 2018-12-03T16:25:56Z
dc.date.available.none.fl_str_mv 2018-12-03T16:25:56Z
dc.date.issued.none.fl_str_mv 2018
dc.type.localeng.eng.fl_str_mv book part
dc.type.local.spa.fl_str_mv Capítulo
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_3248
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bookPart
dc.type.redcol.none.fl_str_mv https://purl.org/redcol/resource_type/CAP_LIB
dc.type.version.none.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
format http://purl.org/coar/resource_type/c_3248
dc.identifier.isbn.none.fl_str_mv 978-958-740-253-7 (e-book)
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12324/34070
dc.identifier.reponame.spa.fl_str_mv reponame:Biblioteca Digital Agropecuaria de Colombia
dc.identifier.repourl.none.fl_str_mv repourl:https://repository.agrosavia.co
dc.identifier.instname.spa.fl_str_mv instname:Corporación colombiana de investigación agropecuaria AGROSAVIA
identifier_str_mv 978-958-740-253-7 (e-book)
reponame:Biblioteca Digital Agropecuaria de Colombia
repourl:https://repository.agrosavia.co
instname:Corporación colombiana de investigación agropecuaria AGROSAVIA
url http://hdl.handle.net/20.500.12324/34070
dc.language.iso.none.fl_str_mv spa
language spa
dc.relation.citationstartpage.none.fl_str_mv 296
dc.relation.citationendpage.none.fl_str_mv 333
dc.relation.references.spa.fl_str_mv Adang, M. J., Crickmore, N., & Jurat-Fuentes, J. L. (2014). Chapter two - diversity of Bacillus thuringiensis crystal toxins and mechanism of action. En T. S. Dhadialla & S. S. Gill (Eds.), Advances in Insect Physiology (pp. 39-87). Vol. 47. Cambridge, Inglaterra: Academic Press.
Angus, T. A. (1954). A bacterial toxin paralysing silkworm larvae. Nature, 173, 545-546. doi:10.1038/173545a0.
Aronson, A. I., Beckman, W., & Dunn, P. (1986). Bacillus thuringiensis and related insect pathogens. Microbiological reviews, 50(1), 1-24.
Asolkar, R., Huang, H., Koivunen, M., & Marrone, P. (2015). Patente EUA 8715754 Chromobacterium bioactive compositions and metabolites, Marrone Bio Innovations, I. Washington: Oficina de Patentes y Marcas de EUA.
Ballester, V., Granero, F., Tabashnik, B. E., Malvar, T., & Ferré, J. (1999). Integrative model for binding of Bacillus thuringiensis toxins in susceptible and resistant larvae of the diamondback moth (Plutella xylostella). Applied and Environmental Microbiology, 65(4), 1413-1419.
Baum, J. A., & Gonzalez, J. M. (1992). Mode of replication, size and distribution of naturally occurring plasmids in Bacillus thuringiensis. FEMS Microbiology Letters, 96(2-3), 143-148. doi:10.1111/j.1574-6968.1992.tb05407.x.
Beegle, C. C., & Yamamoto, T., (1992). Invitation paper (C.P. Alexander Fund): history of Bacillus thuringiensis Berliner research and development. The Canadian Entomologist, 124(4), 587-616. doi:10.4039/Ent124587-4.
Benoit, T. G., Wilson, G. R., Bull, D. L., & Aronson, A. I. (1990). Plasmid-associated sensitivity of Bacillus thuringiensis to uv light. Applied and Environmental Microbiology, 56(8), 2282-2286.
Berg, G. (2009). Plant-microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Applied Microbiology and Biotechnology, 84(1), 11-18. doi:10.1007/s00253-009- 2092-7.
Berry, C. (2012). The bacterium, Lysinibacillus sphaericus, as an insect pathogen. Journal of Invertebrate Pathology, 109(1), 1-10. doi:10.1016/j.jip.2011.11.008.
Biostart. (2017). The safe, effective way to control nz grass grub. Recuperado de http://www.biostart.co.nz/products/bioinsecticides/bioshield-grass-grub/.
Bone, L. W., & Tinelli, R. (1987).Trichostrongylus colubriformis: larvicidal activity of toxic extracts from Bacillus sphaericus (strain 1593) spores. Experimental Parasitology, 64(3), 514-516. doi:10.1016/0014-4894(87)90066-X.
Bönemann, G., Pietrosiuk, A., & Mogk, A. (2010). Tubules and donuts: a type VI secretion story. Molecular Microbiology, 76(4), 815-821. doi:10.1111/j.1365- 2958.2010.07171.x.
Bowen, D., Rocheleau, T. A., Blackburn, M., Andreev, O., Golubeva, E., Bhartia, R., & Ffrench-Constant, R. H. (1998). Insecticidal toxins from the bacterium Photorhabdus luminescens. Science, 280(5372), 2129-2132. doi:10.1126/science.280.5372.2129.
Braga, R. M., Dourado, M. N., & Araújo, W. L. (2016). Microbial interactions: ecology in a molecular perspective. Brazilian Journal Microbiology, 47(1), 86-98. doi:10.1016/j.bjm.2016.10.005.
Bravo, A. (2004). Familia de proteínas inseticidas de Bacillus thuringiensis. En: Bravo, A., Cerón, J. (Eds.), Bacillus thuringiensis en el control biológico (pp 49-68). Bogotá, Colombia: Editorial Buena Semilla.
Bresolin, G., Morgan, J. A. W., Ilgen, D., Scherer, S., & Fuchs, T. M. (2006). Low temperature-induced insecticidal activity of Yersinia enterocolitica. Molecular Microbiology, 59(2), 503-512. doi:10.1111/j.1365-2958.2005.04916.x.
Bretschneider, A., Heckel, D. G., & Pauchet, Y. (2016). Three toxins, two receptors, one mechanism: Mode of action of Cry1A toxins from Bacillus thuringiensis in Heliothis virescens. Insect Biochemistry and Molecular Biology, 76, 109-117. doi:10.1016/j.ibmb.2016.07.008.
Bucher, G. (1981). Identification of bacteria found in insects. En H. D. Burges (Ed.), Microbial control of pests and plant diseases, 1970-1980 (pp. 7-33). Londres, Reino: Academic Press.
Cordova-Kreylos, A. L., Fernandez, L. E., Koivunen, M., Yang, A., Flor-Weiler, & L., Marrone, P. G. (2013). Isolation and Characterization of Burkholderia rinojensis sp. nov., a Non-Burkholderia cepacia Complex Soil Bacterium with Insecticidal and Miticidal Activities. Applied and Environmental Microbiology, 79(24), 7669- 7678. doi:10.1128/aem.02365-13.
Couch, T. L. (2000). Industrial fermentation and formulation of entomopathogenic bacteria. En J. F. Charles, A. Delécluse & C. N. Roux (Eds.), Entomopathogenic bacteria: From laboratory to field application (pp. 297-316). Dordrecht, Holanda: Springer.
Crickmore, N., Zeigler, D. R., Feitelson, J., Schnepf, E., Van Rie, J., Lereclus, D., ... Dean, D. H. (1998). Revision of the nomenclature for the Bacillus thuringiensis pesticidal crystal proteins. Microbiology and Molecular Biology Reviews, 62(3), 807-813.
Chakoosari, M. M. D. (2013). Efficacy of various biological and microbial insecticides. Journal of biology and today’s world, 2, 249-254.
Champion, O. L., Cooper, I. A., James, S. L., Ford, D., Karlyshev, A., Wren, B. W., …Titball R. W. (2009). Galleria mellonella as an alternative infection model for Yersinia pseudotuberculosis. Microbiology, 155(5), 1516- 1522. doi:10.1099/mic.0.026823-0.
Chandler, D., Bailey, A. S., Tatchell, G. M., Davidson, G., Greaves, J., & Grant, W. P. (2011). The development, regulation and use of biopesticides for integrated pest management. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 366(1573), 1987- 1998. doi:10.1098/rstb.2010.0390.
Chattopadhyay, P., Chatterjee, S., Gorthi, S., & Sen, S. K. (2012). Exploring Agricultural Potentiality of Serratia entomophila AB2: Dual Property of Biopesticide and Biofertilizer. British Biotechnology Journal, 2(1), 1-12. doi:10.9734/BBJ/2012/778.
Chattopadhyay, P., Gorthi, S., Chatterjee, S., & Sen, S. K. (2011). Characterization of bacterial isolates as natural biocontrol agents of bollworm from an epizootic pest (Heliothis armigera). Pest Technology, 5(1), 81-85.
d’Herelle, F., (1911). Sur une épizootie de nature bactérienne sévissant sur les sauterelles au Mexique. Comptes Rendus de l’Académie des Sciences, 152, 1413-1415.
Dacheux, D., Attree, I., Schneider, C., & Toussaint, B. (1999). Cell death of human polymorphonuclear neutrophils induced by a Pseudomonas aeruginosa cystic fibrosis isolate requires a functional Type iii secretion system. Infection and Immunity, 67(11), 6164-6167.
De Barjac, H., & Bonnefoi, A. (1962). Essai de classification biochimique et sérologique de 24 souches de Bacillus du type B. Thuringiensis. Entomophaga, 7(1), 5-31. doi:10.1007/BF02375988.
De Maagd, R. A., Bosch, D., & Stiekema, W. (1999). Bacillus thuringiensis toxin-mediated insect resistance in plants. Trends in Plant Science, 4(1), 9-13. doi:10.1016/S1360- 1385(98)01356-9.
Dingman, D. W. (2009). dna fingerprinting of Paenibacillus popilliae and Paenibacillus lentimorbus using pcr-amplified 16S–23S rDNA intergenic transcribed spacer (its) regions. Journal of Invertebrate Pathology, 100(1), 16-21. doi:10.1016/j.jip.2008.09.006.
Dodd, S. J., Hurst, M. R. H., Glare, T. R., O’Callaghan, M., & Ronson, C. W. (2006). Occurrence of sep insecticidal toxin complex genes in Serratia spp. and Yersinia frederiksenii. Applied and Environmental Microbiology, 72(10), 6584-6592. doi:10.1128/aem.00954-06.
Dutky, S. (1963). The milky diseases. En E. Steinhaus (Ed.), Insect Pathology: An Advanced Treatise (pp. 75-115). Nueva York , EE. UU.: Academic press.
Dutta, S. (2015). Biopesticides: an ecofriendly approach for pest control.World Journal of Pharmacy and Pharmaceutical Sciences, 4(6), 250-265.
Endo, H., Azuma, M., Adegawa, S., Kikuta, S., & Sato, R. (2017). Water influx via aquaporin directly determines necrotic cell death induced by the Bacillus thuringiensis Cry toxin. FEBS Lett, 591(1), 56-64. doi:10.1002/1873- 3468.12506.
Environmental Protection Agency (epa). (2008). Biopesticide active ingredients and products containing them. Recuperado de http://www.epa.gov/pesticides/biopesticides/ product_lists.
Fang, J., Xu, X., Wang, P., Zhao, J.-Z., Shelton, A.M., Cheng, J., … Sheng, Z. (2007). Characterization of Chimeric Bacillus thuringiensis Vip3 Toxins. Applied Environmental Microbiology, 73(3), 956-961. doi:10.1128/AEM.02079-06.
Federici, B. A. (2007). Bacteria as biological control agents for insects: Economics, engineering, and environmental safety. En M. Vurro & J. Gressel (Eds.), Novel biotechnologies for biocontrol agent enhancement and management (pp. 25-51). Dordrecht, Holanda: Springer.
Ferguson, C. M., Barton, D. M., Harper L. A., Swaminathan., J., Van Koten, C., & Hurst, M. R. H. (2012). Survival of Yersinia entomophaga MH96 in a pasture ecosystem and effects on pest and non-target invertebrate populations. New Zealand Plant Protection, 65: 166-173.
Ferré, J., & Rie, J. V. (2002). Biochemistry and genetics of insect resistance to Bacillus thuringiensis. Annual Reviews of Entomology, 47, 501-533. doi:10.1146/annurev. ento.47.091201.145234.
Ffrench-Constant, R. H., Dowling, A., & Waterfield, N. R. (2007). Insecticidal toxins from Photorhabdus bacteria and their potential use in agriculture. Toxicon, 49(4), 436- 451. doi:10.1016/j.toxicon.2006.11.019.
Ffrench-Constant, R., & Waterfield, N. (2005). An abc guide to the bacterial toxin complexes. Advances in Applied Microbiology, 58, 169-183. doi:10.1016/S0065- 2164(05)58005-5.
Fuchs, T. M., Bresolin, G., Marcinowski, L., Schachtner, J., & Scherer, S. (2008). Insecticidal genes of Yersinia spp.: Taxonomical distribution, contribution to toxicity towards Manduca sexta and Galleria mellonella, and evolution. BMC Microbiology, 8, 214. doi:10.1186/1471- 2180-8-214
Ge, Y., Hu, X., Zheng, D., Wu, Y., & Yuan, Z. (2011). Allelic diversity and population structure of Bacillus sphaericus as revealed by multilocus sequence typing. Applied and Environmental Microbiology, 77(15), 5553-5556. doi:10.1128/AEM.00207-11.
Glare, T. R., Corbett, G. E., & Sadler, T. J. (1993). Association of a large plasmid with amber disease of the New Zealand grass grub, Costelytra zealandica, caused by Serratia entomophila and Serratia proteamaculans. Journal of Invertebrate Pathology, 62(2), 165-170. doi:10.1006/ jipa.1993.1091.
Gómez-Garzón, C., Hernández-Santana, A., & Dussán, J. (2016). Comparative genomics reveals Lysinibacillus sphaericus group comprises a novel species. BMC Genomics, 17, 1-10. doi:10.1186/s12864-016-3056-9.
Gómez, I., Sánchez, J., Miranda, R., Bravo, A., & Soberón, M. (2002). Cadherin-like receptor binding facilitates proteolytic cleavage of helix α-1 in domain I and oligomer pre-pore formation of Bacillus thuringiensis Cry1Ab toxin. FEBS Letters, 513(2-3), 242-246. doi:10.1016/S0014- 5793(02)02321-9.
Gonzalez, J. M., & Carlton, B. C. (1980). Patterns of plasmid dna in crystalliferous and acrystalliferous strains of Bacillus thuringiensis. Plasmid, 3(1), 92-98. doi:10.1016/ S0147-619X(80)90038-4.
Grimont, P., & Grimont, F. (1978). The genus Serratia. Annual Review of Microbiology, 32, 221-248. doi:10.1146/ annurev.mi.32.100178.001253.
Grimont, P. A. D., Jackson, T. A., Ageron, E., & Noonan, M. J. (1988). Serratia entomophila sp. nov. associated with amber disease in the New Zealand grass grub Costelytra zealandica. International Journal of Systematic and Evolutionary Microbiology, 38, 1-6. doi:10.1099/00207713-38-1-1.
Grkovic, S., Glare, T. R., Jackson, T. A., & Corbett, G. E. (1995). Genes essential for amber disease in grass grubs are located on the large plasmid found in Serratia entomophila and Serratia proteamaculans. Applied and Environmental Microbiology, 61(6), 2218-2223.
Gupta, B. L., Dow, J. A., Hall, T. A., & Harvey, W. R. (1985). Electron probe X-ray microanalysis of the effects of Bacillus thuringiensis var. kurstaki crystal protein insecticide on ions in an electrogenic K+-transporting epithelium of the larval midgut in the lepidopteran, Manduca sexta, in vitro. Journal of Cell Science, 74, 137-152.
Haddy, R. I., Mann, B. L., Nadkarni, D. D., Cruz, R. F., Elshoff, D. J., Buendia, F. C., … Oberheu, A. M. (1996). Nosocomial infection in the community hospital: severe infection due to Serratia species. The Journal of Family Practice, 42(3), 273-278.
Harrison, H., Patel, R., & Yousten, A. A. (2000). Paenibacillus associated with milky disease in Central and South American scarabs. Journal of Invertebrate Pathology, 76(3), 169-175. doi:10.1006/jipa.2000.4969.
Heckel, D. G. (2012). Learning the ABCs of Bt: abc transporters and insect resistance to Bacillus thuringiensis provide clues to a crucial step in toxin mode of action. Pesticide Biochemistry and Physiology, 104(2), 103-110. doi:10.1016/j.pestbp.2012.05.007.
Hejazi, A., & Falkiner, F. R. (1997). Serratia marcescens. Journal of Medical Microbiology, 46, 903-912. doi:10.1099/00222615-46-11-903.
Hire, R. S., Hadapad, A. B., Vijayalakshmi, N., & Dongre, T. K. (2010). Characterization of highly toxic indigenous strains of mosquitocidal organism Bacillus sphaericus. FEMS Microbiology Letters, 305(2), 155-161. doi:10.1111/j.1574-6968.2010.01927.x.
Höfte, H., & Whiteley, H. R. (1989). Insecticidal crystal proteins of Bacillus thuringiensis. Microbiological Reviews, 53(2), 242-255.
Hoshino, T. (2011). Violacein and related tryptophan metabolites produced by Chromobacterium violaceum: biosynthetic mechanism and pathway for construction of violacein core. Applied Microbiology and Biotechnology, 91, 1463. doi:10.1007/s00253-011-3468-z.
Hurst, M. R., Glare, T. R., & Jackson, T. A. (2004). Cloning Serratia entomophila antifeeding genes–a putative defective prophage active against the grass grub Costelytra zealandica. Journal of Bacteriology, 186(15), 5116-5128. doi: 10.1128/JB.186.15.5116-5128.2004.
Hurst, M. R., Glare, T. R., Jackson, T. A., & Ronson, C. W. (2000). Plasmid-located pathogenicity determinants of Serratia entomophila, the causal agent of amber disease of grass grub, show similarity to the insecticidal toxins of Photorhabdus luminescens. Journal of Bacteriology, 182(18), 5127-5138. doi:10.1128/JB.182.18.5127-5138.2000.
Hurst, M. R. H., Beattie, A. K., Jones, S. A., Hsu, P.-C., Calder, J., & Van Koten, C. (2015). Temperature-dependent Galleria mellonella mortality as a result of Yersinia entomophaga infection. Applied and Environmental Microbiology, 81(18), 6404-6414. doi:10.1128/aem.00790-15.
Hurst, M. R. H., Becher, S. A., & O’Callaghan, M. (2011). Nucleotide sequence of the Serratia entomophila plasmid pADAP and the Serratia proteamaculans pU143 plasmid virulence associated region. Plasmid, 65(1), 32-41. doi:10.1016/j.plasmid.2010.10.001.
Hurst, M. R. H., Becher, S. A., Young, S. D., Nelson, T. L., Glare, T. R. (2011). Yersinia entomophaga sp. nov., isolated from the New Zealand grass grub Costelytra zealandica. International Journal Systematic and Evolutionary Microbiology, 61(4), 844-849. doi:10.1099/ijs.0.024406-0.
Hurst, M. R. H., Jones, S. A., Binglin, T., Harper, L. A., Jackson, T. A., & Glare, T. R., (2011). The main virulence determinant of Yersinia entomophaga MH96 is a broad host-range toxin complex active against insects. Journal of Bacteriology, 193(8), 1966-1980. doi:10.1128/JB.01 044-10.
Hurst, M. R. H., Jones, S. M., Tan, B., & Jackson, T. A. (2007). Induced expression of the Serratia entomophila Sep proteins shows activity towards the larvae of the New Zealand grass grub Costelytra zealandica. FEMS Microbiology Letters, 275(1), 160-167. doi:10.1111/ j.1574-6968.2007.00886.x.
Hurst, M. R. H., van Koten, C., & Jackson, T. A. (2014). Pathology of Yersinia entomophaga MH96 towards Costelytra zealandica (Coleoptera; Scarabaeidae) larvae. Journal of Invertebrate Pathology, 115, 102-107. doi:10.1016/j.jip.2013.11.004.
Ibarra, J. E., & Federici, B. A. (1986). Parasporal bodies of Bacillus thuringiensis subsp. morrisoni (PG-14) and Bacillus thuringiensis subsp. israelensis are similar in protein composition and toxicity. FEMS Microbiology Letters, 34(1), 79-84. doi:10.1111/j.1574-6968.1986. tb01353.x.
Instituto Colombiano Agropecuario (ica). (2017). Productos registrados bioinsumos. Recuperado de http://www.ica. gov.co/getdoc/2ad9e987-8f69-4358b8a9e6ee6dcc 8132/PRODUCTOSBIOINSUMOS-MAYO-13- DE-2008.aspx.
Inglis, G. D., & Lawrence, A. M. (2001). Effects of Serratia marcescens on the F1 generation of laboratory-reared Heliothis virescens (Lepidoptera: Noctuidae). Journal of Economic Entomology, 94(2), 362-366. doi:10.1603/0022- 0493-94.2.362.
Jackson, T. A. (2007). A novel bacterium for control of grass grub. En C. Vincent, M. S. Goettel, & G. Lazarovits (Eds.), Biological control: a global perspective (pp. 160- 168). Wallingford, Inglaterra: CABI.
Jackson, T. A., Boucias, D. G., & Thaler, J. O. (2001). Pathobiology of amber disease, caused by Serratia spp., in the New Zealand grass grub, Costelytra zealandica. Journal of Invertebrate Pathology, 78(4), 232-243. doi:10.1006/ jipa.2002.5078.
Jackson, T. A., Huger, A. M., & Glare, T. R. (1993). Pathology of Amber Disease in the New Zealand Grass Grub Costelytra zealandica (Coleoptera: Scarabaeidae). Journal of Invertebrate Pathology, 61(2), 123-130. doi:10.1006/ jipa.1993.1024.
Jackson, T. A., Pearson, J. F., O Callaghan, M., Mahanty, H. K., & Willcocks, M. J. (1992). Pathogen to product - Development of Serratia entomophila (Enterobacteriaceae) as a commercial biological agent for the New Zealand grass grub (Costelytra zealandica). En T. A. Jackson, & T. R. Glare, (Eds.), Use of Pathogens in Scarab Pest Management (pp. 191-198). Andover, EE. UU.: Intercept.
Jackson, T. A., Pearson, J. F., & Stucki, G. (1986). Control of the grass grub, Costelytra zealandica (White) (Coleoptera: Scarabaeidae), by application of the bacteria Serratia spp. causing honey disease. Bulletin of Entomological Research, 76(1), 69-76. doi:10.1017/S0007485300015297.
Jackson, T. A., Townsend, R. J., & Barlow, N. D. (1999). Predicting grass grub populationchange in Canterbury. En: J. N. Matthiessen (Ed.) Proceedings of the 7th australasian conference on grassland invertebrate ecology. Wembley, Autralia. pp. 21-26.
Jackson, T. A., & Zimmermann, G. (1996). Is there a role for Serratia spp. in the biocontrol of Melolontha spp.? Bulletin OILB/SROP, 19(2), 47-53.
James, R. R. & Li, Z. (2012). From silkworms to bees: diseases of beneficial insects. En F. E. Vega & H. K. Kaya (Eds.), Insect Pathology (pp. 425-459). Nueva York, EE. UU.: Elsevier.
Jarrett, C. O., Deak, E., Isherwood, K. E., Oyston, P. C., Fischer, E. R., Whitney, A. R., … Hinnebusch, B. J. (2004). Transmission of Yersinia pestis from an infectious biofilm in the flea vector. The journal of infectious diseases, 190(4), 782-792. doi:10.1086/422695.
Jisha, V. N., Smitha, R. B., & Benjamin, S. (2013). An overview on the crystal toxins from Bacillus thuringiensis. Advances in microbiology, 3, 462-472. doi:10.4236/ aim.2013.35062.
Johnson, V. W., Pearson, J. F., & Jackson, T. A. (2001). Formulation of Serratia entomophila for biological control of grass grub. New Zealand Plant Protection, 54, 125-127.
Jolley, K. A., Chan, M.-S., & Maiden, M. C. (2004). mlstdbNet – distributed multi-locus sequence typing (mlst) databases. BMC Bioinformatics, 5, 86. doi:10.1186/1471- 2105-5-86.
Jurat-Fuentes, J., & Jackson, T. (2012). Bacterial entomopathogens. Insect pathology, 2, 265-349. doi:10.1016/B978-0-12-384984-7.00008-7.
Jurat-Fuentes, J. L., & Crickmore, N., (2017). Specificity determinants for Cry insecticidal proteins: Insights from their mode of action. Journal of Invertebrate Pathology, 142, 5-10. doi:10.1016/j.jip.2016.07.018.
Kain, W., & Atkinson, D. (1970). Rational approach to grass grub control. Proceedings of the 23rd NZ Weed and Pest Control Conference, pp. 180-183. Palmerston North, Nueva Zelanda: New Zealand Plant Protection Society.
Kaška, M. (1976). The toxicity of extracellular proteases of the bacterium Serratia marcescens for larvae of greater wax moth, Galleria mellonella. Journal of Invertebrate Pathology, 27(2), 271. doi:10.1016/0022-2011(76)90158-0.
Kellen, W. R., Clark, T. B., Lindegren, J. E., Ho, B. C., Rogoff, M. H., & Singer, S. (1965). Bacillus sphaericus Neide as a pathogen of mosquitoes. Journal of Invertebrate Pathology, 7(4), 442-448. doi:10.1016/0022-2011(65)90120-5.
Kergunteuil, A., Bakhtiari, M., Formenti, L., Xiao, Z., Defossez, E., & Rasmann, S. (2016). Biological control beneath the feet: A review of crop protection against insect root herbivores. Insects, 7(4), 70. doi:10.3390/ insects7040070.
Key, P. B., & Scott, G. I. (1992). Acute toxicity of the mosquito larvicide, Bacillus sphaericus, to the grass shrimp, Palaemonetes pugio, and mummichog, Fundulus heteroclitus. Bulletin of Environmental Contamination and Toxicology, 49(3), 425-430. doi:10.1007/BF01239647.
Khetan, S. (2001). Microbial pest control. Nueva York, EE. UU.: Marcel Dekker.
Khyami-Horani, H., Hajaij, M., & Charles, J.-F. (2003). Characterization of Bacillus thuringiensis ser. jordanica (Serotype H71), a novel serovariety isolated in Jordan. Current Microbiology, 47(1), 0026-0031. doi:10.1007/ s00284-002-3940-1.
Kil, Y. J., Seo, M. J., Kang, D. K., Oh, S. N., Cho, H. S., Youn, Y. N., … Yu, Y. M. (2014). Effects of enterobacteria (Burkholderia sp.) on development of Riptortus pedestris. Journal of the Faculty of Agriculture, Kyushu University, 59(1), 77-84.
Kinkel, L. L., Bakker, M. G., & Schlatter, D. C. (2011). A coevolutionary framework for managing diseasesuppressive soils. Annual Review of Phytopatholgoy, 49, 47-67. doi:10.1146/annurev-phyto-072910-095232.
Klein, M. G. (1988). Pest management of soil-inhabiting insects with microorganisms. Agriculture Ecosystems & Environment. 24(1-3), 337-349. doi:10.1016/0167- 8809(88)90077-1.
Klein, M. G., & Jackson, T. A. (1992). Bacterial diseases of scarabs. En J. Trevor & G. Travis (Eds.), Use of pathogens in scarab pest management (pp.43-61). Andover, EE. UU.: Intercept.
Krishnan, M., Bharathiraja, C., Pandiarajan, J., Prasanna, V. A., Rajendhran, J., & Gunasekaran, P. (2014). Insect gut microbiome - An unexploited reserve for biotechnological application. Asian Pacific Journal of Tropical Biomedicine, 4(Suppl. 1), S16-S21. doi:10.12980/APJTB.4.2014C95.
Krych, V. K., Johnson, J. L., & Yousten, A. A. (1980). Deoxyribonucleic acid homologies among strains of Bacillus sphaericus. International Journal of Systematic Bacteriology, 30, 476-484. doi:10.1099/00207713-30-2- 476.
Kupferschmied, P., Maurhofer, M., & Keel, C. (2013). Promise for plant pest control: root-associated pseudomonads with insecticidal activities. Frontiers in Plant Science, 4, 287. doi:10.3389/fpls.2013.00287.
Lacey, L. A., & Georgis, R. (2012). Entomopathogenic nematodes for control of insect pests above and below ground with comments on commercial production. Journal of Nematology, 44(2), 218-225.
Lambert, B., & Peferoen, M. (1992). Insecticidal Promise of Bacillus thuringiensis: Facts and mysteries about a successful biopesticide. Bioscience, 42(2), 112-122. doi:10.2307/1311652.
Lecadet, M. M. (1998). Collection of Bacillus thuringiensis and Bacillus sphaericus (Classified by H Serotypes). París, Francia: Institut Pasteur. Lecadet, M. M., Frachon, E., Dumanoir, V. C., Ripouteau, H., Hamon, S., Laurent, P., & Thiéry, I. (1999). Updating the H-antigen classification of Bacillus thuringiensis. Journal of Applied Microbiology, 86(4), 660-672. doi:10.1046/ j.1365-2672.1999.00710.x.
Lee, D.-W., Akao, T., Yamashita, S., Katayama, H., Maeda, M., Saitoh, H., … Ohba, M. (2000). Noninsecticidal Parasporal Proteins of a Bacillus thuringiensis Serovar shandongiensis Isolate Exhibit a Preferential Cytotoxicity against Human Leukemic T Cells. Biochemical and Biophysical Research Communications, 272(1), 218-223. doi:10.1006/bbrc.2000.2765.
Lereclus, D., Lecadet, M.-M., Ribier, J., & Dedonder, R. (1982). Molecular relationships among plasmids of Bacillus thuringiensis: Conserved sequences through 11 crystalliferous strains. Molecular and general genetics mgg, 186(3), 391-398. doi:10.1007/BF00729459.
LifeSci. (2017). “Bacillus thuringiensis” Toxin Nomenclature. Recuperado de http://www.lifesci.sussex.ac.uk/home/ Neil_Crickmore/Bt/.
Lisansky, S., & Coombs, J. (1994). Developments in the market for biopesticides. En Brighton crop protection conference: pests and diseases (pp. 1049-1049). Brighton, Inglaterra: Brit Crop Protection Council.
Lodish, H., Berk, A., Matsudaira, P., Kaiser, C., Krieger, M., Scott, M., … Darnell, J. (2006). Biología celular y molecular. Buenos Aires, Argentina: Editorial Médica Panamericana.
Loper, J. E., Hassan, K. A., Mavrodi, D. V., Davis II, E. W., Lim, C. K., Shaffer, B. T., ... Paulsen, I. T. (2012). Comparative genomics of plant-associated Pseudomonas spp.: insights into diversity and inheritance of traits involved in multitrophic interactions. PLoS Genetics, 8(7), e1002784. doi:10.1371/journal.pgen.1002784.
López-Meza, J. E., Barboza-Corona, J. E., Del RincónCastro, M. C., & Ibarra, J. E. (2003). Sequencing and characterization of plasmid pUIBI-1 from Bacillus thuringiensis serovar entomocidus LBIT-113. Current Microbiology, 47(5), 395-399. doi:10.1007/s00284-003- 4041-5.
Lord, J. C. (2005). From metchnikoff to Monsanto and beyond: The path of microbial control. Journal of Invertebrate Pathology, 89(1), 19-29. doi:10.1016/j. jip.2005.04.006.
Lysenko, O. (1976). Chitinase of Serratia marcescens and its toxicity to insects. Journal of Invertebrate Pathology, 27, 385-386.
Marshall, S. D .G., Hares, M. C., Jones, S. A., Harper, L. A., Vernon, J. R., Harland, D. P., ... Hursta M. R. H. (2012). Histopathological effects of the Yen-Tc toxin complex from Yersinia entomophaga MH96 (Enterobacteriaceae) on the Costelytra zealandica (Coleoptera: Scarabaeidae) larval midgut. Applied and Environmental Microbiology, 78(14), 4835-4847. doi:10.1128/aem.00431-12
Martin, P. A., Hirose, E., & Aldrich, J. R. (2007). Toxicity of Chromobacterium subtsugae to southern green stink bug (Heteroptera: Pentatomidae) and corn rootworm (Coleoptera: Chrysomelidae). Journal of Economic Entomology, 100(3), 680-684.
Martin, P. A. W., Gundersen-Rindal, D., Blackburn, M., & Buyer, J. (2007). Chromobacterium subtsugae sp. nov., a betaproteobacterium toxic to Colorado potato beetle and other insect pests. International Journal of Systematic and Evolutionary Microbiology, 57(5), 993-999. doi:10.1099/ ijs.0.64611-0.
McNally, A., Cheasty, T., Fearnley, C., Dalziel, R. W., Paiba, G. A., Manning, G., Newell, D. G. (2004). Comparison of the biotypes of Yersinia enterocolitica isolated from pigs, cattle and sheep at slaughter and from humans with yersiniosis in Great Britain during 1999-2000. Letters in Applied Microbiology, 39, 103-108. doi:10.1111/j.1472- 765X.2004.01548.x.
Mizuki, E., Park, Y. S., Saitoh, H., Yamashita, S., Akao, T., Higuchi, K., Ohba, M. (2000). Parasporin, a human leukemic cell-recognizing parasporal protein of Bacillus thuringiensis. Clinical and Diagnostic Laboratory Immunology, 7(4), 625-634.
Mnif, I., & Ghribi, D. (2015). Potential of bacterial derived biopesticides in pest management. Crop Protection, 77, 52- 64. doi:10.1016/j.cropro.2015.07.017.
Monnerat, R., De Silva, S. F., Dias, D. S., Martins, E. S., Praça, L. B., Jones, G. W., ... Berry, C. (2004). Screening of Brazilian Bacillus sphaericus strains for high toxicity against Culex quinquefasciatus and Aedes aegypti. Journal of Applied Entomology, 128(7), 469-473. doi:10.1111/ j.1439-0418.2004.00874.x.
Monnerat, R., Nicolas, L., Frachon, E., & Hamon, S. (1992). Characterization and toxicity to mosquito larvae of four Bacillus sphaericus strains isolated from Brazilian soils. Journal of Invertebrte Pathology, 60(1), 10-14. doi:10.1016/0022-2011(92)90147-V.
Murray, P., Rosentahl, K., & Pfaller, M., (2009). Microbiología médica. (7.ª ed.). Barcelona, España, Elsevier.
Núñez-Valdez, M. E., Calderón, M. A., Aranda, E., Hernández, L., Ramírez-Gama, R. M., Lina, L., … Villalobos, F. J. (2008). Identification of a putative mexican strain of Serratia entomophila pathogenic against root-damaging larvae of Scarabaeidae (Coleoptera). Applied and Environmental Microbiology, 74(3), 802-810. doi:10.1128/AEM.01074-07.
O Callaghan, M., Garnham, M. L., Nelson, T. L., Baird, D., & Jackson, T. A. (1996). The pathogenicity of Serratia strains to Lucilia sericata (Diptera: Calliphoridae). Journal of Invertebrate Pathology, 68(1), 22-27. doi:10.1006/ jipa.1996.0054.
O Callaghan, M., Young, S., Barlow, N., & Jackson, T. (1999). The ecology of grass grub pathogenic Serratia spp. New Zealand pastures. En J. N. Mathiessen (Ed.). Proceedings of the 7th australasian conference on grassland invertebrate ecology, (pp. 85-91). Perth, Australia: csiro Entomology.
Ocelotl, J., Sánchez, J., Gómez, I., Tabashnik, B. E., Bravo, A., & Soberón, M. (2017). ABCC2 is associated with Bacillus thuringiensis Cry1Ac toxin oligomerization and membrane insertion in diamondback moth. Scientific Reports, 7, 2386. doi:10.1038/s41598-017-02545-y.
Opota, O., Vallet-Gély, I., Vincentelli, R., Kellenberger, C., Iacovache, I., Gonzalez, M. R., … Lemaitre, B. (2011) Monalysin, a novel ß-pore-forming toxin from the Drosophila pathogen Pseudomonas entomophila, contributes to host intestinal damage and lethality. PLoS Pathogens, 7(9): e1002259. doi:10.1371/journal. ppat.1002259.
Owuama, C. I. (2001). Entomopathogenic symbiotic bacteria, Xenorhabdus and Photorhabdus of nematodes. World journal of microbiology and biotechnology, 17(5), 505-515. doi:10.1023/A:1011916021378.
Park, H.-W., Mangum, C. M., Zhong, H. E., & Hayes, S. R. (2007). Isolation of Bacillus sphaericus with improved efficacy against Culex quinquefasciatus. Journal of the American Mosquito Control Association, 23(4), 478-480. doi:10.2987/5663.1.
Pechy-Tarr, M., Borel, N., Kupferschmied, P., Turner, V., Binggeli, O., Radovanovic, D., … Keel, C. (2013). Control and host-dependent activation of insect toxin expression in a root-associated biocontrol pseudomonad. Environmental Microbiology, 15(3), 736-750. doi:10.1111/1462- 2920.12050.
Péchy-Tarr, M., Bruck, D. J., Maurhofer, M., Fischer, E., Vogne, C., Henkels, M. D., ... Keel, C. (2008). Molecular analysis of a novel gene cluster encoding an insect toxin in plant-associated strains of Pseudomonas fluorescens. Environmental Microbiology, 10(9), 2368-2386. doi:10.1111/j.1462-2920.2008.01662.x.
Pérez-García, G., Basurto-Ríos, R., & Ibarra, J. E. (2010). Potential effect of a putative σH-driven promoter on the over expression of the Cry1Ac toxin of Bacillus thuringiensis. Journal of Invertebrate Pathology, 104(2), 140-146. doi:10.1016/j.jip.2010.02.010.
Pigott, C. R., & Ellar, D. J. (2007). Role of receptors in Bacillus thuringiensis crystal toxin activity. Microbiology and Molecular Biology Reviews, 71(2), 255-281. doi:10.1128/ mmbr.00034-06.
Podgwaite, J. D., & Cosenza, B. J. (1976). A strain of Serratia marcescens pathogenic for larvae of Lymantria dispar: Infectivity and mechanisms of pathogenicity. Journal of Invertebrate Pathology, 27(2), 199-208. doi:10.1016/0022- 2011(76)90146-4.
Poinar, G. O., Jr., Wassink, H. J., Leegwater-van der Linden, M. E., & van der Geest, L. P. (1979). Serratia marcescens as a pathogen of tsetse flies. Acta Tropica, 36(3), 223-227.
Ravensberg, W. J. (2011). A roadmap to the successful development and commercialization of microbial pest control products for control of arthropods. Berlín, Alemania: Springer Science & Business Media.
Raymond, B., Johnston, P. R., Nielsen-LeRoux, C., Lereclus, D., & Crickmore, N. (2010). Bacillus thuringiensis: an impotent pathogen? Trends of Microbioly, 18(5), 189-194. doi:10.1016/j.tim.2010.02.006.
Reyes-Ramírez, A., & Ibarra, J. E. (2008). Plasmid patterns of Bacillus thuringiensis type strains. Applied and Environmental Microbiology, 74(1), 125-129. doi:10.1128/ AEM.02133-07.
Rippere, K. E., Tran, M. T., Yousten, A. A., Hilu, K. H., & Klein, M. G. (1998). Bacillus popilliae and Bacillus lentimorbus, bacteria causing milky disease in Japanese beetles and related scarab larvae. International Journal of Systematic and Evolutionary Microbiology, 48, 395-402. doi:10.1099/00207713-48-2-395.
Robert, L. L., Perich, M. J., Schlein, Y., Jacobson, R. L., Wirtz, R. A., Lawyer, P. G., & Githure, J. I. (1997). Phlebotomine sand fly control using bait-fed adults to carry the larvicide Bacillus sphaericus to the larval habitat. Journal of the American Mosquito Control Association, 13(12), 140-144.
Robert, R., Farrar, J., Phyllis, A., Martin, W., & Ridgway, R. (2001). A strain of Serratia marcescens (Enterobacteriaceae) with high virulence per os to larvae of a laboratory colony of the Corn earworm (Lepidoptera: Noctuidae). Journal of Entomological Science, 36(4), 380- 390. doi:10.18474/0749-8004-36.4.380.
Ruffner, B., Pechy-Tarr, M., Ryffel, F., Hoegger, P., Obrist, C., Rindlisbacher, A., ... Maurhofer, M. (2013). Oral insecticidal activity of plant-associated Pseudomonas. Environmental Microbiolgy, 15(3), 751-763. doi:10.1111/ j.1462-2920.2012.02884.x.
Santos-Mendoza, M., Ibarra, J. E., Delecluse, A., & JuárezPérez, A. (2002). Phylogenetic relationship between the Bacillus thuringiensis type strains, based on the sequence of the flagellin gene. En J. E. Ibarra (Chair) Annual meeting of the society for invertebrate pathology (p. 110). Foz do Iguazú, Brasil: Society for Invertebrate Pathology.
Saraka, D., Savin, C., Kouassi, S., Cissé, B., Koffi, E., Cabanel, N., ... Carniel, E. (2017). Yersinia enterocolitica, a neglected cause of human enteric infections in Côte d’Ivoire. PLoS Neglected Tropical Diseases, 11, e0005216. doi:10.1371/ journal.pntd.0005216.
Schnepf, E., Crickmore, N., Van Rie, J., Lereclus, D., Baum, J., Feitelson, J., ... Dean, D. H. (1998). Bacillus thuringiensis and its pesticidal crystal proteins. Microbiology and Molecular Biology Reviews, 62(3), 775-806.
Schünemann, R., Knaak, N., & Fiuza, L. M. (2014). Mode of action and specificity of Bacillus thuringiensis toxins in the control of caterpillars and stink bugs in soybean culture. International Scholarly Research Notices Microbiology, 2014(2014), Article ID 135675, 1-12. doi:10.1155/2014/135675.
Sergeant, M., Jarrett, P., Ousley, M., & Morgan, J. A. W. (2003). Interactions of insecticidal toxin gene products from Xenorhabdus nematophilus PMFI296. Applied, and Environmental Microbiology, 69(6), 3344-3349. doi:10.1128/aem.69.6.3344-3349.2003.
Shen, X., Hu, H., Peng, H., Wang, W., & Zhang, X. (2013). Comparative genomic analysis of four representative plant growth-promoting rhizobacteria in Pseudomonas. BMC Genomics, 14, 1-20. doi:10.1186/1471-2164-14-271.
Shingote, P. R., Moharil, M. P., Dhumale, D. R., Deshmukh, A. G., Jadhav, P. V., Dudhare, M. S., & Satpute, N. S. (2013). Distribution of vip genes, protein profiling and determination of entomopathogenic potential of local isolates of Bacillus thuringiensis. Bt Research, 4(3), 14-20. doi:10.5376/bt.2013.04.0003.
Silva-Filha, M. H., Nielsen-LeRoux, C., & Jean-François, C. (1999). Identification of the receptor for Bacillus sphaericus crystal toxin in the brush border membrane of the mosquito Culex pipiens (Diptera: Culicidae). Insect Biochemistry and Molecular Biology, 29(8), 711-721. doi:10.1016/S0965-1748(99)00047-8.
Singh, G. J. P., & Gill, S. S. (1988). An electron microscope study of the toxic action of Bacillus sphaericus in Culex quinquefasciatus larvae. Journal of Invertebrate Pathology, 52(2), 237-247. doi:10.1016/0022-2011(88)90131-0.
Snitkin, E. S., & Segre, J. A. (2014). Pseudomonas aeruginosa adaptation to human hosts. Nature Genetics, 47, 2. doi:10.1038/ng.3172.
Soufiane, B., & Côté, J.-C. (2013). Bacillus weihenstephanensis characteristics are present in Bacillus cereus and Bacillus mycoides strains. FEMS Microbiology Letters, 341(2), 127-137. doi:10.1111/1574-6968.12106.
Splittstoesser, C. M., Tashiro, H., Lin, S. L., Steinkraus, K. H., & Fiori, B. J. (1973). Histopathology of the European chafer, Amphimallon majalis, infected with Bacillus popilliae. Journal of Invertebrate Pathology, 22(2), 161-167. doi:10.1016/0022-2011(73)90128-6.
Steinhaus, E. A. (1941). A study of the bacteria associated with thirty species of insects. Journal of Bacteriology, 42(6), 757-790.
Steinhaus, E. A. (1975). Disease in a minor chord: being a semihistorical and semibiographical account of a period in science when one could be happily yet seriously concerned with the diseases of lowly animals without backbones, especially the insects. Columbus, EE. UU.: Ohio State University Press
Stucki, G., Jackson, T. A., & Noonan, M. J. (1984). Isolation and characterisation of Serratia strains pathogenic for larvae of the New Zealand grass grub Costelytra zealandica. New Zealand Journal of Science, 27, 255-260.
Thakore, Y. (2006). The biopesticide market for global agricultural use. Industrial Biotechnology, 2(3), 194-208. doi:10.1089/ind.2006.2.194.
Townsend, R. J., Ferguson, C. M., Proffitt, J. R., Slay, M. W. A., Swaminathan, J., Day, S., … Jackson T. A. (2004). Establishment of Serratia entomophila after application of a new formulation for grass grub control. New Zealand Plant Protection, 57, 10-12.
Trought, T. E. T., Jackson, T. A., & French, R. A. (1982). Incidence and transmission of a disease of grass grub (Costelytra zealandica) in Canterbury. New Zealand Journal of Experimental Agriculture, 10(1), 79-82. doi:10 .1080/03015521.1982.10427847.
Van der Pas, R., Waddington, C., & Ravensberg, W. (2000). Commercialisation of a microbial pesticide “challenges and constraints”. Bulletin IOBC/WPRS, 23(2), 15-18. Van Frankenhuyzen, K. (2009). Insecticidal activity of Bacillus thuringiensis crystal proteins. Journal of Invertebrate Pathology. 101(1), 1-16. doi:10.1016/j.jip.2009.02.009.
Van Frankenhuyzen, K., & Nystrom, C. (2011). The Bacillus thuringiensis toxin specificity database. Calgary, Canadá: Natural Resources Canada.
Visnovsky, G. A., Smalley, D. J., O Callaghan, M., & Jackson, T. A. (2008). Influence of culture medium composition, dissolved oxygen concentration and harvesting time on the production of Serratia entomophila, a microbial control agent of the New Zealand grass grub. Biocontrol Science and Technology, 18(1), 87-100. doi:10.1080/09583150701760513.
Vodovar, N., Vallenet, D., Cruveiller, S., Rouy, Z., Barbe, V., Acosta, C., … Boccard, F. (2006). Complete genome sequence of the entomopathogenic and metabolically versatile soil bacterium Pseudomonas entomophila. Nature Biotechnology, 24, 673-679. doi:10.1038/nbt1212.
Vodovar, N., Vinals, M., Liehl, P., Basset, A., Degrouard, J., Spellman, P., … Lemaitre, B. (2005). Drosophila host defense after oral infection by an entomopathogenic Pseudomonas species. Proceedings of the National Academy of Science of the USA, 102(32), 11414-11419. doi:10.1073/pnas.0502240102.
Wahba, M. M. (2000). The influence of Bacillus sphaericus on the biology and histology of Phlebotomus papatasi. Journal of Egyptian Society of Parasitology, 30(1), 315-323.
Walker, K., Mendelsohn, M., Matten, S., Alphin, M., & Ave, D. (2003). The role of microbial Bt products in U.S. Crop protection. Journal of New Seeds, 5(1), 31-51. doi:10.1300/J153v05n01_03.
Waterfield, N., Hares, M., Yang, G., Dowling, A., & Ffrench-Constant, R. (2005). Potentiation and cellular phenotypes of the insecticidal Toxin complexes of Photorhabdus bacteria. Cellular Microbiology, 7(3), 373- 382. doi:10.1111/j.1462-5822.2004.00467.x.
Wermelinger, E. D., Zanuncio, J. C., Rangel, E. F., Cecon, P. R., & Rabinovitch, L. (2000). Toxicity of Bacillus Species to Larvae of Lutzomyia longipalpis (L. & N.) (Diptera: Psychodidae: Phlebotominae). Anais da Sociedade Entomológica do Brasil, 29(3), 609-614. doi:10.1590/ S0301-80592000000300025.
Whalon, M. E., & Wingerd, B. A. (2003). Bt: Mode of action and use. Archives of Insect Biochemistry and Physiology, 54(4), 200-211. doi:10.1002/arch.10117.
Xu, D., & Côté, J.-C. (2008). Sequence diversity of Bacillus thuringiensis flagellin (H antigen) protein at the intra-H serotype level. Applied Environmental Microbiology, 74(17), 5524-5532. doi:10.1128/aem.00951-08.
Yang, G., Dowling, A. J., Gerike, U., Ffrench-Constant, R. H., & Waterfield, N. R. (2006). Photorhabdus virulence cassettes confer injectable insecticidal activity against the wax moth. Journal of Bacteriology, 188(6), 2254-2261. doi:10.1128/JB.188.6.2254-2261.2006.
Yousten, A. A., Fretz, S. B., & Jelley, S. A. (1985). Selective medium for mosquito-pathogenic strains of Bacillus sphaericus. Applied and Environmental Microbiology, 49(6), 1532-1533.
Yu, X., Zheng, A., Zhu, J., Wang, S., Wang, L., Deng, Q., ... Li, P. (2011). Characterization of Vegetative Insecticidal Protein vip Genes of Bacillus thuringiensis from Sichuan Basin in China. Current Microbiology, 62(3), 752-757. doi:10.1007/s00284-010-9782-3.
Zalunin, I. A., Elpidina, E. N., & Oppert, B. (2015). The role of proteolysis in the biological activity of Bt insecticidal crystal proteins. En M. Soberón, A. Gao & A. Bravo (Eds.), Bt Resistance: Characterization and Strategies for GM Crops Producing Bacillus thuringiensis Toxins (pp. 107-118). Wallingford, Inglaterra: Centre for Agricultural Bioscience International (cabi). doi:10.1079/9781780644370.0107.
Zhang, D., De Souza, R. F., Anantharaman, V., Iyer, L. M., & Aravind, L. (2012). Polymorphic toxin systems: Comprehensive characterization of trafficking modes, processing, mechanisms of action, immunity and ecology using comparative genomics. Biology Direct, 7, 18. doi:10.1186/1745-6150-7-18.
Zhang, J., Hodgman, T. C., Krieger, L., Schnetter, W., & Schairer, H. U. (1997). Cloning and analysis of the first cry gene from Bacillus popilliae. Journal of Bacteriology, 179(13), 4336-4341. doi:10.1128/jb.179.13.4336-4341.
dc.relation.ispartofbook.spa.fl_str_mv 33829 ; Control biológico de fitopatógenos, insectos y ácaros: agentes de control biológico. V. 1 
dc.rights.*.fl_str_mv Attribution-NonCommercial-ShareAlike 4.0 International
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
rights_invalid_str_mv Attribution-NonCommercial-ShareAlike 4.0 International
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://purl.org/coar/access_right/c_abf2
dc.format.mimetype.none.fl_str_mv application/pdf
dc.coverage.country.spa.fl_str_mv Colombia
dc.publisher.spa.fl_str_mv ‎‎Corporación colombiana de investigación agropecuaria - AGROSAVIA
dc.publisher.place.spa.fl_str_mv Bogotá (Colombia)
institution Agrosavia
bitstream.url.fl_str_mv https://repository.agrosavia.co/bitstream/20.500.12324/34070/2/license.txt
https://repository.agrosavia.co/bitstream/20.500.12324/34070/5/Ver_Documento_34070.pdf.jpg
https://repository.agrosavia.co/bitstream/20.500.12324/34070/4/Ver_Documento_34070.pdf
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
46fb1d77ab841d717f89c044af96219a
dee8aabf45fcf077cb40165072a15262
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Agrosavia - Corporación colombiana de investigación agropecuaria
repository.mail.fl_str_mv bac@agrosavia.co
_version_ 1814380518677938176
spelling Grijalba Bernal, Erika Paola265afe95-177b-41f2-b3b4-cb8a9571c2d6600Hurst, Mark9eab72ab-e302-4560-8090-7b59c43a7d82Ibarra, Jorge E.bd0acae8-09b1-41e9-9679-8f74b1a4ad0dJurat Fuentes, Juan Luis85cb0f85-0463-4d73-89af-f07b24b4d5a2Jackson, Trevor436dff01-6d1d-42f8-a6a4-80be61a0008a2018-12-03T16:25:56Z2018-12-03T16:25:56Z2018978-958-740-253-7 (e-book)http://hdl.handle.net/20.500.12324/34070reponame:Biblioteca Digital Agropecuaria de Colombiarepourl:https://repository.agrosavia.coinstname:Corporación colombiana de investigación agropecuaria AGROSAVIAEste capítulo presenta una revisión de las bacterias entomopatógenas que han sido utilizadas para el control microbiológico de insectos considerados como plaga, incluyendo su identificación, modo de acción y uso en el control de plagas. En general, las bacterias entomopatógenas deben ser ingeridas y actúan mediante la liberación de toxinas y/o penetración de las células del intestino medio, antes de la invasión del hemocele para multiplicarse en el cadáver del insecto. Las bacterias entomopatógenas Gram-positivas tienen la capacidad de formar esporas, dentro de las que se encuentra el bien conocido Bacillus thuringiensis (Bt), así como patógenos de insectos de los géneros Paenibacillus y Lysinibacillus. En contraste, los entomopatógenos Gram-negativos no forman esporas e incluyen aislamientos de los géneros Serratia, Yersinia, Photorhabdus, Chromobacterium, entre otros. Muchas bacterias entomopatógenas pueden ser producidas por fermentación, y se ha logrado llevar a cabo su producción masiva y comercialización. Por su parte, Bt ha sido el caso más exitoso de todos los controles microbianos con cepas activas sobre lepidópteros, coleópteros y dípteros, utilizadas en el control de plagas a gran escala; además, sus genes de toxinas han sido usados para la protección de plantas en cultivos transgénicos. Asimismo, los bioplaguicidas bacterianos también han sido el pilar para la producción de cultivos orgánicos. Aunque las bacterias entomopatógenas han sido los agentes de control microbiológico más exitosos a la fecha, el enorme rango de diversidad microbiana sugiere que aún hay muchas cepas y toxinas por descubrir.application/pdfspa‎‎Corporación colombiana de investigación agropecuaria - AGROSAVIABogotá (Colombia)Attribution-NonCommercial-ShareAlike 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-sa/4.0/http://purl.org/coar/access_right/c_abf2Bacterias entomopatógenas en el control biológico de insectosEntomopathogenic bacteria in insect biological controlPlagas de las plantas - H10Bacillus thuringiensisBacteriaSerratiaYersiniaOrganismos patógenosInsectos dañinosAgentes de control biológicoTransversalTécnicoProfesionalInvestigadorCientíficobook partCapítulohttp://purl.org/coar/resource_type/c_3248info:eu-repo/semantics/bookParthttps://purl.org/redcol/resource_type/CAP_LIBhttp://purl.org/coar/version/c_970fb48d4fbd8a85Colombia296333Adang, M. J., Crickmore, N., & Jurat-Fuentes, J. L. (2014). Chapter two - diversity of Bacillus thuringiensis crystal toxins and mechanism of action. En T. S. Dhadialla & S. S. Gill (Eds.), Advances in Insect Physiology (pp. 39-87). Vol. 47. Cambridge, Inglaterra: Academic Press.Angus, T. A. (1954). A bacterial toxin paralysing silkworm larvae. Nature, 173, 545-546. doi:10.1038/173545a0.Aronson, A. I., Beckman, W., & Dunn, P. (1986). Bacillus thuringiensis and related insect pathogens. Microbiological reviews, 50(1), 1-24.Asolkar, R., Huang, H., Koivunen, M., & Marrone, P. (2015). Patente EUA 8715754 Chromobacterium bioactive compositions and metabolites, Marrone Bio Innovations, I. Washington: Oficina de Patentes y Marcas de EUA.Ballester, V., Granero, F., Tabashnik, B. E., Malvar, T., & Ferré, J. (1999). Integrative model for binding of Bacillus thuringiensis toxins in susceptible and resistant larvae of the diamondback moth (Plutella xylostella). Applied and Environmental Microbiology, 65(4), 1413-1419.Baum, J. A., & Gonzalez, J. M. (1992). Mode of replication, size and distribution of naturally occurring plasmids in Bacillus thuringiensis. FEMS Microbiology Letters, 96(2-3), 143-148. doi:10.1111/j.1574-6968.1992.tb05407.x.Beegle, C. C., & Yamamoto, T., (1992). Invitation paper (C.P. Alexander Fund): history of Bacillus thuringiensis Berliner research and development. The Canadian Entomologist, 124(4), 587-616. doi:10.4039/Ent124587-4.Benoit, T. G., Wilson, G. R., Bull, D. L., & Aronson, A. I. (1990). Plasmid-associated sensitivity of Bacillus thuringiensis to uv light. Applied and Environmental Microbiology, 56(8), 2282-2286.Berg, G. (2009). Plant-microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Applied Microbiology and Biotechnology, 84(1), 11-18. doi:10.1007/s00253-009- 2092-7.Berry, C. (2012). The bacterium, Lysinibacillus sphaericus, as an insect pathogen. Journal of Invertebrate Pathology, 109(1), 1-10. doi:10.1016/j.jip.2011.11.008.Biostart. (2017). The safe, effective way to control nz grass grub. Recuperado de http://www.biostart.co.nz/products/bioinsecticides/bioshield-grass-grub/.Bone, L. W., & Tinelli, R. (1987).Trichostrongylus colubriformis: larvicidal activity of toxic extracts from Bacillus sphaericus (strain 1593) spores. Experimental Parasitology, 64(3), 514-516. doi:10.1016/0014-4894(87)90066-X.Bönemann, G., Pietrosiuk, A., & Mogk, A. (2010). Tubules and donuts: a type VI secretion story. Molecular Microbiology, 76(4), 815-821. doi:10.1111/j.1365- 2958.2010.07171.x.Bowen, D., Rocheleau, T. A., Blackburn, M., Andreev, O., Golubeva, E., Bhartia, R., & Ffrench-Constant, R. H. (1998). Insecticidal toxins from the bacterium Photorhabdus luminescens. Science, 280(5372), 2129-2132. doi:10.1126/science.280.5372.2129.Braga, R. M., Dourado, M. N., & Araújo, W. L. (2016). Microbial interactions: ecology in a molecular perspective. Brazilian Journal Microbiology, 47(1), 86-98. doi:10.1016/j.bjm.2016.10.005.Bravo, A. (2004). Familia de proteínas inseticidas de Bacillus thuringiensis. En: Bravo, A., Cerón, J. (Eds.), Bacillus thuringiensis en el control biológico (pp 49-68). Bogotá, Colombia: Editorial Buena Semilla.Bresolin, G., Morgan, J. A. W., Ilgen, D., Scherer, S., & Fuchs, T. M. (2006). Low temperature-induced insecticidal activity of Yersinia enterocolitica. Molecular Microbiology, 59(2), 503-512. doi:10.1111/j.1365-2958.2005.04916.x.Bretschneider, A., Heckel, D. G., & Pauchet, Y. (2016). Three toxins, two receptors, one mechanism: Mode of action of Cry1A toxins from Bacillus thuringiensis in Heliothis virescens. Insect Biochemistry and Molecular Biology, 76, 109-117. doi:10.1016/j.ibmb.2016.07.008.Bucher, G. (1981). Identification of bacteria found in insects. En H. D. Burges (Ed.), Microbial control of pests and plant diseases, 1970-1980 (pp. 7-33). Londres, Reino: Academic Press.Cordova-Kreylos, A. L., Fernandez, L. E., Koivunen, M., Yang, A., Flor-Weiler, & L., Marrone, P. G. (2013). Isolation and Characterization of Burkholderia rinojensis sp. nov., a Non-Burkholderia cepacia Complex Soil Bacterium with Insecticidal and Miticidal Activities. Applied and Environmental Microbiology, 79(24), 7669- 7678. doi:10.1128/aem.02365-13.Couch, T. L. (2000). Industrial fermentation and formulation of entomopathogenic bacteria. En J. F. Charles, A. Delécluse & C. N. Roux (Eds.), Entomopathogenic bacteria: From laboratory to field application (pp. 297-316). Dordrecht, Holanda: Springer.Crickmore, N., Zeigler, D. R., Feitelson, J., Schnepf, E., Van Rie, J., Lereclus, D., ... Dean, D. H. (1998). Revision of the nomenclature for the Bacillus thuringiensis pesticidal crystal proteins. Microbiology and Molecular Biology Reviews, 62(3), 807-813.Chakoosari, M. M. D. (2013). Efficacy of various biological and microbial insecticides. Journal of biology and today’s world, 2, 249-254.Champion, O. L., Cooper, I. A., James, S. L., Ford, D., Karlyshev, A., Wren, B. W., …Titball R. W. (2009). Galleria mellonella as an alternative infection model for Yersinia pseudotuberculosis. Microbiology, 155(5), 1516- 1522. doi:10.1099/mic.0.026823-0.Chandler, D., Bailey, A. S., Tatchell, G. M., Davidson, G., Greaves, J., & Grant, W. P. (2011). The development, regulation and use of biopesticides for integrated pest management. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 366(1573), 1987- 1998. doi:10.1098/rstb.2010.0390.Chattopadhyay, P., Chatterjee, S., Gorthi, S., & Sen, S. K. (2012). Exploring Agricultural Potentiality of Serratia entomophila AB2: Dual Property of Biopesticide and Biofertilizer. British Biotechnology Journal, 2(1), 1-12. doi:10.9734/BBJ/2012/778.Chattopadhyay, P., Gorthi, S., Chatterjee, S., & Sen, S. K. (2011). Characterization of bacterial isolates as natural biocontrol agents of bollworm from an epizootic pest (Heliothis armigera). Pest Technology, 5(1), 81-85.d’Herelle, F., (1911). Sur une épizootie de nature bactérienne sévissant sur les sauterelles au Mexique. Comptes Rendus de l’Académie des Sciences, 152, 1413-1415.Dacheux, D., Attree, I., Schneider, C., & Toussaint, B. (1999). Cell death of human polymorphonuclear neutrophils induced by a Pseudomonas aeruginosa cystic fibrosis isolate requires a functional Type iii secretion system. Infection and Immunity, 67(11), 6164-6167.De Barjac, H., & Bonnefoi, A. (1962). Essai de classification biochimique et sérologique de 24 souches de Bacillus du type B. Thuringiensis. Entomophaga, 7(1), 5-31. doi:10.1007/BF02375988.De Maagd, R. A., Bosch, D., & Stiekema, W. (1999). Bacillus thuringiensis toxin-mediated insect resistance in plants. Trends in Plant Science, 4(1), 9-13. doi:10.1016/S1360- 1385(98)01356-9.Dingman, D. W. (2009). dna fingerprinting of Paenibacillus popilliae and Paenibacillus lentimorbus using pcr-amplified 16S–23S rDNA intergenic transcribed spacer (its) regions. Journal of Invertebrate Pathology, 100(1), 16-21. doi:10.1016/j.jip.2008.09.006.Dodd, S. J., Hurst, M. R. H., Glare, T. R., O’Callaghan, M., & Ronson, C. W. (2006). Occurrence of sep insecticidal toxin complex genes in Serratia spp. and Yersinia frederiksenii. Applied and Environmental Microbiology, 72(10), 6584-6592. doi:10.1128/aem.00954-06.Dutky, S. (1963). The milky diseases. En E. Steinhaus (Ed.), Insect Pathology: An Advanced Treatise (pp. 75-115). Nueva York , EE. UU.: Academic press.Dutta, S. (2015). Biopesticides: an ecofriendly approach for pest control.World Journal of Pharmacy and Pharmaceutical Sciences, 4(6), 250-265.Endo, H., Azuma, M., Adegawa, S., Kikuta, S., & Sato, R. (2017). Water influx via aquaporin directly determines necrotic cell death induced by the Bacillus thuringiensis Cry toxin. FEBS Lett, 591(1), 56-64. doi:10.1002/1873- 3468.12506.Environmental Protection Agency (epa). (2008). Biopesticide active ingredients and products containing them. Recuperado de http://www.epa.gov/pesticides/biopesticides/ product_lists.Fang, J., Xu, X., Wang, P., Zhao, J.-Z., Shelton, A.M., Cheng, J., … Sheng, Z. (2007). Characterization of Chimeric Bacillus thuringiensis Vip3 Toxins. Applied Environmental Microbiology, 73(3), 956-961. doi:10.1128/AEM.02079-06.Federici, B. A. (2007). Bacteria as biological control agents for insects: Economics, engineering, and environmental safety. En M. Vurro & J. Gressel (Eds.), Novel biotechnologies for biocontrol agent enhancement and management (pp. 25-51). Dordrecht, Holanda: Springer.Ferguson, C. M., Barton, D. M., Harper L. A., Swaminathan., J., Van Koten, C., & Hurst, M. R. H. (2012). Survival of Yersinia entomophaga MH96 in a pasture ecosystem and effects on pest and non-target invertebrate populations. New Zealand Plant Protection, 65: 166-173.Ferré, J., & Rie, J. V. (2002). Biochemistry and genetics of insect resistance to Bacillus thuringiensis. Annual Reviews of Entomology, 47, 501-533. doi:10.1146/annurev. ento.47.091201.145234.Ffrench-Constant, R. H., Dowling, A., & Waterfield, N. R. (2007). Insecticidal toxins from Photorhabdus bacteria and their potential use in agriculture. Toxicon, 49(4), 436- 451. doi:10.1016/j.toxicon.2006.11.019.Ffrench-Constant, R., & Waterfield, N. (2005). An abc guide to the bacterial toxin complexes. Advances in Applied Microbiology, 58, 169-183. doi:10.1016/S0065- 2164(05)58005-5.Fuchs, T. M., Bresolin, G., Marcinowski, L., Schachtner, J., & Scherer, S. (2008). Insecticidal genes of Yersinia spp.: Taxonomical distribution, contribution to toxicity towards Manduca sexta and Galleria mellonella, and evolution. BMC Microbiology, 8, 214. doi:10.1186/1471- 2180-8-214Ge, Y., Hu, X., Zheng, D., Wu, Y., & Yuan, Z. (2011). Allelic diversity and population structure of Bacillus sphaericus as revealed by multilocus sequence typing. Applied and Environmental Microbiology, 77(15), 5553-5556. doi:10.1128/AEM.00207-11.Glare, T. R., Corbett, G. E., & Sadler, T. J. (1993). Association of a large plasmid with amber disease of the New Zealand grass grub, Costelytra zealandica, caused by Serratia entomophila and Serratia proteamaculans. Journal of Invertebrate Pathology, 62(2), 165-170. doi:10.1006/ jipa.1993.1091.Gómez-Garzón, C., Hernández-Santana, A., & Dussán, J. (2016). Comparative genomics reveals Lysinibacillus sphaericus group comprises a novel species. BMC Genomics, 17, 1-10. doi:10.1186/s12864-016-3056-9.Gómez, I., Sánchez, J., Miranda, R., Bravo, A., & Soberón, M. (2002). Cadherin-like receptor binding facilitates proteolytic cleavage of helix α-1 in domain I and oligomer pre-pore formation of Bacillus thuringiensis Cry1Ab toxin. FEBS Letters, 513(2-3), 242-246. doi:10.1016/S0014- 5793(02)02321-9.Gonzalez, J. M., & Carlton, B. C. (1980). Patterns of plasmid dna in crystalliferous and acrystalliferous strains of Bacillus thuringiensis. Plasmid, 3(1), 92-98. doi:10.1016/ S0147-619X(80)90038-4.Grimont, P., & Grimont, F. (1978). The genus Serratia. Annual Review of Microbiology, 32, 221-248. doi:10.1146/ annurev.mi.32.100178.001253.Grimont, P. A. D., Jackson, T. A., Ageron, E., & Noonan, M. J. (1988). Serratia entomophila sp. nov. associated with amber disease in the New Zealand grass grub Costelytra zealandica. International Journal of Systematic and Evolutionary Microbiology, 38, 1-6. doi:10.1099/00207713-38-1-1.Grkovic, S., Glare, T. R., Jackson, T. A., & Corbett, G. E. (1995). Genes essential for amber disease in grass grubs are located on the large plasmid found in Serratia entomophila and Serratia proteamaculans. Applied and Environmental Microbiology, 61(6), 2218-2223.Gupta, B. L., Dow, J. A., Hall, T. A., & Harvey, W. R. (1985). Electron probe X-ray microanalysis of the effects of Bacillus thuringiensis var. kurstaki crystal protein insecticide on ions in an electrogenic K+-transporting epithelium of the larval midgut in the lepidopteran, Manduca sexta, in vitro. Journal of Cell Science, 74, 137-152.Haddy, R. I., Mann, B. L., Nadkarni, D. D., Cruz, R. F., Elshoff, D. J., Buendia, F. C., … Oberheu, A. M. (1996). Nosocomial infection in the community hospital: severe infection due to Serratia species. The Journal of Family Practice, 42(3), 273-278.Harrison, H., Patel, R., & Yousten, A. A. (2000). Paenibacillus associated with milky disease in Central and South American scarabs. Journal of Invertebrate Pathology, 76(3), 169-175. doi:10.1006/jipa.2000.4969.Heckel, D. G. (2012). Learning the ABCs of Bt: abc transporters and insect resistance to Bacillus thuringiensis provide clues to a crucial step in toxin mode of action. Pesticide Biochemistry and Physiology, 104(2), 103-110. doi:10.1016/j.pestbp.2012.05.007.Hejazi, A., & Falkiner, F. R. (1997). Serratia marcescens. Journal of Medical Microbiology, 46, 903-912. doi:10.1099/00222615-46-11-903.Hire, R. S., Hadapad, A. B., Vijayalakshmi, N., & Dongre, T. K. (2010). Characterization of highly toxic indigenous strains of mosquitocidal organism Bacillus sphaericus. FEMS Microbiology Letters, 305(2), 155-161. doi:10.1111/j.1574-6968.2010.01927.x.Höfte, H., & Whiteley, H. R. (1989). Insecticidal crystal proteins of Bacillus thuringiensis. Microbiological Reviews, 53(2), 242-255.Hoshino, T. (2011). Violacein and related tryptophan metabolites produced by Chromobacterium violaceum: biosynthetic mechanism and pathway for construction of violacein core. Applied Microbiology and Biotechnology, 91, 1463. doi:10.1007/s00253-011-3468-z.Hurst, M. R., Glare, T. R., & Jackson, T. A. (2004). Cloning Serratia entomophila antifeeding genes–a putative defective prophage active against the grass grub Costelytra zealandica. Journal of Bacteriology, 186(15), 5116-5128. doi: 10.1128/JB.186.15.5116-5128.2004.Hurst, M. R., Glare, T. R., Jackson, T. A., & Ronson, C. W. (2000). Plasmid-located pathogenicity determinants of Serratia entomophila, the causal agent of amber disease of grass grub, show similarity to the insecticidal toxins of Photorhabdus luminescens. Journal of Bacteriology, 182(18), 5127-5138. doi:10.1128/JB.182.18.5127-5138.2000.Hurst, M. R. H., Beattie, A. K., Jones, S. A., Hsu, P.-C., Calder, J., & Van Koten, C. (2015). Temperature-dependent Galleria mellonella mortality as a result of Yersinia entomophaga infection. Applied and Environmental Microbiology, 81(18), 6404-6414. doi:10.1128/aem.00790-15.Hurst, M. R. H., Becher, S. A., & O’Callaghan, M. (2011). Nucleotide sequence of the Serratia entomophila plasmid pADAP and the Serratia proteamaculans pU143 plasmid virulence associated region. Plasmid, 65(1), 32-41. doi:10.1016/j.plasmid.2010.10.001.Hurst, M. R. H., Becher, S. A., Young, S. D., Nelson, T. L., Glare, T. R. (2011). Yersinia entomophaga sp. nov., isolated from the New Zealand grass grub Costelytra zealandica. International Journal Systematic and Evolutionary Microbiology, 61(4), 844-849. doi:10.1099/ijs.0.024406-0.Hurst, M. R. H., Jones, S. A., Binglin, T., Harper, L. A., Jackson, T. A., & Glare, T. R., (2011). The main virulence determinant of Yersinia entomophaga MH96 is a broad host-range toxin complex active against insects. Journal of Bacteriology, 193(8), 1966-1980. doi:10.1128/JB.01 044-10.Hurst, M. R. H., Jones, S. M., Tan, B., & Jackson, T. A. (2007). Induced expression of the Serratia entomophila Sep proteins shows activity towards the larvae of the New Zealand grass grub Costelytra zealandica. FEMS Microbiology Letters, 275(1), 160-167. doi:10.1111/ j.1574-6968.2007.00886.x.Hurst, M. R. H., van Koten, C., & Jackson, T. A. (2014). Pathology of Yersinia entomophaga MH96 towards Costelytra zealandica (Coleoptera; Scarabaeidae) larvae. Journal of Invertebrate Pathology, 115, 102-107. doi:10.1016/j.jip.2013.11.004.Ibarra, J. E., & Federici, B. A. (1986). Parasporal bodies of Bacillus thuringiensis subsp. morrisoni (PG-14) and Bacillus thuringiensis subsp. israelensis are similar in protein composition and toxicity. FEMS Microbiology Letters, 34(1), 79-84. doi:10.1111/j.1574-6968.1986. tb01353.x.Instituto Colombiano Agropecuario (ica). (2017). Productos registrados bioinsumos. Recuperado de http://www.ica. gov.co/getdoc/2ad9e987-8f69-4358b8a9e6ee6dcc 8132/PRODUCTOSBIOINSUMOS-MAYO-13- DE-2008.aspx.Inglis, G. D., & Lawrence, A. M. (2001). Effects of Serratia marcescens on the F1 generation of laboratory-reared Heliothis virescens (Lepidoptera: Noctuidae). Journal of Economic Entomology, 94(2), 362-366. doi:10.1603/0022- 0493-94.2.362.Jackson, T. A. (2007). A novel bacterium for control of grass grub. En C. Vincent, M. S. Goettel, & G. Lazarovits (Eds.), Biological control: a global perspective (pp. 160- 168). Wallingford, Inglaterra: CABI.Jackson, T. A., Boucias, D. G., & Thaler, J. O. (2001). Pathobiology of amber disease, caused by Serratia spp., in the New Zealand grass grub, Costelytra zealandica. Journal of Invertebrate Pathology, 78(4), 232-243. doi:10.1006/ jipa.2002.5078.Jackson, T. A., Huger, A. M., & Glare, T. R. (1993). Pathology of Amber Disease in the New Zealand Grass Grub Costelytra zealandica (Coleoptera: Scarabaeidae). Journal of Invertebrate Pathology, 61(2), 123-130. doi:10.1006/ jipa.1993.1024.Jackson, T. A., Pearson, J. F., O Callaghan, M., Mahanty, H. K., & Willcocks, M. J. (1992). Pathogen to product - Development of Serratia entomophila (Enterobacteriaceae) as a commercial biological agent for the New Zealand grass grub (Costelytra zealandica). En T. A. Jackson, & T. R. Glare, (Eds.), Use of Pathogens in Scarab Pest Management (pp. 191-198). Andover, EE. UU.: Intercept.Jackson, T. A., Pearson, J. F., & Stucki, G. (1986). Control of the grass grub, Costelytra zealandica (White) (Coleoptera: Scarabaeidae), by application of the bacteria Serratia spp. causing honey disease. Bulletin of Entomological Research, 76(1), 69-76. doi:10.1017/S0007485300015297.Jackson, T. A., Townsend, R. J., & Barlow, N. D. (1999). Predicting grass grub populationchange in Canterbury. En: J. N. Matthiessen (Ed.) Proceedings of the 7th australasian conference on grassland invertebrate ecology. Wembley, Autralia. pp. 21-26.Jackson, T. A., & Zimmermann, G. (1996). Is there a role for Serratia spp. in the biocontrol of Melolontha spp.? Bulletin OILB/SROP, 19(2), 47-53.James, R. R. & Li, Z. (2012). From silkworms to bees: diseases of beneficial insects. En F. E. Vega & H. K. Kaya (Eds.), Insect Pathology (pp. 425-459). Nueva York, EE. UU.: Elsevier.Jarrett, C. O., Deak, E., Isherwood, K. E., Oyston, P. C., Fischer, E. R., Whitney, A. R., … Hinnebusch, B. J. (2004). Transmission of Yersinia pestis from an infectious biofilm in the flea vector. The journal of infectious diseases, 190(4), 782-792. doi:10.1086/422695.Jisha, V. N., Smitha, R. B., & Benjamin, S. (2013). An overview on the crystal toxins from Bacillus thuringiensis. Advances in microbiology, 3, 462-472. doi:10.4236/ aim.2013.35062.Johnson, V. W., Pearson, J. F., & Jackson, T. A. (2001). Formulation of Serratia entomophila for biological control of grass grub. New Zealand Plant Protection, 54, 125-127.Jolley, K. A., Chan, M.-S., & Maiden, M. C. (2004). mlstdbNet – distributed multi-locus sequence typing (mlst) databases. BMC Bioinformatics, 5, 86. doi:10.1186/1471- 2105-5-86.Jurat-Fuentes, J., & Jackson, T. (2012). Bacterial entomopathogens. Insect pathology, 2, 265-349. doi:10.1016/B978-0-12-384984-7.00008-7.Jurat-Fuentes, J. L., & Crickmore, N., (2017). Specificity determinants for Cry insecticidal proteins: Insights from their mode of action. Journal of Invertebrate Pathology, 142, 5-10. doi:10.1016/j.jip.2016.07.018.Kain, W., & Atkinson, D. (1970). Rational approach to grass grub control. Proceedings of the 23rd NZ Weed and Pest Control Conference, pp. 180-183. Palmerston North, Nueva Zelanda: New Zealand Plant Protection Society.Kaška, M. (1976). The toxicity of extracellular proteases of the bacterium Serratia marcescens for larvae of greater wax moth, Galleria mellonella. Journal of Invertebrate Pathology, 27(2), 271. doi:10.1016/0022-2011(76)90158-0.Kellen, W. R., Clark, T. B., Lindegren, J. E., Ho, B. C., Rogoff, M. H., & Singer, S. (1965). Bacillus sphaericus Neide as a pathogen of mosquitoes. Journal of Invertebrate Pathology, 7(4), 442-448. doi:10.1016/0022-2011(65)90120-5.Kergunteuil, A., Bakhtiari, M., Formenti, L., Xiao, Z., Defossez, E., & Rasmann, S. (2016). Biological control beneath the feet: A review of crop protection against insect root herbivores. Insects, 7(4), 70. doi:10.3390/ insects7040070.Key, P. B., & Scott, G. I. (1992). Acute toxicity of the mosquito larvicide, Bacillus sphaericus, to the grass shrimp, Palaemonetes pugio, and mummichog, Fundulus heteroclitus. Bulletin of Environmental Contamination and Toxicology, 49(3), 425-430. doi:10.1007/BF01239647.Khetan, S. (2001). Microbial pest control. Nueva York, EE. UU.: Marcel Dekker.Khyami-Horani, H., Hajaij, M., & Charles, J.-F. (2003). Characterization of Bacillus thuringiensis ser. jordanica (Serotype H71), a novel serovariety isolated in Jordan. Current Microbiology, 47(1), 0026-0031. doi:10.1007/ s00284-002-3940-1.Kil, Y. J., Seo, M. J., Kang, D. K., Oh, S. N., Cho, H. S., Youn, Y. N., … Yu, Y. M. (2014). Effects of enterobacteria (Burkholderia sp.) on development of Riptortus pedestris. Journal of the Faculty of Agriculture, Kyushu University, 59(1), 77-84.Kinkel, L. L., Bakker, M. G., & Schlatter, D. C. (2011). A coevolutionary framework for managing diseasesuppressive soils. Annual Review of Phytopatholgoy, 49, 47-67. doi:10.1146/annurev-phyto-072910-095232.Klein, M. G. (1988). Pest management of soil-inhabiting insects with microorganisms. Agriculture Ecosystems & Environment. 24(1-3), 337-349. doi:10.1016/0167- 8809(88)90077-1.Klein, M. G., & Jackson, T. A. (1992). Bacterial diseases of scarabs. En J. Trevor & G. Travis (Eds.), Use of pathogens in scarab pest management (pp.43-61). Andover, EE. UU.: Intercept.Krishnan, M., Bharathiraja, C., Pandiarajan, J., Prasanna, V. A., Rajendhran, J., & Gunasekaran, P. (2014). Insect gut microbiome - An unexploited reserve for biotechnological application. Asian Pacific Journal of Tropical Biomedicine, 4(Suppl. 1), S16-S21. doi:10.12980/APJTB.4.2014C95.Krych, V. K., Johnson, J. L., & Yousten, A. A. (1980). Deoxyribonucleic acid homologies among strains of Bacillus sphaericus. International Journal of Systematic Bacteriology, 30, 476-484. doi:10.1099/00207713-30-2- 476.Kupferschmied, P., Maurhofer, M., & Keel, C. (2013). Promise for plant pest control: root-associated pseudomonads with insecticidal activities. Frontiers in Plant Science, 4, 287. doi:10.3389/fpls.2013.00287.Lacey, L. A., & Georgis, R. (2012). Entomopathogenic nematodes for control of insect pests above and below ground with comments on commercial production. Journal of Nematology, 44(2), 218-225.Lambert, B., & Peferoen, M. (1992). Insecticidal Promise of Bacillus thuringiensis: Facts and mysteries about a successful biopesticide. Bioscience, 42(2), 112-122. doi:10.2307/1311652.Lecadet, M. M. (1998). Collection of Bacillus thuringiensis and Bacillus sphaericus (Classified by H Serotypes). París, Francia: Institut Pasteur. Lecadet, M. M., Frachon, E., Dumanoir, V. C., Ripouteau, H., Hamon, S., Laurent, P., & Thiéry, I. (1999). Updating the H-antigen classification of Bacillus thuringiensis. Journal of Applied Microbiology, 86(4), 660-672. doi:10.1046/ j.1365-2672.1999.00710.x.Lee, D.-W., Akao, T., Yamashita, S., Katayama, H., Maeda, M., Saitoh, H., … Ohba, M. (2000). Noninsecticidal Parasporal Proteins of a Bacillus thuringiensis Serovar shandongiensis Isolate Exhibit a Preferential Cytotoxicity against Human Leukemic T Cells. Biochemical and Biophysical Research Communications, 272(1), 218-223. doi:10.1006/bbrc.2000.2765.Lereclus, D., Lecadet, M.-M., Ribier, J., & Dedonder, R. (1982). Molecular relationships among plasmids of Bacillus thuringiensis: Conserved sequences through 11 crystalliferous strains. Molecular and general genetics mgg, 186(3), 391-398. doi:10.1007/BF00729459.LifeSci. (2017). “Bacillus thuringiensis” Toxin Nomenclature. Recuperado de http://www.lifesci.sussex.ac.uk/home/ Neil_Crickmore/Bt/.Lisansky, S., & Coombs, J. (1994). Developments in the market for biopesticides. En Brighton crop protection conference: pests and diseases (pp. 1049-1049). Brighton, Inglaterra: Brit Crop Protection Council.Lodish, H., Berk, A., Matsudaira, P., Kaiser, C., Krieger, M., Scott, M., … Darnell, J. (2006). Biología celular y molecular. Buenos Aires, Argentina: Editorial Médica Panamericana.Loper, J. E., Hassan, K. A., Mavrodi, D. V., Davis II, E. W., Lim, C. K., Shaffer, B. T., ... Paulsen, I. T. (2012). Comparative genomics of plant-associated Pseudomonas spp.: insights into diversity and inheritance of traits involved in multitrophic interactions. PLoS Genetics, 8(7), e1002784. doi:10.1371/journal.pgen.1002784.López-Meza, J. E., Barboza-Corona, J. E., Del RincónCastro, M. C., & Ibarra, J. E. (2003). Sequencing and characterization of plasmid pUIBI-1 from Bacillus thuringiensis serovar entomocidus LBIT-113. Current Microbiology, 47(5), 395-399. doi:10.1007/s00284-003- 4041-5.Lord, J. C. (2005). From metchnikoff to Monsanto and beyond: The path of microbial control. Journal of Invertebrate Pathology, 89(1), 19-29. doi:10.1016/j. jip.2005.04.006.Lysenko, O. (1976). Chitinase of Serratia marcescens and its toxicity to insects. Journal of Invertebrate Pathology, 27, 385-386.Marshall, S. D .G., Hares, M. C., Jones, S. A., Harper, L. A., Vernon, J. R., Harland, D. P., ... Hursta M. R. H. (2012). Histopathological effects of the Yen-Tc toxin complex from Yersinia entomophaga MH96 (Enterobacteriaceae) on the Costelytra zealandica (Coleoptera: Scarabaeidae) larval midgut. Applied and Environmental Microbiology, 78(14), 4835-4847. doi:10.1128/aem.00431-12Martin, P. A., Hirose, E., & Aldrich, J. R. (2007). Toxicity of Chromobacterium subtsugae to southern green stink bug (Heteroptera: Pentatomidae) and corn rootworm (Coleoptera: Chrysomelidae). Journal of Economic Entomology, 100(3), 680-684.Martin, P. A. W., Gundersen-Rindal, D., Blackburn, M., & Buyer, J. (2007). Chromobacterium subtsugae sp. nov., a betaproteobacterium toxic to Colorado potato beetle and other insect pests. International Journal of Systematic and Evolutionary Microbiology, 57(5), 993-999. doi:10.1099/ ijs.0.64611-0.McNally, A., Cheasty, T., Fearnley, C., Dalziel, R. W., Paiba, G. A., Manning, G., Newell, D. G. (2004). Comparison of the biotypes of Yersinia enterocolitica isolated from pigs, cattle and sheep at slaughter and from humans with yersiniosis in Great Britain during 1999-2000. Letters in Applied Microbiology, 39, 103-108. doi:10.1111/j.1472- 765X.2004.01548.x.Mizuki, E., Park, Y. S., Saitoh, H., Yamashita, S., Akao, T., Higuchi, K., Ohba, M. (2000). Parasporin, a human leukemic cell-recognizing parasporal protein of Bacillus thuringiensis. Clinical and Diagnostic Laboratory Immunology, 7(4), 625-634.Mnif, I., & Ghribi, D. (2015). Potential of bacterial derived biopesticides in pest management. Crop Protection, 77, 52- 64. doi:10.1016/j.cropro.2015.07.017.Monnerat, R., De Silva, S. F., Dias, D. S., Martins, E. S., Praça, L. B., Jones, G. W., ... Berry, C. (2004). Screening of Brazilian Bacillus sphaericus strains for high toxicity against Culex quinquefasciatus and Aedes aegypti. Journal of Applied Entomology, 128(7), 469-473. doi:10.1111/ j.1439-0418.2004.00874.x.Monnerat, R., Nicolas, L., Frachon, E., & Hamon, S. (1992). Characterization and toxicity to mosquito larvae of four Bacillus sphaericus strains isolated from Brazilian soils. Journal of Invertebrte Pathology, 60(1), 10-14. doi:10.1016/0022-2011(92)90147-V.Murray, P., Rosentahl, K., & Pfaller, M., (2009). Microbiología médica. (7.ª ed.). Barcelona, España, Elsevier.Núñez-Valdez, M. E., Calderón, M. A., Aranda, E., Hernández, L., Ramírez-Gama, R. M., Lina, L., … Villalobos, F. J. (2008). Identification of a putative mexican strain of Serratia entomophila pathogenic against root-damaging larvae of Scarabaeidae (Coleoptera). Applied and Environmental Microbiology, 74(3), 802-810. doi:10.1128/AEM.01074-07.O Callaghan, M., Garnham, M. L., Nelson, T. L., Baird, D., & Jackson, T. A. (1996). The pathogenicity of Serratia strains to Lucilia sericata (Diptera: Calliphoridae). Journal of Invertebrate Pathology, 68(1), 22-27. doi:10.1006/ jipa.1996.0054.O Callaghan, M., Young, S., Barlow, N., & Jackson, T. (1999). The ecology of grass grub pathogenic Serratia spp. New Zealand pastures. En J. N. Mathiessen (Ed.). Proceedings of the 7th australasian conference on grassland invertebrate ecology, (pp. 85-91). Perth, Australia: csiro Entomology.Ocelotl, J., Sánchez, J., Gómez, I., Tabashnik, B. E., Bravo, A., & Soberón, M. (2017). ABCC2 is associated with Bacillus thuringiensis Cry1Ac toxin oligomerization and membrane insertion in diamondback moth. Scientific Reports, 7, 2386. doi:10.1038/s41598-017-02545-y.Opota, O., Vallet-Gély, I., Vincentelli, R., Kellenberger, C., Iacovache, I., Gonzalez, M. R., … Lemaitre, B. (2011) Monalysin, a novel ß-pore-forming toxin from the Drosophila pathogen Pseudomonas entomophila, contributes to host intestinal damage and lethality. PLoS Pathogens, 7(9): e1002259. doi:10.1371/journal. ppat.1002259.Owuama, C. I. (2001). Entomopathogenic symbiotic bacteria, Xenorhabdus and Photorhabdus of nematodes. World journal of microbiology and biotechnology, 17(5), 505-515. doi:10.1023/A:1011916021378.Park, H.-W., Mangum, C. M., Zhong, H. E., & Hayes, S. R. (2007). Isolation of Bacillus sphaericus with improved efficacy against Culex quinquefasciatus. Journal of the American Mosquito Control Association, 23(4), 478-480. doi:10.2987/5663.1.Pechy-Tarr, M., Borel, N., Kupferschmied, P., Turner, V., Binggeli, O., Radovanovic, D., … Keel, C. (2013). Control and host-dependent activation of insect toxin expression in a root-associated biocontrol pseudomonad. Environmental Microbiology, 15(3), 736-750. doi:10.1111/1462- 2920.12050.Péchy-Tarr, M., Bruck, D. J., Maurhofer, M., Fischer, E., Vogne, C., Henkels, M. D., ... Keel, C. (2008). Molecular analysis of a novel gene cluster encoding an insect toxin in plant-associated strains of Pseudomonas fluorescens. Environmental Microbiology, 10(9), 2368-2386. doi:10.1111/j.1462-2920.2008.01662.x.Pérez-García, G., Basurto-Ríos, R., & Ibarra, J. E. (2010). Potential effect of a putative σH-driven promoter on the over expression of the Cry1Ac toxin of Bacillus thuringiensis. Journal of Invertebrate Pathology, 104(2), 140-146. doi:10.1016/j.jip.2010.02.010.Pigott, C. R., & Ellar, D. J. (2007). Role of receptors in Bacillus thuringiensis crystal toxin activity. Microbiology and Molecular Biology Reviews, 71(2), 255-281. doi:10.1128/ mmbr.00034-06.Podgwaite, J. D., & Cosenza, B. J. (1976). A strain of Serratia marcescens pathogenic for larvae of Lymantria dispar: Infectivity and mechanisms of pathogenicity. Journal of Invertebrate Pathology, 27(2), 199-208. doi:10.1016/0022- 2011(76)90146-4.Poinar, G. O., Jr., Wassink, H. J., Leegwater-van der Linden, M. E., & van der Geest, L. P. (1979). Serratia marcescens as a pathogen of tsetse flies. Acta Tropica, 36(3), 223-227.Ravensberg, W. J. (2011). A roadmap to the successful development and commercialization of microbial pest control products for control of arthropods. Berlín, Alemania: Springer Science & Business Media.Raymond, B., Johnston, P. R., Nielsen-LeRoux, C., Lereclus, D., & Crickmore, N. (2010). Bacillus thuringiensis: an impotent pathogen? Trends of Microbioly, 18(5), 189-194. doi:10.1016/j.tim.2010.02.006.Reyes-Ramírez, A., & Ibarra, J. E. (2008). Plasmid patterns of Bacillus thuringiensis type strains. Applied and Environmental Microbiology, 74(1), 125-129. doi:10.1128/ AEM.02133-07.Rippere, K. E., Tran, M. T., Yousten, A. A., Hilu, K. H., & Klein, M. G. (1998). Bacillus popilliae and Bacillus lentimorbus, bacteria causing milky disease in Japanese beetles and related scarab larvae. International Journal of Systematic and Evolutionary Microbiology, 48, 395-402. doi:10.1099/00207713-48-2-395.Robert, L. L., Perich, M. J., Schlein, Y., Jacobson, R. L., Wirtz, R. A., Lawyer, P. G., & Githure, J. I. (1997). Phlebotomine sand fly control using bait-fed adults to carry the larvicide Bacillus sphaericus to the larval habitat. Journal of the American Mosquito Control Association, 13(12), 140-144.Robert, R., Farrar, J., Phyllis, A., Martin, W., & Ridgway, R. (2001). A strain of Serratia marcescens (Enterobacteriaceae) with high virulence per os to larvae of a laboratory colony of the Corn earworm (Lepidoptera: Noctuidae). Journal of Entomological Science, 36(4), 380- 390. doi:10.18474/0749-8004-36.4.380.Ruffner, B., Pechy-Tarr, M., Ryffel, F., Hoegger, P., Obrist, C., Rindlisbacher, A., ... Maurhofer, M. (2013). Oral insecticidal activity of plant-associated Pseudomonas. Environmental Microbiolgy, 15(3), 751-763. doi:10.1111/ j.1462-2920.2012.02884.x.Santos-Mendoza, M., Ibarra, J. E., Delecluse, A., & JuárezPérez, A. (2002). Phylogenetic relationship between the Bacillus thuringiensis type strains, based on the sequence of the flagellin gene. En J. E. Ibarra (Chair) Annual meeting of the society for invertebrate pathology (p. 110). Foz do Iguazú, Brasil: Society for Invertebrate Pathology.Saraka, D., Savin, C., Kouassi, S., Cissé, B., Koffi, E., Cabanel, N., ... Carniel, E. (2017). Yersinia enterocolitica, a neglected cause of human enteric infections in Côte d’Ivoire. PLoS Neglected Tropical Diseases, 11, e0005216. doi:10.1371/ journal.pntd.0005216.Schnepf, E., Crickmore, N., Van Rie, J., Lereclus, D., Baum, J., Feitelson, J., ... Dean, D. H. (1998). Bacillus thuringiensis and its pesticidal crystal proteins. Microbiology and Molecular Biology Reviews, 62(3), 775-806.Schünemann, R., Knaak, N., & Fiuza, L. M. (2014). Mode of action and specificity of Bacillus thuringiensis toxins in the control of caterpillars and stink bugs in soybean culture. International Scholarly Research Notices Microbiology, 2014(2014), Article ID 135675, 1-12. doi:10.1155/2014/135675.Sergeant, M., Jarrett, P., Ousley, M., & Morgan, J. A. W. (2003). Interactions of insecticidal toxin gene products from Xenorhabdus nematophilus PMFI296. Applied, and Environmental Microbiology, 69(6), 3344-3349. doi:10.1128/aem.69.6.3344-3349.2003.Shen, X., Hu, H., Peng, H., Wang, W., & Zhang, X. (2013). Comparative genomic analysis of four representative plant growth-promoting rhizobacteria in Pseudomonas. BMC Genomics, 14, 1-20. doi:10.1186/1471-2164-14-271.Shingote, P. R., Moharil, M. P., Dhumale, D. R., Deshmukh, A. G., Jadhav, P. V., Dudhare, M. S., & Satpute, N. S. (2013). Distribution of vip genes, protein profiling and determination of entomopathogenic potential of local isolates of Bacillus thuringiensis. Bt Research, 4(3), 14-20. doi:10.5376/bt.2013.04.0003.Silva-Filha, M. H., Nielsen-LeRoux, C., & Jean-François, C. (1999). Identification of the receptor for Bacillus sphaericus crystal toxin in the brush border membrane of the mosquito Culex pipiens (Diptera: Culicidae). Insect Biochemistry and Molecular Biology, 29(8), 711-721. doi:10.1016/S0965-1748(99)00047-8.Singh, G. J. P., & Gill, S. S. (1988). An electron microscope study of the toxic action of Bacillus sphaericus in Culex quinquefasciatus larvae. Journal of Invertebrate Pathology, 52(2), 237-247. doi:10.1016/0022-2011(88)90131-0.Snitkin, E. S., & Segre, J. A. (2014). Pseudomonas aeruginosa adaptation to human hosts. Nature Genetics, 47, 2. doi:10.1038/ng.3172.Soufiane, B., & Côté, J.-C. (2013). Bacillus weihenstephanensis characteristics are present in Bacillus cereus and Bacillus mycoides strains. FEMS Microbiology Letters, 341(2), 127-137. doi:10.1111/1574-6968.12106.Splittstoesser, C. M., Tashiro, H., Lin, S. L., Steinkraus, K. H., & Fiori, B. J. (1973). Histopathology of the European chafer, Amphimallon majalis, infected with Bacillus popilliae. Journal of Invertebrate Pathology, 22(2), 161-167. doi:10.1016/0022-2011(73)90128-6.Steinhaus, E. A. (1941). A study of the bacteria associated with thirty species of insects. Journal of Bacteriology, 42(6), 757-790.Steinhaus, E. A. (1975). Disease in a minor chord: being a semihistorical and semibiographical account of a period in science when one could be happily yet seriously concerned with the diseases of lowly animals without backbones, especially the insects. Columbus, EE. UU.: Ohio State University PressStucki, G., Jackson, T. A., & Noonan, M. J. (1984). Isolation and characterisation of Serratia strains pathogenic for larvae of the New Zealand grass grub Costelytra zealandica. New Zealand Journal of Science, 27, 255-260.Thakore, Y. (2006). The biopesticide market for global agricultural use. Industrial Biotechnology, 2(3), 194-208. doi:10.1089/ind.2006.2.194.Townsend, R. J., Ferguson, C. M., Proffitt, J. R., Slay, M. W. A., Swaminathan, J., Day, S., … Jackson T. A. (2004). Establishment of Serratia entomophila after application of a new formulation for grass grub control. New Zealand Plant Protection, 57, 10-12.Trought, T. E. T., Jackson, T. A., & French, R. A. (1982). Incidence and transmission of a disease of grass grub (Costelytra zealandica) in Canterbury. New Zealand Journal of Experimental Agriculture, 10(1), 79-82. doi:10 .1080/03015521.1982.10427847.Van der Pas, R., Waddington, C., & Ravensberg, W. (2000). Commercialisation of a microbial pesticide “challenges and constraints”. Bulletin IOBC/WPRS, 23(2), 15-18. Van Frankenhuyzen, K. (2009). Insecticidal activity of Bacillus thuringiensis crystal proteins. Journal of Invertebrate Pathology. 101(1), 1-16. doi:10.1016/j.jip.2009.02.009.Van Frankenhuyzen, K., & Nystrom, C. (2011). The Bacillus thuringiensis toxin specificity database. Calgary, Canadá: Natural Resources Canada.Visnovsky, G. A., Smalley, D. J., O Callaghan, M., & Jackson, T. A. (2008). Influence of culture medium composition, dissolved oxygen concentration and harvesting time on the production of Serratia entomophila, a microbial control agent of the New Zealand grass grub. Biocontrol Science and Technology, 18(1), 87-100. doi:10.1080/09583150701760513.Vodovar, N., Vallenet, D., Cruveiller, S., Rouy, Z., Barbe, V., Acosta, C., … Boccard, F. (2006). Complete genome sequence of the entomopathogenic and metabolically versatile soil bacterium Pseudomonas entomophila. Nature Biotechnology, 24, 673-679. doi:10.1038/nbt1212.Vodovar, N., Vinals, M., Liehl, P., Basset, A., Degrouard, J., Spellman, P., … Lemaitre, B. (2005). Drosophila host defense after oral infection by an entomopathogenic Pseudomonas species. Proceedings of the National Academy of Science of the USA, 102(32), 11414-11419. doi:10.1073/pnas.0502240102.Wahba, M. M. (2000). The influence of Bacillus sphaericus on the biology and histology of Phlebotomus papatasi. Journal of Egyptian Society of Parasitology, 30(1), 315-323.Walker, K., Mendelsohn, M., Matten, S., Alphin, M., & Ave, D. (2003). The role of microbial Bt products in U.S. Crop protection. Journal of New Seeds, 5(1), 31-51. doi:10.1300/J153v05n01_03.Waterfield, N., Hares, M., Yang, G., Dowling, A., & Ffrench-Constant, R. (2005). Potentiation and cellular phenotypes of the insecticidal Toxin complexes of Photorhabdus bacteria. Cellular Microbiology, 7(3), 373- 382. doi:10.1111/j.1462-5822.2004.00467.x.Wermelinger, E. D., Zanuncio, J. C., Rangel, E. F., Cecon, P. R., & Rabinovitch, L. (2000). Toxicity of Bacillus Species to Larvae of Lutzomyia longipalpis (L. & N.) (Diptera: Psychodidae: Phlebotominae). Anais da Sociedade Entomológica do Brasil, 29(3), 609-614. doi:10.1590/ S0301-80592000000300025.Whalon, M. E., & Wingerd, B. A. (2003). Bt: Mode of action and use. Archives of Insect Biochemistry and Physiology, 54(4), 200-211. doi:10.1002/arch.10117.Xu, D., & Côté, J.-C. (2008). Sequence diversity of Bacillus thuringiensis flagellin (H antigen) protein at the intra-H serotype level. Applied Environmental Microbiology, 74(17), 5524-5532. doi:10.1128/aem.00951-08.Yang, G., Dowling, A. J., Gerike, U., Ffrench-Constant, R. H., & Waterfield, N. R. (2006). Photorhabdus virulence cassettes confer injectable insecticidal activity against the wax moth. Journal of Bacteriology, 188(6), 2254-2261. doi:10.1128/JB.188.6.2254-2261.2006.Yousten, A. A., Fretz, S. B., & Jelley, S. A. (1985). Selective medium for mosquito-pathogenic strains of Bacillus sphaericus. Applied and Environmental Microbiology, 49(6), 1532-1533.Yu, X., Zheng, A., Zhu, J., Wang, S., Wang, L., Deng, Q., ... Li, P. (2011). Characterization of Vegetative Insecticidal Protein vip Genes of Bacillus thuringiensis from Sichuan Basin in China. Current Microbiology, 62(3), 752-757. doi:10.1007/s00284-010-9782-3.Zalunin, I. A., Elpidina, E. N., & Oppert, B. (2015). The role of proteolysis in the biological activity of Bt insecticidal crystal proteins. En M. Soberón, A. Gao & A. Bravo (Eds.), Bt Resistance: Characterization and Strategies for GM Crops Producing Bacillus thuringiensis Toxins (pp. 107-118). Wallingford, Inglaterra: Centre for Agricultural Bioscience International (cabi). doi:10.1079/9781780644370.0107.Zhang, D., De Souza, R. F., Anantharaman, V., Iyer, L. M., & Aravind, L. (2012). Polymorphic toxin systems: Comprehensive characterization of trafficking modes, processing, mechanisms of action, immunity and ecology using comparative genomics. Biology Direct, 7, 18. doi:10.1186/1745-6150-7-18.Zhang, J., Hodgman, T. C., Krieger, L., Schnetter, W., & Schairer, H. U. (1997). Cloning and analysis of the first cry gene from Bacillus popilliae. Journal of Bacteriology, 179(13), 4336-4341. doi:10.1128/jb.179.13.4336-4341.33829 ; Control biológico de fitopatógenos, insectos y ácaros: agentes de control biológico. V. 1 LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repository.agrosavia.co/bitstream/20.500.12324/34070/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52open accessTHUMBNAILVer_Documento_34070.pdf.jpgVer_Documento_34070.pdf.jpgimage/jpeg19700https://repository.agrosavia.co/bitstream/20.500.12324/34070/5/Ver_Documento_34070.pdf.jpg46fb1d77ab841d717f89c044af96219aMD55open accessORIGINALVer_Documento_34070.pdfVer_Documento_34070.pdfapplication/pdf8453013https://repository.agrosavia.co/bitstream/20.500.12324/34070/4/Ver_Documento_34070.pdfdee8aabf45fcf077cb40165072a15262MD54open access20.500.12324/34070oai:repository.agrosavia.co:20.500.12324/340702024-06-14 15:24:12.585open accessAgrosavia - Corporación colombiana de investigación agropecuariabac@agrosavia.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=