Nuevas estrategias para el control biológico de fitopatógenos

Las tecnologías biológicas, incluyendo el uso de microorganismos biocontroladores, están adquiriendo una importancia primordial en la producción agrícola. Sin embargo, la mayoría de los enfoques para el control biológico de enfermedades de las plantas ha tenido un alcance limitado. Un ejemplo de est...

Full description

Autores:
Cotes Prado, Alba Marina
Lewis Mosher, Stephen
Barrera Cubillos, Gloria Patricia
Kobayashi, Sadao
Elad, Yigal
Tipo de recurso:
Part of book
Fecha de publicación:
2018
Institución:
Agrosavia
Repositorio:
Agrosavia
Idioma:
spa
OAI Identifier:
oai:repository.agrosavia.co:20.500.12324/34158
Acceso en línea:
http://hdl.handle.net/20.500.12324/34158
Palabra clave:
Enfermedades de las plantas - H20
Bioestimulantes
Bioplaguicidas
Tratamiento biológico contaminantes
Nepovirus
Transversal
Rights
License
Attribution-NonCommercial-ShareAlike 4.0 International
id Agrosavia2_2ddc491327e4f446e8d13ee67cd8b7ae
oai_identifier_str oai:repository.agrosavia.co:20.500.12324/34158
network_acronym_str Agrosavia2
network_name_str Agrosavia
repository_id_str
dc.title.spa.fl_str_mv Nuevas estrategias para el control biológico de fitopatógenos
dc.title.translated.eng.fl_str_mv Novel strategies for plant pathogens biological control
title Nuevas estrategias para el control biológico de fitopatógenos
spellingShingle Nuevas estrategias para el control biológico de fitopatógenos
Enfermedades de las plantas - H20
Bioestimulantes
Bioplaguicidas
Tratamiento biológico contaminantes
Nepovirus
Transversal
title_short Nuevas estrategias para el control biológico de fitopatógenos
title_full Nuevas estrategias para el control biológico de fitopatógenos
title_fullStr Nuevas estrategias para el control biológico de fitopatógenos
title_full_unstemmed Nuevas estrategias para el control biológico de fitopatógenos
title_sort Nuevas estrategias para el control biológico de fitopatógenos
dc.creator.fl_str_mv Cotes Prado, Alba Marina
Lewis Mosher, Stephen
Barrera Cubillos, Gloria Patricia
Kobayashi, Sadao
Elad, Yigal
dc.contributor.author.none.fl_str_mv Cotes Prado, Alba Marina
Lewis Mosher, Stephen
Barrera Cubillos, Gloria Patricia
Kobayashi, Sadao
Elad, Yigal
dc.subject.fao.spa.fl_str_mv Enfermedades de las plantas - H20
topic Enfermedades de las plantas - H20
Bioestimulantes
Bioplaguicidas
Tratamiento biológico contaminantes
Nepovirus
Transversal
dc.subject.agrovoc.spa.fl_str_mv Bioestimulantes
Bioplaguicidas
Tratamiento biológico contaminantes
Nepovirus
dc.subject.red.spa.fl_str_mv Transversal
description Las tecnologías biológicas, incluyendo el uso de microorganismos biocontroladores, están adquiriendo una importancia primordial en la producción agrícola. Sin embargo, la mayoría de los enfoques para el control biológico de enfermedades de las plantas ha tenido un alcance limitado. Un ejemplo de esto lo representa el hecho de que, en las últimas décadas, en general, se han utilizado agentes de biocontrol individuales para controlar un solo patógeno. Esto puede explicar parcialmente la respuesta inconsistente que se observa frecuentemente, ya que dichos agentes individuales pueden ser inactivos en varios de los ambientes en los que se aplican o contra diferentes patógenos que atacan a la planta huésped. Lograr un control de amplio espectro de patógenos por los antagonistas que se apliquen individualmente o en consorcio sigue siendo, en gran medida, un objetivo no cumplido para la explotación eficaz del control biológico, así como ampliar los usos de los agentes de control biológico para lograr efectos complementarios, tales como tolerancia a factores abióticos limitantes como la sequía y la salinidad, biofertilización y biorremediación, entre otros. Además, en general, se han usado los mismos microorganismos biocontroladores y los descubrimientos de nuevos agentes de control biológico son muy limitados. Sin embargo, estas investigaciones requieren de métodos de tamizado o screening de alta eficiencia que permitan evaluar de forma rápida muchos microorganismos. De otra parte, existen múltiples patógenos para los cuales no se han desarrollado alternativas de control biológico efectivas, como es el caso de muchas bacterias fitopatógenas y de virus, donde existe un potencial inexplorado. Así mismo, el desarrollo de nuevos componentes de manejo que puedan integrarse a los agentes de control biológico para mejorar la respuesta de control tiene aún mucho espacio de investigación.
publishDate 2018
dc.date.accessioned.none.fl_str_mv 2018-12-05T15:24:00Z
dc.date.available.none.fl_str_mv 2018-12-05T15:24:00Z
dc.date.issued.none.fl_str_mv 2018
dc.type.localeng.eng.fl_str_mv book part
dc.type.local.spa.fl_str_mv Capítulo
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_3248
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bookPart
dc.type.redcol.none.fl_str_mv https://purl.org/redcol/resource_type/CAP_LIB
dc.type.version.none.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
format http://purl.org/coar/resource_type/c_3248
dc.identifier.isbn.none.fl_str_mv 978-958-740-254-4 (e-book)
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12324/34158
dc.identifier.reponame.spa.fl_str_mv reponame:Biblioteca Digital Agropecuaria de Colombia
dc.identifier.repourl.none.fl_str_mv repourl:https://repository.agrosavia.co
dc.identifier.instname.spa.fl_str_mv instname:Corporación colombiana de investigación agropecuaria AGROSAVIA
identifier_str_mv 978-958-740-254-4 (e-book)
reponame:Biblioteca Digital Agropecuaria de Colombia
repourl:https://repository.agrosavia.co
instname:Corporación colombiana de investigación agropecuaria AGROSAVIA
url http://hdl.handle.net/20.500.12324/34158
dc.language.iso.none.fl_str_mv spa
language spa
dc.relation.citationstartpage.none.fl_str_mv 878
dc.relation.citationendpage.none.fl_str_mv 921
dc.relation.references.spa.fl_str_mv Abdelfattah, A., Wisniewski, M., Droby, S., & Schena, L. (2016). Spatial and compositional variation in the fungal communities of organic and conventionally grown apple fruit at the consumer point-of-purchase. Horticulture Research, 3, 16047. doi:10.1038/hortres.2016.47.
Abo-Amer, A. (2011). Biodegradation of diazinon by Serratia marcescens DI101 and its use in bioremediation of contaminated environment. Journal of Microbiology and Biotechnology, 21(1), 71-80.
Adams, P., De-Leij, F. A. A. M., & Lynch, J. M. (2007). Trichoderma harzianum rifai 1295-22 mediates growth promotion of crack willow (Salix fragilis) saplings in both clean and metal-contaminated soil. Microbial Ecology, 54(2), 306-313.
Agler, M. T., Ruhe, J., Kroll, S., Morhenn, C., Kim, S.- T., Weigel, D., & Kemen, E. M. (2016). Microbial hub taxa link host and abiotic factors to plant microbiome variation. Plos Biology, 14(1): e1002352. doi:10.1371/ journal.pbio.1002352.
Aino, M., Iwamoto, Y., Hashimoto, Y., & Ishikawa, K. (2007). Effect of the endophytic bacteria in lettuce (Lactuca sativa) roots suppressing infection of Olpidium virulentus viral vector for lettuce big-vein virus and possibility of the control of lettuce big-vein diseases by the endophytic bacteria. Kasai, Japón: Technology Center for Agriculture, Forestry and Fisheries
Alabouvette, C., & Cordier, C. (2011). Risks of microbial biocontrol agents and regulation: are they in balance? En R. U. Ehlers (Eds.). Regulation of biological control agents (pp. 157-173). Dordrecht, Holanda: Springer.
Algam, S. A., Xie, G., Li, B., Yu, S., Su, T., & Larsen, J. (2010). Effects of Paenibacillus strains and chitosan on plant growth promotion and control of Ralstonia wilt in tomato. Journal of Plant Pathology, 92(3), 593-600.
Altomare, C., Norvell, W. A., Björkman, T., & Harman, G. E. (1999). Solubilization of phosphates and micronutrients by the plant-growth-promoting and biocontrol fungus Trichoderma harzianum rifai 1295-22. Applied and Environmental Microbiology, 65(7), 2926-2933.
Andreoni, V., Colombo, M., Colombo, A., Vecchio, A., & Finoli, C. (2003). Cadmium and zinc removal by growing cells of Pseudomonas putida strain B14 isolated from a metal-impacted soil. Annals of Microbiology, 53(2), 135-148.
Arshad, M., & Frankenberger Jr., W. T. (1993). Microbial production of plant growth regulators. En F. B. Metting Jr. (Ed.), Soil microbial ecology: applications in agricultural and environmental management (pp. 307-347). Nueva York, EE. UU.: Marcell Dekker Inc.
Badawy, M. E. I., & Rabea, E. I. (2011). A biopolymer chitosan and its derivatives as promising antimicrobial agents against plant pathogens and their applications in crop protection. International Journal of Carbohydrate Chemistry, 2011, 1-29. doi:10.1155/2011/460381.
Badri, D. V., & Vivanco, J. M. (2009). Regulation and function of root exudates. Plant, Cell & Environment, 32(6), 666- 681. doi:10.1111/j.1365-3040.2008.01926.x.
Baider, A., & Cohen, Y. (2003). Synergistic interaction between baba and mancozeb in controlling Phytophthora infestans in potato and tomato and Pseudoperonospora cubensis in cucumber. Phytoparasitica, 31(4), 399-409. doi:10.1007/BF02979812
Barber, M. S., Bertram, R. E., & Ride, J. P. (1989). Chitin oligosaccharides elicit lignification in wounded wheat leaves. Physiological and Molecular Plant Pathology, 34(1), 3-12. doi:10.1016/0885-5765(89)90012-X.
Behlau, F., Canteros, B. I., Minsavage, G. V., Jones, J. B., & Graham, J. H. (2011). Molecular characterization of copper resistance genes from Xanthomonas citri subsp. citri and Xanthomonas alfalfae subsp. citrumelonis. Applied and Environmental Microbiology, 77(12), 4089-4096. doi:10.1128/AEM.03043-10.
Bender, C. L., & Cooksey, D. A. (1986). Indigenous plasmids in Pseudomonas syringae pv. tomato: conjugative transfer and role in copper resistance. Journal of Bacteriology, 165(2), 534-541.
eneduzi, A., Ambrosini, A., & Passaglia, L. M. (2012). Plant growth-promoting rhizobacteria (pgpr): their potential as antagonists and biocontrol agents. Genetics and Molecular Biology, 35(4), 1044-1051.
Benhamou, N., Kloepper, J. W., & Tuzun, S. (1998). Induction of resistance against Fusarium wilt of tomato by combination of chitosan with an endophytic bacterial strain: ultrastructure and cytochemistry of the host response. Planta, 204(2), 153-168. doi:10.1007/ s004250050242.
Berg, G., Eberl, L., & Hartmann, A. (2005). The rhizosphere as a reservoir for opportunistic human pathogenic bacteria. Environmental Microbiology, 7(11), 1673-1685. doi:10.1111/j.1462-2920.2005.00891.x.
Berg, G., Grube, M., Schloter, M., & Smalla, K. (2014). Unraveling the plant microbiome: looking back and future perspectives. Frontiers in Microbiology, 5, 148. doi:10.3389/fmicb.2014.00148.
Berg, G., Rybakova, D., Grube, M., & Koberl, M. (2016). The plant microbiome explored: implications for experimental botany. Journal of Experimental Botany, 67(4), 995-1002. doi:10.1093/jxb/erv466.
Bhattacharyya, P., & Jha, D. (2012). Plant growth-promoting rhizobacteria (pgpr): emergence in agriculture. World Journal of Microbiology and Biotechnology, 28(4), 1327- 1350. doi:10.1007/s11274-011-0979-9.
Bosmans, L., De Bruijn, I., Gerards, S., Moerkens, R., Van Looveren, L., Wittemans, … Lievens, B. (2017). Potential for biocontrol of hairy root disease by a Paenibacillus clade. Frontiers in Microbiology 8, 1-11. doi:10.3389/ fmicb.2017.00447.
Bulgarelli, D., Rott, M., Schlaeppi, K., Ver Loren van Themaat, E., Ahmadinejad, N., Assenza, F., ... SchulzeLefert, P. (2012). Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature, 488(7409), 91-95. doi:10.1038/nature11336.
Cai, F., Yu, G., Wang, P., Wei, Z., Fu, L., Shen, Q., Chen, W. (2013). Harzianolide, a novel plant growth regulator and systemic resistance elicitor from Trichoderma harzianum. Plant Physiology and Biochemistry, 73, 106- 113. doi:10.1016/j.plaphy.2013.08.011.
Calvo, P., Nelson, L., & Kloepper, J.W. (2014). Agricultural uses of plant biostimulants. Plant Soil, 383(1-2), 3-41. doi:10.1007/s11104-014-2131-8
Campbell, R. (1991). Biological control of microbial plant pathogens. Nueva York, EE. UU.: Cambridge University Press.
Castillo, D., & Sword, G. A. (2015). The endophytic fungal entomopathogens Beauveria bassiana and Purpureocillium lilacinum enhance the growth of cultivated cotton (Gossypium hirsutum) and negatively affect survival of the cotton bollworm (Helicoverpa zea). Biological Control, 89, 53-60.
Chakroun, H., Mechichi, T., Martinez, M. J., Dhouib, A., & Sayadi, S. (2010). Purification and characterization of a novel laccase from the ascomycete Trichoderma atroviride: application on bioremediation of phenolic compounds. Process Biochemistry, 45(4), 507-513. doi:10.1016/j. procbio.2009.11.009.
Chen, F., Gao, Y., Chen, X., Yu, Z., & Li, X. (2013). Quorum quenching enzymes and their application in degrading signal molecules to block Quorum sensing-dependent infection. International Journal of Molecular Sciences, 14(9), 17477-17500. doi:10.3390/ijms140917477.
Chen, S.-K., Edwards, C. A., & Subler, S. (2001). Effects of the fungicides benomyl, captan and chlorothalonil on soil microbial activity and nitrogen dynamics in laboratory incubations. Soil Biology & Biochemistry, 33(14), 1971-1980.
Chen, T. H., & Murata, N. (2011). Glycinebetaine protects plants against abiotic stress: mechanisms and biotechnological applications. Plant, Cell & Environment, 34(1), 1-20. doi:10.1111/j.1365-3040.2010.02232.x.
Chowdhury, S. P., Uhl, J., Grosch, R., Alquéres, S., Pittroff, S., Dietel, K., … Hartmann, A. (2015). Cyclic lipopeptides of Bacillus amyloliquefaciens subsp. plantarum colonizing the lettuce rhizosphere enhance plant defense responses toward the bottom rot pathogen Rhizoctonia solani. Molecular Plant-Microbe Interactions, 28(9), 984-995. doi:10.1094/MPMI-03-15-0066-R.
Civerolo, E., & Keil, H. (1969). Inhibition of bacterial spot of peach foliage by Xanthomonas pruni bacteriophage. Phytopathology, 59, 1966-1967.
Cohen, E. (2001). Chitin synthesis and inhibition: a revisit. Pest Management Science, 57(10), 946-950. doi:10.1002/ ps.363.
Colla, G., Rouphael, Y., Canaguier, R., Svecova, E., & Cardarelli, M. (2014). Biostimulant action of a plantderived protein hydrolysate produced through enzymatic hydrolysis. Frontiers in Plant Science, 5, 448. doi:10.3389/ fpls.2014.00448.
Conrath, U., Domard, A., & Kauss, H. (1989). Chitosanelicited synthesis of callose and of coumarin derivatives in parsley cell suspension cultures. Plant Cell Reports, 8(3), 152-155. doi:10.1007/BF00716829.
Cooksey, D. A. (1990). Genetics of bactericide resistance in plant pathogenic bacteria. Annual Review of Phytopathology, 28, 201-219. doi:10.1146/annurev. py.28.090190.001221.
Cooksey, D. A. (1994). Molecular mechanisms of copper resistance and accumulation in bacteria. FEMS Microbiology Reviews, 14(4), 381-386.
Coons, G. H., & Kotila, J. E. (1925). The transmissible lytic principle (bacteriophage) in relation to plant pathogens. Phytopathology, 15, 357-370.
Köhle, H., Jeblick, W., Poten, F., Blaschek, W., & Kauss, H. (1985). Chitosan-Elicited Callose Synthesis in Soybean Cells as a Ca2+ -Dependent Process. Plant Physiology, 77(3), 544-551.
Krishnamurthy, S. R., Janowski, A. B., Zhao, G., Barouch, D., & Wang, D. (2016). Hyperexpansion of rna bacteriophage diversity. Plos Biology, 14(3): e1002409. doi:10.1371/journal.pbio.1002409.
Kuchitsu, K., Kosaka, H., Shiga, T., & Shibuya, N. (1995). epr evidence for generation of hydroxyl radical triggered by N-acetylchitooligosaccharide elicitor and a protein phosphatase inhibitor in suspension-cultured rice cells. Protoplasma, 188(1-2), 138-142. doi:10.1007/ BF01276805.
Kusaba, M. (2004). rna interference in crop plants. Current Opinion in Biotechnology, 15(2), 139-143. doi:10.1016/j. copbio.2004.02.004.
Lee, Y. A., Hendson, M., Panopoulos, N. J., & Schroth, M. N. (1994). Molecular cloning, chromosomal mapping, and sequence analysis of copper resistance genes from Xanthomonas campestris pv. juglandis: homology with small blue copper proteins and multicopper oxidase. Journal of Bacteriology, 176(1), 173-188.
Li, R.-X., Cai, F., Pang, G., Shen, Q.-R., Li, R., & Chen, W. (2015). Solubilisation of phosphate and micronutrients by Trichoderma harzianum and its relationship with the promotion of tomato plant growth. Plos One, 10(6): e0130081. doi:10.1371/journal.pone.0130081.
Lindow, S. E., & Brandl, M. T. (2003). Microbiology of the Phyllosphere. Applied and Environmental Microbiology, 69(4), 1875-1883. doi:10.1128/AEM.69.4.1875- 1883.2003.
Lodewyckx, C., Vangronsveld, J., Porteous, F., Moore, E. R. B., Taghavi, S., Mezgeay, M., & der Lelie, D. v. (2002). Endophytic bacteria and their potential applications. Critical Reviews in Plant Science, 21(6), 583-606. doi:10.1080/0735-260291044377.
Lugtenberg, B., & Kamilova, F. (2009). Plant-GrowthPromoting Rhizobacteria. Annual Review of Microbiology, 63, 541-556. doi:10.1146/annurev. micro.62.081307.162918.
Lundberg, D. S., Lebeis, S. L., Paredes, S. H., Yourstone, S., Gehring, J., Malfatti, S., … Dangl, J. L. (2012). Defining the core Arabidopsis thaliana root microbiome. Nature, 488 (7409), 86-90. doi:10.1038/nature11237.
Maiyappan, S., Amalraj, E., Santhosh, A., & Peter, A. (2010). Isolation, evaluation and formulation of selected microbial consortia for sustainable agriculture. Journal of Biofertilizers & Biopesticides, 2(2), 109. doi:10.4172/2155- 6202.1000109.
Majumdar, R., Rajasekaran, K., & Cary, J. W. (2017). rna interference (RNAi) as a potential tool for control of mycotoxin contamination in crop plants: Concepts and considerations. Frontiers in Plant Science, 8, 200. doi:10.3389/fpls.2017.00200.
Mallmann, W., & Hemstreet, C. (1924). Isolation of an inhibitory substance from plants. Agricultural Research, 28(6), 599-602. Recuperado de https://naldc.nal.usda. gov/download/IND43966880/PDF.
Mao, Y.-B., Cai, W.-J., Wang, J.-W., Hong, G.-J., Tao, X.-Y., Wang, L.-J., … Chen, X.-Y. (2007). Silencing a cotton bollworm P450 monooxygenase gene by plant-mediated RNAi impairs larval tolerance of gossypol. Nature Biotechnology, 25(11), 1307-1313. doi:10.1038/nbt1352.
Marques, M. P., Walshe, K., Doyle, S., Fernandes, P., & De Carvalho, C. C. (2012). Anchoring high-throughput screening methods to scale-up bioproduction of siderophores. Process Biochemistry, 47(3), 416-421. h doi:10.1016/j.procbio.2011.11.020.
Massart, S., Martinez-Medina, M., & Jijakli, M. H. (2015). Biological control in the microbiome era: Challenges and opportunities. Biological Control, 89, 98-108. doi:10.1016/j.biocontrol.2015.06.003.
Matsubara, M., Lynch, J., & De Leij, F. (2006). A simple screening procedure for selecting fungi with potential for use in the bioremediation of contaminated land. Enzyme and Microbial Technology, 39(7), 1365-1372. doi:10.1016/j.enzmictec.2005.04.025.
McManus, P. S., Stockwell, V. O., Sundin, G. W. & Jones, A. L. (2002). Antibiotic use in plant agriculture. Annual Review of Phytopathology, 40, 443-465. doi:10.1146/ annurev.phyto.40.120301.093927.
Meena, A. K., Verma, L., & Kumhar, B. L. (2017). RNAi, it’s mechanism and potential use in crop improvement: A review. International Journal of Pure & Applied Bioscience, 5(2), 294-311. doi:10.18782/2320-7051.2890.
Mendes, R. (2012). Microbioma da rizosfera e proteção de plantas. En Congresso Paulista de Fitopatologia 35º, Summa Phytopathologica, 38 (supplement). [cd-rom]. Jaguariúna, Brasil.
Menzies, J. D. (1959). Occurrence and transfer of abiological factor in soil that suppresses potato scab. Phytopathology, 49, 648-652.
Merzendorfer, H., & Zimoch, L. (2003). Chitin metabolism in insects: structure, function and regulation of chitin synthases and chitinases. Journal of Experimental Biology, 206, 4393-4412. doi:10.1242/jeb.00709.
Minami, E., Kuchitsu, K., He, D. Y., Kouchi, H., Midoh, N., Ohtsuki, Y., & Shibuya, N. (1996). Two novel genes rapidly and transiently activated in suspension-cultured rice cells by treatment with N-acetylchitoheptaose, a biotic elicitor for phytoalexin production. Plant and Cell Physiology, 37(4), 563-567.
31-43. Recuperado de https://www.researchgate.net/ publication/285023312_Chitosan_and_trichoderma_ harzianum_as_fungicide_alternatives_for_controlling_ fusarium_crown_and_root_rot_of_tomato.
El Hadrami, A., Adam, L. R., El Hadrami, I., & Daayf, F. (2010). Chitosan in plant protection. Marine Drugs, 8(4), 968-987. doi:10.3390/md8040968.
Ezra, D., Castillo, U. F., Strobel, G. A., Hess, W. M., Porter, H., Jensen, J. B., … Yaver, D. (2004). Coronamycins, peptide antibiotics produced by a verticillate Streptomyces sp. (MSU-2110) endophytic on Monstera sp.Microbiology, 150(4), 785-793. doi:10.1099/mic.0.26645-0.
Ezzi, M. I., & Lynch, J. M. (2005). Biodegradation of cyanide by Trichoderma spp. and Fusarium spp. Enzyme and Microbial Technology, 36(7), 849-854. doi:10.1016/j. enzmictec.2004.03.030.
Faeth, S. H., & Fagan, W. F. (2002). Fungal endophytes: Common host plant symbionts but uncommon mutualists. Integrative and Comparative Biology, 42(2), 360-368. doi:10.1093/icb/42.2.360
Fakhro, A., Andrade-Linares, D. R., Von Bargen, S., Bandte, M., Büttner, C., Grosch, R., … Franken, P. (2010). Impact of Piriformospora indica on tomato growth and on interaction with fungal and viral pathogens. Mycorrhiza, 20(3), 191-200. doi:10.1007/s00572-009-0279-5.
Felix, G., Baureithel, K., & Boller, T. (1998). Desensitization of the perception system for chitin fragments in tomato cells. Plant Physiology, 117(2), 643-650.
Felix, G., Regenass, M., & Boller, T. (1993). Specific perception of subnanomolar concentrations of chitin fragments by tomato cells: induction of extracellular alkalinization, changes in protein phosphorylation, and establishment of a refractory state. The Plant Journal, 4(2), 307-316. doi:10.1046/j.1365-313X.1993.04020307.x.
Ferri, M., Franceschetti, M., Naldrett, M. J., Saalbach, G., & Tassoni, A. (2014). Effects of chitosan on the protein profile of grape cell culture subcellular fractions. Electrophoresis, 35(11), 1685-1692. doi:10.1002/ elps.201300624.
Figueroa-López, A. M., Cordero-Ramírez, J. D., MartínezÁlvarez, J. C., López-Meyer, M., Lizárraga-Sánchez, G. J., Félix-Gastélum, R., ... Maldonado-Mendoza, I. E. (2016). Rhizospheric bacteria of maize with potential for biocontrol of Fusarium verticillioides. Springerplus, 5, 330. doi:10.1186/s40064-016-1780-x.
Figueroa-López, A. M., Cordero-Ramírez, J. D., QuirozFigueroa, F. R., & Maldonado-Mendoza, I. E. (2014). A high-throughput screening assay to identify bacterial antagonists against Fusarium verticillioides. Journal of Basic Microbiology, 54(1), S125-133. doi:10.1002/ jobm.201200594
Fire, A., Xu, S., Montgomery, M. K., Kostas, S. A., Driver, S. E, & Mello, C. C. (1998). Potent and specific genetic interference by double-stranded rna in Caenorhabditis elegans. Nature, 391 (6669), 806-811.
Fondong, V. N., Nagalakshmi, U., & Dinesh-Kumar, S. P. (2016). Novel functional genomics approaches: a promising future in the combat against plant viruses. Phytopathology, 106(10), 1231-1239. doi:10.1094/ PHYTO-03-16-0145-FI.
Forchetti, G., Masciarelli, O., Alemano, S., Alvarez, D., & Abdala, G. (2007). Endophytic bacteria in sunflower (Helianthus annuus L.): isolation, characterization, and production of jasmonates and abscisic acid in culture medium. Applied Microbiology and Biotechnology, 76(5), 1145-1152. doi:10.1007/s00253-007-1077-7.
Frampton, R. A., Pitman, A. R., & Fineran, P. C. (2012). Advances in bacteriophage-mediated control of plant pathogens. International Journal of Microbiology, 2012, 1-11. doi:10.1155/2012/326452.
Fravel, D. (2005). Commercialization and implementation of biocontrol. Annual Review of Phytopathology, 43, 337-359. doi:10.1146/annurev.phyto.43.032904.092924.
Ghorbanpour, M., Hatami, M., & Khavazi, K. (2013). Role of plant growth promoting rhizobacteria on antioxidant enzyme activities and tropane alkaloid production of Hyoscyamus niger under water deficit stress. Turkish Journal of Biology, 37(3), 350-360. doi:10.3906/biy1209-12.
Gill, J., & Abedon, S. T. (2003). Bacteriophage ecology and plants. APS Feature Stories. doi:10.1094/ APSnetFeature-2003-1103.
Giller, K. E., Witter, E., & Mcgrath, S. P. (1998). Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils: a review. Soil Biology & Biochemistry, 30(10-11), 1389-1414. doi:10.1016/ S0038-0717(97)00270-8
Gortari, M. C., & Hours, R. A. (2008). Fungal chitinases and their biological role in the antagonism onto nematode eggs. A review. Mycological Progress, 7(4), 221-238. doi:10.1007/s11557-008-0571-3.
Goy, R. C., Britto, D., & Assis, O. B. G. (2009). A review of the antimicrobial activity of chitosan. Polímeros 19(3), 241-247. doi:10.1590/S0104-14282009000300013.
Goyal, S., Lambert, C., Cluzet, S., Mérillon, J. M., & Ramawat, K. G. (2012). Secondary metabolites and plant defence. En J. M. Mérillon & K. G. Ramawat (Eds.), Plant Defence: Biological Control (pp. 109-138). Dordrecht, Países Bajos: Springer
Gozzo, F., & Faoro, F. (2013). Systemic acquired resistance (50 years after discovery): moving from the lab to the field. Journal of Agricultural and Food Chemistry, 61(51), 12473-12491. doi:10.1021/jf404156x.
Grose, J. H., & Casjens, S. R. (2014). Understanding the enormous diversity of bacteriophages: the tailed phages
Cooper, R. L., Laws, S. C., Das, P. C., Narotsky, M. G., Goldman, J. M., Lee Tyrey, E., & Stoker, T. E. (2007). Atrazine and reproductive function: mode and mechanism of action studies. Birth Defects Research Part B: Developmental and Reproductive Toxicology, 80(2), 98-112.
Copeland, J. K., Yuan, L., Layeghifard, M., Wang, P. W., & Guttman, D. S. (2015). Seasonal community succession of the phyllosphere microbiome. Molecular Plant-Microbe Interactions, 28(3), 274-285. doi:10.1094/MPMI-10-14- 0331-FI.
Cotes, A. M., Lepoivre, P., & Semal, J. (1996). Correlation between hydrolytic enzyme activities measured in bean seedlings after Trichoderma koningii treatment combined with pregermination and the protective effect against Pythium splendens. European Journal of Plant Pathology, 102(5), 497-506.
Craigie, J. S. (2011). Seaweed extract stimuli in plant science and agriculture. Journal of Applied Phycology, 23(3), 371- 393. doi:10.1007/s10811-010-9560-4.
D’Herelle, F. (1911). Sur une épizootie de nature bactérienne sévissant sur les sauterelles au Mexique. Comptes rendus hebdomadaires des séances de l’Acadédemie des sciences, 152, 1413-1415.
Dalton, D. A., Kramer, S., Azios, N., Fusaro, S., Cahill, E., Kennedy, C. (2004). Endophytic nitrogen fixation in dune grasses (Ammophila arenaria and Elymus mollis) from Oregon. FEMS Microbiology Ecology, 49(3), 469- 479. doi:10.1016/j.femsec.2004.04.010.
Das, K., & Mukherjee, A. K. (2007). Crude petroleumoil biodegradation efficiency of Bacillus subtilis and Pseudomonas aeruginosa strains isolated from a petroleum-oil contaminated soil from North-East India. Bioresource Technology, 98(7), 1339-1345. doi:10.1016/j. biortech.2006.05.032
De Jin, R., Suh, J. W., Park, R. D., Kim, Y. W., Krishnan, H., & Kim, K. Y. (2005). Effect of chitin compost and broth on biological control of Meloidogyne incognita on tomato (Lycopersicon esculentum Mill.). Nematology, 7(1), 125- 132
De Vasconcellos, R. L. F., & Cardoso, E. J. B. N. (2009). Rhizospheric streptomycetes as potential biocontrol agents of Fusarium and Armillaria pine rot and as pgpr for Pinus taeda. BioControl, 54(6), 807
De Vasconcellos, R. L. F., & Cardoso, E. J. B. N. (2009). Rhizospheric streptomycetes as potential biocontrol agents of Fusarium and Armillaria pine rot and as pgpr for Pinus taeda. BioControl, 54(6), 807
Dick, R. P. (1992). A review: long-term effects of agricultural systems on soil biochemical and microbial parameters. Agriculture, Ecosystems & Environment, 40(1-4), 25-36. doi:10.1016/0167-8809(92)90081-L.
Djonović, S., Pozo, M. J., Dangott, L. J., Howell, C. R., & Kenerley, C. M. (2006). Sm1, a proteinaceous elicitor secreted by the biocontrol fungus Trichoderma virens Induces plant defense responses and systemic resistance. Molecular Plant-Microbe Interactions, 19(8), 838-853. doi:10.1094/MPMI-19-0838.
Djonović, S., Vargas, W. A., Kolomiets, M. V., Horndeski, M., Wiest, A., & Kenerley, C. M. (2007). A proteinaceous elicitor Sm1 from the beneficial fungus Trichoderma virens is required for induced systemic resistance in maize. Plant Physiology, 145(3), 875-889. doi:10.1104/ pp.107.103689.
Dong, Y.-H., Xu, J.-L., Li, X.-Z., & Zhang, L.-H. (2000). AiiA, an enzyme that inactivates the acylhomoserine lactone quorum-sensing signal and attenuates the virulence of Erwinia carotovora. Proceedings of the National Academy of Sciences, 97(7), 3526-3531. doi:10.1073/ pnas.060023897.
Doornbos, R. F., van Loon, L. C., & Bakker, P. A. H. M. (2012). Impact of root exudates and plant defense signaling on bacterial communities in the rhizosphere. A review. Agronomy for Sustainable Development, 32(1), 227- 243. doi:10.1007/s13593-011-0028-y
Du Jardin, P. (2012). The Science of Plant Biostimulants - A bibliographic analysis. [Ad hoc study report to the European Commission DG Enterprise and Industry]. Recuperado de http://hdl.handle.net/2268/169257.
Du Jardin, P. (2015). Plant biostimulants: Definition, concept, main categories and regulation. Scientia Horticulturae, 196, 3-14. doi:10.1016/j.scienta.2015.09.021.
Duan, C.-G., Wang, C.-H., & Guo, H.-S. (2012). Application of rna silencing to plant disease resistance. Silence, 3(1), 5. doi:10.1186/1758-907X-3-5.
Duffy, B. K., Simon, A., & Weller, D. (1996). Combination of Trichoderma koningii with fluorescent pseudomonads for control of take-all on wheat. Phytopathology, 86(2), 188-194. Recuperado de https://www.apsnet. org/publ ications/phytopathology/backissues/ Documents/1996Articles/Phyto86n02_188.pdf.
Dye, D. W. (1953). Control of Pseudomonas syringae with streptomycin. Nature, 172, 683-684. doi:10.1038/172683a0.
El-Ghaouth, A., Arul, J., Ponnampalam, R., & Boulet, M. (1991). Use of chitosan coating to reduce water loss and maintain quality of cucumber and bell pepper fruits. Journal of Food Processing and Preservation, 15, 359-368. doi:10.1111/j.1745-4549.1991.tb00178.x.
El-Ghaouth, A., Ponnampalam, R., Castaigne, F., & Arul, J. (1992). Chitosan coating to extend the storage life of tomatoes. HortScience, 27(9), 1016-1018.
El-Mohamedy, R. S., Abdel-Kareem, F., JabounKhiareddine, H., & Daami-Remadi, M. (2014). Chitosan and Trichoderma harzianum as fungicide alternatives for controlling Fusarium crown and root rot of tomato. Tunisian Journal of Plant Protection, 9,
Jain, A., Singh, A., Singh, S., & Singh, H. B. (2015). Biological management of Sclerotinia sclerotiorum in pea using plant growth promoting microbial consortium. Journal of Basic Microbiology, 55(8), 961-972. doi:10.1002/ jobm.201400628.
Jain, R., Poulos, M. G., Gros, J., Chakravarty, A. K., & Shuman, S. (2011). Substrate specificity and mutational analysis of Kluyveromyces lactis gamma-toxin, a eukaryal tRNA anticodon nuclease. RNA, 17(7), 1336-1343. doi:10.1261/rna.2722711.
Jalilzadeh Yengejeh, R., Sekhavatjou, M., Maktabi, P., Arbab Soleimani, N., Khadivi, S., & Pourjafarian, V. (2014). The biodegradation of crude oil by Bacillus subtilis isolated from contaminated soil in hot weather areas. International Journal of Environmental Research, 8(2), 509- 514. doi:10.22059/ijer.2014.744
Jetiyanon, K. (2007). Defensive-related enzyme response in plants treated with a mixture of Bacillus strains (IN937a and IN937b) against different pathogens. Biological Control, 42(2), 178-185.
Kaku, H., Shibuya, N., Xu, P., Aryan, A. P., & Fincher, G. B. (1997). N-acetylchitooligosaccharides elicit expression of a single (1→3)-β-glucanase gene in suspension-cultured cells from barley (Hordeum vulgare). Physiologia Plantarum, 100, 111-118. doi:10.1111/ j.1399-3054.1997.tb03460.x
Kannan, V., & Sureendar, R. (2009). Synergistic effect of beneficial rhizosphere microflora in biocontrol and plant growth promotion. Journal of Basic Microbiology, 49, 158- 164. doi:10.1002/jobm.200800011.
Katiyar, D., Hemantaranjan, A., & Singh, B. (2015). Chitosan as a promising natural compound to enhance potential physiological responses in plant: a review. Indian Journal of Plant Physiology, 20(1), 1-9. doi:10.1007/s40502-015- 0139-6.
Katznelson, H. (1937). Bacteriophage in relation to plant diseases. The Botanical Review, 3, 499. doi:10.1007/ BF02870486.
Kauffman, G. L., Kneivel, D. P., & Watschke, T. L. (2007). Effects of a biostimulant on the heat tolerance associated with photosynthetic capacity, membrane thermostability, and polyphenol production of perennial ryegrass. Crop Science, 47(1), 261-267. doi:10.2135/ cropsci2006.03.0171.
Kembel, S. W., O’Connor, T. K., Arnold, H. K., Hubbell, S. P., Wright, S. J., & Green, J. L. (2014). Relationships between phyllosphere bacterial communities and plant functional traits in a neotropical forest. Proceedings of the National Academy of Sciences, 111(38), 13715-13720. doi:10.1073/pnas.1216057111.
Kesarcodi-Watson, A., Kaspar, H., Lategan, M. J., & Gibson, L. (2008). Probiotics in aquaculture: the need, principles and mechanisms of action and screening processes. Aquaculture, 274(1), 1-14. doi:10.1016/j. aquaculture.2007.11.019.
Keswani, C., Mishra, S., Sarma, B. K., Singh, S. P., & Singh, H. B. (2014). Unraveling the efficient applications of secondary metabolites of various Trichoderma spp. Applied Microbiology and Biotechnology, 98(2), 533-544. doi:10.1007/s00253-013-5344-5.
Khan, W., Rayirath, U. P., Subramanian, S., Jithesh, M. N., Rayorath, P., Hodges, D. M., … Prithiviraj, B. (2009). Seaweed extracts as biostimulants of plant growth and development. Journal of Plant Growth Regulation, 28(4), 386-399. doi:10.1007/s00344-009-9103-x
Kikuyama, M., Kuchitsu, K., & Shibuya, N. (1997). Membrane depolarization induced by N-acetylchitooligosaccharide elicitor in suspension-cultured rice cells. Plant and Cell Physiology, 38(8), 902-909. doi:10.1093/oxfordjournals. pcp.a029250.
Kloepper, J. W., Rodríguez-Kábana, R., Zehnder, A. W., Murphy, J. F., Sikora, E., & Fernández, C. (1999). Plant root-bacterial interactions in biological control of soilborne diseases and potential extension to systemic and foliar diseases. Australasian Plant Pathology, 28(1), 21-26. doi:10.1071/AP99003.
Kloepper, J., Reddy, M., Rodríguez-Kabana, R., Kenney, D., Kokalis-Burelle, N., & Martinez-Ochoa, N. (2004). Application for rhizobacteria in transplant production and yield enhancement. Acta Horticulturae, 631, 219-229. doi:10.17660/ActaHortic.2004.631.28.
Kloepper, J. W., Leong, J., Teintze, M., & Schroth, M. N. (1980). Enhanced plant growth by siderophores produced by plant growth-promoting rhizobacteria. Nature, 286, 885-886. doi:10.1038/286885a0.
Kloepper, J. W., Lifshitz, R., & Zablotowicz, R. M. (1989). Free-living bacterial inocula for enhancing crop productivity. Trends in Biotechnology, 7(2), 39-44. doi:10.1016/0167-7799(89)90057-7.
Knip, M., Constantin, M. E., & Thordal-Christensen, H. (2014). Trans-kingdom cross-talk: Small RNAs on the move. Plos Genetics, 10(9): e1004602. doi:10.1371/ journal.pgen.1004602.
Koberl, M., Schmidt, R., Ramadan, E. M., Bauer, R., & Berg, G. (2013). The microbiome of medicinal plants: diversity and importance for plant growth, quality and health. Frontiers in Microbiology, 4, 400. doi:10.3389/ fmicb.2013.00400.
Koch, A., Biedenkopf, D., Furch, A., Weber, L., Rossbach, O., Abdellatef, E., … Kogel, K.-H. (2016). An RNAi-based control of Fusarium graminearum infections through spraying of long dsRNAs involves a plant passage and is controlled by the fungal silencing machinery. Plos Pathogens, 12(10): e1005901. doi:10.1371/journal. ppat.1005901. that infect the bacterial family Enterobacteriaceae. Virology, 468, 421-443. doi:10.1016/j.virol.2014.08.024.
Groszhans, H., & Filipowicz, W. (2008). Molecular biology: The expanding world of small RNAs. Nature, 451(7177), 414-416. doi:10.1038/451414a.
Guo, H., Luo, S., Chen, L., Xiao, X., Xi, Q., Wei, W., ... Chen, J. (2010). Bioremediation of heavy metals by growing hyperaccumulaor endophytic bacterium Bacillus sp. L14. Bioresource Technology, 101(22), 8599-8605. doi:10.1016/j.biortech.2010.06.085.
Guo, S., & Kemphues, K. J. (1995). par-1, a gene required for establishing polarity in C. elegans embryos, encodes a putative Ser/Thr kinase that is asymmetrically distributed. Cell, 81(4), 611-620.
Haas, D., & Keel, C. (2003). Regulation of antibiotic production in root-colonizing Pseudomonas spp. and relevance for biological control of plant disease. Annual Review of Phytopathology, 41, 117-153. doi:10.1146/ annurev.phyto.41.052002.095656.
Hadwiger, L. A. (2013). Multiple effects of chitosan on plant systems: Solid science or hype. Plant Science, 208, 42-49. doi:10.1016/j.plantsci.2013.03.007.
Haichar, F. E. Z., Marol, C., Berge, O., Rangel-Castro, J. I., Prosser, J. I., Balesdent, J. M., … Achouak, W. (2008). Plant host habitat and root exudates shape soil bacterial community structure. The ISME Journal, 2(12), 1221- 1230. doi:10.1038/ismej.2008.80.
Halpern, M., Bar-Tal, A., Ofek, M., Minz, D., Muller, T., & Yermiyahu, U. (2015). Chapter two - The use of biostimulants for enhancing nutrient uptake. En D. L. Sparks (Ed.), Advances in Agronomy (vol. 130, pp. 141- 174). doi:10.1016/bs.agron.2014.10.001.
Hallmann, J., Quadt-Hallmann, A., Mahaffee, W. F., & Kloepper, J. W. (1997). Bacterial endophytes in agricultural crops. Canadian Journal of Microbiology, 43(10), 895-914. doi:10.1139/m97-131.
Hammerschmidt, R. (1999). Phytoalexins: What have we learned after 60 years? Annual Review of Phytopathology, 37, 285-306. doi:10.1146/annurev.phyto.37.1.285.
Hardoim, P. R., Van Overbeek, L. S., & Elsas, J. D. v. (2008). Properties of bacterial endophytes and their proposed role in plant growth. Trends in Microbiology, 16(10), 463- 471. doi:10.1016/j.tim.2008.07.008.
Hariprasad, P., Navya, H., Chandra, S., & Niranjana, S. (2009). Advantage of using psirb over psrb and irb to improve plant health of tomato. Biological Control, 50(3), 307-316. doi:10.1016/j.biocontrol.2009.04.002
Harish, S., Kavino, M., Kumar, N., Balasubramanian, P., & Samiyappan, R. (2009). Induction of defenserelated proteins by mixtures of plant growth promoting endophytic bacteria against Banana bunchy top virus. Biological Control, 51(1), 16-25. doi:10.1016/j.biocontrol. 2009.06.002.
Hirst, J. M., Le Riche, H. H., & Bascomb, C. L. (1961). Copper accumulation in the soils of apple orchards near wisbech. Plant Pathology, 10(3), 105-108. doi:10.1111/j.1365-3059.1961.tb00127.x
Hoitink, H., & Boehm, M. (1999). Biocontrol within the context of soil microbial communities: a substratedependent phenomenon. Annual Review of Phytopathology, 37, 427-446. doi:10.1146/annurev.phyto.37.1.427.
Hosseyni-Moghaddam, M. S., & Soltani, J. (2014). Bioactivity of endophytic Trichoderma fungal species from the plant family Cupressaceae. Annals of Microbiology, 64(2), 753- 761. doi:10.1007/s13213-013-0710-1.
Howell, C. R. (2003). Mechanisms employed by Trichoderma species in the biological control of plant diseases: The history and evolution of current concepts. Plant Disease, 87(1), 4-10. doi:10.1094/PDIS.2003.87.1.4.
Howell, C. R., Hanson, L. E., Stipanovic, R. D., & Puckhaber, L. S. (2000). Induction of terpenoid synthesis in cotton roots and control of Rhizoctonia solani by seed treatment with Trichoderma virens. Phytopathology, 90(3), 248-252. doi:10.1094/PHYTO.2000.90.3.248.
Huang, G., Allen, R., Davis, E. L., Baum, T. J., & Hussey, R. S. (2006). Engineering broad root-knot resistance in transgenic plants by RNAi silencing of a conserved and essential root-knot nematode parasitism gene. Proceedings of the National Academy of Sciences, 103(39), 14302- 14306. doi:10.1073/pnas.0604698103.
Huang, X., Chen, L., Ran, W., Shen, Q., & Yang, X. (2011). Trichoderma harzianum strain SQR-T37 and its bio-organic fertilizer could control Rhizoctonia solani damping-off disease in cucumber seedlings mainly by the mycoparasitism. Applied Microbiology and Biotechnology, 91(3), 741-755. doi:10.1007/s00253-011-3259-6.
Hunter, R. D., Ekunwe, S. I., Dodor, D. E., Hwang, H.-M., & Ekunwe, L. (2005). Bacillus subtilis is a potential degrader of pyrene and benzo[a]pyrene. International Journal of Environmental Research and Public Health, 2(2), 267-271.
Iriarte, F. B., Balogh, B., Momol, M. T., Smith, L. M., Wilson, M., & Jones, J. B. (2007). Factors affecting survival of bacteriophage on tomato leaf surfaces. Applied and Environmental Microbiology, 73(6), 1704-1711. doi:10.1128/AEM.02118-06.
Iriti, M., Picchi, V., Rossoni, M., Gomarasca, S., Ludwig, N., Gargano, M., & Faoro, F. (2009). Chitosan antitranspirant activity is due to abscisic acid-dependent stomatal closure. Environmental and Experimental Botany, 66, 493-500.
Iwamoto, Y., Aino, M., Kanto, T., & Maekawa, K. (2003). Effective fungicides on Olpidium brassicae causing lettuce big-vein disease and optimum drenching conditions. Japanese Journal of Phytopathology, 69(4), 366-372.
Mishra, J., Tewari, S., Singh, S., & Kumar, N. (2015). Biopesticides: Where We Stand? En N. K. Arora (Ed.), Plant Microbes Symbiosis: Applied Facets (pp. 37-75). Nueva Delhi, India: Springer.
Mitter, N., Worrall, E. A., Robinson, K. E., Li, P., Jain, R.G., Taochy, C., … Xu, Z. P. (2017). Clay nanosheets for topical delivery of RNAi for sustained protection against plant viruses. Nature Plants, 3(2), 1-10. doi:10.1038/ nplants.2016.207.
Montesinos, E. (2003). Development, registration and commercialization of microbial pesticides for plant protection. International Microbiology, 6(4), 245-252. doi:10.1007/s10123-003-0144-x.
Moore, E. S. (1926). D’Herelle’s bacteriophage in relation to plant parasites. South African Journal of Science, 23, 306.
Moradi, H., Bahramnejad, B., Amini, J., Siosemardeh, A., & Haji-Allahverdipoor, K. (2012). Suppression of chickpea (Cicer arietinum L.) Fusariums wilt by Bacillus subtillis and Trichoderma harzianum. Plant Omics, 5(2), 68-74.
Moreno, C., Castillo, F., González, A., Bernal, D., Jaimes, Y., Chaparro, M., … Cotes, A. (2009). Biological and molecular characterization of the response of tomato plants treated with Trichoderma koningiopsis. Physiological and Molecular Plant Pathology, 74(2), 111-120. doi:10.1046/j.1365-2672.2000.00939.x.
Mulaw, T., Druzhinina, I., Kubicek, C., & Atanasova, L. (2013). Novel endophytic Trichoderma spp. isolated from healthy Coffea arabica roots are capable of controlling coffee tracheomycosis. Diversity, 5(4), 750-766. doi:10.3390/d5040750.
Namdeo, A. (2007). Plant cell elicitation for production of secondary metabolites: A review. Pharmacognosy Review, 1(1), 69-79.
Napoli, C., Lemieux, C., & Jorgensen, R. (1990). Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans. The Plant Cell, 2, 279-289. Recuperado de http://www. plantcell.org/content/plantcell/2/4/279.full.pdf
Neilands, J. (1995). Siderophores: structure and function of microbial iron transport compounds. Journal of Biological Chemistry, 270, 26723-26726. doi:10.1074/ jbc.270.45.26723.
Ngo, H., Tschudi, C., Gull, K., & Ullu, E. (1998). Double-stranded rna induces mRNA degradation in Trypanosoma brucei. Proceedings of the National Academy of Sciences, 95(25), 14687-14692.
Nielsen, P., & Sørensen, J. (1997). Multi-target and mediumindependent fungal antagonism by hydrolytic enzymes in Paenibacillus polymyxa and Bacillus pumilus strains from barley rhizosphere. FEMS Microbiology Ecology, 22(3), 183-192. doi:10.1111/j.1574-6941.1997.tb00370.x.
Nishizawa, Y., Kawakami, A., Hibi, T., He, D.-Y., Shibuya, N., & Minami, E. (1999). Regulation of the chitinase gene expression in suspension-cultured rice cells by N-acetylchitooligosaccharides: differences in the signal transduction pathways leading to the activation of elicitor-responsive genes. Plant Molecular Biology, 39(5), 907-914. doi:10.1023/A:1006161802334.
Nojiri, H., Sugimori, M., Yamane, H., Nishimura, Y., Yamada, A., Shibuya, N., … Omori, T. (1996). Involvement of jasmonic acid in elicitor-induced phytoalexin production in suspension-cultured rice cells. Plant Physiology, 110, 387-392. doi:10.1104/pp.110.2.387.
Nongmaithem, N., Roy, A., & Bhattacharya, P. M. (2016). Screening of Trichoderma isolates for their potential of biosorption of nickel and cadmium. Brazilian Journal of Microbiology, 47(2), 305-313. doi:10.1016/j. bjm.2016.01.008.
Nowara, D., Gay, A., Lacomme, C., Shaw, J., Ridout, C., Douchkov, D., … Schweizer, P. (2010). higs: hostinduced gene silencing in the obligate biotrophic fungal pathogen Blumeria graminis. The Plant Cell, 22(9), 3130- 3141. Recuperado de http://www.plantcell.org/content/ plantcell/22/9/3130.full.pdf.
Nunes, C. C., & Dean, R. A. (2012). Host-induced gene silencing: a tool for understanding fungal host interaction and for developing novel disease control strategies. Molecular Plant Pathology, 13(5), 519-529. doi:10.1111/ j.1364-3703.2011.00766.x.
O'Sullivan, M., Stephens, P. M., & O'Gara, F. (1991). Extracellular protease production by fluorescent Pseudomonas spp. and the colonization of sugarbeet roots and soil. Soil Biology & Biochemistry, 23(7), 623-627. doi:10.1016/0038-0717(91)90074-T.
Ochoa, J. M., & Cotes, A. M. (1998). Evaluación de la actividad biocontroladora de Pseudomonas fluorescens, Streptomyces coelicolor y Trichoderma hamatum mediante su actividad individual y combinada para el control de Fusarium oxysporum f. sp. dianthi. Fitopatología Colombiana, 22, 88- 93.
Ofek, M., Hadar, Y. & Minz, D. (2012). Ecology of root colonizing Massilia (Oxalobacteraceae). Plos One, 7(7): e40117. doi:10.1371/journal.pone.0040117.
Okabe, N., & Goto, M. (1963). Bacteriophages of Plant Pathogens. Annual Review of Phytopathology, 1, 397-418. doi:10.1146/annurev.py.01.090163.002145
Omnilytics. (2018). Changing the way the world treats bacterial disease. Recuperado de http://www.omnilytics.com/ agriculture/.
Ongena, M., Jourdan, E., Adam, A., Paquot, M., Brans, A., Joris, B., … Thonart, P. (2007). Surfactin and fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants. Environmental Microbiology, 9(4), 1084-1090. doi:10.1111/j.1462- 2920.2006.01202.x.
Pal-Bhadra, M., Bhadra, U., & Birchler, J. A. (1997). Cosuppression in Drosophila: Gene silencing of alcohol dehydrogenase by white-adh transgenes is polycomb dependent. Cell, 90(3), 479-490.
Panwar, V., McCallum, B., Jordan, M., Loewen, M., Fobert, P., McCartney, C., Bakkeren, G. (2016). rna silencing approaches for identifying pathogenicity and virulence elements towards engineering crop resistance to plant pathogenic fungi. CAB Reviews, 11(027), 1-13. doi:10.1079/PAVSNNR201611027.
Pietrzak, U., & McPhail, D. C. (2004). Copper accumulation, distribution and fractionation in vineyard soils of Victoria, Australia. Geoderma, 122(2-4), 151-166. doi:10.1016/j. geoderma.2004.01.005.
Pliego, C., Ramos, C., De Vicente, A., & Cazorla, F. M. (2011). Screening for candidate bacterial biocontrol agents against soilborne fungal plant pathogens. Plant Soil, 340, 505-520. doi:10.1007/s11104-010-0615-8.
Povero, G., Loreti, E., Pucciariello, C., Santaniello, A., Di Tommaso, D., Di Tommaso, G., ... Perata, P. (2011). Transcript profiling of chitosan-treated Arabidopsis seedlings. Journal of Plant Research, 124(5), 619-629. doi:10.1007/s10265-010-0399-1.
Prakash Verma, J., Yadav, J., Tiwari, K., & Jaiswal, D. (2013). Evaluation of plant growth promoting activities of microbial strains and their effect on growth and yield of chickpea (Cicer arietinum L.) in India. Soil Biology and Biochemistry, 70, 33-37. doi:10.1016/j. soilbio.2013.12.001.
Qian, J., Li, D., Zhan, G., Zhang, L., Su, W., & Gao, P. (2012). Simultaneous biodegradation of Ni–citrate complexes and removal of nickel from solutions by Pseudomonas alcaliphila. Bioresource Technology, 116, 66- 73. doi:10.1016/j.biortech.2012.04.017.
Raaijmakers, J. M., De Bruijn, I., Nybroe, O., & Ongena, M. (2010). Natural functions of lipopeptides from Bacillus and Pseudomonas: more than surfactants and antibiotics. FEMS Microbiology Reviews, 34(6), 1037-1062. doi:10.1111/j.1574-6976.2010.00221.x.
Rabea, E. I., Badawy, M. E. T., Stevens, C. V., Smagghe, G., & Steurbaut, W. (2003). Chitosan as antimicrobial agent: Applications and mode of action. Biomacromolecules, 4(6), 1457-1465. doi:10.1021/bm034130m.
Rajasekhar, L., Satish, K., Sain, & Divya, J. (2016). Evaluation of microbial consortium for plant health management of pigeonpea. International Journal of Plant, Animal and Environmental Sciences, 6(2), 107-113. Recuperado de http://www.ijpaes.com/admin/php/uploads/958_ pdf.pdf.
Raupach, G. S., & Kloepper, J. W. (1998). Mixtures of plant growth-promoting rhizobacteria enhance biological control of multiple cucumber pathogens. Phytopathology, 88(11), 1158-1164. doi:10.1094/PHYTO.1998.88.11. 1158.
Raupach, G. S., Liu, L., Murphy, J. F., Tuzun, S., & Kloepper, J. W. (1996). Induced systemic resistance in cucumber and tomato against Cucumber mosaic virus using plant growth-promoting rhizobacteria (pgpr). Plant Disease, 80, 891-894. Recuperado de https://www. apsnet.org/publications/PlantDisease/BackIssues/ Documents/1996Articles/PlantDisease80n08_ 891.PDF.
Raymundo Raymundo, E., Nikolskii Gavrilov, I., Duwig, C., Prado Pano, B. L., Hidalgo Moreno, C. I., Gavi Reyes, F., & Figueroa Sandoval, B. (2009). Transporte de atrazina en un andosol y un vertisol de México. Interciencia, 34(5), 330-337. Recuperado de http://www.redalyc.org/ articulo.oa?id=33911403005.
Ren, Y.-Y., & West, C.A. (1992). Elicitation of diterpene biosynthesis in rice (Oryza sativa L.) by chitin. Plant Physiology, 99, 1169-1178. doi: doi:10.1104/ pp.99.3.1169.
Renwick, A., Campbell, R., & Coe, S. (1991). Assessment of in vivo screening systems for potential biocontrol agents of Gaeumannomyces graminis. Plant Pathology, 40(4), 524- 532. doi:10.1111/j.1365-3059.1991.tb02415.x
Roberts, D. P., & Lohrke, S. M. (2003). United States Department of Agriculture-Agricultural Research Service research programs in biological control of plant diseases. Pest Management Science, 59(6-7), 654-664. doi:10.1002/ ps.613.
Roby, D., Gadelle, A., & Toppan, A. (1987). Chitin oligosaccharides as elicitors of chitinase activity in melon plants. Biochemical and Biophysical Research Communications, 143(3), 885-892. doi:10.1016/0006- 291X(87)90332-9.
Romano, N., & Macino, G. (1992). Quelling: transient inactivation of gene expression in Neurospora crassa by transformation with homologous sequences. Molecular Microbiology, 6(22), 3343-3353. doi:10.1111/j.1365-2 958.1992.tb02202.x.
Rose, M., Patti, A., Little, K., Brown, A. L., Jackson, W. R., & Cavagnaro, T. R. (2014). A meta-analysis and review of plant-growth response to humic substances: Practical implications for agriculture. En D. L. Sparks (Ed.), Advances in Agronomy (1. a ed., vol. 124, pp. 37-89). EE. UU.: Elsevier. doi:10.1016/B978-0-12-800138-7.00 002-4.
Rothstein, S. J., DiMaio, J., Strand, M., & Rice, D. (1987). Stable and heritable inhibition of the expression of nopaline synthase in tobacco expressing antisense rna. Proceedings of the National Academy of Sciences, 84(23), 8439-8443.
Rudresh, D., Shivaprakash, M., & Prasad, R. (2005). Effect of combined application of Rhizobium, phosphate solubilizing bacterium and Trichoderma spp. on growth, nutrient uptake and yield of chickpea (Ciceraritenium L.). Applied Soil Ecology, 28(2), 139-146. doi:10.1016/j. apsoil.2004.07.005.
Santos, A., Villamizar, L., García, M., Beltrán, C., & Cotes, A. M. (2016). Biocontrol of Rhizoctonia solani and Tecia solanivora in potato seed-tuber treated with a powder formulation based on Trichoderma koningiopsis and baculovirus. IOBC-WPRS Bulletin, 115, 47-53.
Senthilraja, G., Anand, T., Durairaj, C., Kennedy, J., Suresh, S., Raguchander, T., & Samiyappan, R. (2010). A new microbial consortia containing entomopathogenic fungus, Beauveria bassiana and plant growth promoting rhizobacteria, Pseudomonas fluorescens for simultaneous management of leafminers and collar rot disease in groundnut. Biocontrol Science and Technology, 20(5), 449- 464. doi:10.1080/09583150903576949.
Serfling, A., Wirsel, S. G. R., Lind, V., & Deising, H. B. (2007). performance of the biocontrol fungus Piriformospora indica on wheat under greenhouse and field conditions. Phytopathology, 97, 523-531. doi:10.1094/ PHYTO-97-4-0523.
Shehata, H. R., Lyons, E. M., Jordan, K. S., & Raizada, M. N. (2016). Relevance of in vitro agar based screens to characterize the anti-fungal activities of bacterial endophyte communities. BMC Microbiology, 16, 8. doi:10.1186/s12866-016-0623-9.
Sheng, X., Chen, X., & He, L. (2008). Characteristics of an endophytic pyrene-degrading bacterium of Enterobacter sp. 12J1 from Allium macrostemon Bunge. International Biodeterioration and Biodegradation, 62(2), 88-95. doi:10.1016/j.ibiod.2007.12.003.
Shoresh, M., Harman, G. E. & Mastouri, F. (2010). Induced systemic resistance and plant responses to fungal biocontrol agents. Annual Review of Phytopathology, 48, 21-43. doi:10.1146/annurev-phyto-073009-114450.
Sindhu, S., & Dadarwal, K. (2001). Chitinolytic and cellulolytic Pseudomonas sp. antagonistic to fungal pathogens enhances nodulation by Mesorhizobium sp. Cicer in chickpea. Microbiological Research, 156(4), 353- 358. doi:10.1078/0944-5013-00120.
Singh, A., Sarma, B. K., Upadhyay, R. S., & Singh, H. B. (2013). Compatible rhizosphere microbes mediated alleviation of biotic stress in chickpea through enhanced antioxidant and phenylpropanoid activities. Microbiological Research, 168(1), 33-40. doi:10.1016/j.micres.2012.07.001.
Singh, D., Chaudhary, S., Kumar, R., Sirohi, P., Mehla, K., Sirohi, A., … Singh, P. K. (2016). rna interference technology applications and limitations. En I. Y. Abdurakhmonov (Ed.), rna Interference, InTech. Recuperado de https://www.intechopen.com/books/rnainterference/rna-interference-technology-applicationsand-limitations. doi:10.5772/60631.
Skopp, J., Jawson, M., & Doran, J. (1990). Steady-state aerobic microbial activity as a function of soil water content. Soil Science Society of America Journal, 54(6), 1619-1625. doi:10.2136/sssaj1990.03615995005400060018x.
Srinivasan, K., & Mathivanan, N. (2011). Plant growth promoting microbial consortia mediated classical biocontrol of sunflower necrosis virus disease. Journal of Biopesticides, 4(1), 65-72. Recuperado de http://www.jbiopest.com/ users/lw8/efiles/vol_4_1_241.pdf.
Stein, E., Molitor, A., Kogel, K.-H., & Waller, F. (2008). Systemic resistance in Arabidopsis conferred by the mycorrhizal fungus Piriformospora indica requires jasmonic acid signaling and the cytoplasmic function of NPR1. Plant and Cell Physiology, 49(11), 1747-1751. doi:10.1093/pcp/ pcn147.
Stockwell, V., Johnson, K., Sugar, D., & Loper, J. (2011). Mechanistically compatible mixtures of bacterial antagonists improve biological control of fire blight of pear. Phytopathology, 101(1), 113-123. doi:10.1094/ PHYTO-03-10-0098
Summers, W. C. (2005). Bacteriophage research: early history. En E. Kutter & A. Sulakvelidze (Eds.), Bacteriophages: Biology and applications (pp. 5-27). Boca Ratón, EE. UU.: CRC Press.
Szittya, G., & Burgyán, J. (2013). Rna interference-mediated intrinsic antiviral immunity in plants. En B. R. Cullen (Ed.), Intrinsic immunity (pp. 153-181). Berlín, Alemania: Springer
Takai, R., Hasegawa, K., Kaku, H., Shibuya, N., & Minami, E. (2001). Isolation and analysis of expression mechanisms of a rice gene, EL5, which shows structural similarity to atl family from Arabidopsis, in response to N-acetylchitooligosaccharide elicitor. Plant Science, 160(4), 577-583. doi:10.1016/S0168-9452(00)00390-3.
Tang, J., Liu, Y., Li, H., Wang, L., Huang, K., & Chen, Z. (2015). Combining an antagonistic yeast with harpin treatment to control postharvest decay of kiwifruit. Biological Control, 89, 61-67. doi:10.1016/j. biocontrol.2015.04.025.
Tang, K., Zhang, Y., Yu, M., Shi, X., Coenye, T., Bossier, P., & Zhang, X.-H. (2013). Evaluation of a new highthroughput method for identifying quorum quenching bacteria. Scientific Reports, 3, 2935. doi:10.1038/ srep02935.
Tenllado, F., Llave, C., & Dı́az-Ruı́z, J. R. (2004). rna interference as a new biotechnological tool for the control of virus diseases in plants. Virus Research, 102(1), 85-96. doi:10.1016/j.virusres.2004.01.019.
Tharanathan, R. N., & Kittur, F. S. (2003). Chitin—The undisputed biomolecule of great potential. Critical Reviews in Food Science and Nutri
Thayer, P. L., & Stall, R. E. (1961). A survey of Xanthomonas vesicatoria resistance to streptomycin. Proceedings of the Florida State Horticultural Society, 1523, 163-165. Recuperado de http://fshs.org/proceedings-o/1962- vol-75/163-165%20(THAYER).pdf.
Thomas, R. (1935). A bacteriophage in relation to Stewart’s disease of corn. Phytopathology, 25, 371-372.
Tian, H., Riggs, R. D., & Crippen, D. L. (2000). Control of soybean cyst nematode by chitinolytic bacteria with chitin substrate. Journal of Nematology, 32(4), 370-376. Recuperado de https://www.ncbi.nlm.nih.gov/pmc/ articles/PMC2620463/pdf/370.pdf.
Twort, F. W. (1915). An investigation on the nature of ultra-microscopic viruses. The Lancet, 186, 1241-1243. doi:10.1016/S0140-6736(01)20383-3.
Van Buren, A. M., Andre, C., & Ishimaru, C. (1993). Biological control of the bacterial ring rot pathogen by endophytic bacteria isolated from potato. Phytopathology, 83, 140-146.
Van der Krol, A. R., Lenting, P. E., Veenstra, J., van der Meer, I. M., Koes, R. E., Gerats, A. G., … Stuitje, A. R. (1988). An anti-sense chalcone synthase gene in transgenic plants inhibits flower pigmentation. Nature, 333, 866-869. doi:10.1038/333866a0.
Van der Krol, A. R., Mur, L. A., Beld, M., Mol, J., & Stuitje, A. R. (1990). Flavonoid genes in petunia: addition of a limited number of gene copies may lead to a suppression of gene expression. The Plant Cell, 2(4), 291-299. Recuperado de https://www.ncbi.nlm.nih.gov/pmc/ articles/PMC159886/pdf/020291.pdf.
Vega, F. E., Goettel, M. S., Blackwell, M., Chandler, D., Jackson, M. A., Keller, S., … Roy, H. E. (2009). Fungal entomopathogens: new insights on their ecology. Fungal Ecology, 2(4), 149-159. doi:10.1016/j. funeco.2009.05.001.
Vinale, F., Marra, R., Scala, F., Ghisalberti, E., Lorito, M., & Sivasithamparam, K. (2006). Major secondary metabolites produced by two commercial Trichoderma strains active against different phytopathogens. Letters in Applied Microbiology, 43(2), 143-148. doi:10.1111/ j.1472-765X.2006.01939.x.
Vinale, F., Sivasithamparam, K., Ghisalberti, E.L., Marra, R., Barbetti, M.J., Li, H., ... Lorito, M. (2008). A novel role for Trichoderma secondary metabolites in the interactions with plants. Physiological and Molecular Plant Pathology, 72(1-3), 80-86. doi:10.1016/j.pmpp.2008.05.005.
Vorholt, J. A. (2012). Microbial life in the phyllosphere.Nature Reviews Microbiology, 10(12), 828-840. doi:10.1038/ nrmicro2910.
Vranova, V., Rejsek, K., Skene, K. R., & Formanek, P. (2011). Non-protein amino acids: plant, soil and ecosystem interactions. Plant Soil, 342(1), 31-48. doi:10.1007/ s11104-010-0673-y
Walker-Simmons, M., & Ryan, C. A. (1984). Proteinase inhibitor synthesis in tomato leaves: Induction by chitosan oligomers and chemically modified chitosan and chitin. Plant Physiology, 76(3), 787-790. Recuperado de https:// www.ncbi.nlm.nih.gov/pmc/articles/PMC1064374/ pdf/plntphys00581-0243.pdf
Wally, O. S. D., Critchley, A. T., Hiltz, D., Craigie, J. S., Han, X., Zaharia, L. I., … Prithiviraj, B. (2013a). Erratum to: regulation of phytohormone biosynthesis and accumulation in Arabidopsis following treatment with commercial extract from the marine macroalga Ascophyllum nodosum. Journal of Plant Growth Regulation, 32(2), 340-341. doi:10.1007/s00344-012-9311-7.
Wally, O. S. D., Critchley, A.T., Hiltz, D., Craigie, J.S., Han, X., Zaharia, L. I., … Prithiviraj, B. (2013b). Regulation of phytohormone biosynthesis and accumulation in Arabidopsis following treatment with commercial extract from the marine macroalga Ascophyllum nodosum. Journal of Plant Growth Regulation, 32(2), 324-339. doi:10.1007/ s00344-012-9301-9
Wang, M., & Jin, H. (2017). Spray-induced gene silencing: a powerful innovative strategy for crop protection. Trends in Microbiology, 25(1), 4-6. doi:10.1016/j.tim.2016.11.011.
Wang, M., Thomas, N., & Jin, H. (2017). Cross-kingdom rna trafficking and environmental RNAi for powerful innovative pre-and post-harvest plant protection. Current Opinion in Plant Biology, 38, 133-141. doi:10.1016/j. pbi.2017.05.003.
Wang, M., Weiberg, A., Lin, F.-M., Thomma, B. P., Huang, H.-D., & Jin, H. (2016). Bidirectional cross-kingdom RNAi and fungal uptake of external RNAs confer plant protection. Nature Plants, 2, 1-10. doi:10.1038/ nplants.2016.151.
Weller, D. M., Raaijmakers, J. M., Gardener, B. B., & Thomashow, L. S. (2002). Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annual Review of Phytopathology, 40, 309-348. doi:10.1146/annurev.phyto.40.030402.110010.
Whitman, W. B., Coleman, D. C., & Wiebe, W. J. (1998). Prokaryotes: The unseen majority. Proceedings of the National Academy of Sciences, 95(12), 6578-6583.
Wilson, D. (1995). Endophyte: The evolution of a term, and clarification of its use and definition. Oikos, 73(2), 274- 276. doi:10.2307/3545919.
Winterowd, J., & Sandford, P. (1995). Chitin and chitosan. En A. M. Stephen (Ed.), Food polysaccharides and their applications (pp. 441-462) Nueva York, EE. UU.: Marcel Dekker.
Yamada, A., Shibuya, N., Kodama, O., & Akatsuka, T. (1993). Induction of phytoalexin formation in suspensioncultured rice cells by N-Acetyl-chitooligosaccharides. Bioscience, Biotechnology, and Biochemistry, 57(1), 405- 409. doi:10.1271/bbb.57.405.
Yang, J., Kloepper, J. W., & Ryu, C.-M. (2009). Rhizosphere bacteria help plants tolerate abiotic stress. Trends in Plant Science, 14(4), 1-4. doi:10.1016/j.tplants.2008.10.004
Yin, H., Zhao, X., & Du, Y. (2010). Oligochitosan: A plant diseases vaccine—A review. Carbohydrate Polymers, 82(1), 1-8. doi:10.1016/j.carbpol.2010.03.066.
Yu, X., Ai, C., Xin, L., & Zhou, G. (2011). The siderophoreproducing bacterium, Bacillus subtilis CAS15, has a biocontrol effect on Fusarium wilt and promotes the growth of pepper. European Journal of Soil Biology, 47, 138-145. doi:10.1016/j.ejsobi.2010.11.001.
Zhang, J., Bruton, B., Howell, C., & Miller, M. (1999). Potential of Trichoderma virens for biocontrol of root rot and vine decline in Cucumis melo L. caused by Monoporascus cannonballus. Subtropical Plant Science, 51, 29-37.
Zhu, Z., Zhang, B., Chen, B., Cai, Q., & Lin, W. (2016). Biosurfactant production by marine-originated bacteria Bacillus subtilis and its application for crude oil removal. Water, Air, and Soil Pollution, 227(9), 328. doi:10.1007/ s11270-016-3012-y
dc.relation.ispartofbook.spa.fl_str_mv 33519 ; Control biológico de fitopatógenos, insectos y ácaros: Aplicaciones y perspectivas V. 2.
dc.rights.*.fl_str_mv Attribution-NonCommercial-ShareAlike 4.0 International
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
rights_invalid_str_mv Attribution-NonCommercial-ShareAlike 4.0 International
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://purl.org/coar/access_right/c_abf2
dc.format.mimetype.none.fl_str_mv application/pdf
dc.coverage.country.spa.fl_str_mv Colombia
dc.publisher.spa.fl_str_mv ‎‎Corporación colombiana de investigación agropecuaria - AGROSAVIA
dc.publisher.place.spa.fl_str_mv Bogotá (Colombia)
institution Agrosavia
bitstream.url.fl_str_mv https://repository.agrosavia.co/bitstream/20.500.12324/34158/2/license.txt
https://repository.agrosavia.co/bitstream/20.500.12324/34158/3/Ver_Documento_34158.png
https://repository.agrosavia.co/bitstream/20.500.12324/34158/6/Ver_Documento_34158.pdf.jpg
https://repository.agrosavia.co/bitstream/20.500.12324/34158/5/Ver_Documento_34158.pdf
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
6e71c7465dbbcb8717bc702b3c859b59
7a4d0cef247d6b87bd25c79c2bd9a181
4d459e63597509baaae8ae7f28caad05
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Agrosavia - Corporación colombiana de investigación agropecuaria
repository.mail.fl_str_mv bac@agrosavia.co
_version_ 1814380541675307008
spelling Cotes Prado, Alba Marina8e81a379-2909-4b7e-a52b-afcee7b4894f600Lewis Mosher, Stephena4562d9e-7660-47f4-9642-247d8bae8e79600Barrera Cubillos, Gloria Patricia9c50d905-c1fb-407e-a253-d964bef55ddd600Kobayashi, Sadao18e040bc-e2c6-455b-870e-811213ffa373600Elad, Yigalf9c63e8f-be44-4d6f-88dc-1c9bf544f84a6002018-12-05T15:24:00Z2018-12-05T15:24:00Z2018978-958-740-254-4 (e-book)http://hdl.handle.net/20.500.12324/34158reponame:Biblioteca Digital Agropecuaria de Colombiarepourl:https://repository.agrosavia.coinstname:Corporación colombiana de investigación agropecuaria AGROSAVIALas tecnologías biológicas, incluyendo el uso de microorganismos biocontroladores, están adquiriendo una importancia primordial en la producción agrícola. Sin embargo, la mayoría de los enfoques para el control biológico de enfermedades de las plantas ha tenido un alcance limitado. Un ejemplo de esto lo representa el hecho de que, en las últimas décadas, en general, se han utilizado agentes de biocontrol individuales para controlar un solo patógeno. Esto puede explicar parcialmente la respuesta inconsistente que se observa frecuentemente, ya que dichos agentes individuales pueden ser inactivos en varios de los ambientes en los que se aplican o contra diferentes patógenos que atacan a la planta huésped. Lograr un control de amplio espectro de patógenos por los antagonistas que se apliquen individualmente o en consorcio sigue siendo, en gran medida, un objetivo no cumplido para la explotación eficaz del control biológico, así como ampliar los usos de los agentes de control biológico para lograr efectos complementarios, tales como tolerancia a factores abióticos limitantes como la sequía y la salinidad, biofertilización y biorremediación, entre otros. Además, en general, se han usado los mismos microorganismos biocontroladores y los descubrimientos de nuevos agentes de control biológico son muy limitados. Sin embargo, estas investigaciones requieren de métodos de tamizado o screening de alta eficiencia que permitan evaluar de forma rápida muchos microorganismos. De otra parte, existen múltiples patógenos para los cuales no se han desarrollado alternativas de control biológico efectivas, como es el caso de muchas bacterias fitopatógenas y de virus, donde existe un potencial inexplorado. Así mismo, el desarrollo de nuevos componentes de manejo que puedan integrarse a los agentes de control biológico para mejorar la respuesta de control tiene aún mucho espacio de investigación.application/pdfspa‎‎Corporación colombiana de investigación agropecuaria - AGROSAVIABogotá (Colombia)Attribution-NonCommercial-ShareAlike 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-sa/4.0/http://purl.org/coar/access_right/c_abf2Nuevas estrategias para el control biológico de fitopatógenosNovel strategies for plant pathogens biological controlEnfermedades de las plantas - H20BioestimulantesBioplaguicidasTratamiento biológico contaminantesNepovirusTransversalTécnicoProfesionalInvestigadorCientíficobook partCapítulohttp://purl.org/coar/resource_type/c_3248info:eu-repo/semantics/bookParthttps://purl.org/redcol/resource_type/CAP_LIBhttp://purl.org/coar/version/c_970fb48d4fbd8a85Colombia878921Abdelfattah, A., Wisniewski, M., Droby, S., & Schena, L. (2016). Spatial and compositional variation in the fungal communities of organic and conventionally grown apple fruit at the consumer point-of-purchase. Horticulture Research, 3, 16047. doi:10.1038/hortres.2016.47.Abo-Amer, A. (2011). Biodegradation of diazinon by Serratia marcescens DI101 and its use in bioremediation of contaminated environment. Journal of Microbiology and Biotechnology, 21(1), 71-80.Adams, P., De-Leij, F. A. A. M., & Lynch, J. M. (2007). Trichoderma harzianum rifai 1295-22 mediates growth promotion of crack willow (Salix fragilis) saplings in both clean and metal-contaminated soil. Microbial Ecology, 54(2), 306-313.Agler, M. T., Ruhe, J., Kroll, S., Morhenn, C., Kim, S.- T., Weigel, D., & Kemen, E. M. (2016). Microbial hub taxa link host and abiotic factors to plant microbiome variation. Plos Biology, 14(1): e1002352. doi:10.1371/ journal.pbio.1002352.Aino, M., Iwamoto, Y., Hashimoto, Y., & Ishikawa, K. (2007). Effect of the endophytic bacteria in lettuce (Lactuca sativa) roots suppressing infection of Olpidium virulentus viral vector for lettuce big-vein virus and possibility of the control of lettuce big-vein diseases by the endophytic bacteria. Kasai, Japón: Technology Center for Agriculture, Forestry and FisheriesAlabouvette, C., & Cordier, C. (2011). Risks of microbial biocontrol agents and regulation: are they in balance? En R. U. Ehlers (Eds.). Regulation of biological control agents (pp. 157-173). Dordrecht, Holanda: Springer.Algam, S. A., Xie, G., Li, B., Yu, S., Su, T., & Larsen, J. (2010). Effects of Paenibacillus strains and chitosan on plant growth promotion and control of Ralstonia wilt in tomato. Journal of Plant Pathology, 92(3), 593-600.Altomare, C., Norvell, W. A., Björkman, T., & Harman, G. E. (1999). Solubilization of phosphates and micronutrients by the plant-growth-promoting and biocontrol fungus Trichoderma harzianum rifai 1295-22. Applied and Environmental Microbiology, 65(7), 2926-2933.Andreoni, V., Colombo, M., Colombo, A., Vecchio, A., & Finoli, C. (2003). Cadmium and zinc removal by growing cells of Pseudomonas putida strain B14 isolated from a metal-impacted soil. Annals of Microbiology, 53(2), 135-148.Arshad, M., & Frankenberger Jr., W. T. (1993). Microbial production of plant growth regulators. En F. B. Metting Jr. (Ed.), Soil microbial ecology: applications in agricultural and environmental management (pp. 307-347). Nueva York, EE. UU.: Marcell Dekker Inc.Badawy, M. E. I., & Rabea, E. I. (2011). A biopolymer chitosan and its derivatives as promising antimicrobial agents against plant pathogens and their applications in crop protection. International Journal of Carbohydrate Chemistry, 2011, 1-29. doi:10.1155/2011/460381.Badri, D. V., & Vivanco, J. M. (2009). Regulation and function of root exudates. Plant, Cell & Environment, 32(6), 666- 681. doi:10.1111/j.1365-3040.2008.01926.x.Baider, A., & Cohen, Y. (2003). Synergistic interaction between baba and mancozeb in controlling Phytophthora infestans in potato and tomato and Pseudoperonospora cubensis in cucumber. Phytoparasitica, 31(4), 399-409. doi:10.1007/BF02979812Barber, M. S., Bertram, R. E., & Ride, J. P. (1989). Chitin oligosaccharides elicit lignification in wounded wheat leaves. Physiological and Molecular Plant Pathology, 34(1), 3-12. doi:10.1016/0885-5765(89)90012-X.Behlau, F., Canteros, B. I., Minsavage, G. V., Jones, J. B., & Graham, J. H. (2011). Molecular characterization of copper resistance genes from Xanthomonas citri subsp. citri and Xanthomonas alfalfae subsp. citrumelonis. Applied and Environmental Microbiology, 77(12), 4089-4096. doi:10.1128/AEM.03043-10.Bender, C. L., & Cooksey, D. A. (1986). Indigenous plasmids in Pseudomonas syringae pv. tomato: conjugative transfer and role in copper resistance. Journal of Bacteriology, 165(2), 534-541.eneduzi, A., Ambrosini, A., & Passaglia, L. M. (2012). Plant growth-promoting rhizobacteria (pgpr): their potential as antagonists and biocontrol agents. Genetics and Molecular Biology, 35(4), 1044-1051.Benhamou, N., Kloepper, J. W., & Tuzun, S. (1998). Induction of resistance against Fusarium wilt of tomato by combination of chitosan with an endophytic bacterial strain: ultrastructure and cytochemistry of the host response. Planta, 204(2), 153-168. doi:10.1007/ s004250050242.Berg, G., Eberl, L., & Hartmann, A. (2005). The rhizosphere as a reservoir for opportunistic human pathogenic bacteria. Environmental Microbiology, 7(11), 1673-1685. doi:10.1111/j.1462-2920.2005.00891.x.Berg, G., Grube, M., Schloter, M., & Smalla, K. (2014). Unraveling the plant microbiome: looking back and future perspectives. Frontiers in Microbiology, 5, 148. doi:10.3389/fmicb.2014.00148.Berg, G., Rybakova, D., Grube, M., & Koberl, M. (2016). The plant microbiome explored: implications for experimental botany. Journal of Experimental Botany, 67(4), 995-1002. doi:10.1093/jxb/erv466.Bhattacharyya, P., & Jha, D. (2012). Plant growth-promoting rhizobacteria (pgpr): emergence in agriculture. World Journal of Microbiology and Biotechnology, 28(4), 1327- 1350. doi:10.1007/s11274-011-0979-9.Bosmans, L., De Bruijn, I., Gerards, S., Moerkens, R., Van Looveren, L., Wittemans, … Lievens, B. (2017). Potential for biocontrol of hairy root disease by a Paenibacillus clade. Frontiers in Microbiology 8, 1-11. doi:10.3389/ fmicb.2017.00447.Bulgarelli, D., Rott, M., Schlaeppi, K., Ver Loren van Themaat, E., Ahmadinejad, N., Assenza, F., ... SchulzeLefert, P. (2012). Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature, 488(7409), 91-95. doi:10.1038/nature11336.Cai, F., Yu, G., Wang, P., Wei, Z., Fu, L., Shen, Q., Chen, W. (2013). Harzianolide, a novel plant growth regulator and systemic resistance elicitor from Trichoderma harzianum. Plant Physiology and Biochemistry, 73, 106- 113. doi:10.1016/j.plaphy.2013.08.011.Calvo, P., Nelson, L., & Kloepper, J.W. (2014). Agricultural uses of plant biostimulants. Plant Soil, 383(1-2), 3-41. doi:10.1007/s11104-014-2131-8Campbell, R. (1991). Biological control of microbial plant pathogens. Nueva York, EE. UU.: Cambridge University Press.Castillo, D., & Sword, G. A. (2015). The endophytic fungal entomopathogens Beauveria bassiana and Purpureocillium lilacinum enhance the growth of cultivated cotton (Gossypium hirsutum) and negatively affect survival of the cotton bollworm (Helicoverpa zea). Biological Control, 89, 53-60.Chakroun, H., Mechichi, T., Martinez, M. J., Dhouib, A., & Sayadi, S. (2010). Purification and characterization of a novel laccase from the ascomycete Trichoderma atroviride: application on bioremediation of phenolic compounds. Process Biochemistry, 45(4), 507-513. doi:10.1016/j. procbio.2009.11.009.Chen, F., Gao, Y., Chen, X., Yu, Z., & Li, X. (2013). Quorum quenching enzymes and their application in degrading signal molecules to block Quorum sensing-dependent infection. International Journal of Molecular Sciences, 14(9), 17477-17500. doi:10.3390/ijms140917477.Chen, S.-K., Edwards, C. A., & Subler, S. (2001). Effects of the fungicides benomyl, captan and chlorothalonil on soil microbial activity and nitrogen dynamics in laboratory incubations. Soil Biology & Biochemistry, 33(14), 1971-1980.Chen, T. H., & Murata, N. (2011). Glycinebetaine protects plants against abiotic stress: mechanisms and biotechnological applications. Plant, Cell & Environment, 34(1), 1-20. doi:10.1111/j.1365-3040.2010.02232.x.Chowdhury, S. P., Uhl, J., Grosch, R., Alquéres, S., Pittroff, S., Dietel, K., … Hartmann, A. (2015). Cyclic lipopeptides of Bacillus amyloliquefaciens subsp. plantarum colonizing the lettuce rhizosphere enhance plant defense responses toward the bottom rot pathogen Rhizoctonia solani. Molecular Plant-Microbe Interactions, 28(9), 984-995. doi:10.1094/MPMI-03-15-0066-R.Civerolo, E., & Keil, H. (1969). Inhibition of bacterial spot of peach foliage by Xanthomonas pruni bacteriophage. Phytopathology, 59, 1966-1967.Cohen, E. (2001). Chitin synthesis and inhibition: a revisit. Pest Management Science, 57(10), 946-950. doi:10.1002/ ps.363.Colla, G., Rouphael, Y., Canaguier, R., Svecova, E., & Cardarelli, M. (2014). Biostimulant action of a plantderived protein hydrolysate produced through enzymatic hydrolysis. Frontiers in Plant Science, 5, 448. doi:10.3389/ fpls.2014.00448.Conrath, U., Domard, A., & Kauss, H. (1989). Chitosanelicited synthesis of callose and of coumarin derivatives in parsley cell suspension cultures. Plant Cell Reports, 8(3), 152-155. doi:10.1007/BF00716829.Cooksey, D. A. (1990). Genetics of bactericide resistance in plant pathogenic bacteria. Annual Review of Phytopathology, 28, 201-219. doi:10.1146/annurev. py.28.090190.001221.Cooksey, D. A. (1994). Molecular mechanisms of copper resistance and accumulation in bacteria. FEMS Microbiology Reviews, 14(4), 381-386.Coons, G. H., & Kotila, J. E. (1925). The transmissible lytic principle (bacteriophage) in relation to plant pathogens. Phytopathology, 15, 357-370.Köhle, H., Jeblick, W., Poten, F., Blaschek, W., & Kauss, H. (1985). Chitosan-Elicited Callose Synthesis in Soybean Cells as a Ca2+ -Dependent Process. Plant Physiology, 77(3), 544-551.Krishnamurthy, S. R., Janowski, A. B., Zhao, G., Barouch, D., & Wang, D. (2016). Hyperexpansion of rna bacteriophage diversity. Plos Biology, 14(3): e1002409. doi:10.1371/journal.pbio.1002409.Kuchitsu, K., Kosaka, H., Shiga, T., & Shibuya, N. (1995). epr evidence for generation of hydroxyl radical triggered by N-acetylchitooligosaccharide elicitor and a protein phosphatase inhibitor in suspension-cultured rice cells. Protoplasma, 188(1-2), 138-142. doi:10.1007/ BF01276805.Kusaba, M. (2004). rna interference in crop plants. Current Opinion in Biotechnology, 15(2), 139-143. doi:10.1016/j. copbio.2004.02.004.Lee, Y. A., Hendson, M., Panopoulos, N. J., & Schroth, M. N. (1994). Molecular cloning, chromosomal mapping, and sequence analysis of copper resistance genes from Xanthomonas campestris pv. juglandis: homology with small blue copper proteins and multicopper oxidase. Journal of Bacteriology, 176(1), 173-188.Li, R.-X., Cai, F., Pang, G., Shen, Q.-R., Li, R., & Chen, W. (2015). Solubilisation of phosphate and micronutrients by Trichoderma harzianum and its relationship with the promotion of tomato plant growth. Plos One, 10(6): e0130081. doi:10.1371/journal.pone.0130081.Lindow, S. E., & Brandl, M. T. (2003). Microbiology of the Phyllosphere. Applied and Environmental Microbiology, 69(4), 1875-1883. doi:10.1128/AEM.69.4.1875- 1883.2003.Lodewyckx, C., Vangronsveld, J., Porteous, F., Moore, E. R. B., Taghavi, S., Mezgeay, M., & der Lelie, D. v. (2002). Endophytic bacteria and their potential applications. Critical Reviews in Plant Science, 21(6), 583-606. doi:10.1080/0735-260291044377.Lugtenberg, B., & Kamilova, F. (2009). Plant-GrowthPromoting Rhizobacteria. Annual Review of Microbiology, 63, 541-556. doi:10.1146/annurev. micro.62.081307.162918.Lundberg, D. S., Lebeis, S. L., Paredes, S. H., Yourstone, S., Gehring, J., Malfatti, S., … Dangl, J. L. (2012). Defining the core Arabidopsis thaliana root microbiome. Nature, 488 (7409), 86-90. doi:10.1038/nature11237.Maiyappan, S., Amalraj, E., Santhosh, A., & Peter, A. (2010). Isolation, evaluation and formulation of selected microbial consortia for sustainable agriculture. Journal of Biofertilizers & Biopesticides, 2(2), 109. doi:10.4172/2155- 6202.1000109.Majumdar, R., Rajasekaran, K., & Cary, J. W. (2017). rna interference (RNAi) as a potential tool for control of mycotoxin contamination in crop plants: Concepts and considerations. Frontiers in Plant Science, 8, 200. doi:10.3389/fpls.2017.00200.Mallmann, W., & Hemstreet, C. (1924). Isolation of an inhibitory substance from plants. Agricultural Research, 28(6), 599-602. Recuperado de https://naldc.nal.usda. gov/download/IND43966880/PDF.Mao, Y.-B., Cai, W.-J., Wang, J.-W., Hong, G.-J., Tao, X.-Y., Wang, L.-J., … Chen, X.-Y. (2007). Silencing a cotton bollworm P450 monooxygenase gene by plant-mediated RNAi impairs larval tolerance of gossypol. Nature Biotechnology, 25(11), 1307-1313. doi:10.1038/nbt1352.Marques, M. P., Walshe, K., Doyle, S., Fernandes, P., & De Carvalho, C. C. (2012). Anchoring high-throughput screening methods to scale-up bioproduction of siderophores. Process Biochemistry, 47(3), 416-421. h doi:10.1016/j.procbio.2011.11.020.Massart, S., Martinez-Medina, M., & Jijakli, M. H. (2015). Biological control in the microbiome era: Challenges and opportunities. Biological Control, 89, 98-108. doi:10.1016/j.biocontrol.2015.06.003.Matsubara, M., Lynch, J., & De Leij, F. (2006). A simple screening procedure for selecting fungi with potential for use in the bioremediation of contaminated land. Enzyme and Microbial Technology, 39(7), 1365-1372. doi:10.1016/j.enzmictec.2005.04.025.McManus, P. S., Stockwell, V. O., Sundin, G. W. & Jones, A. L. (2002). Antibiotic use in plant agriculture. Annual Review of Phytopathology, 40, 443-465. doi:10.1146/ annurev.phyto.40.120301.093927.Meena, A. K., Verma, L., & Kumhar, B. L. (2017). RNAi, it’s mechanism and potential use in crop improvement: A review. International Journal of Pure & Applied Bioscience, 5(2), 294-311. doi:10.18782/2320-7051.2890.Mendes, R. (2012). Microbioma da rizosfera e proteção de plantas. En Congresso Paulista de Fitopatologia 35º, Summa Phytopathologica, 38 (supplement). [cd-rom]. Jaguariúna, Brasil.Menzies, J. D. (1959). Occurrence and transfer of abiological factor in soil that suppresses potato scab. Phytopathology, 49, 648-652.Merzendorfer, H., & Zimoch, L. (2003). Chitin metabolism in insects: structure, function and regulation of chitin synthases and chitinases. Journal of Experimental Biology, 206, 4393-4412. doi:10.1242/jeb.00709.Minami, E., Kuchitsu, K., He, D. Y., Kouchi, H., Midoh, N., Ohtsuki, Y., & Shibuya, N. (1996). Two novel genes rapidly and transiently activated in suspension-cultured rice cells by treatment with N-acetylchitoheptaose, a biotic elicitor for phytoalexin production. Plant and Cell Physiology, 37(4), 563-567.31-43. Recuperado de https://www.researchgate.net/ publication/285023312_Chitosan_and_trichoderma_ harzianum_as_fungicide_alternatives_for_controlling_ fusarium_crown_and_root_rot_of_tomato.El Hadrami, A., Adam, L. R., El Hadrami, I., & Daayf, F. (2010). Chitosan in plant protection. Marine Drugs, 8(4), 968-987. doi:10.3390/md8040968.Ezra, D., Castillo, U. F., Strobel, G. A., Hess, W. M., Porter, H., Jensen, J. B., … Yaver, D. (2004). Coronamycins, peptide antibiotics produced by a verticillate Streptomyces sp. (MSU-2110) endophytic on Monstera sp.Microbiology, 150(4), 785-793. doi:10.1099/mic.0.26645-0.Ezzi, M. I., & Lynch, J. M. (2005). Biodegradation of cyanide by Trichoderma spp. and Fusarium spp. Enzyme and Microbial Technology, 36(7), 849-854. doi:10.1016/j. enzmictec.2004.03.030.Faeth, S. H., & Fagan, W. F. (2002). Fungal endophytes: Common host plant symbionts but uncommon mutualists. Integrative and Comparative Biology, 42(2), 360-368. doi:10.1093/icb/42.2.360Fakhro, A., Andrade-Linares, D. R., Von Bargen, S., Bandte, M., Büttner, C., Grosch, R., … Franken, P. (2010). Impact of Piriformospora indica on tomato growth and on interaction with fungal and viral pathogens. Mycorrhiza, 20(3), 191-200. doi:10.1007/s00572-009-0279-5.Felix, G., Baureithel, K., & Boller, T. (1998). Desensitization of the perception system for chitin fragments in tomato cells. Plant Physiology, 117(2), 643-650.Felix, G., Regenass, M., & Boller, T. (1993). Specific perception of subnanomolar concentrations of chitin fragments by tomato cells: induction of extracellular alkalinization, changes in protein phosphorylation, and establishment of a refractory state. The Plant Journal, 4(2), 307-316. doi:10.1046/j.1365-313X.1993.04020307.x.Ferri, M., Franceschetti, M., Naldrett, M. J., Saalbach, G., & Tassoni, A. (2014). Effects of chitosan on the protein profile of grape cell culture subcellular fractions. Electrophoresis, 35(11), 1685-1692. doi:10.1002/ elps.201300624.Figueroa-López, A. M., Cordero-Ramírez, J. D., MartínezÁlvarez, J. C., López-Meyer, M., Lizárraga-Sánchez, G. J., Félix-Gastélum, R., ... Maldonado-Mendoza, I. E. (2016). Rhizospheric bacteria of maize with potential for biocontrol of Fusarium verticillioides. Springerplus, 5, 330. doi:10.1186/s40064-016-1780-x.Figueroa-López, A. M., Cordero-Ramírez, J. D., QuirozFigueroa, F. R., & Maldonado-Mendoza, I. E. (2014). A high-throughput screening assay to identify bacterial antagonists against Fusarium verticillioides. Journal of Basic Microbiology, 54(1), S125-133. doi:10.1002/ jobm.201200594Fire, A., Xu, S., Montgomery, M. K., Kostas, S. A., Driver, S. E, & Mello, C. C. (1998). Potent and specific genetic interference by double-stranded rna in Caenorhabditis elegans. Nature, 391 (6669), 806-811.Fondong, V. N., Nagalakshmi, U., & Dinesh-Kumar, S. P. (2016). Novel functional genomics approaches: a promising future in the combat against plant viruses. Phytopathology, 106(10), 1231-1239. doi:10.1094/ PHYTO-03-16-0145-FI.Forchetti, G., Masciarelli, O., Alemano, S., Alvarez, D., & Abdala, G. (2007). Endophytic bacteria in sunflower (Helianthus annuus L.): isolation, characterization, and production of jasmonates and abscisic acid in culture medium. Applied Microbiology and Biotechnology, 76(5), 1145-1152. doi:10.1007/s00253-007-1077-7.Frampton, R. A., Pitman, A. R., & Fineran, P. C. (2012). Advances in bacteriophage-mediated control of plant pathogens. International Journal of Microbiology, 2012, 1-11. doi:10.1155/2012/326452.Fravel, D. (2005). Commercialization and implementation of biocontrol. Annual Review of Phytopathology, 43, 337-359. doi:10.1146/annurev.phyto.43.032904.092924.Ghorbanpour, M., Hatami, M., & Khavazi, K. (2013). Role of plant growth promoting rhizobacteria on antioxidant enzyme activities and tropane alkaloid production of Hyoscyamus niger under water deficit stress. Turkish Journal of Biology, 37(3), 350-360. doi:10.3906/biy1209-12.Gill, J., & Abedon, S. T. (2003). Bacteriophage ecology and plants. APS Feature Stories. doi:10.1094/ APSnetFeature-2003-1103.Giller, K. E., Witter, E., & Mcgrath, S. P. (1998). Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils: a review. Soil Biology & Biochemistry, 30(10-11), 1389-1414. doi:10.1016/ S0038-0717(97)00270-8Gortari, M. C., & Hours, R. A. (2008). Fungal chitinases and their biological role in the antagonism onto nematode eggs. A review. Mycological Progress, 7(4), 221-238. doi:10.1007/s11557-008-0571-3.Goy, R. C., Britto, D., & Assis, O. B. G. (2009). A review of the antimicrobial activity of chitosan. Polímeros 19(3), 241-247. doi:10.1590/S0104-14282009000300013.Goyal, S., Lambert, C., Cluzet, S., Mérillon, J. M., & Ramawat, K. G. (2012). Secondary metabolites and plant defence. En J. M. Mérillon & K. G. Ramawat (Eds.), Plant Defence: Biological Control (pp. 109-138). Dordrecht, Países Bajos: SpringerGozzo, F., & Faoro, F. (2013). Systemic acquired resistance (50 years after discovery): moving from the lab to the field. Journal of Agricultural and Food Chemistry, 61(51), 12473-12491. doi:10.1021/jf404156x.Grose, J. H., & Casjens, S. R. (2014). Understanding the enormous diversity of bacteriophages: the tailed phagesCooper, R. L., Laws, S. C., Das, P. C., Narotsky, M. G., Goldman, J. M., Lee Tyrey, E., & Stoker, T. E. (2007). Atrazine and reproductive function: mode and mechanism of action studies. Birth Defects Research Part B: Developmental and Reproductive Toxicology, 80(2), 98-112.Copeland, J. K., Yuan, L., Layeghifard, M., Wang, P. W., & Guttman, D. S. (2015). Seasonal community succession of the phyllosphere microbiome. Molecular Plant-Microbe Interactions, 28(3), 274-285. doi:10.1094/MPMI-10-14- 0331-FI.Cotes, A. M., Lepoivre, P., & Semal, J. (1996). Correlation between hydrolytic enzyme activities measured in bean seedlings after Trichoderma koningii treatment combined with pregermination and the protective effect against Pythium splendens. European Journal of Plant Pathology, 102(5), 497-506.Craigie, J. S. (2011). Seaweed extract stimuli in plant science and agriculture. Journal of Applied Phycology, 23(3), 371- 393. doi:10.1007/s10811-010-9560-4.D’Herelle, F. (1911). Sur une épizootie de nature bactérienne sévissant sur les sauterelles au Mexique. Comptes rendus hebdomadaires des séances de l’Acadédemie des sciences, 152, 1413-1415.Dalton, D. A., Kramer, S., Azios, N., Fusaro, S., Cahill, E., Kennedy, C. (2004). Endophytic nitrogen fixation in dune grasses (Ammophila arenaria and Elymus mollis) from Oregon. FEMS Microbiology Ecology, 49(3), 469- 479. doi:10.1016/j.femsec.2004.04.010.Das, K., & Mukherjee, A. K. (2007). Crude petroleumoil biodegradation efficiency of Bacillus subtilis and Pseudomonas aeruginosa strains isolated from a petroleum-oil contaminated soil from North-East India. Bioresource Technology, 98(7), 1339-1345. doi:10.1016/j. biortech.2006.05.032De Jin, R., Suh, J. W., Park, R. D., Kim, Y. W., Krishnan, H., & Kim, K. Y. (2005). Effect of chitin compost and broth on biological control of Meloidogyne incognita on tomato (Lycopersicon esculentum Mill.). Nematology, 7(1), 125- 132De Vasconcellos, R. L. F., & Cardoso, E. J. B. N. (2009). Rhizospheric streptomycetes as potential biocontrol agents of Fusarium and Armillaria pine rot and as pgpr for Pinus taeda. BioControl, 54(6), 807De Vasconcellos, R. L. F., & Cardoso, E. J. B. N. (2009). Rhizospheric streptomycetes as potential biocontrol agents of Fusarium and Armillaria pine rot and as pgpr for Pinus taeda. BioControl, 54(6), 807Dick, R. P. (1992). A review: long-term effects of agricultural systems on soil biochemical and microbial parameters. Agriculture, Ecosystems & Environment, 40(1-4), 25-36. doi:10.1016/0167-8809(92)90081-L.Djonović, S., Pozo, M. J., Dangott, L. J., Howell, C. R., & Kenerley, C. M. (2006). Sm1, a proteinaceous elicitor secreted by the biocontrol fungus Trichoderma virens Induces plant defense responses and systemic resistance. Molecular Plant-Microbe Interactions, 19(8), 838-853. doi:10.1094/MPMI-19-0838.Djonović, S., Vargas, W. A., Kolomiets, M. V., Horndeski, M., Wiest, A., & Kenerley, C. M. (2007). A proteinaceous elicitor Sm1 from the beneficial fungus Trichoderma virens is required for induced systemic resistance in maize. Plant Physiology, 145(3), 875-889. doi:10.1104/ pp.107.103689.Dong, Y.-H., Xu, J.-L., Li, X.-Z., & Zhang, L.-H. (2000). AiiA, an enzyme that inactivates the acylhomoserine lactone quorum-sensing signal and attenuates the virulence of Erwinia carotovora. Proceedings of the National Academy of Sciences, 97(7), 3526-3531. doi:10.1073/ pnas.060023897.Doornbos, R. F., van Loon, L. C., & Bakker, P. A. H. M. (2012). Impact of root exudates and plant defense signaling on bacterial communities in the rhizosphere. A review. Agronomy for Sustainable Development, 32(1), 227- 243. doi:10.1007/s13593-011-0028-yDu Jardin, P. (2012). The Science of Plant Biostimulants - A bibliographic analysis. [Ad hoc study report to the European Commission DG Enterprise and Industry]. Recuperado de http://hdl.handle.net/2268/169257.Du Jardin, P. (2015). Plant biostimulants: Definition, concept, main categories and regulation. Scientia Horticulturae, 196, 3-14. doi:10.1016/j.scienta.2015.09.021.Duan, C.-G., Wang, C.-H., & Guo, H.-S. (2012). Application of rna silencing to plant disease resistance. Silence, 3(1), 5. doi:10.1186/1758-907X-3-5.Duffy, B. K., Simon, A., & Weller, D. (1996). Combination of Trichoderma koningii with fluorescent pseudomonads for control of take-all on wheat. Phytopathology, 86(2), 188-194. Recuperado de https://www.apsnet. org/publ ications/phytopathology/backissues/ Documents/1996Articles/Phyto86n02_188.pdf.Dye, D. W. (1953). Control of Pseudomonas syringae with streptomycin. Nature, 172, 683-684. doi:10.1038/172683a0.El-Ghaouth, A., Arul, J., Ponnampalam, R., & Boulet, M. (1991). Use of chitosan coating to reduce water loss and maintain quality of cucumber and bell pepper fruits. Journal of Food Processing and Preservation, 15, 359-368. doi:10.1111/j.1745-4549.1991.tb00178.x.El-Ghaouth, A., Ponnampalam, R., Castaigne, F., & Arul, J. (1992). Chitosan coating to extend the storage life of tomatoes. HortScience, 27(9), 1016-1018.El-Mohamedy, R. S., Abdel-Kareem, F., JabounKhiareddine, H., & Daami-Remadi, M. (2014). Chitosan and Trichoderma harzianum as fungicide alternatives for controlling Fusarium crown and root rot of tomato. Tunisian Journal of Plant Protection, 9,Jain, A., Singh, A., Singh, S., & Singh, H. B. (2015). Biological management of Sclerotinia sclerotiorum in pea using plant growth promoting microbial consortium. Journal of Basic Microbiology, 55(8), 961-972. doi:10.1002/ jobm.201400628.Jain, R., Poulos, M. G., Gros, J., Chakravarty, A. K., & Shuman, S. (2011). Substrate specificity and mutational analysis of Kluyveromyces lactis gamma-toxin, a eukaryal tRNA anticodon nuclease. RNA, 17(7), 1336-1343. doi:10.1261/rna.2722711.Jalilzadeh Yengejeh, R., Sekhavatjou, M., Maktabi, P., Arbab Soleimani, N., Khadivi, S., & Pourjafarian, V. (2014). The biodegradation of crude oil by Bacillus subtilis isolated from contaminated soil in hot weather areas. International Journal of Environmental Research, 8(2), 509- 514. doi:10.22059/ijer.2014.744Jetiyanon, K. (2007). Defensive-related enzyme response in plants treated with a mixture of Bacillus strains (IN937a and IN937b) against different pathogens. Biological Control, 42(2), 178-185.Kaku, H., Shibuya, N., Xu, P., Aryan, A. P., & Fincher, G. B. (1997). N-acetylchitooligosaccharides elicit expression of a single (1→3)-β-glucanase gene in suspension-cultured cells from barley (Hordeum vulgare). Physiologia Plantarum, 100, 111-118. doi:10.1111/ j.1399-3054.1997.tb03460.xKannan, V., & Sureendar, R. (2009). Synergistic effect of beneficial rhizosphere microflora in biocontrol and plant growth promotion. Journal of Basic Microbiology, 49, 158- 164. doi:10.1002/jobm.200800011.Katiyar, D., Hemantaranjan, A., & Singh, B. (2015). Chitosan as a promising natural compound to enhance potential physiological responses in plant: a review. Indian Journal of Plant Physiology, 20(1), 1-9. doi:10.1007/s40502-015- 0139-6.Katznelson, H. (1937). Bacteriophage in relation to plant diseases. The Botanical Review, 3, 499. doi:10.1007/ BF02870486.Kauffman, G. L., Kneivel, D. P., & Watschke, T. L. (2007). Effects of a biostimulant on the heat tolerance associated with photosynthetic capacity, membrane thermostability, and polyphenol production of perennial ryegrass. Crop Science, 47(1), 261-267. doi:10.2135/ cropsci2006.03.0171.Kembel, S. W., O’Connor, T. K., Arnold, H. K., Hubbell, S. P., Wright, S. J., & Green, J. L. (2014). Relationships between phyllosphere bacterial communities and plant functional traits in a neotropical forest. Proceedings of the National Academy of Sciences, 111(38), 13715-13720. doi:10.1073/pnas.1216057111.Kesarcodi-Watson, A., Kaspar, H., Lategan, M. J., & Gibson, L. (2008). Probiotics in aquaculture: the need, principles and mechanisms of action and screening processes. Aquaculture, 274(1), 1-14. doi:10.1016/j. aquaculture.2007.11.019.Keswani, C., Mishra, S., Sarma, B. K., Singh, S. P., & Singh, H. B. (2014). Unraveling the efficient applications of secondary metabolites of various Trichoderma spp. Applied Microbiology and Biotechnology, 98(2), 533-544. doi:10.1007/s00253-013-5344-5.Khan, W., Rayirath, U. P., Subramanian, S., Jithesh, M. N., Rayorath, P., Hodges, D. M., … Prithiviraj, B. (2009). Seaweed extracts as biostimulants of plant growth and development. Journal of Plant Growth Regulation, 28(4), 386-399. doi:10.1007/s00344-009-9103-xKikuyama, M., Kuchitsu, K., & Shibuya, N. (1997). Membrane depolarization induced by N-acetylchitooligosaccharide elicitor in suspension-cultured rice cells. Plant and Cell Physiology, 38(8), 902-909. doi:10.1093/oxfordjournals. pcp.a029250.Kloepper, J. W., Rodríguez-Kábana, R., Zehnder, A. W., Murphy, J. F., Sikora, E., & Fernández, C. (1999). Plant root-bacterial interactions in biological control of soilborne diseases and potential extension to systemic and foliar diseases. Australasian Plant Pathology, 28(1), 21-26. doi:10.1071/AP99003.Kloepper, J., Reddy, M., Rodríguez-Kabana, R., Kenney, D., Kokalis-Burelle, N., & Martinez-Ochoa, N. (2004). Application for rhizobacteria in transplant production and yield enhancement. Acta Horticulturae, 631, 219-229. doi:10.17660/ActaHortic.2004.631.28.Kloepper, J. W., Leong, J., Teintze, M., & Schroth, M. N. (1980). Enhanced plant growth by siderophores produced by plant growth-promoting rhizobacteria. Nature, 286, 885-886. doi:10.1038/286885a0.Kloepper, J. W., Lifshitz, R., & Zablotowicz, R. M. (1989). Free-living bacterial inocula for enhancing crop productivity. Trends in Biotechnology, 7(2), 39-44. doi:10.1016/0167-7799(89)90057-7.Knip, M., Constantin, M. E., & Thordal-Christensen, H. (2014). Trans-kingdom cross-talk: Small RNAs on the move. Plos Genetics, 10(9): e1004602. doi:10.1371/ journal.pgen.1004602.Koberl, M., Schmidt, R., Ramadan, E. M., Bauer, R., & Berg, G. (2013). The microbiome of medicinal plants: diversity and importance for plant growth, quality and health. Frontiers in Microbiology, 4, 400. doi:10.3389/ fmicb.2013.00400.Koch, A., Biedenkopf, D., Furch, A., Weber, L., Rossbach, O., Abdellatef, E., … Kogel, K.-H. (2016). An RNAi-based control of Fusarium graminearum infections through spraying of long dsRNAs involves a plant passage and is controlled by the fungal silencing machinery. Plos Pathogens, 12(10): e1005901. doi:10.1371/journal. ppat.1005901. that infect the bacterial family Enterobacteriaceae. Virology, 468, 421-443. doi:10.1016/j.virol.2014.08.024.Groszhans, H., & Filipowicz, W. (2008). Molecular biology: The expanding world of small RNAs. Nature, 451(7177), 414-416. doi:10.1038/451414a.Guo, H., Luo, S., Chen, L., Xiao, X., Xi, Q., Wei, W., ... Chen, J. (2010). Bioremediation of heavy metals by growing hyperaccumulaor endophytic bacterium Bacillus sp. L14. Bioresource Technology, 101(22), 8599-8605. doi:10.1016/j.biortech.2010.06.085.Guo, S., & Kemphues, K. J. (1995). par-1, a gene required for establishing polarity in C. elegans embryos, encodes a putative Ser/Thr kinase that is asymmetrically distributed. Cell, 81(4), 611-620.Haas, D., & Keel, C. (2003). Regulation of antibiotic production in root-colonizing Pseudomonas spp. and relevance for biological control of plant disease. Annual Review of Phytopathology, 41, 117-153. doi:10.1146/ annurev.phyto.41.052002.095656.Hadwiger, L. A. (2013). Multiple effects of chitosan on plant systems: Solid science or hype. Plant Science, 208, 42-49. doi:10.1016/j.plantsci.2013.03.007.Haichar, F. E. Z., Marol, C., Berge, O., Rangel-Castro, J. I., Prosser, J. I., Balesdent, J. M., … Achouak, W. (2008). Plant host habitat and root exudates shape soil bacterial community structure. The ISME Journal, 2(12), 1221- 1230. doi:10.1038/ismej.2008.80.Halpern, M., Bar-Tal, A., Ofek, M., Minz, D., Muller, T., & Yermiyahu, U. (2015). Chapter two - The use of biostimulants for enhancing nutrient uptake. En D. L. Sparks (Ed.), Advances in Agronomy (vol. 130, pp. 141- 174). doi:10.1016/bs.agron.2014.10.001.Hallmann, J., Quadt-Hallmann, A., Mahaffee, W. F., & Kloepper, J. W. (1997). Bacterial endophytes in agricultural crops. Canadian Journal of Microbiology, 43(10), 895-914. doi:10.1139/m97-131.Hammerschmidt, R. (1999). Phytoalexins: What have we learned after 60 years? Annual Review of Phytopathology, 37, 285-306. doi:10.1146/annurev.phyto.37.1.285.Hardoim, P. R., Van Overbeek, L. S., & Elsas, J. D. v. (2008). Properties of bacterial endophytes and their proposed role in plant growth. Trends in Microbiology, 16(10), 463- 471. doi:10.1016/j.tim.2008.07.008.Hariprasad, P., Navya, H., Chandra, S., & Niranjana, S. (2009). Advantage of using psirb over psrb and irb to improve plant health of tomato. Biological Control, 50(3), 307-316. doi:10.1016/j.biocontrol.2009.04.002Harish, S., Kavino, M., Kumar, N., Balasubramanian, P., & Samiyappan, R. (2009). Induction of defenserelated proteins by mixtures of plant growth promoting endophytic bacteria against Banana bunchy top virus. Biological Control, 51(1), 16-25. doi:10.1016/j.biocontrol. 2009.06.002.Hirst, J. M., Le Riche, H. H., & Bascomb, C. L. (1961). Copper accumulation in the soils of apple orchards near wisbech. Plant Pathology, 10(3), 105-108. doi:10.1111/j.1365-3059.1961.tb00127.xHoitink, H., & Boehm, M. (1999). Biocontrol within the context of soil microbial communities: a substratedependent phenomenon. Annual Review of Phytopathology, 37, 427-446. doi:10.1146/annurev.phyto.37.1.427.Hosseyni-Moghaddam, M. S., & Soltani, J. (2014). Bioactivity of endophytic Trichoderma fungal species from the plant family Cupressaceae. Annals of Microbiology, 64(2), 753- 761. doi:10.1007/s13213-013-0710-1.Howell, C. R. (2003). Mechanisms employed by Trichoderma species in the biological control of plant diseases: The history and evolution of current concepts. Plant Disease, 87(1), 4-10. doi:10.1094/PDIS.2003.87.1.4.Howell, C. R., Hanson, L. E., Stipanovic, R. D., & Puckhaber, L. S. (2000). Induction of terpenoid synthesis in cotton roots and control of Rhizoctonia solani by seed treatment with Trichoderma virens. Phytopathology, 90(3), 248-252. doi:10.1094/PHYTO.2000.90.3.248.Huang, G., Allen, R., Davis, E. L., Baum, T. J., & Hussey, R. S. (2006). Engineering broad root-knot resistance in transgenic plants by RNAi silencing of a conserved and essential root-knot nematode parasitism gene. Proceedings of the National Academy of Sciences, 103(39), 14302- 14306. doi:10.1073/pnas.0604698103.Huang, X., Chen, L., Ran, W., Shen, Q., & Yang, X. (2011). Trichoderma harzianum strain SQR-T37 and its bio-organic fertilizer could control Rhizoctonia solani damping-off disease in cucumber seedlings mainly by the mycoparasitism. Applied Microbiology and Biotechnology, 91(3), 741-755. doi:10.1007/s00253-011-3259-6.Hunter, R. D., Ekunwe, S. I., Dodor, D. E., Hwang, H.-M., & Ekunwe, L. (2005). Bacillus subtilis is a potential degrader of pyrene and benzo[a]pyrene. International Journal of Environmental Research and Public Health, 2(2), 267-271.Iriarte, F. B., Balogh, B., Momol, M. T., Smith, L. M., Wilson, M., & Jones, J. B. (2007). Factors affecting survival of bacteriophage on tomato leaf surfaces. Applied and Environmental Microbiology, 73(6), 1704-1711. doi:10.1128/AEM.02118-06.Iriti, M., Picchi, V., Rossoni, M., Gomarasca, S., Ludwig, N., Gargano, M., & Faoro, F. (2009). Chitosan antitranspirant activity is due to abscisic acid-dependent stomatal closure. Environmental and Experimental Botany, 66, 493-500.Iwamoto, Y., Aino, M., Kanto, T., & Maekawa, K. (2003). Effective fungicides on Olpidium brassicae causing lettuce big-vein disease and optimum drenching conditions. Japanese Journal of Phytopathology, 69(4), 366-372.Mishra, J., Tewari, S., Singh, S., & Kumar, N. (2015). Biopesticides: Where We Stand? En N. K. Arora (Ed.), Plant Microbes Symbiosis: Applied Facets (pp. 37-75). Nueva Delhi, India: Springer.Mitter, N., Worrall, E. A., Robinson, K. E., Li, P., Jain, R.G., Taochy, C., … Xu, Z. P. (2017). Clay nanosheets for topical delivery of RNAi for sustained protection against plant viruses. Nature Plants, 3(2), 1-10. doi:10.1038/ nplants.2016.207.Montesinos, E. (2003). Development, registration and commercialization of microbial pesticides for plant protection. International Microbiology, 6(4), 245-252. doi:10.1007/s10123-003-0144-x.Moore, E. S. (1926). D’Herelle’s bacteriophage in relation to plant parasites. South African Journal of Science, 23, 306.Moradi, H., Bahramnejad, B., Amini, J., Siosemardeh, A., & Haji-Allahverdipoor, K. (2012). Suppression of chickpea (Cicer arietinum L.) Fusariums wilt by Bacillus subtillis and Trichoderma harzianum. Plant Omics, 5(2), 68-74.Moreno, C., Castillo, F., González, A., Bernal, D., Jaimes, Y., Chaparro, M., … Cotes, A. (2009). Biological and molecular characterization of the response of tomato plants treated with Trichoderma koningiopsis. Physiological and Molecular Plant Pathology, 74(2), 111-120. doi:10.1046/j.1365-2672.2000.00939.x.Mulaw, T., Druzhinina, I., Kubicek, C., & Atanasova, L. (2013). Novel endophytic Trichoderma spp. isolated from healthy Coffea arabica roots are capable of controlling coffee tracheomycosis. Diversity, 5(4), 750-766. doi:10.3390/d5040750.Namdeo, A. (2007). Plant cell elicitation for production of secondary metabolites: A review. Pharmacognosy Review, 1(1), 69-79.Napoli, C., Lemieux, C., & Jorgensen, R. (1990). Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans. The Plant Cell, 2, 279-289. Recuperado de http://www. plantcell.org/content/plantcell/2/4/279.full.pdfNeilands, J. (1995). Siderophores: structure and function of microbial iron transport compounds. Journal of Biological Chemistry, 270, 26723-26726. doi:10.1074/ jbc.270.45.26723.Ngo, H., Tschudi, C., Gull, K., & Ullu, E. (1998). Double-stranded rna induces mRNA degradation in Trypanosoma brucei. Proceedings of the National Academy of Sciences, 95(25), 14687-14692.Nielsen, P., & Sørensen, J. (1997). Multi-target and mediumindependent fungal antagonism by hydrolytic enzymes in Paenibacillus polymyxa and Bacillus pumilus strains from barley rhizosphere. FEMS Microbiology Ecology, 22(3), 183-192. doi:10.1111/j.1574-6941.1997.tb00370.x.Nishizawa, Y., Kawakami, A., Hibi, T., He, D.-Y., Shibuya, N., & Minami, E. (1999). Regulation of the chitinase gene expression in suspension-cultured rice cells by N-acetylchitooligosaccharides: differences in the signal transduction pathways leading to the activation of elicitor-responsive genes. Plant Molecular Biology, 39(5), 907-914. doi:10.1023/A:1006161802334.Nojiri, H., Sugimori, M., Yamane, H., Nishimura, Y., Yamada, A., Shibuya, N., … Omori, T. (1996). Involvement of jasmonic acid in elicitor-induced phytoalexin production in suspension-cultured rice cells. Plant Physiology, 110, 387-392. doi:10.1104/pp.110.2.387.Nongmaithem, N., Roy, A., & Bhattacharya, P. M. (2016). Screening of Trichoderma isolates for their potential of biosorption of nickel and cadmium. Brazilian Journal of Microbiology, 47(2), 305-313. doi:10.1016/j. bjm.2016.01.008.Nowara, D., Gay, A., Lacomme, C., Shaw, J., Ridout, C., Douchkov, D., … Schweizer, P. (2010). higs: hostinduced gene silencing in the obligate biotrophic fungal pathogen Blumeria graminis. The Plant Cell, 22(9), 3130- 3141. Recuperado de http://www.plantcell.org/content/ plantcell/22/9/3130.full.pdf.Nunes, C. C., & Dean, R. A. (2012). Host-induced gene silencing: a tool for understanding fungal host interaction and for developing novel disease control strategies. Molecular Plant Pathology, 13(5), 519-529. doi:10.1111/ j.1364-3703.2011.00766.x.O'Sullivan, M., Stephens, P. M., & O'Gara, F. (1991). Extracellular protease production by fluorescent Pseudomonas spp. and the colonization of sugarbeet roots and soil. Soil Biology & Biochemistry, 23(7), 623-627. doi:10.1016/0038-0717(91)90074-T.Ochoa, J. M., & Cotes, A. M. (1998). Evaluación de la actividad biocontroladora de Pseudomonas fluorescens, Streptomyces coelicolor y Trichoderma hamatum mediante su actividad individual y combinada para el control de Fusarium oxysporum f. sp. dianthi. Fitopatología Colombiana, 22, 88- 93.Ofek, M., Hadar, Y. & Minz, D. (2012). Ecology of root colonizing Massilia (Oxalobacteraceae). Plos One, 7(7): e40117. doi:10.1371/journal.pone.0040117.Okabe, N., & Goto, M. (1963). Bacteriophages of Plant Pathogens. Annual Review of Phytopathology, 1, 397-418. doi:10.1146/annurev.py.01.090163.002145Omnilytics. (2018). Changing the way the world treats bacterial disease. Recuperado de http://www.omnilytics.com/ agriculture/.Ongena, M., Jourdan, E., Adam, A., Paquot, M., Brans, A., Joris, B., … Thonart, P. (2007). Surfactin and fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants. Environmental Microbiology, 9(4), 1084-1090. doi:10.1111/j.1462- 2920.2006.01202.x.Pal-Bhadra, M., Bhadra, U., & Birchler, J. A. (1997). Cosuppression in Drosophila: Gene silencing of alcohol dehydrogenase by white-adh transgenes is polycomb dependent. Cell, 90(3), 479-490.Panwar, V., McCallum, B., Jordan, M., Loewen, M., Fobert, P., McCartney, C., Bakkeren, G. (2016). rna silencing approaches for identifying pathogenicity and virulence elements towards engineering crop resistance to plant pathogenic fungi. CAB Reviews, 11(027), 1-13. doi:10.1079/PAVSNNR201611027.Pietrzak, U., & McPhail, D. C. (2004). Copper accumulation, distribution and fractionation in vineyard soils of Victoria, Australia. Geoderma, 122(2-4), 151-166. doi:10.1016/j. geoderma.2004.01.005.Pliego, C., Ramos, C., De Vicente, A., & Cazorla, F. M. (2011). Screening for candidate bacterial biocontrol agents against soilborne fungal plant pathogens. Plant Soil, 340, 505-520. doi:10.1007/s11104-010-0615-8.Povero, G., Loreti, E., Pucciariello, C., Santaniello, A., Di Tommaso, D., Di Tommaso, G., ... Perata, P. (2011). Transcript profiling of chitosan-treated Arabidopsis seedlings. Journal of Plant Research, 124(5), 619-629. doi:10.1007/s10265-010-0399-1.Prakash Verma, J., Yadav, J., Tiwari, K., & Jaiswal, D. (2013). Evaluation of plant growth promoting activities of microbial strains and their effect on growth and yield of chickpea (Cicer arietinum L.) in India. Soil Biology and Biochemistry, 70, 33-37. doi:10.1016/j. soilbio.2013.12.001.Qian, J., Li, D., Zhan, G., Zhang, L., Su, W., & Gao, P. (2012). Simultaneous biodegradation of Ni–citrate complexes and removal of nickel from solutions by Pseudomonas alcaliphila. Bioresource Technology, 116, 66- 73. doi:10.1016/j.biortech.2012.04.017.Raaijmakers, J. M., De Bruijn, I., Nybroe, O., & Ongena, M. (2010). Natural functions of lipopeptides from Bacillus and Pseudomonas: more than surfactants and antibiotics. FEMS Microbiology Reviews, 34(6), 1037-1062. doi:10.1111/j.1574-6976.2010.00221.x.Rabea, E. I., Badawy, M. E. T., Stevens, C. V., Smagghe, G., & Steurbaut, W. (2003). Chitosan as antimicrobial agent: Applications and mode of action. Biomacromolecules, 4(6), 1457-1465. doi:10.1021/bm034130m.Rajasekhar, L., Satish, K., Sain, & Divya, J. (2016). Evaluation of microbial consortium for plant health management of pigeonpea. International Journal of Plant, Animal and Environmental Sciences, 6(2), 107-113. Recuperado de http://www.ijpaes.com/admin/php/uploads/958_ pdf.pdf.Raupach, G. S., & Kloepper, J. W. (1998). Mixtures of plant growth-promoting rhizobacteria enhance biological control of multiple cucumber pathogens. Phytopathology, 88(11), 1158-1164. doi:10.1094/PHYTO.1998.88.11. 1158.Raupach, G. S., Liu, L., Murphy, J. F., Tuzun, S., & Kloepper, J. W. (1996). Induced systemic resistance in cucumber and tomato against Cucumber mosaic virus using plant growth-promoting rhizobacteria (pgpr). Plant Disease, 80, 891-894. Recuperado de https://www. apsnet.org/publications/PlantDisease/BackIssues/ Documents/1996Articles/PlantDisease80n08_ 891.PDF.Raymundo Raymundo, E., Nikolskii Gavrilov, I., Duwig, C., Prado Pano, B. L., Hidalgo Moreno, C. I., Gavi Reyes, F., & Figueroa Sandoval, B. (2009). Transporte de atrazina en un andosol y un vertisol de México. Interciencia, 34(5), 330-337. Recuperado de http://www.redalyc.org/ articulo.oa?id=33911403005.Ren, Y.-Y., & West, C.A. (1992). Elicitation of diterpene biosynthesis in rice (Oryza sativa L.) by chitin. Plant Physiology, 99, 1169-1178. doi: doi:10.1104/ pp.99.3.1169.Renwick, A., Campbell, R., & Coe, S. (1991). Assessment of in vivo screening systems for potential biocontrol agents of Gaeumannomyces graminis. Plant Pathology, 40(4), 524- 532. doi:10.1111/j.1365-3059.1991.tb02415.xRoberts, D. P., & Lohrke, S. M. (2003). United States Department of Agriculture-Agricultural Research Service research programs in biological control of plant diseases. Pest Management Science, 59(6-7), 654-664. doi:10.1002/ ps.613.Roby, D., Gadelle, A., & Toppan, A. (1987). Chitin oligosaccharides as elicitors of chitinase activity in melon plants. Biochemical and Biophysical Research Communications, 143(3), 885-892. doi:10.1016/0006- 291X(87)90332-9.Romano, N., & Macino, G. (1992). Quelling: transient inactivation of gene expression in Neurospora crassa by transformation with homologous sequences. Molecular Microbiology, 6(22), 3343-3353. doi:10.1111/j.1365-2 958.1992.tb02202.x.Rose, M., Patti, A., Little, K., Brown, A. L., Jackson, W. R., & Cavagnaro, T. R. (2014). A meta-analysis and review of plant-growth response to humic substances: Practical implications for agriculture. En D. L. Sparks (Ed.), Advances in Agronomy (1. a ed., vol. 124, pp. 37-89). EE. UU.: Elsevier. doi:10.1016/B978-0-12-800138-7.00 002-4.Rothstein, S. J., DiMaio, J., Strand, M., & Rice, D. (1987). Stable and heritable inhibition of the expression of nopaline synthase in tobacco expressing antisense rna. Proceedings of the National Academy of Sciences, 84(23), 8439-8443.Rudresh, D., Shivaprakash, M., & Prasad, R. (2005). Effect of combined application of Rhizobium, phosphate solubilizing bacterium and Trichoderma spp. on growth, nutrient uptake and yield of chickpea (Ciceraritenium L.). Applied Soil Ecology, 28(2), 139-146. doi:10.1016/j. apsoil.2004.07.005.Santos, A., Villamizar, L., García, M., Beltrán, C., & Cotes, A. M. (2016). Biocontrol of Rhizoctonia solani and Tecia solanivora in potato seed-tuber treated with a powder formulation based on Trichoderma koningiopsis and baculovirus. IOBC-WPRS Bulletin, 115, 47-53.Senthilraja, G., Anand, T., Durairaj, C., Kennedy, J., Suresh, S., Raguchander, T., & Samiyappan, R. (2010). A new microbial consortia containing entomopathogenic fungus, Beauveria bassiana and plant growth promoting rhizobacteria, Pseudomonas fluorescens for simultaneous management of leafminers and collar rot disease in groundnut. Biocontrol Science and Technology, 20(5), 449- 464. doi:10.1080/09583150903576949.Serfling, A., Wirsel, S. G. R., Lind, V., & Deising, H. B. (2007). performance of the biocontrol fungus Piriformospora indica on wheat under greenhouse and field conditions. Phytopathology, 97, 523-531. doi:10.1094/ PHYTO-97-4-0523.Shehata, H. R., Lyons, E. M., Jordan, K. S., & Raizada, M. N. (2016). Relevance of in vitro agar based screens to characterize the anti-fungal activities of bacterial endophyte communities. BMC Microbiology, 16, 8. doi:10.1186/s12866-016-0623-9.Sheng, X., Chen, X., & He, L. (2008). Characteristics of an endophytic pyrene-degrading bacterium of Enterobacter sp. 12J1 from Allium macrostemon Bunge. International Biodeterioration and Biodegradation, 62(2), 88-95. doi:10.1016/j.ibiod.2007.12.003.Shoresh, M., Harman, G. E. & Mastouri, F. (2010). Induced systemic resistance and plant responses to fungal biocontrol agents. Annual Review of Phytopathology, 48, 21-43. doi:10.1146/annurev-phyto-073009-114450.Sindhu, S., & Dadarwal, K. (2001). Chitinolytic and cellulolytic Pseudomonas sp. antagonistic to fungal pathogens enhances nodulation by Mesorhizobium sp. Cicer in chickpea. Microbiological Research, 156(4), 353- 358. doi:10.1078/0944-5013-00120.Singh, A., Sarma, B. K., Upadhyay, R. S., & Singh, H. B. (2013). Compatible rhizosphere microbes mediated alleviation of biotic stress in chickpea through enhanced antioxidant and phenylpropanoid activities. Microbiological Research, 168(1), 33-40. doi:10.1016/j.micres.2012.07.001.Singh, D., Chaudhary, S., Kumar, R., Sirohi, P., Mehla, K., Sirohi, A., … Singh, P. K. (2016). rna interference technology applications and limitations. En I. Y. Abdurakhmonov (Ed.), rna Interference, InTech. Recuperado de https://www.intechopen.com/books/rnainterference/rna-interference-technology-applicationsand-limitations. doi:10.5772/60631.Skopp, J., Jawson, M., & Doran, J. (1990). Steady-state aerobic microbial activity as a function of soil water content. Soil Science Society of America Journal, 54(6), 1619-1625. doi:10.2136/sssaj1990.03615995005400060018x.Srinivasan, K., & Mathivanan, N. (2011). Plant growth promoting microbial consortia mediated classical biocontrol of sunflower necrosis virus disease. Journal of Biopesticides, 4(1), 65-72. Recuperado de http://www.jbiopest.com/ users/lw8/efiles/vol_4_1_241.pdf.Stein, E., Molitor, A., Kogel, K.-H., & Waller, F. (2008). Systemic resistance in Arabidopsis conferred by the mycorrhizal fungus Piriformospora indica requires jasmonic acid signaling and the cytoplasmic function of NPR1. Plant and Cell Physiology, 49(11), 1747-1751. doi:10.1093/pcp/ pcn147.Stockwell, V., Johnson, K., Sugar, D., & Loper, J. (2011). Mechanistically compatible mixtures of bacterial antagonists improve biological control of fire blight of pear. Phytopathology, 101(1), 113-123. doi:10.1094/ PHYTO-03-10-0098Summers, W. C. (2005). Bacteriophage research: early history. En E. Kutter & A. Sulakvelidze (Eds.), Bacteriophages: Biology and applications (pp. 5-27). Boca Ratón, EE. UU.: CRC Press.Szittya, G., & Burgyán, J. (2013). Rna interference-mediated intrinsic antiviral immunity in plants. En B. R. Cullen (Ed.), Intrinsic immunity (pp. 153-181). Berlín, Alemania: SpringerTakai, R., Hasegawa, K., Kaku, H., Shibuya, N., & Minami, E. (2001). Isolation and analysis of expression mechanisms of a rice gene, EL5, which shows structural similarity to atl family from Arabidopsis, in response to N-acetylchitooligosaccharide elicitor. Plant Science, 160(4), 577-583. doi:10.1016/S0168-9452(00)00390-3.Tang, J., Liu, Y., Li, H., Wang, L., Huang, K., & Chen, Z. (2015). Combining an antagonistic yeast with harpin treatment to control postharvest decay of kiwifruit. Biological Control, 89, 61-67. doi:10.1016/j. biocontrol.2015.04.025.Tang, K., Zhang, Y., Yu, M., Shi, X., Coenye, T., Bossier, P., & Zhang, X.-H. (2013). Evaluation of a new highthroughput method for identifying quorum quenching bacteria. Scientific Reports, 3, 2935. doi:10.1038/ srep02935.Tenllado, F., Llave, C., & Dı́az-Ruı́z, J. R. (2004). rna interference as a new biotechnological tool for the control of virus diseases in plants. Virus Research, 102(1), 85-96. doi:10.1016/j.virusres.2004.01.019.Tharanathan, R. N., & Kittur, F. S. (2003). Chitin—The undisputed biomolecule of great potential. Critical Reviews in Food Science and NutriThayer, P. L., & Stall, R. E. (1961). A survey of Xanthomonas vesicatoria resistance to streptomycin. Proceedings of the Florida State Horticultural Society, 1523, 163-165. Recuperado de http://fshs.org/proceedings-o/1962- vol-75/163-165%20(THAYER).pdf.Thomas, R. (1935). A bacteriophage in relation to Stewart’s disease of corn. Phytopathology, 25, 371-372.Tian, H., Riggs, R. D., & Crippen, D. L. (2000). Control of soybean cyst nematode by chitinolytic bacteria with chitin substrate. Journal of Nematology, 32(4), 370-376. Recuperado de https://www.ncbi.nlm.nih.gov/pmc/ articles/PMC2620463/pdf/370.pdf.Twort, F. W. (1915). An investigation on the nature of ultra-microscopic viruses. The Lancet, 186, 1241-1243. doi:10.1016/S0140-6736(01)20383-3.Van Buren, A. M., Andre, C., & Ishimaru, C. (1993). Biological control of the bacterial ring rot pathogen by endophytic bacteria isolated from potato. Phytopathology, 83, 140-146.Van der Krol, A. R., Lenting, P. E., Veenstra, J., van der Meer, I. M., Koes, R. E., Gerats, A. G., … Stuitje, A. R. (1988). An anti-sense chalcone synthase gene in transgenic plants inhibits flower pigmentation. Nature, 333, 866-869. doi:10.1038/333866a0.Van der Krol, A. R., Mur, L. A., Beld, M., Mol, J., & Stuitje, A. R. (1990). Flavonoid genes in petunia: addition of a limited number of gene copies may lead to a suppression of gene expression. The Plant Cell, 2(4), 291-299. Recuperado de https://www.ncbi.nlm.nih.gov/pmc/ articles/PMC159886/pdf/020291.pdf.Vega, F. E., Goettel, M. S., Blackwell, M., Chandler, D., Jackson, M. A., Keller, S., … Roy, H. E. (2009). Fungal entomopathogens: new insights on their ecology. Fungal Ecology, 2(4), 149-159. doi:10.1016/j. funeco.2009.05.001.Vinale, F., Marra, R., Scala, F., Ghisalberti, E., Lorito, M., & Sivasithamparam, K. (2006). Major secondary metabolites produced by two commercial Trichoderma strains active against different phytopathogens. Letters in Applied Microbiology, 43(2), 143-148. doi:10.1111/ j.1472-765X.2006.01939.x.Vinale, F., Sivasithamparam, K., Ghisalberti, E.L., Marra, R., Barbetti, M.J., Li, H., ... Lorito, M. (2008). A novel role for Trichoderma secondary metabolites in the interactions with plants. Physiological and Molecular Plant Pathology, 72(1-3), 80-86. doi:10.1016/j.pmpp.2008.05.005.Vorholt, J. A. (2012). Microbial life in the phyllosphere.Nature Reviews Microbiology, 10(12), 828-840. doi:10.1038/ nrmicro2910.Vranova, V., Rejsek, K., Skene, K. R., & Formanek, P. (2011). Non-protein amino acids: plant, soil and ecosystem interactions. Plant Soil, 342(1), 31-48. doi:10.1007/ s11104-010-0673-yWalker-Simmons, M., & Ryan, C. A. (1984). Proteinase inhibitor synthesis in tomato leaves: Induction by chitosan oligomers and chemically modified chitosan and chitin. Plant Physiology, 76(3), 787-790. Recuperado de https:// www.ncbi.nlm.nih.gov/pmc/articles/PMC1064374/ pdf/plntphys00581-0243.pdfWally, O. S. D., Critchley, A. T., Hiltz, D., Craigie, J. S., Han, X., Zaharia, L. I., … Prithiviraj, B. (2013a). Erratum to: regulation of phytohormone biosynthesis and accumulation in Arabidopsis following treatment with commercial extract from the marine macroalga Ascophyllum nodosum. Journal of Plant Growth Regulation, 32(2), 340-341. doi:10.1007/s00344-012-9311-7.Wally, O. S. D., Critchley, A.T., Hiltz, D., Craigie, J.S., Han, X., Zaharia, L. I., … Prithiviraj, B. (2013b). Regulation of phytohormone biosynthesis and accumulation in Arabidopsis following treatment with commercial extract from the marine macroalga Ascophyllum nodosum. Journal of Plant Growth Regulation, 32(2), 324-339. doi:10.1007/ s00344-012-9301-9Wang, M., & Jin, H. (2017). Spray-induced gene silencing: a powerful innovative strategy for crop protection. Trends in Microbiology, 25(1), 4-6. doi:10.1016/j.tim.2016.11.011.Wang, M., Thomas, N., & Jin, H. (2017). Cross-kingdom rna trafficking and environmental RNAi for powerful innovative pre-and post-harvest plant protection. Current Opinion in Plant Biology, 38, 133-141. doi:10.1016/j. pbi.2017.05.003.Wang, M., Weiberg, A., Lin, F.-M., Thomma, B. P., Huang, H.-D., & Jin, H. (2016). Bidirectional cross-kingdom RNAi and fungal uptake of external RNAs confer plant protection. Nature Plants, 2, 1-10. doi:10.1038/ nplants.2016.151.Weller, D. M., Raaijmakers, J. M., Gardener, B. B., & Thomashow, L. S. (2002). Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annual Review of Phytopathology, 40, 309-348. doi:10.1146/annurev.phyto.40.030402.110010.Whitman, W. B., Coleman, D. C., & Wiebe, W. J. (1998). Prokaryotes: The unseen majority. Proceedings of the National Academy of Sciences, 95(12), 6578-6583.Wilson, D. (1995). Endophyte: The evolution of a term, and clarification of its use and definition. Oikos, 73(2), 274- 276. doi:10.2307/3545919.Winterowd, J., & Sandford, P. (1995). Chitin and chitosan. En A. M. Stephen (Ed.), Food polysaccharides and their applications (pp. 441-462) Nueva York, EE. UU.: Marcel Dekker.Yamada, A., Shibuya, N., Kodama, O., & Akatsuka, T. (1993). Induction of phytoalexin formation in suspensioncultured rice cells by N-Acetyl-chitooligosaccharides. Bioscience, Biotechnology, and Biochemistry, 57(1), 405- 409. doi:10.1271/bbb.57.405.Yang, J., Kloepper, J. W., & Ryu, C.-M. (2009). Rhizosphere bacteria help plants tolerate abiotic stress. Trends in Plant Science, 14(4), 1-4. doi:10.1016/j.tplants.2008.10.004Yin, H., Zhao, X., & Du, Y. (2010). Oligochitosan: A plant diseases vaccine—A review. Carbohydrate Polymers, 82(1), 1-8. doi:10.1016/j.carbpol.2010.03.066.Yu, X., Ai, C., Xin, L., & Zhou, G. (2011). The siderophoreproducing bacterium, Bacillus subtilis CAS15, has a biocontrol effect on Fusarium wilt and promotes the growth of pepper. European Journal of Soil Biology, 47, 138-145. doi:10.1016/j.ejsobi.2010.11.001.Zhang, J., Bruton, B., Howell, C., & Miller, M. (1999). Potential of Trichoderma virens for biocontrol of root rot and vine decline in Cucumis melo L. caused by Monoporascus cannonballus. Subtropical Plant Science, 51, 29-37.Zhu, Z., Zhang, B., Chen, B., Cai, Q., & Lin, W. (2016). Biosurfactant production by marine-originated bacteria Bacillus subtilis and its application for crude oil removal. Water, Air, and Soil Pollution, 227(9), 328. doi:10.1007/ s11270-016-3012-y33519 ; Control biológico de fitopatógenos, insectos y ácaros: Aplicaciones y perspectivas V. 2.LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repository.agrosavia.co/bitstream/20.500.12324/34158/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52open accessTHUMBNAILVer_Documento_34158.pngVer_Documento_34158.pngimage/png25110https://repository.agrosavia.co/bitstream/20.500.12324/34158/3/Ver_Documento_34158.png6e71c7465dbbcb8717bc702b3c859b59MD53open accessVer_Documento_34158.pdf.jpgVer_Documento_34158.pdf.jpgimage/jpeg19491https://repository.agrosavia.co/bitstream/20.500.12324/34158/6/Ver_Documento_34158.pdf.jpg7a4d0cef247d6b87bd25c79c2bd9a181MD56open accessORIGINALVer_Documento_34158.pdfVer_Documento_34158.pdfapplication/pdf7944542https://repository.agrosavia.co/bitstream/20.500.12324/34158/5/Ver_Documento_34158.pdf4d459e63597509baaae8ae7f28caad05MD55open access20.500.12324/34158oai:repository.agrosavia.co:20.500.12324/341582024-06-14 14:33:07.75open accessAgrosavia - Corporación colombiana de investigación agropecuariabac@agrosavia.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=