Control biológico de patógenos foliares
Los fitopatógenos foliares representan una grave amenaza para la seguridad alimentaria mundial. El control biológico se considera ecológicamente amigable y una alternativa clave en el manejo de las enfermedades producidas por estos. Además, se ha demostrado que varios microorganismos son efectivos e...
- Autores:
-
Cotes Prado, Alba Marina
Zapata Narváez, Yimmy Alexander
Beltrán Acosta, Camilo Rubén
Kobayashi, Sadao
Uribe Gutiérrez, Liz Alejandra
Elad, Yigal
- Tipo de recurso:
- Part of book
- Fecha de publicación:
- 2018
- Institución:
- Agrosavia
- Repositorio:
- Agrosavia
- Idioma:
- spa
- OAI Identifier:
- oai:repository.agrosavia.co:20.500.12324/34058
- Acceso en línea:
- http://hdl.handle.net/20.500.12324/34058
- Palabra clave:
- Plagas de las plantas - H10
Bioplaguicidas
Control biológico
Organismos patógenos
Transversal
- Rights
- License
- Attribution-NonCommercial-ShareAlike 4.0 International
id |
Agrosavia2_29b73c5716f2e2c50fa7abb578557027 |
---|---|
oai_identifier_str |
oai:repository.agrosavia.co:20.500.12324/34058 |
network_acronym_str |
Agrosavia2 |
network_name_str |
Agrosavia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Control biológico de patógenos foliares |
dc.title.translated.eng.fl_str_mv |
Biological control of foliar pathogens |
title |
Control biológico de patógenos foliares |
spellingShingle |
Control biológico de patógenos foliares Plagas de las plantas - H10 Bioplaguicidas Control biológico Organismos patógenos Transversal |
title_short |
Control biológico de patógenos foliares |
title_full |
Control biológico de patógenos foliares |
title_fullStr |
Control biológico de patógenos foliares |
title_full_unstemmed |
Control biológico de patógenos foliares |
title_sort |
Control biológico de patógenos foliares |
dc.creator.fl_str_mv |
Cotes Prado, Alba Marina Zapata Narváez, Yimmy Alexander Beltrán Acosta, Camilo Rubén Kobayashi, Sadao Uribe Gutiérrez, Liz Alejandra Elad, Yigal |
dc.contributor.author.none.fl_str_mv |
Cotes Prado, Alba Marina Zapata Narváez, Yimmy Alexander Beltrán Acosta, Camilo Rubén Kobayashi, Sadao Uribe Gutiérrez, Liz Alejandra Elad, Yigal |
dc.subject.fao.spa.fl_str_mv |
Plagas de las plantas - H10 |
topic |
Plagas de las plantas - H10 Bioplaguicidas Control biológico Organismos patógenos Transversal |
dc.subject.agrovoc.spa.fl_str_mv |
Bioplaguicidas Control biológico Organismos patógenos |
dc.subject.red.spa.fl_str_mv |
Transversal |
description |
Los fitopatógenos foliares representan una grave amenaza para la seguridad alimentaria mundial. El control biológico se considera ecológicamente amigable y una alternativa clave en el manejo de las enfermedades producidas por estos. Además, se ha demostrado que varios microorganismos son efectivos en el control de muchas de estas enfermedades. En este capítulo se analizan varios de los más importantes patógenos foliares, así como los microorganismos antagonistas más frecuentemente usados, incluyendo su distribución, ecología, biología y modo de acción. Para ello, se revisan investigaciones realizadas durante las últimas décadas en todo el mundo sobre la evaluación de la eficacia de los agentes de control biológico, con algunas historias de éxito convincentes, así como los factores que fomentan o dificultan su desarrollo. |
publishDate |
2018 |
dc.date.accessioned.none.fl_str_mv |
2018-11-21T16:20:34Z |
dc.date.available.none.fl_str_mv |
2018-11-21T16:20:34Z |
dc.date.issued.none.fl_str_mv |
2018 |
dc.type.localeng.eng.fl_str_mv |
book part |
dc.type.local.spa.fl_str_mv |
Capítulo |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_3248 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/bookPart |
dc.type.redcol.none.fl_str_mv |
https://purl.org/redcol/resource_type/CAP_LIB |
dc.type.version.none.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
format |
http://purl.org/coar/resource_type/c_3248 |
dc.identifier.isbn.none.fl_str_mv |
978-958-740-253-7 (e-book) |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/20.500.12324/34058 |
dc.identifier.reponame.spa.fl_str_mv |
reponame:Biblioteca Digital Agropecuaria de Colombia |
dc.identifier.repourl.none.fl_str_mv |
repourl:https://repository.agrosavia.co |
dc.identifier.instname.spa.fl_str_mv |
instname:Corporación colombiana de investigación agropecuaria AGROSAVIA |
identifier_str_mv |
978-958-740-253-7 (e-book) reponame:Biblioteca Digital Agropecuaria de Colombia repourl:https://repository.agrosavia.co instname:Corporación colombiana de investigación agropecuaria AGROSAVIA |
url |
http://hdl.handle.net/20.500.12324/34058 |
dc.language.iso.none.fl_str_mv |
spa |
language |
spa |
dc.relation.citationstartpage.none.fl_str_mv |
56 |
dc.relation.citationendpage.none.fl_str_mv |
143 |
dc.relation.references.spa.fl_str_mv |
Abanda-Nkpwatt, D., Krimm, U., Coiner, H. A., Schreiber, L., & Schwab, W. (2006). Plant volatiles can minimize the growth suppression of epiphytic bacteria by the phytopathogenic fungus Botrytis cinerea in co-culture experiments. Environmental and Experimental Botanic, 56(1), 108-119. doi:10.1016/j.envexpbot.2005.01.010. Abdallah, M. E., Haroun, S. A., Gomah, A. A., ElNaggar, N. E., & Badr, H. H. (2013). Application of actinomycetes as biocontrol agents in the management of onion bacterial rot diseases. Arch. Phytopathol. Plant Protection, 46(15), 1797-1808. Do i:10.1080/03235408.2013.778451. Abel., P. P., Nelson. R. S., De, B., Hoffmann, N., Rogers, S. G., ... Beachy, R. N. (1986). Delay of disease development in transgenic plants that express the tobacco mosaic virus coat protein gene. Science, 232(4751), 738-744. Abriouel, H., Franz, C. M. A. P., Omar, N. B., & Gálvez, A. (2011). Diversity and applications of Bacillus bacteriocins. FEMS Microbiology Review, 35(1), 201-232. doi:10.1111/j.1574-6976.2010.00244.x. Agencia de Protección Ambiental de Estados Unidos (epa). (2002). Pseudozyma flocculosa strain PF-A22 UL (PC Code 119196) Pseudozyma flocculosa strain PF-A22 UL (TGAI) sporodex L (ep). Recuperado de https://www3.epa.gov/pesticides/chem_search/reg_actions/registration/decision_PC-119196_1- Sep-02.pdf. Agencia de Protección Ambiental de Estados Unidos (epa). (2009). Candida oleophila Strain O PC Code: 021010 office of pesticide programs biopesticides and pollution prevention division last updated. Recuperado de https://www3.epa.gov/pesticides/chem_search/reg_actions/registration/decision_PC-021010_15-Jul-09.pdf. Agencia de Protección Ambiental de Estados Unidos (epa). (2017). Pesticides. Recuperado de https:// www.epa.gov/pesticides. Agrios, G. N. (2015). Plant pathology. Londres, Inglaterra: Elsevier. Ajith, P., & Lakshmidevi, N. (2010). Effect of volatile and non-volatile compounds from Trichoderma spp. against Colletotrichum capsici incitant of anthracnose on bell peppers. Nature and Science, 8(9), 265-269. Ajouz, S., Nicot, P. C., & Bardin, M. (2010). Adaptation to pyrrolnitrin in Botrytis cinerea and cost of resistance. Plant Pathology, 59(3), 556-566. doi:10.1111/j.1365-3059.2009.02230.x. Aksu, Z., & Eren, A. T. (2007). Production of carotenoids by the isolated yeast of Rhodotorula glutinis. Biochemical Engineering Journal, 35(2), 107-113. doi:10.1016/j.bej.2007.01.004. Al-Awadhi, H., Al-Mailem, D., Dashti, N., Hakam, L., Eliyas, M., & Radwan, S. (2012). The abundant occurrence of hydrocarbon-utilizing bacteria in the phyllospheres of cultivated and wild plants in Kuwait. International Biodeterioration & Biodegradation, 73, 73-79. doi:10.1016/j.ibiod.2012.05.016. Albano, S., Chagnon, M., De Oliveira, D., Houle, E., Thibodeau, P., & Mexia, A. (2009). Effectiveness of Apis mellifera and bombus impatiens as dispersers of the Rootshield® biofungicide (Trichoderma harzianum, strain T-22) in a strawberry crop. Hellenic Plant Protection Journal, 2(2), 57-66. Alfonzo, A., Conigliaro, G., Torta, L., Burruano, S., & Moschetti, G. (2009). Antagonism of Bacillus subtilis strain AG1 against vine wood fungal pathogens. Phytopathologia Mediterranea, 48, 155-158. doi:10.14601/Phytopathol_Mediterr-2886. Ali, G. S., El-Sayed, A. S. A., Patel, J. S., Green, K. B., Ali, M., ... Norman, D. (2016). Ex vivo application of secreted metabolites produced by soil-inhabiting Bacillus spp. Efficiently controls foliar diseases caused by Alternaria spp. Applied and Environmental Microbiology, 82(12), 478-490. doi:10.1128/aem.02662-15. Ali, H., & Nadarajah, K. (2014). Evaluating the efficacy of Trichoderma spp. and Bacillus subtilis as biocontrol agents against Magnaporthe grisea in rice. Australian Journal of Crop Science, 8(9), 1324. Ali, N., Sorkhoh, N., Salamah, S., Eliyas, M., & Radwan, S. (2012). The potential of epiphytic hydrocarbonutilizing bacteria on legume leaves for attenuation of atmospheric hydrocarbon pollutants. Journal of Environmental Management, 93(1), 113-120. doi:10. 1016/j.jenvman.2011.08.014. Alippi, A. M., Perelló, A. E., Sisterna, N. M., Greco, N. M., & Cordo, C. A. (2000). Potential of Spore-forming bacteria as biocontrol agents of wheat foliar diseases under laboratory and greenhouse conditions. Journal of Plant Diseases and Protection, 107(2), 155-169. Allard, H. A. (1915). Distribution of the virus of the mosaic disease in capsules, filaments, anthers, and pistils of affected tobacco plants. Journal of Agricultural Research, 5(6), 251-256. Anagnostakis, S. L. (1982). Biological control of chestnut blight. Science, 215(4532), 466-471. doi:10.1126/ science.215.4532.466. Andrews, J. H. (1990). Biological control in the phyllosphere: Realistic goal or false hope? Canadian Journal of Plant Pathology, 12(3), 300-307. doi:10. 1080/07060669009501004. Andrews, J. H. (1992). Biological control in the phyllosphere. Annual Review of Phytopathology, 30, 603- 635. doi:10.1146/annurev.py.30.090192.003131. Andrews, J. H., & Harris, R. F. (2000). The ecology and biogeography of microorganisms on plant surfaces. Annual Review of Phytopathology, 38, 145-180. doi:10. 1146/annurev.phyto.38.1.145. Aoki, M., Tan, M., Fukushima, A., Hieda, T., Kubo, S., ... Mikami, Y. (1993). Antiviral substances with systemic effects produced by basidiomycetes such as fomes fomentarius. Bioscience, Biotechnology and Biochemistry, 57(2), 278-282. doi:10.1271/bbb.57.278. Ara, I., Bukhari, N. A., Aref, N., Shinwari, M. M., & Bakir, M. (2012). Antiviral activities of streptomycetes against tobacco mosaic virus (tmv) in Datura plant: Evaluation of different organic compounds in their metabolites. African Journal of Biotechnology, 11(8), 2130-2138. doi:10.5897/AJB11.3388. Arguelles-Arias, A., Ongena, M., Halimi, B., Lara, Y., Brans, A., ... Fickers, P. (2009). Bacillus amyloliquefaciens GA1 as a source of potent antibiotics and other secondary metabolites for biocontrol of plant pathogens. Microbial Cell Factories, 8, 63. doi:10.1186/1475-2859-8-63. Arnold, A. E., Maynard, Z., Gilbert, G. S., Coley, P. D., & Kursar, T. A. (2000). Are tropical fungal endophytes hyperdiverse? Ecology Letters, 3(4), 267- 274. doi:10.1046/j.1461-0248.2000.00159.x. Arya, S., & Parashar, R. (2002). Biological control of cotton bacterial blight with phylloplane bacterial antagonists. Troical Agriculture, 79(1), 51-55. Ashwini, N., & Srividya, S. (2014). Potentiality of Bacillus subtilis as biocontrol agent for management of anthracnose disease of chilli caused by Colletotrichum gloeosporioides OGC1. Biotechnology, 4(2), 127-136. doi:10.1007/s13205-013-0134-4. Atlas, R. M., & Bartha, R. (2002). Ecología microbiana y microbiología ambiental. Madrid, España: PearsonAddison Wesley. Audy, P., Palukaitis, P., Slack, S. A., & Zaitlin, M. (1994). Replicase-mediated resistance to potato virus Y in transgenic tobacco plants. Molecular Plant Microbe Interactions, 7(1), 15-15. doi:10.1094/MPMI-7-0015. Autoridad Europea de Seguridad Alimentaria (efsa). (2004a). Ampelomyces quisqualis 4205/VI/98. Recuperado de http://ec.europa.eu/food/plant/pesticides/ eu-pesticides-databasepublic/?event=activesubstance. detail&language=EN&selectedID=959. Autoridad Europea de Seguridad Alimentaria (efsa). (2004b). Gliocladium catenulatum SANCO/103 83/2004. Recuperado de http://ec.europa.eu/food/ plant/pesticides/eu-pesticides-database/public/ ?event=activesubstance.detail&language=EN&selec tedID=1435. Autoridad Europea de Seguridad Alimentaria (efsa). (2006). Bacillus subtilis SANCO/10184/2003. Recuperado de http://ec.europa.eu/food/plant/ pesticides/eu-pesticides-database/public/?event =activesubstance.detail&language=EN&selected ID=986. Autoridad Europea de Seguridad Alimentaria (efsa). (2013a). Candida oleophila strain O SANCO /10395/2013. Recuperado de http://ec.europa. eu/food/plant/pesticides/eu-pesticides-database/ public/?event=activesubstance.detail&language=E N&selectedID=1074. Autoridad Europea de Seguridad Alimentaria (efsa). (2013b). Pythium oligandrum M1 SANCO/1864 /08. Recuperado de http://ec.europa.eu/food/ plant/pesticides/eu-pesticides-database/public/ ?event=activesubstance.detail&language=EN&selec tedID=1810. Autoridad Europea de Seguridad Alimentaria (efsa). (2014a). Bacillus amyloliquefaciens subsp. Plantarum strain D747. SANCO/11391/2014. Recuperado de http://ec.europa.eu/food/plant/pesticides/eu-pes ticides-database/public/?event=activesubstance.det ail&language=EN&selectedID=2252. Autoridad Europea de Seguridad Alimentaria (efsa). (2014b). Bacillus pumilus QST 2808 SANCO/ 12800/2013. Recuperado de http://ec.europa.eu/ food/plant/pesticides/eu-pesticides-database/ public/?event=activesubstance.detail&language=E N&selectedID=2253. Autoridad Europea de Seguridad Alimentaria (efsa). (2014c). Streptomyces K61 (formerly Streptomyces griseoviridis) SANCO/1865/08. Recuperado de http: //ec.europa.eu/food/plant/pesticides/eu-pesticides -database/public/?event=activesubstance.detail&lan guage=EN&selectedID=1895. Autoridad Europea de Seguridad Alimentaria (efsa). (2014d). Streptomyces lydicus strain WYEC 108 SANCO/11427/2014. Recuperado de http://ec. europa.eu/food/plant/pesticides/eu-pesticides-data base/public/?event=activesubstance.detail&languag e=EN&selectedID=2256. Autoridad Europea de Seguridad Alimentaria (efsa). (2014e). Trichoderma asperellum (formerly T. harzianum) ICC012 SANCO/1842/08. Recuperado de http:// ec.europa.eu/food/plant/pesticides/eu-pesticidesdatabase/public/?event=activesubstance.detail&lan guage=EN&selectedID=1979. Autoridad Europea de Seguridad Alimentaria (efsa). (2014f ). Trichoderma atroviride IMI 206040 (formerly T. harzianum imi 206040) SANCO/1866/08. Recuperado de http://ec.europa.eu/food/plant/pesticides/eu-pesti cides-database/public/?event=activesubstance.detail& language=EN&selectedID=1980. Autoridad Europea de Seguridad Alimentaria (efsa). (2014g). Trichoderma gamsii ICC080, Trichoderma asperellum T25 and TV1, formerly Trichoderma viride strain ICC080, strain T-25 and strain TV1 SANCO/1868/08. Recuperado de http://ec.europa. eu/food/plant/pesticides/eu-pesticides-database/ public/?event=activesubstance.detail&language=E N&selectedID=1982. Autoridad Europea de Seguridad Alimentaria (efsa). (2014h). Trichoderma polysporum imi 206039 SANCO /1867/08. Recuperado de http://ec.europa.eu/ food/plant/pesticides/eu-pesticides-database/ public/?event=activesubstance.detail&language=E N&selectedID=1984. Autoridad Europea de Seguridad Alimentaria (efsa). (2015). European Food Safety Authority. Conclusion on the peer review of the pesticide risk assessment of the active substance Saccharomyces cerevisiae LAS02. EFSA Journal, 13(12), 4322-4329 doi:10.2903/j. efsa.2015.4322. Autoridad Europea de Seguridad Alimentaria (efsa). (2016a). Bacillus amyloliquefaciens strain mbi 600 SANTE/10008/2016. Recuperado de http:// ec.europa.eu/food/plant/pesticides/eu-pesticidesdatabase/public/?event=activesubstance.detail&lan guage=EN&selectedID=2325. Autoridad Europea de Seguridad Alimentaria (efsa). (2016b). Pseudomonas sp. strain DSMZ 13134 SANCO/11455/2013. Recuperado de http:// ec.europa.eu/food/plant/pesticides/eu-pesticidesdatabase/public/?event=activesubstance.detail&lan guage=EN&selectedID=1787. Autoridad Europea de Seguridad Alimentaria (efsa). (2017a). Bacillus amyloliquefaciens strain FZB24 SANTE/12037/2016. Recuperado de http:// ec.europa.eu/food/plant/pesticides/eu-pesticidesdatabase/public/?event=activesubstance.detail&lan guage=EN&selectedID=2324. Autoridad Europea de Seguridad Alimentaria (efsa). (2017b). Healt and food safety. Recuperado de http://ec.europa.eu/food/plant/pesticides/eupesticides-database/public/?event=activesubstance. selection&language=EN. Avelino, J., Cristancho, M., Georgiou, S., Imbach, P., Aguilar, L., Bornemann, G., ... Morales, C. (2015). The coffee rust crises in Colombia and Central America (2008-2013): impacts, plausible causes and proposed solutions. Food Security, 7(2), 303-321. doi:10.1007/s12571-015-0446-9. Avis, T. J., & Bélanger, R. R. (2002). Mechanisms and means of detection of biocontrol activity of Pseudozyma yeasts against plant-pathogenic fungi. FEMS Yeast Research, 2(1), 5-8. doi:10.1111/j.1567-1364.2002. tb00062.x. Avis, T. J., Caron, S. J., Boekhout, T., Hamelin, R. C., & Bélanger, R. R. (2001). Molecular and physiological analysis of the powdery mildew antagonist Pseudozyma flocculosa and related fungi. Phytopathology, 91(3), 249-254. doi:10.1094/PHYTO.2001.91.3.249. Baker, C. J., Stavely, J. R., & Mock, N. (1985). Biocontrol of bean rust by Bacillus subtilis under field conditions. Plant Disease, 69(9), 770-772. Baker, K. F. (1987). Evolving concepts of biological control of plant pathogens. Annual Review of Phytopathology, 25, 67-85. doi:10.1146/annurev. py.25.090187.000435. Barbieri, L., Battelli, M. G., & Stirpe, F. (1993). Ribosomeinactivating proteins from plants. Biochimica et Biophysica Acta, 1154(3-4), 237-282. doi:10.1016/ 0304-4157(93)90002-6. Beachy, R. N. (1999). Coat-protein-mediated resistance to tobacco mosaic virus: discovery mechanisms and exploitation. Philosophical Transactions of the Royal Society B: Biological Sciences, 354(1383), 659-664. doi:10.1098/rstb.1999.0418. Beattie, G. A., & Lindow, S. E. (1995). The secret life of foliar bacterial pathogens on leaves. Annual Review of Phytopathology, 33, 145-172. doi:10.1146/annurev. py.33.090195.001045. Beever, R. E., & Weeds, P. L. (2004). Taxonomy and genetic variation of botrytis and Botryotinia. En Y. Elad, B. Williamson, P. Tudzynski, & N. Delen (Eds.), Botrytis: Biology, Pathology and Control (pp. 29-52). Dordrecht, Holanda: Springer. doi:10.1007/978-1- 4020-2626-3_3. Beever, R. E., & Weeds, P. L. (2004). Taxonomy and genetic variation of botrytis and Botryotinia. En Y. Elad, B. Williamson, P. Tudzynski, & N. Delen (Eds.), Botrytis: Biology, Pathology and Control (pp. 29-52). Dordrecht, Holanda: Springer. doi:10.1007/978-1- 4020-2626-3_3. Begerow, D., Bauer, R., & Boekhout, T. (2000). Phylogenetic placements of ustilaginomycetous anamorphs as deduced from nuclear LSU rDNA sequences. Mycology Research, 104(1), 53-60. doi:10.1017/S0953756299001161. Bélanger, R. R., Dufour, N., Caron, J., & Benhamou, N. (1995). Chronological events associated with the antagonistic properties of Trichoderma harzianum against Botrytis cinerea: Indirect evidence for sequential role of antibiosis and parasitism. Biocontrol Science and Technology, 5(1), 41-54. doi:10.1080/ 09583159550040006. Belsare, S. W., Moniz, L., & Deo, V. B. (1980). The hyperparasite Ampelomyces quisqualis Ces. from Maharashtra State, India. Biovigyanam, 6(2), 173-176. Beltrán-Acosta, C. R., & Cotes-Prado, M. A. (2009). Promoción de crecimiento en endurecimiento de plántulas de mora producidas in vitro (efecto de la aplicación de Trichoderma koningiopsis Th003). En L. S. Barrero-Meneses (Ed.), Caracterización, evaluación y producción de material limpio de mora con alto valor agregado (pp. 57-63). Bogotá, Colombia: Corporación Colombiana de Investigación Agropecuaria (Corpoica). Bhatt, D. D., & Vaughan, E. K. (1962). Preliminary investigations on biological control of grey mould (Botrytis cinerea) of strawberries. Plant Disease Reporter, 46, 342-345. Bilu, A., Dag, A., Elad, Y., & Shafir, S. (2004). Honey bee dispersal of biocontrol agents: An evaluation of dispensing devices. Biocontrol Science Technology, 14(6), 607-617. doi:10.1080/095831504100016 82340. Bochow, H., El-Sayed, S. F., Junge, H., Stavropoulou, A., & Schmiedeknecht, G. (2001). Use of Bacillus subtilis as biocontrol agent. IV. Salt-stress tolerance induction by Bacillus subtilis FZB24 seed treatment in tropical vegetable field crops, and its mode of action. Journal of Plant Diseases and Protection, 108(1), 21-30. Boddy, L. (2016). Pathogens of Autotrophs. En S. C. Watkinson, N. Money, & L. Boddy (Ed.), The Fungi (pp. 245-292). Boston, EE. UU.: Academic Press. doi:10.1016/B978-0-12-382034-1.00008-6. Boekhout, T. (1995). Pseudozyma bandoni emend. Boekhout, a genus for yeast-like anamorphs of ustilaginales. The Journal of General and Applied Microbiology, 41(4), 359-366. doi:10.2323/jgam. 41.359. Boland, G. J., & Hunter, J. E. (1988). Influence of Alternaria alternata and Cladosporium cladosporioides on white mold of bean caused by Sclerotinia sclerotiorum. Canadian Journal of Plant Pathology, 10(2), 172-177. doi:10.1080/07060668809501750. Borriss, R. (2011). Use of plant-associated Bacillus strains as biofertilizers and biocontrol agents in agriculture. En: D. K. Maheshwari (Ed.), Bacteria in agrobiology: Plant growth responses (pp. 41-76). Berlin, Alemania: Springer. doi:10.1007/978-3-642-20 332-9_3. Bradbury, J. F. (1986). Guide to plant pathogenic bacteria. Minnesota, EE. UU: CAB International, University of Minnesota. Brederode, F. T., Taschner, P. E. M., Posthumus, E., & Bol, J. F. (1995). Replicase-mediated resistance to Alfalfa Mosaic Virus. Virology, 207(2), 467-474. doi:10.1006/viro.1995.1106. Brent, K. J., & Hollomon, D. W. (2007). Fungicide resistance: the assessment of risk. Bruselas, Belgica: Global crop protection federation Brussels. Brigneti, G., Voinnet, O., Li, W. X., Ji, L.H., Ding, S. W., & Baulcombe, D. C. (1998). Retracted: Viral pathogenicity determinants are suppressors of transgene silencing in Nicotiana benthamiana. The EMBO Journal, 17(22), 6739-6746. doi:10.1093/ emboj/17.22.6739. Brunner, K., Zeilinger, S., Ciliento, R., Woo, S. L., Lorito, M., Kubicek, C. P., & Mach, R. L. (2005). Improvement of the fungal biocontrol agent Trichoderma atroviride to enhance both antagonism and induction of plant systemic disease resistance. Applied and Environmental Microbiology, 71(7), 3959-3965. doi:10.1128/aem.71.7.3959- 3965.2005. Buck, J. W., & Andrews, J. H. (1999). Attachment of the yeast Rhodosporidium toruloides is mediated by adhesives localized at sites of bud cell development. Applied and Environmental Microbiology, 65(2), 465-471. Buck, J. W., & Burpee, L. L. (2002). The effects of fungicides on the phylloplane yeast populations of creeping bentgrass. Canadian Journal of Microbiology, 48(6), 522-529. doi:10.1139/w02-050. Caffi, T., Legler, S. E., Bugiani, R., & Rossi, V. (2013). Combining sanitation and disease modelling for control of grapevine powdery mildew. European Journal of Plant Pathology, 135(4), 817-829. doi:10.1007/s10658-012-0124-0. Calvente, V., Benuzzi, D., & de Tosetti, M. I. S. (1999). Antagonistic action of siderophores from Rhodotorula glutinis upon the postharvest pathogen Penicillium expansum. International Biodeterioration and Biodegradation, 43(4), 167-172. doi:10.1016/ S0964-8305(99)00046-3. Campbell, R. (1989). Biological control of microbial plant pathogens. Cambridge, Reino Unido: Cambridge University. doi.10.1017/CBO9780511608612. Cannon, P. F., Damm, U., Johnston, P. R., & Weir, B. S. (2012). Colletotrichum – current status and future directions. Studies in Mycology, 73, 181-213. doi:10.3114/sim0014. Cano, R., & Borucki, M. K. (1995). Revival and identification of bacterial spores in 25- to 40- million-year-old dominican amber. Science, 268(5213), 1060-1064. Carisse, O., & Rolland, D. (2004). Effect of timing of application of the biological control agent microsphaeropsis ochracea on the production and ejection pattern of ascospores by Venturia inaequalis. Phytopathology, 94(12), 1305-1314. doi:10.1094/ PHYTO.2004.94.12.1305. Carisse, O., Willman-Desbiens, W., Toussaint, V., & Otis, T. (1998). Preventing Black Rot. Quebec, Canadá: Agriculture and Agri-Food Canada. Carrer-Filho, R., Romeiro, R. S., & Garcia, F. A. O. (2008). Biocontrole de doenças de parte aérea do tomateiro por Nocardioides thermolilacinus. Tropical Plant Pathology, 33(6), 457-460. doi:10.1590/ S1982-56762008000600010. Collins, D. P., & Jacobsen, B. J. (2003). Optimizing a Bacillus subtilis isolate for biological control of sugar beet cercospora leaf spot. Biological Control, 26(2), 153-161. doi:10.1016/S1049-9644(02)00132-9. Comité Nacional Sistema Producto Mango (Conaspromango). (2012). Plan rector nacional de sistema producto mango. Colima, México: Comite Nacional del Sistema Producto Mango. Cook, R. J. (1988). Biological control and holistic plant-health care in agriculture. American Journal of Alternative Agriculture, 3(2-3), 51-62. doi:10.1017/ S0889189300002186. Cooper, B., Lapidot, M., Heick, J. A., Dodds, J. A., & Beachy, R. N. (1995). Multivirus resistance in transgenic tobacco plants expressing a dysfunctional movement protein of tobacco mosaic virus. Virology, 206, 307-313. Cotes, A. M. (2001). Biocontrol of fungal plant pathogens - from the discovery of potential biocontrol agents to the implementation of formulated products. IOBC Bulletin, 24(3), 43-47. Cotes, A. M., Moreno, C. A., Molano, L. F., Villamizar, L., & Piedrahita, W. (2007). Prospects for integrated management of Sclerotinia sclerotiorum in lettuce. IOBC/WPRS Bulletin, 30(6), 391-394. Cotes, A. M., Zapata, J., Díaz, A., García, M., Medina, C., ... Uribe, D. (2011). Selección de levaduras filosféricas con potencial para el control biológico de Botrytis cinerea. Fitopatología Colombiana, 35(2), 51-56. Cuéllar-Quintero, A., Álvarez-Cabrera, E., & CastañoZapata, J. (2011). Evaluación de resistencia de genotipos de plátano y banano a la Sigatoka negra. Revista Facultad Nacional de Agronomía Medellín, 64(1), 5853-5865. Cullen, D., Berbee, F. M., & Andrews, J. H. (1984). Chaetomium globosum antagonizes the apple scab pathogen, Venturia inaequalis, under field conditions. Canadian Journal of Botany, 62(9), 1814-1818. doi:10.1139/b84-245. Cuppels, D. A., Higham, J., & Traquair, J. A. (2013). Efficacy of selected streptomycetes and a streptomycete+pseudomonad combination in the management of selected bacterial and fungal diseases of field tomatoes. Biological Control, 67, 361-372. doi:10.1016/j.biocontrol.2013.09.005. Chaparro, A. P., Carvajal, L. H., & Orduz, S. (2011). Fungicide tolerance of Trichoderma asperelloides and T. harzianum strains. Agricultural sciences, 2(3), 301- 307. doi:10.4236/as.2011.23040. Chen, X. H., Koumoutsi, A., Scholz, R., Schneider, K., Vater, J., ... Borriss, R. (2009). Genome analysis of Bacillus amyloliquefaciens FZB42 reveals its potential for biocontrol of plant pathogens. Journal of Biotechnology, 140(1-2): 27-37. doi:10.1016/j. jbiotec.2008.10.011. Chet, I., Benhamou, N., & Haran, S. (1998). Mycoparasitism and lytic enzymes. En G. E. Harman, C. P. Kubicek (Eds.), Trichoderma and Gliocladium (pp. 153-171). Londres, Reino Unido: Taylor and Francis Ltd. Chitarra, G. S., Breeuwer, P., Nout, M. J. R., Van Aelst, A. C., ... Abee, T. (2003). An antifungal compound produced by Bacillus subtilis YM 10–20 inhibits germination of Penicillium roqueforti conidiospores. Journal Applied Microbiology, 94(2), 159-166. doi:10.1046/j.1365-2672.2003.01819.x. Daoust, R. A., & Hofstein, R. (1996). Ampelomyces quisqualis, a new biofungicide to control powdery mildew in grapes. En British Crop Protection Council (Ed.), Brighton Crop Protection Conference, Pest and Diseases (pp. 33-40). Farnham, Reino Unido: British Crop Protection Council. Dayarathne, M., Boonmee, S., Braun, U., Crous, P., Daranagama, D., ... Maharachchikumbura, S. (2016). Taxonomic utility of old names in current fungal classification and nomenclature: Conflicts, confusion & clarifications. Mycosphere, 7(11), 1622-1648. doi:10. 5943/mycosphere/7/11/2. De Jong, J. C., McCormack, B. J., Smirnoff, N., & Talbot, N. J. (1997). Glycerol generates turgor in rice blast. Nature, 389, 244. doi:10.1038/38418. De Meyer, G., Bigirimana, J., Elad, Y., & Höfte, M. (1998). Induced systemic resistance in Trichoderma harzianum T39 biocontrol of Botrytis cinerea. European Journal of Plant Pathology, 104(3), 279-286. doi:10. 1023/a:1008628806616. Dean, R., Van Kan, J. A., Pretorius, Z.A., HammondKosack, K.E., Di Pietro, A., Spanu, P.D., ... Ellis, J. (2012). The Top 10 fungal pathogens in molecular plant pathology. Molecular Plant Pathology, 13(4), 414-430. doi:10.1111/j.1364-3703.2011.00783.x. Défago, G., Berling, C. H., Burger, U., Haas, D., Kahr, G., ... Wüthrich, B. (1990). Suppression of black root rot of tobacco and other root diseases by strains of Pseudomonas fluorescens: potential applications and mechanisms. En D. Hornby (Ed.), Biological control of soil-borne plant pathogens (pp. 93-108). Wallingford, Reino Unido: CAB International. Dennis, C., & Webster, J. (1971). Antagonistic properties of species-groups of Trichoderma: II. Production of volatile antibiotics. Transactions of the British Mycological Society, 57(1), 41-IN44. doi:10.1016/S0007-1536(71)80078-5. Deom, C. M., Schubert, K. R., Wolf, S., Holt, C. A., Lucas, W. J., & Beachy, R. N. (1990). Molecular characterization and biological function of the movement protein of tobacco mosaic virus in transgenic plants. Proceedings of the National Academy of Sciences, 87(9), 3284-3288. Dewey, F. M., & Grant-Downton, R. (2016). Botrytis -Biology, Detection and Quantification. En S. Fillinger & Y., Elad (Eds.), Botrytis – the Fungus, the Pathogen and its Management in Agricultural Systems (pp. 17-34). Cham, Suiza: Springer International Publishing. Dickinson, C. H., & Preece, T. F. (1977). Microbiology of aerial plant surfaces. Londres, Inglaterra: Academic Press. doi:10.1002/jobm.19770170712. Ding, S. W., Li, W. X., & Symons, R. H. (1995). A novel naturally occurring hybrid gene encoded by a plant rna virus facilitates long distance virus movement. The EMBO Journal, 14(23), 5762-5772. Dodd, S. L., Lieckfeldt, E., & Samuels, G. J. (2003). Hypocrea atroviridis sp. nov., the teleomorph of Trichoderma atroviride. Mycologia, 95(1), 27-40. doi: 10.1080/15572536.2004.11833129. Doudoroff, M., & Palleroni, N. J. (1974). Genus I. Pseudomonas migula. En R. E. Buchanan & N. E. Gibbons (Eds.), Bergey’s manual of determinative bacteriology (pp. 217-243). Baltimore, EE. UU.: Williams & Wilkins. Droby, S., Wisniewski, M., Macarisin, D., & Wilson, C. (2009). Twenty years of postharvest biocontrol research: Is it time for a new paradigm? Postharvest Biology and Technology, 52(2), 137-145. doi:10.1016/j.postharvbio.2008.11.009. Druzhinina, I. S., Kopchinskiy, A. G., & Kubicek, C. P. (2006). The first 100 Trichoderma species characterized by molecular data. Mycoscience, 47, 55-64. doi:10.1007/S10267-006-0279-7. Duan, C. G., Wang, C. H., & Guo, H. S. (2012). Application of rna silencing to plant disease resistance. Silence, 3, 5. doi:10.1186/1758-907X-3-5. Dubos, B. (1992). Biological control of Botrytis, State -of-the-art. En K. Verhoeff, N. Malathrakis, & B. Williamson (Eds.), Recent advances in Botrytis research (pp. 169-178). Wageningen, Holanda: Pudoc Scientific Publishers. Duggar, B. M., & Armstrong, J. K. (1925). The effect of treating the Virus of Tobacco Mosaic with the juices of various plants. Annals of the Missouri Botanical Garden, 12(4), 359-366. doi:10.2307/2394061. Edwards, S., & Seddon, B. (1992). Bacillus brevis as biocontrol agent against Botrytis cinerea on protected Chinese cabbage. En K. Verhoeff, N. Malathrakis, & B. Williamson (Eds.), Recent advances in Botrytis research (pp. 267-271). Wageningen, Holanda: Pudoc Scientific Publishers. Eichenlaub, R., & Gartemann, K. H. (2011). The Clavibacter michiganensis subspecies: Molecular investigation of gram-positive bacterial plant pathogens.Annual Review of Phytopathology, 49, 445- 464. doi:10.1146/annurev-phyto-072910-095258. Elad, Y. (1990). Reasons for the delay in development of biological control of foliar pathogens. Phytoparasitica, 18(2): 99-105. doi:10.1007/bf02981226. Elad, Y. (1994). Biological control of grape grey mould by Trichoderma harzianum. Crop Protection, 13(1), 35-38. doi:10.1016/0261-2194(94)90133-3. Elad, Y. (1995). Mycoparasitism. En K. Kohmoto, R. P. Singh, & U. S. Singh, (Eds.), Pathogenesis and host specificity in plant diseases: histopathological, biochemical, genetic and molecular basis (pp. 289-307). Oxford, Reino Unido: Elsevier Science Ltd. Elad, Y. (1996). Mechanisms involved in the biological control of Botrytis cinerea incited diseases. European Journal of Plant Pathology, 102(8), 719-732. doi:10.1007/bf01877146. Elad, Y. (2000a). Biological control of foliar pathogens by means of Trichoderma harzianum and potential modes of action. Crop Protection, 19(8), 709-714. doi:10.1016/S0261-2194(00)00094-6. Elad, Y. (2000b). Trichoderma harzianum T39 preparation for biocontrol of plant diseases-control of Botrytis cinerea, Sclerotinia sclerotiorum and Cladosporium fulvum. Biocontrol Science and Technology, 10(4), 499- 507. doi:10.1080/09583150050115089. Elad, Y. (2001). Trichodex: commercialization of Trichoderma harzianum T39 – a case study. Agrow report, biopesticides: Trends and opportunities. Richmond, Reino Unido: PJB Publications Ltd. Elad, Y. (2003). Biocontrol of foliar pathogens: mechanisms and application. Communications in Agricultural and Applied Biological Sciences, 68(4 pt. A), 17-24. Elad, Y., & Freeman, S. (2002). Biological control of fungal plant pathogens. En F. Kempken (Ed.), The Mycota, a comprehensive treatise on fungi as experimental systems for basic and applied research. Vol. 11 Agricultural Applications (pp. 93-109). Heidelberg, Alemania: Springer. Elad, Y., & Kapat, A. (1999). The role of Trichoderma harzianum protease in the biocontrol of Botrytis cinerea. European Journal of Plant Pathology, 105(2), 177-189. doi:10.1023/a:1008753629207. Elad, Y., Kirshner, B., Yehuda, N., & Sztejnberg, A. (1998). Management of powdery mildew and gray mold of cucumber by Trichoderma harzianum T39 and Ampelomyces quisqualis AQ10. BioControl, 43(2), 241-251. doi:10.1023/a:1009919417481. Elad, Y., Pertot, I., Cotes-Prado, A. M., & Stewart, A. (2016). Plant hosts of Botrytis spp. En S. Fillinger & Y. Elad, (Eds.), Botrytis – the fungus, the pathogen and its management in agricultural systems (pp. 413-486). Cham, Suiza: Springer International Publishing. doi:10.1007/978-3-319-23371-0_20. Elad, Y., & Shtienberg, D. (1995). Botrytis cinerea in greenhouse vegetables: chemical, cultural, physiological and biological controls and their integration. Integrated Pest Management Review, 1(1), 15-29. doi:10.1007/BF00140331. Elad, Y., & Shtienberg, D. (1997). Integrated management of foliar diseases in greenhouse vegetables according to principles of a decision support system – Greenman. IOBC WPRS Bulletin, 20(4), 71-76. Elad, Y., & Stewart, A. (2004). Microbial control of Botrytis spp. En: Y. Elad (Ed.), Botrytis: Biology, Pathology and Control (pp. 223-240). Norwell, EE. UU.: Kluwer Academic Publishers. Elad, Y., & Zimand, G. (1991). Experience in integrated chemicalbiological control of grey mould (Botrytis cinerea). WPRS Bulletin, 14, 195-199. Elad, Y., & Zimand, G. (1992). Integration of biological and chemical control for grey mould. En K. Verhoeff, N. Malathrakis, & B. Williamson (Eds.), Recent advances in Botrytis research (pp. 272-276). Wageningen, Holanda: Pudoc Scientific Publishers. Elad, Y., Zimand, G., Zaqs, Y., Zuriel, S., & Chet, I. (1993a). Biological and integrated control of cucumber grey mould (Botrytis cinerea) under commercial greenhouse condition. Plant Pathology, 42(3), 324-332. doi:10.1111/j.1365-3059.1993. tb01508.x. Elad, Y., Zimand, G., Zaqs, Y., Zuriel, S., & Chet, I. (1993b). Use of Trichoderma harzianum in combination or alternation with fungicides to control cucumber grey mould (Botrytis cinerea) under commercial greenhouse conditions. Plant Pathology, 42(3), 324-332. doi10.1111/j.1365-3059.1993. tb01508.x. Elad, Y., Köhl, J., & Fokkema, N. J. (1994a). Control of infection and sporulation of Botrytis cinerea on bean and tomato by saprophytic bacteria and fungi. European Journal Plant Pathology, 100(5), 315-336. doi:10.1007/bf01876443. Elad, Y., Köhl, J., & Fokkema, N. J. (1994b). Control of infection and sporulation of Botrytis cinerea on bean and tomato by saprophytic yeasts. Phytopathology, 84(10), 1193-1200. doi:10.1094/Phyto-84-1193. Elmer, P. A. G., & Reglinski, T. (2006). Biosuppression of Botrytis cinerea in grapes. Plant Pathology, 55(2), 155-177. doi:10.1111/j.1365-3059.2006.01348.x. Errampalli, D., & Brubacher, N. R. (2006). Biological and integrated control of postharvest blue mold (Penicillium expansum) of apples by Pseudomonas syringae and cyprodinil. Biological Control, 36(1), 49- 56. doi:10.1016/j.biocontrol.2005.07.011. Etchegaray, A., de Castro-Bueno, C., de Melo, I. S., Tsai, S. M., de Fátima-Fiore, M., ... Teschke, O., 2008. Effect of a highly concentrated lipopeptide extract of Bacillus subtilis on fungal and bacterial cells. Archives of Microbiology, 190(6), 611-622. doi:10.1007/ s00203-008-0409-z. Farré-Armengol, G., Filella, I., Llusia, J., & Peñuelas, J. (2016). Bidirectional interaction between phyllospheric microbiotas and plant volatile emissions. Trends Plant Science, 21(10), 854-860. doi:10.1016/j.tplants.2016.06.005. Fenner, K., Canonica, S., Wackett, L. P., & Elsner, M. (2013). Evaluating pesticide degradation in the environment: Blind spots and emerging opportunities. Science, 341(6147), 752-758. doi:10. 1126/science.1236281. Fernández, N. V., Mestre, M. C., Marchelli, P., & Fontenla, S. B. (2012). Yeast and yeast-like fungi associated with dry indehiscent fruits of Nothofagus nervosa in Patagonia, Argentina. FEMS Microbiology Ecology, 80(1), 179-192. doi:10.1111/j.1574-6941. 2011.01287.x. Fernando, W. G. D., Ramarathnam, R., Krishnamoorthy, A. S., & Savchuk, S. C. (2005). Identification and use of potential bacterial organic antifungal volatiles in biocontrol. Soil Biology and Biochemestry, 37(5), 955-964. doi:10.1016/j.soilbio.2004.10.021. Filonow, A. B., Vishniac, H. S., Anderson, J. A., & Janisiewicz, W. J. (1996). Biological control of Botrytis cinerea in apple by yeasts from various habitats and their putative mechanisms of antagonism. Biological Control, 7(2), 212-220. doi:10.1006/ bcon.1996.0086. Fincheira, P., Parra, L., Mutis, A., Parada, M., & Quiroz, A. (2017). Volatiles emitted by Bacillus sp. BCT9 act as growth modulating agents on Lactuca sativa seedlings. Microbiologyical Research, 203, 47-56. doi:10.1016/j.micres.2017.06.007. Fitch, M. M. M., Manshardt, R. M., Gonsalves, D., Slightom, J. L., & Sanford, J. C. (1992). Virus resistant papaya plants derived from tissues bombarded with the coat protein gene of papaya ringspot virus. Bio/Technology, 10, 1466-1472. doi.10.1038/nbt1192-1466 Flint, M. L. (1998). Pests of the garden and small farm: a grower's guide to using less pesticide. Oakland, EE. UU.: University of California, Agriculture and Natural Resources. Fokkema, N. J. (1993). Opportunities and problems of control of foliar pathogens with micro-organisms. Pest Management Science, 37(4), 411-416. doi:10.1002/ ps.2780370416. Fravel, D. (1999). Commercial biocontrol products for use against soilborne crop diseases. Recuperado de http://www.barc.usda.gov/psi/bpdl/bpdlprod/ bioprod.html. Fravel, D. R. (2005). Commercialization and implementation of biocontrol. Annual Review of Phytopathology, 43, 337-359. doi:10.1146/annurev. phyto.43.032904.092924. Freeman, S., Minz, D., Kolesnik, I., Barbul, O., Zveibil, A., Maymon, M., ... Elad, Y. (2004). Trichoderma biocontrol of Colletotrichum acutatum and Botrytis cinerea and survival in strawberry. European Journal of Plant Pathology, 110(4), 361-370. doi:10.1023/ B:EJPP.0000021057.93305.d9. Fuchs, M., & Gonsalves, D. (1995). Resistance of transgenic hybrid squash zw-20 expressing the coat protein genes of zucchini yellow mosaic virus and watermelon mosaic virus 2 to mixed infections by both potyviruses. Bio/Technology, 13, 1466-1473. doi:10.1038/nbt1295-1466. Fujiwara, M., Kanamori, T., Ohki, S. T., & Osaki, T. (2001). Purification and partial characterization of figaren, an RNase-like novel antiviral protein from Cucumis figarei. Journal of General Plant Pathology, 67(2), 152-158. doi:10.1007/PL00013002. Fulcher, M. R., Cummings, J. A., & Bergstrom, G. C. (2017). First report of an Alternaria leaf spot of wheat in the U.S.A. Plant Disease, 101(7), 1326- 1326. doi:10.1094/PDIS-10-16-1541-PDN. Gafni, A., Calderon, C. E., Harris, R., Buxdorf, K., DafaBerger, A., ... Levy, M. (2015). Biological control of the cucurbit powdery mildew pathogen Podosphaera xanthii by means of the epiphytic fungus Pseudozyma aphidis and parasitism as a mode of action. Frontiers in Plant Science, 6, 132. doi:10.3389/fpls.2015.00132. Galindo, E., Serrano-Carreón, L., Gutiérrez, C. R., Balderas-Ruíz, K. A., Muñoz-Celaya, A. L., ... ArroyoColín, J. (2015). Desarrollo histórico y los retos tecnológicos y legales para comercializar Fungifree AB®, el primer biofungicida 100% mexicano. tip. Revista Especializada en Ciencias Químico-Biológicas, 18(1), 52-60. Gao, Y.-R., Han, Y.-T., Zhao, F.-L., Li, Y.-J., Cheng, Y., ... Wen, Y.-Q. (2016). Identification and utilization of a new Erysiphe necator isolate NAFU1 to quickly evaluate powdery mildew resistance in wild Chinese grapevine species using detached leaves. Plant Physiology and Biochemestry, 98, 12-24. doi:10.1016/j. plaphy.2015.11.003. Garibaldi, L. A., Bartomeus, I., Bommarco, R., Klein, A. M., Cunningham, S. A., ... Woyciechowski, M. (2015). Editor's choice: Review: Trait matching of flower visitors and crops predicts fruit set better than trait diversity. Journal of Applied Ecology, 52(6), 1436-1444. doi:10.1111/1365-2664.12530. Garry, G., Forbes, G., Salas, A., Santa-Cruz, M., Pérez, W., & Nelson, R. J. (2005). Genetic diversity and host differentiation among isolates of Phytophthora infestans from cultivated potato and wild solanaceous hosts in Peru. Plant Pathology, 54(6), 740-748. doi:10.1111/j.1365-3059.2005.01250.x. Ghabrial, S. A., & Suzuki, N. (2009). Viruses of plant pathogenic fungi. Annual Review of Phytopathology, 47, 353-384. doi:10.1146/annurevphyto-080508-081932. Goldman, G. H., Temmerman, W., Jacobs, D., Contreras, R., Van Montagu, M., & Herrera-Estrella, A. (1993). A nucleotide substitution in one of the β-tubulin genes of Trichoderma viride confers resistance to the antimitotic drug methyl benzimidazole-2-ylcarbamate. Molecular and General Genetics, 240(1), 73-80. doi:10.1007/bf00276886. Golemboski, D. B., Lomonossoff, G. P., & Zaitlin, M. (1990). Plants transformed with a tobacco mosaic virus nonstructural gene sequence are resistant to the virus. Proceedings of the National Academy of Sciences, 87(16), 6311-6315. doi:10.1073/pnas.87.16.6311. Gómez-Expósito, R., Postma, J., Raaijmakers, J. M., & De Bruijn, I. (2015). Diversity and activity of Lysobacter species from disease suppressive soils. Frontiers in Microbiology, 6, 1243. doi:10.3389/ fmicb.2015.01243. Goodwin, S. B., Cohen, B. A., & Fry, W. E. (1994). Pan global distribution of a single clonal lineage of the Irish potato famine fungus. Proceedings of the National Academy of Sciences of the United States of America, 91(24), 11591-11595. Grant, T. J., & Costa, A. S. (1951). A mild strain of the tristeza virus of citrus. Phytopathology, 41, 114-122. Guamán-Burneo, C., & Carvajal-Barriga, J. (2009). Caracterización e identificación de aislados de levaduras carotenogénicas de varias zonas naturales del Ecuador. Universitas Scientiarum, 14(2-3), 11. doi:10.11144/javeriana.SC14-2-3.ceid. Guetsky, R., Shtienberg, D., Elad, Y., & Dinoor, A. (2001). Combining biocontrol agents to reduce the variability of biological control. Phytopathology, 91(7), 621-627. doi:10.1094/PHYTO.2001.91.7.621. Guetskyl, R., Shtienberg, D., Dinoor, A., & Elad, Y. (2002). Establishment, survival and activity of the biocontrol agents Pichia guilliermondii and Bacillus mycoides applied as a mixture on strawberry plants. Biocontrol Science and Technology, 12(6), 705-714. do i:10.1080/0958315021000039888. Gupta, B. M., Chandra, K., Verma, H. N., & Verma, G. S. (1974). Induction of antiviral resistance in Nicotiana glutinosa plants by treatment with Trichothecium polysaccharide and its reversal by actinomycin d. Journal of General Virology, 24(1), 211-213. doi:10.1099/0022-1317-24-1-211. Hahn, M. (2014). The rising threat of fungicide resistance in plant pathogenic fungi: Botrytis as a case study. Journal of Chemical Biology, 7(4), 133-141. doi:10.1007/s12154-014-0113-1. Hajlaoui, M. R., & Bélanger, R. R. (1991). Comparative effects of temperature and humidity on the activity of three potential antagonists of rose powdery mildew. Netherlands Journal of Plant Pathology, 97(4), 203- 208. doi:10.1007/bf01989818. Hajlaoui, M. R., & Bélanger, R. R. (1993). Antagonism of the yeast-like phylloplane fungus Sporothrix flocculosa against Erysiphe graminis var tritici. Biocontrol Science and Technology, 3(4), 427-434. doi:10.1080/ 09583159309355297 Hammami, W., Castro, C. Q., Rémus-Borel, W., Labbé, C., & Bélanger, R. R. (2011). Ecological basis of the interaction between Pseudozyma flocculosa and powdery mildew fungi. Applied and Environmental Microbiology, 77(3), 926-933. doi:10.1128/aem. 01255-10. Harel, Y. M., Mehari, Z. H., Rav-David, D., & Elad, Y. (2014). Induced systemic resistance against gray mold in tomato (Solanum lycopersicum) by benzothiadiazole and Trichoderma harzianum T39. Phytopathology, 104(2), 150-157. doi:10.1094/ PHYTO-02-13-0043-R. Harman, G. E. (2000). Myths and dogmas of biocontrol changes in perceptions derived from research on Trichoderma harzianum T-22. Plant Disase, 84(4), 377-393. doi:10.1094/PDIS.2000.84.4.377. Harman, G. E., Howell, C. R., Viterbo, A., Chet, I., & Lorito, M. (2004). Trichoderma species — opportunistic, avirulent plant symbionts. Nature Reviews Microbiology, 2, 43-56. doi:10.1038/nrmicro797. Hashioka, Y., & Nakai, Y. (1980). Ultrastructure of pycnidial development and mycoparasitism of Ampelomyces quisqualis parasitic on Erysiphales. Transactions of the Mycological Society of Japan, 21(3), 329-338. Heath, M. C., Howard, R. J., Valent, B., & Chumley, F. G. (1992). Ultrastructural interactions of one strain of Magnaporthe grisea with goosegrass and weeping lovegrass. Canadian Journal of Botany, 70(4), 779- 787. doi:10.1139/b92-099. Hellwald, K.-H., & Palukaitis, P. (1995). Viral rna as a potential target for two independent mechanisms of replicase-mediated resistance against cucumber mosaic virus. Cell, 83(6), 937-946. doi:10.1016/0092-8674(95)90209-0. Hemenway, C., Fang, R.-X., Kaniewski, W. K., Chua, N.-H., & Tumer, N. E. (1988). Analysis of the mechanism of protection in transgenic plants expressing the potato virus X coat protein or its antisense rna. The EMBO Journal, 7(5), 1273-1280. Heydari, A., & Pessarakli, M. (2010). A review on biological control of fungal plant pathogens using microbial antagonists. Journal of Biological Sciences, 10(4), 273-290. doi:10.3923/jbs.2010. 273.290. Heye, C. C. (1982). Biological control of the perfect stage of the apple scab pathogen, Venturia inaequalis (Cke.) Wint. Madison, Wisconsin, EE. UU.: University of Wisconsin. Hijwegen, T., & Buchenauer, H. (1984). Isolation and identification of hyperparasitic fungi associated with Erysiphaceae. Netherlands Journal of Plant Pathology, 90(2), 79-83. doi:10.1007/bf01999956. Hiltunen, L. H., Ojanpera, T., Kortemaa, H., Richter, E., Lehtonen, M. J., & Valkonen, J. P. T. (2009). Interactions and biocontrol of pathogenic Streptomyces strains cooccurring in potato scab lesions. Journal of Applied Microbiology, 106(1), 199-212. Hino, I., & Kato, H. (1929). Cicinnoboli parasitic on mildew fungi. Bulletin of the Miyazaki Collegium of Agriculture and Forestry, 1, 91-100. Hiradate, S., Yoshida, S., Sugie, H., Yada, H., & Fujii, Y. (2002). Mulberry anthracnose antagonists (iturins) produced by Bacillus amyloliquefaciens RC-2. Phytochemistry, 61(6), 693-698. doi:10.1016/S0031- 9422(02)00365-5. Hirai, T., Hiashima, A., Itoh, T., Takahashi, T., Shimomura, T., & Hayashi, H. (1966). Inhibitory effect of blasticidin S on Tobacco Mosaic Virus multiplication. Phytopathology, 56(4), 1236-1239. doi:10.1016/0042-6822(68)90195-5. Hirano, S. S., & Upper, C. D. (2000). Bacteria in the leaf ecosystem with emphasis on Pseudomonas syringae—a pathogen, ice nucleus, and epiphyte. Microbiology Molecular Biology Reviews, 64(3), 624- 653. doi:10.1128/mmbr.64.3.624-653.2000. Hislop, E. C., & Cox, T. W. (1969). Effects of captan on the non-parasitic microflora of apple leaves. Transactions of the British mycological society, 52(2), 223-235. doi:10.1016/S0007-1536(69)80035-5. Hjeljord, L., & Tronsmo, A. (1998). Trichoderma and Gliocladium in biological control: an overview. En G. E. Harman & C. P. Kubice (Eds.), Trichoderma & Gliocladium: Enzymes, biological control and commercial applications (pp. 131-151). Londres, Reino Unido: Taylor & Francis Ltd. Hofstein, R., Daoust, R. A., & Aeschlimann, J. P. (1996). Constraints to the development of biofungicides: The example of “AQ10”, a new product for controlling powdery mildews. Entomophaga, 41(3-4), 455-460. doi:10.1007/bf02765797. Hogenhout, S. A., Ammar, E. D., Whitfield, A. E., & Redinbaugh, M. G. (2008). Insect vector interactions with persistently transmitted viruses. Annual Review of Phytopathology, 46, 327-359. doi:10.1146/ annurev.phyto.022508.092135. Hokama, N., Kawano, S., & Tokashiki, I. (1993). Effectiveness of cross protection by a mild strain of Zucchini Yellow Mosaic Virus for Mosaic disease of pumpukin ( Japanese). Annals of Phytopathology of Society Japan, 59, 323. Holmes, F. O. (1934). A masked strain of tobaccomosaic virus. Phytopathology, 24, 845-873. Holtz, G., Coertze, S., & Williamson, B. (2007). The ecology of Botrytis on plant surfaces. En: Y. Elad, B. Williamson, P. Tudzynski, & N. Delen (Eds.), Botrytis: Biology, Pathology and Control (pp. 9-27). Dordrecht, Holanda: Springer. doi:10.1007/978-1- 4020-2626-3_2. Hoog, G. S., & Guarro, J. (1995). Atlas of clinical fungi. Baarn, Holanda: Centraalbureau voor Schimmelcultures. Horst, R. K. (2013). Powdery mildews. En R. K. Horst (Ed.), Westcott's plant disease handbook. Springer Netherlands (pp. 285-293). Dordrecht, Holanda: Springer. doi:10.1007/978-94-007-2141-8_40. Howard, R. J., Ferrari, M. A., Roach, D. H., & Money, N. P. (1991). Penetration of hard substrates by a fungus employing enormous turgor pressures. Proceedings of the national academy of sciences, 88(24), 11281- 11284. Howell, C. R. (2003). Mechanisms employed by Trichoderma species in the biological control of plant diseases: The history and evolution of current concepts. Plant Disease, 87(1), 4-10. doi:10.1094/ PDIS.2003.87.1.4. Hughes, J. A., & Ollennu, L. A. A. (1994). Mild strain protection of cocoa in Ghana against cocoa swollen shoot virus—a review. Plant Pathology, 43(3), 442- 457. doi:10.1111/j.1365-3059.1994.tb01578.x. Hull, R. (2014). Plant Virology (5.a ed.). Boston, EE. UU.: Elsevier. Iáñez, E. (1998). Curso de microbiología general. Acción de los agentes físicos sobre las bacterias (ii). Recuperado de http://www.biologia.edu.ar/microgeneral/microianez/18_micro.htm. Index Fungorum (ifs). (2017). Index Fungorum. Recuperado de http://www.indexfungorum.org/ Index.htm. Inácio, J., Rodrigues, M. G., Sobral, P., & Fonseca, Á. (2004). Characterisation and classification of phylloplane yeasts from Portugal related to the genus Taphrina and description of five novel Lalaria species. FEMS Yeast Research, 4(4-5), 541-555. doi:10.1016/ S1567-1356(03)00226-5. Ippolito, A., & Nigro, F. (2000). Impact of preharvest application of biological control agents on postharvest diseases of fresh fruits and vegetables. Crop Protection, 19(8), 715-723. doi:10.1016/S0261 -2194(00)00095-8. International Service for the Acquisition of Agribiotech Applications (isaaa). (2017). GM Approval Database. Recuperado de http://www.isaaa.org/gmap provaldatabase/. Ishimaru, C. A., Klos, E. J., & Brubaker, R. R. (1988). Multiple antibiotic production by Erwinia herbicola. Phytopathology, 78(6), 746-750. doi:10.1094/ Phyto-78-746 International Subcommission on Trichoderma and Hypocrea Taxonomy (isth). (2017). Hypocrea/ Trichoderma diversity. List of known species described by 2006. Recuperado de http://www.isth.info/bio diversity/index.php. Izuno, A., Tanabe, A. S., Toju, H., Yamasaki, M., Indrioko, S., & Isagi, Y. (2016). Structure of phyllosphere fungal communities in a tropical dipterocarp plantation: A massively parallel nextgeneration sequencing analysis. Mycoscience, 57(3), 171-180. doi:10.1016/j.myc.2015.12.005. Jackson, A. J., Walters, D. R., & Marshall, G. (1997). Antagonistic interactions between the foliar pathogen Botrytis fabae and isolates of Penicillium brevicompactum and Cladosporium cladosporioides on faba beans. Biological Control, 8(2), 97-106. doi:10.1006/bcon.1996.0481. Jackson, D., Skillman, J., & Vandermeer, J. (2012). Indirect biological control of the coffee leaf rust, Hemileia vastatrix, by the entomogenous fungus Lecanicillium lecanii in a complex coffee agroecosystem. Biological Control, 61(1), 89-97. doi:10.1016/j. biocontrol.2012.01.004. Jacobs, J. L., & Sundin, G. W. (2001). Effect of solar UV-B radiation on a phyllosphere bacterial community. Applied and Environmental Microbiology, 67(12), 5488-5496. doi: 10.1128/AEM.67.12.5488- 5496.2001. Jacobsen, B. (2006). Biological control of plant diseases by phyllosphere applied biological control agents. En M. J. Bailey, A. K. Lilley, T. M. Timms-Wilson, P. T. N. Spencer-Phillips (Eds.), Microbial Ecology of Aerial Plant Surfaces (pp. 133-147). Londres, Reino Unido: CABI. Jacques, M., Kinkel, L. L., & Morris, C. E. (1995). Population sizes, immigration, and growth of epiphytic bacteria on leaves of different ages and positions of field-grown endive (Cichorium endivia var. latifolia). Applied and Environental Microbiology, 61(3), 899-906. Janisiewicz, W. J., Tworkoski, T. J., & Sharer, C. (2000). Characterizing the mechanism of biological control of postharvest diseases on fruits with a simple method to study competition for nutrients. Phytopathology, 90(11), 1196-1200. doi:10.1094/ PHYTO.2000.90.11.1196. Jarvis, W. R. (1977). Botryotinia and Botrytis species: taxonomy, physiology, and pathogenicity. Quebec, Canadá: Department of Agriculture of Canada. Jeleń, H., Błaszczyk, L., Chełkowski, J., Rogowicz, K., & Strakowska, J. (2014). Formation of 6-n-pentyl-2Hpyran-2-one (6-PAP) and other volatiles by different Trichoderma species. Mycological Progress, 13(3), 589-600. doi:10.1007/s11557-013-0942-2. Jijakli, M., Lepoivre, P., Tossut, P., & Thonard, P. (1993). Biological control of Botrytis cinerea and Penicillium sp. on post-harvest apples by two antagonistic yeasts. Mededelingen van de Faculteit Landbouwkundige en Toegepaste Biologische Wetenschappen (Rijksuniversiteit te Gent), 58(3b), 1349-1358. Jin, Y., Szabo, L. J., & Carson, M. (2010). Century-old mystery of Puccinia striiformis life history solved with the identification of Berberis spp. as an alternate host. Phytopathology, 100(5), 432-435. doi:10.1094/ PHYTO-100-5-0432. Jones, D. G. (1993). Exploitation of microorganisms. London, United Kingdom: Springer science & business media. doi:10.1007/978-94-011-1532-2. Junqueira, N. T. V., & Gasparotto, L. (1991). Controle biológico de fungos estromáticos causadores de doenças foliares em seringueira. En: W. Bettiol (Ed.) Controle biológico de doenças de plantas (pp. 307-331, Vol. 1). Jaguariúna, Brasil: Embrapa-cnpda. Kalogiannis, S., Tjamos, S. E., Stergiou, A., Antoniou, P. P., Ziogas, B. N., & Tjamos, E. C. (2006). Selection and evaluation of phyllosphere yeasts as biocontrol agents against grey mould of tomato. European Journal of Plant Pathology, 116(1), 69-76. doi:10.1007/ s10658-006-9040-5. Kämpfer, P. (2006). The family Streptomycetaceae, Part I: Taxonomy. En: M. Dworkin, S. Falkow, E. Rosenberg, K.-H. Schleifer & E. Stackebrandt (Eds.), The Prokaryotes: Volume 3: Archaea. bacteria: Firmicutes, Actinomycetes (pp. 538-604). Nueva York, EE. UU.: Springer. doi:10.1007/0-387-30743-5_22. Kaniewski, W., Lawson, C., & Thomas, P. (1993). Agronomically useful resistance in Russet Burbank potato containing a plrv cp gene. Documento presentado en ix International Congress of Virology. Glasgow, Scotland. Kapat, A., Zimand, G., & Elad, Y. (1998). Biosynthesis of pathogenicity hydrolytic enzymes by Botrytis cinerea during infection of bean leaves and in vitro. Mycology Research, 102(8), 1017-1024. doi:10.1017/ S0953756297006023. Karabulut, O. A., Tezcan, H., Daus, A., Cohen, L., Wiess, B., & Droby, S. (2004). Control of preharvest and postharvest fruit rot in Strawberry by Metschnikowia fructicola. Biocontrol Science and Technology, 14(5), 513-521. doi:10.1080/09583150410001682287. Keel, C., Schnider, U., Maurhofer, M., Voisard, C., Laville, J., Burger, U., … Défago, G. (1992). Suppression of root diseases by Pseudomonas fluorescens CHA0: Importance of the bacterial secondary metabolite 2,4-Diacetylphloroglucinol. Molecular Plant-Microbe Interactions, 5(1), 4-13. Kema, G., Annone, J., Sayoud, R., & Van Silfhout, C. (1996). Genetic variation for virulence and resistance in the wheat-Mycosphaerella graminicola pathosystem. I. Interactions between pathogen isolates and host cultivars. Phytopathology, 86(2), 200-212. doi:10.1094/Phyto-86-200. Kema, G., Sayoud, R., Annone, J., & Van Silfhout, C. (1996). Genetic variation for virulence and resistance in the wheat-Mycosphaerella graminicola pathosystem. ii. Analysis of interactions between pathogen isolates and host cultivars. Phytopathology, 86(2), 213-220. doi:10.1094/Phyto-86-213 Kerling, L. C. P. (1958). De microflora of het blad van Beta vulgaris. Tijdschrift Over Plantenziekten, 64, 402-410. doi:10.1007/bf02137361. Kevan, P., Kapongo, J., Al-mazra'awi, M., & Shipp, L. (2008). Honey bees, bumble bees, and biocontrol: New alliances between old friends. En R. James & T. L. Pitts-Singer (Eds.), Bee pollination in agricultural ecosystems (pp. 65-81). Oxford, Reino Unido: Oxford University Press. Khan, M. M. A. A., & Verma, H. N. (1990). Partial characterisation of an induced virus inhibitory protein, associated with systemic resistance in Cyamopsis tetragonoloba (L.) Taub. plants. Annals of Applied Biology, 117(3), 617-623. doi:10.1111/j.1744-7348.1990. tb04827.x. Khan, N., Mishra, A., & Nautiyal, C. S. (2012). Paenibacillus lentimorbus B-30488r controls early blight disease in tomato by inducing host resistance associated gene expression and inhibiting Alternaria solani. Biological Control, 62(2), 65-74. doi:10.1016/j. biocontrol.2012.03.010. Khoa, N. Đ., Giàu, N. Đ. N., & Tuấn, T. Q. (2016). Effects of Serratia nematodiphila CT-78 on rice bacterial leaf blight caused by Xanthomonas oryzae pv. oryzae. Biological Control, 103, 1-10. doi:10.1016/j. biocontrol.2016.07.010. Kim, J. J., Goettel, M. S., & Gillespie, D. R. (2007). Potential of Lecanicillium species for dual microbial control of aphids and the cucumber powdery mildew fungus, Sphaerotheca fuliginea. Biological Control, 40(3), 327-332. doi:10.1016/j.biocontrol.2006.12.002. Kiss, L. (1997). Graminicolous powdery mildew fungi as new natural hosts of Ampelomyces mycoparasites. Canadian Journal of Botany, 75(4), 680-683. doi:10.1139/b97-076. Kiss, L. (1998). Natural occurrence of ampelomyces intracellular mycoparasites in mycelia of powdery mildew fungi. The New Phytologist, 140(4), 709-714. doi:10.1046/j.1469-8137.1998.00316.x. Kiss, L. (2003). A review of fungal antagonists of powdery mildews and their potential as biocontrol agents. Pest Management Science, 59(4), 475-483. doi:10.1002/ps.689. Klatt, B. K., Holzschuh, A., Westphal, C., Clough, Y., Smit, I., . . . Tscharntke, T. (2014). Bee pollination improves crop quality, shelf life and commercial value. Proceedings of the Royal Society B: Biological Sciences, 281(1775). doi:10.1098/rspb.2013.2440. Knudsen, G. R., & Hudler, G. W. (1987). Use of a computer simulation model to evaluate a plant disease biocontrol agent. Ecological Modelling, 35(1- 2), 45-62. doi:10.1016/0304-3800(87)90090-1. Ko, H.-S., Jin, R.-D., Krishnan, H. B., Lee, S.-B., & Kim, K.-Y. (2009). Biocontrol ability of Lysobacter antibioticus HS124 against Phytophthora Blight is mediated by the production of 4-Hydroxyphenylacetic acid and several lytic enzymes. Current Microbiology, 59(6), 608-615. doi:10.1007/s00284-009-9481-0. Kobayashi, N., Hiramatsu, A., & Akatsuka, T. (1987). Purification and chemical properties of an inhibitor of plant virus infection from fruiting bodies of Lentinus edodes. Agricultural and Biological Chemistry, 51(3), 883-890. doi:10.1271/bbb1961.51.883. Köhl, J., & Fokkema, N. J. (1993). Fungal interactions on living and necrotic leaves. En J. P. Blakeman & B. Williamson (Eds.), Ecology of plant pathogens (pp. 321-334). Oxon, Reino Unido: cabi. Köhl, J., Molhoek, W., Van der Plas, C., & Fokkema, N. (1995). Effect of Ulocladium atrum and other antagonists on sporulation of Botrytis cinerea on dead lily leaves exposed to field conditions. Phytopathology, 85(4), 393-400. Köhl, J., & Schlösser, E. (1989). Decay of sclerotia of Botrytis cinerea by Trichoderma spp. At low temperatures. Journal of Phytopathology, 125(4), 320- 326. doi:10.1111/j.1439-0434.1989.tb01076.x. Kokalis-Burelle, N., Backman, P. A., RodríguezKábana, R., & Ploper, L. D. (1992). Potential for biological control of early leafspot of peanut using Bacillus cereus and chitin as foliar amendments. Biological Control, 2(4), 321-328. doi:10.1016/1049- 9644(92)90026-A. Korsten, L., De Villiers, E. E., Wehner, F. C., & Kotzé, J. M. (1997). Field sprays of Bacillus subtilis and fungicides for control of preharvest fruit diseases of avocado in South Africa. Plant Disease, 81(5), 455- 459. doi:10.1094/PDIS.1997.81.5.455. Kovach, J., Petzoldt, R., & Harman, G. E. (2000). Use of honey bees and bumble bees to disseminate Trichoderma harzianum 1295-22 to Strawberries for Botrytis control. Biological Control, 18(3), 235-242. doi:10.1006/bcon.2000.0839. Krauss, U., & Soberanis, W. (2002). Effect of fertilization and biocontrol application frequency on cocoa pod diseases. Biological Control, 24(1), 82-89. doi:10.1016/S1049-9644(02)00007-5. Kubicek, C. P., & Penttila, M. (1998). Regulation of production of plant polysaccharide degrading enzymes by Trichoderma. En G. E. Harman & C. P. Kubicek (Eds.), Trichoderma and Gliocladium (Chapter 3). Londres, Reino Unido: Taylor & Francis Ltd. Kubo, S., Ikeda, T., Imaizumi, S., Takanami, Y., & Mikami, Y. (1990). A potent plant virus inhibitor found in Mirabilis jalapa L. Japanese Journal of Phytopathology, 56(4), 481-487. doi:10.3186/jjphy topath.56.481. Kubota, K., Tsuda, S., Tamai, A., & Meshi, T. (2003). Tomato mosaic virus replication protein suppresses virus-targeted posttranscriptional gene silencing. Journal of Virology, 77(20), 11016-11026. doi:10.1128/jvi.77.20.11016-11026.2003. Kumar, A., & Purohit, A. K. (2012). The role of indigenous knowledge in biological control of plant pathogens: Logistics of new research initiatives. En: J. M. Mérillon & K. G. Ramawat (Eds.), Plant defence: Biological control (pp. 161-194). Dordrecht, Holanda: Springer. doi:10.1007/978-94-007-1933-0_7. Kupferschmidt, K. (2013). A lethal dose of rna. Science, 341(6147), 732-733. doi:10.1126/science. 341.6147.732. Kutuzova, S. N., Porokhovinova, E. A., & Brutch, N. B. (2017). Evolution of virulence in a population of the flax rust pathogen Melampsora lini (Pers.) Lev. in northwestern Russia. Russian Journal of Genetics: Applied Research, 7(2), 159-169. doi:10.1134/S20 7905971702006X. Labudova, I., & Gogorova, L. (1988). Biological control of phytopathogenic fungi through lytic action of Trichoderma species. FEMS Microbiology Letters, 52(3), 193-198. doi:10.1111/j.1574-6968.1988.tb 02594.x. Lam, K. S. (2006). Discovery of novel metabolites from marine actinomycetes. Current in Opinion Microbiology, 9(3), 245-251. doi:10.1016/j.mib. 2006.03.004. Lam, Y.-H., Wong, Y.-S., Wang, B., Wong, R.N.S., Yeung, H.-W., & Shaw, P.-C. (1996). Use of trichosanthin to reduce infection by turnip mosaic virus. Plant Science, 114(1), 111-117. doi:10.1016/0168-9452 (95)04310-1. Landry, C., Bonnot, F., Ravigné, V., Carlier, J., Rengifo, D., . . . Abadie, C. (2017). A foliar disease simulation model to assist the design of new control methods against black leaf streak disease of banana. Ecological Modelling, 359(C), 383-397. doi:10.1016/j.ecolmodel. 2017.05.009. Lapsker, Z., & Elad, Y. (2001). Involvement of reactive oxygen species and antioxidant process in the disease caused by Botrytis cinerea on bean leaves and in its biological control by means of Trichoderma harzianum T39. Biological Control of Fungal and Bacterial Plant Pathogens IOBC WPRS Bulletin, 24(3), 21-25. Larone, D. H., & Howard, D. H. (1996). Medically Important Fungi: A Guide to Identification. Washington, D.C., EE. UU.: ASM Press. Law, J. W.-F., Ser, H.-L., Khan, T. M., Chuah, L.-H., Pusparajah, P., . . . Lee, L.-H. (2017). The potential of Streptomyces as biocontrol agents against the rice blast fungus, Magnaporthe oryzae (Pyricularia oryzae). Frontiers in Microbiology, 8, 3. doi:10.3389/ fmicb.2017.00003. Lee, G., Lee, S.-H., Kim, K.M., & Ryu, C.-M. (2017). Foliar application of the leaf-colonizing yeast Pseudozyma churashimaensis elicits systemic defense of pepper against bacterial and viral pathogens. Scientific Reports, 7, 39432. doi:10.1038/srep39432 Lee, R. E. J., Warren, G. J., & Gusta, L. V. (1995). Bioquímica de nucleos de hielo bacteriales. En F. Ray & K. Paul (Eds.), Nucleación biológica de hielo y sus aplicaciones (pp. 63-83). St. Paul, Minnesota, EE. UU.: The American Phytopathological Society (aps). Legler, S. E., Caffi, T., Kiss, L., Pintye, A., & Rossi, V. (2011). Methods for screening new Ampelomyces strains to be used as biocontrol agents against grapevine powdery mildew. IOBC/WPRS Bulletin, 67(marzo), 149-154. Legler, S. E., Pintye, A., Caffi, T., Gulyás, S., Bohár, G., ... Kiss, L. (2016). Sporulation rate in culture and mycoparasitic activity, but not mycohost specificity, are the key factors for selecting Ampelomyces strains for biocontrol of grapevine powdery mildew (Erysiphe necator). European Journal of Plant Pathology, 144(4), 723-736. doi:10.1007/s10658-015-0834-1. Lelliott, R. A., & Dickey, R. S. (1984). Genus VII. Erwinia. En J. Holt (Ed.), Bergey's Manual of Systematic Bacteriology (pp. 469-476). Filadelfia, EE. UU.: Wolters Kluwer Health. Lemanceau, P., Barret, M., Mazurier, S., Mondy, S., Pivato, B., ... Vacher, C. (2017). Chapter Five - plant communication with associated microbiota in the Spermosphere, Rhizosphere and Phyllosphere. Advances in Botanical Research, 82, 101-133. doi:10.1016/bs.abr.2016.10.007. Leonard, K. J., & Bushnell, W. R. (2003). Fusarium head blight of wheat and barley. St. Paul, EE. UU.: American Phytopathological Society (aps). Leroux, P. (2004). Chemical control of Botrytis and its resistance to chemical fungicides. En Y. Elad, B. Williamson, P. Tudzynski & N. Delen, (Eds.), Botrytis: Biology, pathology and control (pp. 195-222). Dordrecht, Holanda: Springer. doi:10.1007/978-1- 4020-2626-3_12. Leveau, J. H. J. (2007). Microbia communities in the phyllosphere. En M. Riederer & C. Müller (Eds.), Annual plant reviews volume 23: Biology of the plant cuticle (pp. 334-367). New Jersey, EE. UU.: Blackwell Publishing Ltd. doi:10.1002/9780470988718.ch11. Libkind, D. (2007). Evaluación de la técnica de msp-pcr para la caracterización molecular de aislamientos de Rhodotorula mucilaginosa provenientes de la Patagonia noroccidental. Revista Argentina de Microbiología, 39(3), 133-137. Lindow, S., Hecht-Poinar, E., & Elliott, V. (2004). Phyllosphere microbiology. St. Paul, EE. UU.: American Phytopathological Society (aps). Lindow, S. E., & Andersen, G. L. (1996). Influence of immigration on epiphytic bacterial populations on navel orange leaves. Applied and Environmental Microbiology, 62(8), 2978-2987. Lindow, S. E., & Brandl, M. T. (2003). Microbiology of the Phyllosphere. Applied Environmental Microbiology, 69(4), 1875-1883. doi:10.1128/aem.69.4.1875- 1883.2003. Lindow, S. E., & Leveau, J. H. J. (2002). Phyllosphere microbiology. Current Opinion in Biotechnology, 13(3), 238-243. doi:10.1016/S0958-1669(02)00313-0. Lo, C.-T. (1998). General mechanisms of action of microbial biocontrol agents. Plant Pathology Bulletin, 7(4), 155-166. Lorito, M., Woo, S. L., Harman, G. E., & Monte, E. (2010). Translational research on Trichoderma: from omics to the field. Annual Review of Phytopathology, 48, 395-417. doi:10.1146/annurev-phyto-073009- 114314. Louws, F. J., Rivard, C. L., & Kubota, C. (2010). Grafting fruiting vegetables to manage soilborne pathogens, foliar pathogens, arthropods and weeds. Scientia horticulturae, 127(2), 127-146. doi:10.1016/j.scienta. 2010.09.023. Maiti, C. K., Sen, S., Paul, A. K., & Acharya, K. (2012). Pseudomonas aeruginosa WS-1 for biological control of leaf blight disease of Withania somnifera. Arch. Phytopathol. Plant Protection, 45(7), 796-805. doi:10 .1080/03235408.2011.597150. Mansfield, J., Genin, S., Magori, S., Citovsky, V., Sriariyanum, M., Ronald, P., ... Foster, G. D. (2012). Top 10 plant pathogenic bacteria in molecular plant pathology. Molecular Plant Pathology, 13(6), 614-629. doi:10.1111/j.1364-3703.2012.00804.x. Marchand, D., & McNeil, J. N. (2000). Effects of wind speed and atmospheric pressure on mate searching behavior in the aphid parasitoid Aphidius nigripes (Hymenoptera: Aphidiidae). Journal of Insect Behavior, 13(2), 187-199. doi:10.1023/a:1007732113390. Martirosyan, V., & Steinberger, Y. (2014). Microbial functional diversity in the phyllosphere and laimosphere of different desert plants. Journal of Arid Environments, 107, 26-33. doi:10.1016/j. jaridenv.2014.04.002. Masih, E. I., Slezack-Deschaumes, S., Marmaras, I., Barka, E. A., ... Paul, B. (2001). Characterisation of the yeast Pichia membranifaciens and its possible use in the biological control of Botrytis cinerea, causing the grey mould disease of grapevine. fems Microbiology Letters, 202(2), 227-232. doi:10.1111/j.1574-6968.2001.tb10808.x. Mastouri, F., Björkman, T., & Harman, G. E. (2010). Seed treatment with Trichoderma harzianum alleviates biotic, abiotic, and physiological stresses in germinating seeds and seedlings. Phytopathology, 100(11), 1213-1221. doi:10.1094/ PHYTO-03-10-0091. Matei, A., & Doehlemann, G. (2016). Cell biology of corn smut disease—Ustilago maydis as a model for biotrophic interactions. Current Opinion in Microbiology, 34, 60-66. doi:10.1016/j.mib. 2016.07.020. McCain, A. (1994). Powdery Mildew. HortScript # 3. California, EE. UU.: University of California Cooperative Extension Marin County. McCook, S. (2006). Global rust belt: Hemileia vastatrix and the ecological integration of world coffee production since 1850. Journal of Global History, 1(2), 177-195. doi:10.1017/S174002280600012X. McGuire, J. M., Kim, K. S., & Douthit, L. B. (1970). Tobacco ringspot virus in the nematode Xiphinema americanum. Virology 42(1), 212-216. doi:10.1016/0042-6822(70)90254-0. McKinney, H. H. (1929). Mosaic diseases in the Canary Islands, West Africa and Gibraltar. Journal of Agricultural Research, 39, 577-578. McManus, P. S., Stockwell, V. O., Sundin, G. W., & Jones, A. L. (2002). Antibiotic use in plant agriculture. Annual Review of Phytopathology, 40, 443-465. doi:10.1146/annurev.phyto.40.120301.093927. McQuilken, M. P., Gemmell, J., & Lahdenperä, M. I. (2001). Gliocladium catenulatum as a potential biological control agent of damping-off in bedding plants. Journal of Phytopathology, 149(3-4), 171-178. doi:10.1046/j.1439-0434.2001.00602.x. McSpadden-Gardener, B. B., & Fravel, D. (2002). Biological control of plant pathogens: Research, commercialization, and application in the usa. Plant health progress (pp. 207-209). doi:10.1094/PHP2002-0510-01-RV. Meena, B. (2014). Biological control of pest and diseases using fluorescent pseudomonads. En K. Sahayaraj (Ed.), Basic and Applied Aspects of Biopesticides (pp. 17-29). Nueva Delhi, India: Springer. doi.10.1007/978-81-322-1877-7_2. Mercier, J., & Lindow, S. E. (2000). Role of leaf surface sugars in colonization of plants by bacterial epiphytes. Applied and Environmental Microbiology, 66(1), 369- 374. doi:10.1128/aem.66.1.369-374.2000. Mew, T. W., Alvarez, A. M., Leach, J. E., & Swings, J. (1993). Focus on bacterial blight of rice. Plant Disease, 77(1), 5-12. doi:10.1094/PD-77-0005. Meyer, K. M., & Leveau, J. H. J. (2012). Microbiology of the phyllosphere: a playground for testing ecological concepts. Oecologia, 168(3), 621-629. doi:10.1007/ s00442-011-2138-2. Meyer, U., Fischer, E., Barbul, O., & Elad, Y. (2001). Effect of biocontrol agents on antigens present in the extracellular matrix of Botrytis cinerea, which are important for pathogenesis. IOBC WPRS Bulletin, 24(3), 5-9. Miedtke, U., & Kennel, W. (1990). Athelia bombacina and Chaetomium globosum as antagonists of the perfect stage of the apple scab pathogen (Venturia inaequalis) under field conditions. Journal of Plant Diseases and Protection, 97(1), 24-32. Milgroom, M. G., & Cortesi, P. (2004). Biological control of chestnut blight with hypovirulence: A critical analysis. Annual Review of Phytopathology, 42, 311- 338. doi:10.1146/annurev.phyto.42.040803.140325. Mizukami, T., & Wakimoto, S. (1969). Epidemiology and control of bacterial leaf blight of rice. Annual Review of Phytopathology, 7, 51-72. doi:10.1146/ annurev.py.07.090169.000411. Mommaerts, V., Put, K., Vandeven, J., Jans, K., Sterk, G., ... Smagghe, G. (2010). Development of a new dispenser for microbiological control agents and evaluation of dissemination by bumblebees in greenhouse strawberries. Pest Management Science, 66(11), 1199-1207. doi:10.1002/ps.1995. Momonoi, K., Mori, M., Matsuura, K., Moriwaki, J., & Morikawa, T. (2015). Quantification of Mirafiori lettuce big-vein virus and its vector, Olpidium virulentus, from soil using real-time pcr. Plant Pathology, 64(4), 825-830. doi:10.1111/ppa.12333. Montesinos, E., & Bonaterra, A. (2009). Pesticides, Microbial. En Reference module in life sciences (pp. 110- 120). Oxford, Reino Unido: Elsevier. doi:10.1016/ B978-0-12-809633-8.13087-0. Morandi, M. A. B., Sutton, J. C., & Maffia, L. A. (2000). Effects of host and microbial factors on development of Clonostachys rosea and control of Botrytis cinerea in rose. European Journal of Plant Pathology, 106(5), 439-448. doi:10.1023/a:1008738513748. Moreno, C., & Cotes, A. (2006). Survival in the phylloplane of Trichoderma koningii and biocontrol activity against tomato foliar pathogens. IOBC/ WPRS Bulletin, 30, 557-561. Moreno, C., Ramírez, J., Zapata, J., Diaz, A., & Cotes, A. (2012). Selection of Pichia onychis isolate for biological control of Botrytis cinerea based on its ecophysiological characteristics. IOBC-WPRS Bulletin, 78, 229-232. Moreno, C., Smith, A., & Cotes, A. M. (2010a). Pruebas de eficacia de Trichoderma koningiopsis Th003 para el control del moho blanco de la lechuga. En C. A. Moreno & A. M. Cotes (Eds.), Desarrollo de un bioplaguicida a base de Trichoderma koningiopsis Th003 y uso en el cultivo de lechuga para el control del moho blanco (Sclerotinia sclerotiorum y Sclerotinia minor) (pp. 60-75). Bogotá, Colombia: Corporación Colombiana de Investigación Agropecuaria (Corpoica). Moreno, C. A., Cotes, A. M., Smith, A., Beltrán, C., Villamizar, L., ... Santos, A. (2010b). Desarrollo de un bioplaguicida a base de Trichoderma koningiopsis Th003 y uso en el cultivo de lechuga para el control del moho blanco Sclerotinia sclerotiorum y Sclerotinia minor. Bogotá, Colombia: Corporación Colombiana de Investigación Agropecuaria (Corpoica). Moreno, C. A., Cotes, A. M., & Vergara, E. G. (2007). Biological control of foliar diseases in tomato greenhouse crop in Colombia: selection of antagonists and efficacy tests. IOBC WPRS Bulletin, 30, 59. Moretto, C., Cervantes, A. L. L., Batista, A., & Kupper, K. C. (2014). Integrated control of green mold to reduce chemical treatment in post-harvest citrus fruits. Scientia Horticulturae, 165, 433-438. doi:10.1016/j. scienta.2013.11.019. Morris, C., E., Monteil, C. L., & Berge, O. (2013). The life history of Pseudomonas syringae: Linking agriculture to earth system processes. Annual Review Phytopathology, 51, 85-104. doi:10.1146/annurevphyto-082712-102402. Muccilli, S., & Restuccia, C. (2015). Bioprotective role of yeasts. Microorganisms, 3(4), 588-611. doi:10.3390/ microorganisms3040588. Mukherjee, P., Sherkhane, P., & Murthy, N. (1999). Induction of stable benomyl-tolerant phenotypic mutants of Trichoderma pseudokoningii mtcc 3011, and their evaluation for antagonistic and biocontrol potential. Indian Journal of Experimental Biology, 37(7), 710-712. Mukherjee, P. K., Horwitz, B. A., & Kenerley, C. M. (2012). Secondary metabolism in Trichoderma – a genomic perspective. Microbiology, 158(1), 35-45. doi:10.1099/mic.0.053629-0. Mukherjee, P. K., Horwitz, B. A., Singh, U. S., Mukherjee, M., & Schmoll, M. (2013). Trichoderma in agriculture, industry and medicine: an overview. En P. K. Mukherjee, U. S. Singh, B. A. Horwitz, M. Schmoll, & M. Mukherjee (Eds.), Trichoderma biology and applications (pp. 1-9). CAB International. doi:10.1079/9781780642475.0001. Murphy, J. F. (2006). Applied aspects of induced resistance to plant virus infection. En G. Loebenstein & J. P. Carr (Eds.), Natural resistance mechanisms of plants to viruses (pp. 1-11). Dordrecht, Holanda: Springer. doi:10.1007/1-4020-3780-5_1. Murty, V. S. & Devadath, S. (1984). Role of seed in survival and transmission of Xanthomonas campestris pv. oryzae causing bacterial Blight of rice. Journal of Phytopathology, 110(1), 15-19. doi:10.1111/j.1439-0434.1984.tb00735.x. Nakano, M. M. & Zuber, P. (1998). Anaerobic growth of a “Strict aerobe” (Bacillus subtilis). Annual Review of Microbiology, 52, 165-190. doi:10.1146/annurev. micro.52.1.165. Nakazono-Nagaoka, E., Sato, C., Kosaka, Y., & Natsuaki, T. (2004). Evaluation of cross-protection with an attenuated isolate of Bean yellow mosaic virus by differential detection of virus isolates using rt-pcr. Journal of General Plant Pathology, 70(6), 359-362. doi:10.1007/s10327-004-0138-3. Narayanasamy, P. (2013). Mechanisms of action of fungal biological control agents. En P. Narayanasamy (Ed.), Biological management of diseases of crops: Volume 1: Characteristics of biological control agents (pp. 99-200). Dordrecht, Holanda: Springer. doi:10.1007/978-94- 007-6380-7_3. Navazio, L., Baldan, B., Moscatiello, R., Zuppini, A., Woo, S. L., ... Lorito, M. (2007). Calcium-mediated perception and defense responses activated in plant cells by metabolite mixtures secreted by the biocontrol fungus Trichoderma atroviride. BMC Plant Biology, 7, 41. doi:10.1186/1471-2229-7-41. National Center for Biotechnology Information (ncbi). (2017). Taxonomy browser. Recuperado de https:// www.ncbi.nlm.nih.gov/Taxonomy/Browser/ wwwtax.cgi?id=1883. Nelson, M. E., & Powelson, M. L. (1998). Biological control of gray mold of snap beans by Trichoderma hamatum. Plant Disease, 72(8), 727-729. doi:10.1094/ PD-72-0727. Newhook, F. J. (1951). Microbiological control of Botrytis cinerea pers. Ii. Antagonism by fungi and actinomycetes. Annals of Applied Biology, 38(1), 185- 202. doi:10.1111/j.1744-7348.1951.tb07796.x. Niño-Liu, D. O., Ronald, P. C., & Bogdanove, A. J. (2006). Xanthomonas oryzae pathovars: model pathogens of a model crop. Molecular Plant Pathology, 7(5), 303- 324. doi:10.1111/j.1364-3703.2006.00344.x. Nishiguchi, M., Kikuchi, S., Kiho, Y., Ohno, T., Meshi, T., & Okada, Y. (1985). Molecular basis of plant viral virulence; the complete nucleotide sequence of an attenuated strain of tobacco mosaic virus. Nucleic Acids Research, 13(15), 5585-5590. doi:10.1093/ nar/13.15.5585. Nishiguchi, M., & Kobayashi, K. (2011). Attenuated plant viruses: preventing virus diseases and understanding the molecular mechanism. Journal of General Plant Pathology, 77(4), 221-229. doi:10.1007/ s10327-011-0318-x. Noris, E., Accotto, G. P., Tavazza, R., Brunetti, A., Crespi, S., & Tavazza, M. (1996). Resistance to tomato yellow leaf curl geminivirus in Nicotiana benthamiana plants transformed with a truncated viral C1 gene. Virology, 224(1), 130-138. doi:10.1006/viro.1996.0514. O'Neill, T. M., Elad, Y., Shtienberg, D., & Cohen, A. (1996). Control of grapevine grey mould with Trichoderma harzianum T39. Biocontrol Science and Technology, 6(2), 139-146. doi:10.1080/09583159650039340. Orton, E. S., Deller, S., & Brown, J. K. M. (2011). Mycosphaerella graminicola: from genomics to disease control. Molecular Plant Pathology, 12(5), 413-424. doi:10.1111/j.1364-3703.2010.00688.x. Oshima, N. (1981). Control of tomato mosaic disease by attenuated virus. Japan Agricultural Research Quarterly, 14(4), 222-228. Pal, K. K., & Gardener, B. M. (2006). Biological control of plant pathogens. The Plant Health Instructor, 2, 1117-1142. doi:10.1094/PHI-A-2006-1117-02. Palaniyandi, S. A., Yang, S. H., Cheng, J. H., Meng, L., & Suh, J. W. (2011). Biological control of anthracnose (Colletotrichum gloeosporioides) in yam by Streptomyces sp. MJM5763. Journal of Applied Microbiology, 111(2), 443-455. doi:10.1111/j.1365- 2672.2011.05048.x. Palmieri, M. C., Perazzolli, M., Matafora, V., Moretto, M., Bachi, A., & Pertot, I. (2012). Proteomic analysis of grapevine resistance induced by Trichoderma harzianum T39 reveals specific defence pathways activated against downy mildew. Journal of Experimental Botany, 63(17), 6237-6251. doi:10.1093/jxb/ers279. Parker, J. E., Schulte, W., Hahlbrock, K., & Scheel, D. (1991). An extracellular glycoprotein from Phytophthora megasperma f. sp. glycinea elicits phytoalexin synthesis in cultured parsley cells and protoplasts. Molecular Plant-Microbe Interaction, 4, 19-27. Patiño-Vera, M., Jiménez, B., Balderas, K., Ortiz, M., Allende, R., ... Galindo, E. (2005). Pilot-scale production and liquid formulation of Rhodotorula minuta, a potential biocontrol agent of mango anthracnose. Journal of Applied Microbiology, 99(3), 540-550. doi:10.1111/j.1365-2672.2005.02646.x. Paulitz, T. C., & Bélanger, R. R. (2001). Biological control in greenhouse systems. Annual Review of Phytopathology, 39, 103-133. doi:10.1146/annurev. phyto.39.1.103. Pearson, M. N., & Bailey, A. M. (2013). Viruses of Botrytis. Advances in Virus Research, 86, 249-272. doi.10.1016/B978-0-12-394315-6.00009-X. Peng, G., & Sutton, J. C. (1991). Evaluation of microorganisms for biocontrol of Botrytis cinerea in strawberry. Canadian Journal of Plant Pathology, 13(3), 247-257. doi:10.1080/07060669109500938. Peng, G., Sutton, J. C., & Kevan, P. G. (1992). Effectiveness of honey bees for applying the biocontrol agent Gliocladium roseum to strawberry flowers to suppress Botrytis cinerea. Canadian Journal of Plant Pathology, 14(2), 117-129. doi:10.1080/07060669209500888. Peñuelas, J., & Terradas, J. (2014). The foliar microbiome. Trends Plant Science, 19(5), 278-280. doi:10.1016/j. tplants.2013.12.007. Perazzolli, M., Dagostin, S., Ferrari, A., Elad, Y., & Pertot, I. (2008). Induction of systemic resistance against Plasmopara viticola in grapevine by Trichoderma harzianum T39 and benzothiadiazole. Biological Control, 47(2), 228-234. doi:10.1016/j. biocontrol.2008.08.008. Perazzolli, M., Moretto, M., Fontana, P., Ferrarini, A., Velasco, R., ... Pertot, I. (2012). Downy mildew resistance induced by Trichoderma harzianum T39 in susceptible grapevines partially mimics transcriptional changes of resistant genotypes. BMC Genomics, 13, 660. doi:10.1186/1471-2164-13-660. Perazzolli, M., Roatti, B., Bozza, E., & Pertot, I. (2011). Trichoderma harzianum T39 induces resistance against downy mildew by priming for defense without costs for grapevine. Biological Control, 58(1), 74-82. doi:10.1016/j.biocontrol.2011.04.006. Perelló, A., & Mónaco, C. (2007). Reseña de “status and progress of biological control of wheat (Triticum aestivum l.) foliar diseases in argentina”. Fitosanidad, 11(2), 85-105. Perlak, F., Kaniewski, W., Lawson, C., Vincent, M., & Feldman, J. (1994). Genetically improved potatoes: Their potential role in integrated pest management. En M. Manka (Ed.), 3th Conference of the European Foundation for Plant Pathology (efpp) (pp. 451-454). Wageningen, Holanda: efpp. Phillips, M. W. A., & McDougall, J. (2012). Crop protection market trends and opportunities for new active ingredients. En American Chemical Society, Abstracts of Papers of the American Chemical Society (p. 244). Washington, EE. UU.: American Chemical Society. Piggot, P. J., & Hilbert, D. W. (2004). Sporulation of bacillus subtilis. Current Opinion in Microbiology, 7(6). 579-586. doi:10.1016/j.mib.2004.10.001. Pintye, A., Bereczky, Z., Kovács, G. M., Nagy, L. G., Xu, X., ... Kiss, L. (2012). No indication of strict host associations in a widespread mycoparasite: Grapevine powdery mildew (Erysiphe necator) is attacked by phylogenetically distant ampelomyces strains in the field. Phytopathology, 102(7), 707- 716. doi:10.1094/PHYTO-10-11-0270. Prabhakaran, N., Prameeladevi, T., Sathiyabama, M., & Kamil, D. (2015). Screening of different Trichoderma species against agriculturally important foliar plant pathogens. Journal of Environmental Biology, 36(1), 191. Prins, M., Laimer, M., Noris, E., Schubert, J., Wassenegger, M., & Tepfer, M. (2008). Strategies for antiviral resistance in transgenic plants. Molecular Plant Pathology, 9(1), 73-83. doi:10.1111/j.1364- 3703.2007.00447.x. Prusky, D. (1996). Pathogen quiescence in postharvest diseases. Annual Review of Phytopathology, 34(1), 413-434. doi:10.1146/annurev.phyto.34.1.413. Punja, Z. K., & Utkhede, R. S. (2003). Using fungi and yeasts to manage vegetable crop diseases. Trends Biotechnology, 21(9), 400-407. doi:10.1016/S0167- 7799(03)00193-8. Pusey, P. L., Stockwell, V. O., & Mazzola, M. (2009). Epiphytic bacteria and yeasts on apple blossoms and their potential as antagonists of Erwinia amylovora. Phytopathology, 99(5), 571-581. doi:10.1094/PHY TO-99-5-0571. Rabindran, R., & Vidhya sekaran, P. (1996). Development of a formulation of Pseudomonas fluorescens PfALR2 for management of rice sheath blight. Crop Protection, 15(8), 715-721. doi:10.1016/ S0261-2194(96)00045-2. Ramarathnam, R., Fernando, W. G. D., & de Kievit, T. (2011). The role of antibiosis and induced systemic resistance, mediated by strains of Pseudomonas chlororaphis, Bacillus cereus and B. amyloliquefaciens, in controlling blackleg disease of canola. BioControl, 56(2), 225-235. doi:10.1007/s10526-010-9324-8. Ramesh, S., & Mathivanan, N. (2009). Screening of marine actinomycetes isolated from the Bay of Bengal, India for antimicrobial activity and industrial enzymes. World Journal of Microbiology and Biotechnology, 25(12),2103-2111. doi:10.1007/ s11274-009-0113-4. Redford, A. J., & Fierer, N. (2009). Bacterial succession on the leaf surface: A novel system for studying successional dynamics. Microbial Ecology, 58(1), 189- 198. doi:10.1007/s00248-009-9495-y. Redmond, J., Marois, J., & MacDonald, J. (1987). Biological control of Botrytis cinerea on roses with epiphytic microorganisms. Plant Disease, 71(9), 799- 802. doi:10.1094/PD-71-0799. Robiglio, A., Sosa, M. C., Lutz, M. C., Lopes, C. A., & Sangorrín, M. P. (2011). Yeast biocontrol of fungal spoilage of pears stored at low temperature. International Journal of Food Microbiology, 147(3), 211-216. doi:10.1016/j.ijfoodmicro.2011.04.007. Rodríguez-Palenzuela, P., Matas, I. M., Murillo, J., López-Solanilla, E., Bardaji, L., Pérez-Martínez, I., ... Ramos, C. (2010). Annotation and overview of the Pseudomonas savastanoi pv. savastanoi ncppb 3335 draft genome reveals the virulence gene complement of a tumour-inducing pathogen of woody hosts. Environmental Microbiology, 12(6), 1604-1620. doi:10.1111/j.1462-2920.2010.02207.x. Romero, D., de Vicente, A., Rakotoaly, R. H., Dufour, S. E., Veening, J. W., ... Pérez-García, A. (2007a). The iturin and fengycin families of lipopeptides are key factors in antagonism of Bacillus subtilis toward Podosphaera fusca. Molecular Plant-Microbe Interactions Journal, 20(4), 430-440. doi:10.1094/ mpmi-20-4-0430. Romero, D., De Vicente, A., Zeriouh, H., Cazorla, F. M., Fernández-Ortuño, D., ... Pérez-García, A. (2007b). Evaluation of biological control agents for managing cucurbit powdery mildew on greenhouse-grown melon. Plant Pathology, 56(6), 976-986. doi:10.1111/ j.1365-3059.2007.01684.x. Romero, D., Rivera, M. E., Cazorla, F. M., De Vicente, A., & Pérez-García, A. (2003). Effect of mycoparasitic fungi on the development of Sphaerotheca fusca in melon leaves. Mycological Research, 107(1), 64-71. doi:10.1017/S0953756202006974. Roossinck, M. J., Sleat, D., & Palukaitis, P. (1992). Satellite RNAs of plant viruses: structures and biological effects. Microbiological Reviews, 56(2), 265-279. Ruanjan, P., Kertbundit, S., & Juříček, M. (2007). Posttranscriptional gene silencing is involved in resistance of transgenic papayas to papaya ringspot virus. Biologia Plantarum, 51(3), 517-520. doi:10.1007/ s10535-007-0110-0. Ruberson, J. R. (1999). Handbook of pest management. Nueva York, EE. UU.: CRC Press. Rückert, C., Blom, J., Chen, X., Reva, O., & Borriss, R. (2011). Genome sequence of B. amyloliquefaciens type strain DSM7T reveals differences to plantassociated B. amyloliquefaciens FZB42. Journal of Biotechnology, 155(1), 78-85. doi:10.1016/j. jbiotec.2011.01.006 Ruinen, J. (1956). Occurrence of Beijerinckia species in the “Phyllosphere”. Nature, 177, 220-221. doi:10.1038/177220a0. Saha, D., Kumar, R., Ghosh, S., Kumari, M., & Saha, A. (2012). Control of foliar diseases of tea with Xanthium strumarium leaf extract. Industrial crops and products, 37(1), 376-382. doi:10.1016/j.indcrop.2011.12.030. Saligkarias, I. D., Gravanis, F. T., & Epton, H. A. S. (2002). Biological control of Botrytis cinerea on tomato plants by the use of epiphytic yeasts Candida guilliermondii strains 101 and US 7 and Candida oleophila strain I-182: II. a study on mode of action. Biological Control, 25(2), 151-161. doi:10.1016/ S1049-9644(02)00052-X. Samac, D. A., Willert, A. M., McBride, M. J., & Kinkel, L. L. (2003). Effects of antibiotic-producing Streptomyces on nodulation and leaf spot in alfalfa. Applied Soil Ecology, 22(1), 55-66. doi:10.1016/S0929- 1393(02)00109-9 Samuels, G. J. (1996). Trichoderma: a review of biology and systematics of the genus. Mycological Research, 100(8), 923-935. doi:10.1016/S0953- 7562(96)80043-8. Sanders, P. R., Sammons, B., Kaniewski, W., Haley, L., Layton, J., ... Tumer, N. (1992). Field resistance of transgenic tomatoes expressing the tobacco mosaic virus or tomato mosaic virus coat protein genes. Phytopathology, 82(6), 683-690. doi:10.1094/ Phyto-82-683. Sansone, G., Rezza, I., Fernández, G., Calvente, V., Benuzzi, D., & Sanz, M. I. (2011). Inhibitors of polygalacturonase and laccase of Botrytis cinerea and their application to the control of this fungus. International Biodeterioration and Biodegradation, 65(1), 243-247. doi:10.1016/j.ibiod.2010.09.010. Saravanakumar, D., Spadaro, D., Garibaldi, A., & Gullino, M. L. (2009). Detection of enzymatic activity and partial sequence of a chitinase gene in Metschnikowia pulcherrima strain MACH1 used as post-harvest biocontrol agent. European Journal of Plant Pathology, 123(2), 183-193. doi:10.1007/ s10658-008-9355-5. Sawant, I. S. (2014). Trichoderma-foliar pathogen interactions. The Open Mycology Journal, 8, 58-70. do i:10.2174/1874437001408010058. Sawant, I. S., Rajguru, Y. R., Salunkhe, V. P., & Wadkar, P. N. (2012). Evaluation and selection of efficient Trichoderma species and isolates from diverse locations in India for biological control of anthracnose disease of grapes. Journal of Biological Control, 26, 144-154. Sawant, I. S., Wadkar, P. N., Ghule, S. B., Rajguru, Y. R., Salunkhe, V. P., & Sawant, S. D. (2017). Enhanced biological control of powdery mildew in vineyards by integrating a strain of Trichoderma afroharzianum with sulphur. Biological Control, 114, 133-143. doi:10.1016/j.biocontrol.2017.08.011. Scarselletti, R., & Faull, J. L. (1994). In vitro activity of 6-pentyl-α-pyrone, a metabolite of Trichoderma harzianum, in the inhibition of Rhizoctonia solani and Fusarium oxysporum f. sp. lycopersici. Mycology Research, 98(10), 1207-1209. doi:10.1016/S0953- 7562(09)80206-2. Scherm, H., Ngugi, H. K., Savelle, A. T., & Edwards, J. R. (2004). Biological control of infection of blueberry flowers caused by Monilinia vaccinii-corymbosi. Biological Control, 29(2), 199-206. doi:10.1016/S10 49-9644(03)00154-3. Schirmböck, M., Lorito, M., Wang, Y. L., Hayes, C. K., Arisan-Atac, I., ... Kubicek, C. P. (1994). Parallel formation and synergism of hydrolytic enzymes and peptaibol antibiotics, molecular mechanisms involved in the antagonistic action of Trichoderma harzianum against phytopathogenic fungi. Applied and Environmental Microbiology, 60(12), 4364-4370. Scholthof, K. B. Adkins, S., Czosnek, H., Palukaitis, P., Jacquot, E., Hohn, T., … Foster, G. D. (2011). Top 10 plant viruses in molecular plant pathology. Molecular Plant Pathology 12(9), 938-954. doi: 10.1111/j.1364- 3703.2011.00752.x. Schoonbeek, H.-J., Jacquat-Bovet, A.-C., Mascher, F., & Métraux, J.-P. (2007). Oxalate-degrading bacteria can protect Arabidopsis thaliana and crop plants against Botrytis cinerea. Molecular Plant-Microbe Interactions, 20(12), 1535-1544. doi:10.1094/MPMI-20- 12-1535. Schuster, A., & Schmoll, M. (2010). Biology and biotechnology of Trichoderma. Applied and Microbiological Biotechnology, 87(3), 787-799. doi:10. 1007/s00253-010-2632-1. Ser, H.-L., Law, J. W.-F., Chaiyakunapruk, N., Jacob, S. A., Palanisamy, U. D., ... Lee, L.-H. (2016). Fermentation conditions that affect clavulanic acid production in Streptomyces clavuligerus: A systematic review. Frontiers in Microbiology, 7, 522. doi:10.3389/ fmicb.2016.00522. Serrano, L., Manker, D., Brandi, F., & Cali, T. (2013). The use of Bacillus subtilis qst 713 and Bacillus pumilus qst 2808 as protectant fungicides in conventional application programs for black leaf streak control. Acta Horticulturae, 986. pp. 149-155. doi: 10.17660/ ActaHortic.2013.986.15. Shade, A., Jacques, M. A., & Barret, M. (2017). Ecological patterns of seed microbiome diversity, transmission, and assembly. Current Opinion in Microbiology, 37, 15-22. doi:10.1016/j.mib.2017.03.010. Shafir, S., Dag, A., Bilu, A., Abu-Toamy, M., & Elad, Y. (2006). Honey bee dispersal of the biocontrol agent Trichoderma harzianum T39: effectiveness in suppressing Botrytis cinerea on strawberry under field conditions. European Journal of Plant Pathology, 116(2), 119-128. doi:10.1007/s10658- 006-9047-y. Sharma, R. R., Singh, D., & Singh, R. (2009). Biological control of postharvest diseases of fruits and vegetables by microbial antagonists: A review. Biological Control, 50(3), 205-221. doi:10.1016/j. biocontrol.2009.05.001. Shigetou, N., Kaishu, L., Gonsalves, C., Gonsalves, D., & Slightom, J. L. (1991). Expression of the gene encoding the coat protein of cucumber mosaic virus (cmv) strain wl appears to provide protection to tobacco plants against infection by several different cmv strains. Gene, 107(2), 181-188. doi:10.1016/0378-1119(91)90317-5. Shoresh, M., Harman, G. E., & Mastouri, F. (2010). Induced systemic resistance and plant responses to fungal biocontrol agents. Annual Review of Phytopathology, 48, 21-43. doi:10.1146/annurevphyto-073009-114450. Shtienberg, D., & Elad, Y. (1997). Incorporation of weather forecasting in integrated, biological-chemical management of Botrytis cinerea. Phytopathology, 87(3), 332-340. doi:10.1094/PHYTO.1997.87.3.332. Singh, D., Verma, N., & Varma, A. (2008). The fungal transmitted viruses. En A. Varma (Ed.), Mycorrhiza: State of the art, genetics and molecular biology, ecofunction, biotechnology, eco-physiology, structure and systematics (pp. 485-503). Berlín, Alemania. Springer. doi:10.1007/978-3-540-78826-3_24. Smith, A., Beltrán, C. A., Kusunoki, M., Cotes, A. M., Motohashi, K., ... Deguchi, M. (2013). Diversity of soil-dwelling Trichoderma in Colombia and their potential as biocontrol agents against the phytopathogenic fungus Sclerotinia sclerotiorum (Lib.) de Bary. Journal of General Plant Pathology, 79(1), 74-85. doi:10.1007/s10327-012-0419-1. Sivasithamparam, K., & Ghisalberti, E. (1998). Secondary metabolism in Trichoderma and Gliocladium. En G. E. Harman & C. P. Kubicek (Eds.), Trichoderma and Gliocladium (pp. 139-191). Londres, Reino Unido: Taylor & Francis Ltd. Smits, T. H. M., Rezzonico, F., Kamber, T., Goesmann, A., Ishimaru, C. A., ... Duffy, B., (2010). Genome sequence of the biocontrol agent Pantoea vagans strain C9-1. Journal of Bacteriology, 192(24), 6486- 6487. doi:10.1128/jb.01122-10. Sreenivasulu, C., & Aparna, Y. (2001). Bioremediation of methylparathion by free and immobilized cells of Bacillus sp. isolated from soil. Bulletin of Environmental Contamination and Toxicology, 67(1), 98-105. doi:10.1007/s001280096. Stefanova, M., Leiva, A., Larrinaga, L., & Coronado, M. (1999). Metabolic activity of Trichoderma spp. isolates for a control of soilborne phytopathogenic fungi. Revista de la Facultad de Agronomía Universidad de Zulia, 16, 509-516. Stein, T. (2005). Bacillus subtilis antibiotics: structures, syntheses and specific functions. Molecular Microbiology, 56(4), 845-857. doi:10.1111/j.1365- 2958.2005.04587.x. Stirpe, F., Williams, D. G., Onyon, L. J., Legg, R. F., & Stevens, W. A. (1981). Dianthins, ribosomedamaging proteins with anti-viral properties from Dianthus caryophyllus L. (carnation). The Biochemcal Journal, 195(2), 399-405. Sultan, M. (2012). Biological control of leaf pathogens of tomato plants by Bacillus subtilis (strain FZB24): antagonistic effects and induced plant resistance. Bonn, Alemania: University of Bonn. Sundheim, L., & Krekling, T. (1982). Host-parasite relationships of the hyperparasite Ampelomyces quisqualis and its powdery mildew host Sphaerotheca fuliginea. Journal of Phytopathology, 104(3), 202-210. doi:10.1111/j.1439-0434.1982.tb00527.x. Sutton, J., & Peng, G. (1993a). Biocontrol of Botrytis cinerea in strawberry leaves. Phytopathology, 83(6), 615-621. doi:10.1094/Phyto-83-615. Sutton, J. C., & Peng, G. (1993b). Manipulation and vectoring of biocontrol organisms to manage foliage and fruit diseases in cropping systems. Annual Review of Phytopathology, 31(1), 473-493. doi:10.1146/ annurev.py.31.090193.002353. Swings, J., Van den Mooter, M., Vauterin, L., Hoste, B., Gillis, M., ... Kersters, K. (1990). Reclassification of the causal agents of bacterial blight (Xanthomonas campestris pv. oryzae) and bacterial leaf streak (Xanthomonas campestris pv. oryzicola) of rice as pathovars of Xanthomonas oryzae (ex ishiyama 1922) sp. nov., nom. rev. International Journal of Systematic and Evolutionary Microbiology, 40(3), 309-311. doi:10. 1099/00207713-40-3-309. Szentiványi, O., & Kiss, L. (2003). Overwintering of Ampelomyces mycoparasites on apple trees and other plants infected with powdery mildews. Plant Pathology, 52(6), 737-746. doi:10.1111/j.1365- 3059.2003.00937.x. Tahvonen, R., & Avikainen, H. (1987). The biological control of seed-borne Alternaria brassicicola of cruciferous plants with a powdery preparation of Streptomyces sp. Journal of Agricultural Science in Finland, 59, 199-208. Takamatsu, S. (2004). Phylogeny and evolution of the powdery mildew fungi (Erysiphales, Ascomycota) inferred from nuclear ribosomal dna sequences. Mycoscience, 45(2), 147-157. doi:10.1007/S10267- 003-0159-3. Teng, P. (1994). Epidemiological basis for blast management. En R. S. Zeigler, S. A. Leong & P. S. Teng (Eds.), Rice blast disease (pp. 409-433). Wallingford, EE. UU.: CAB International. Thapa, S., Prasanna, R., Ranjan, K., Velmourougane, K., & Ramakrishnan, B. (2017). Nutrients and host attributes modulate the abundance and functional traits of phyllosphere microbiome in rice. Microbiology Research, 204, 55-64. doi:10.1016/j. micres.2017.07.007. Thresh, J. M., & Cooter, R. J. (2005). Strategies for controlling cassava mosaic virus disease in Africa. Plant Pathology, 54(5), 587-614. doi:10.1111/j.1365- 3059.2005.01282.x. Torres, D. E., Rojas-Martínez, R. I., Zavaleta-Mejía, E., Guevara-Fefer, P., Márquez-Guzmán, G. J., & PérezMartínez, C. (2017). Cladosporium cladosporioides and Cladosporium pseudocladosporioides as potential new fungal antagonists of Puccinia horiana Henn., the causal agent of chrysanthemum white rust. PLoS ONE, 12(1), e0170782. doi:10.1371/journal. pone.0170782. Tronsmo, A., & Dennis, C. (1977). The use of Trichoderma species to control strawberry fruit rots. Netherlands Journal of Plant Pathology, 83, 449. doi:10.1007/bf03041462. Truchado, P., Gil, M. I., Reboleiro, P., Rodelas, B., & Allende, A. (2017). Impact of solar radiation exposure on phyllosphere bacterial community of red-pigmented baby leaf lettuce. Food Microbiology, 66, 77-85. doi:10.1016/j.fm.2017.03.018. Tsay, J. G., & Tung, B. (1991). Ampelomyces quisqualis ces. Ex schilecht., a hyper-parasite of the asparagus bean powdery mildew pathogen Erysiphe polygoni in Taiwan. Transactions of the Mycological Society of Republic of China, 6(2), 55-58. doi:10.7099/ TMSRC.199106.0055. Tucker, S. L., & Talbot, N. J. (2001). Surface attachment and pre-penetration stage development by plant pathogenic fungi. Annual Review of Phytopathology, 39, 385-417. doi:10.1146/annurev.phyto.39.1.385. Tuohimetsä, S., Hietaranta, T., Uosukainen, M., Kukkonen, S., & Karhu, S. (2014). Fruit development in artificially self- and cross-pollinated strawberries (Fragaria × ananassa) and raspberries (Rubus idaeus). Acta Agriculturae Scandinavica, Section B — Soil & Plant Science, 64(5), 408-415. doi:10.1080/090647 10.2014.919348. Tuon, F. F., & Costa, S. F. (2008). Rhodotorula infection. A systematic review of 128 cases from literature. Revista Iberoamericana de Micología, 25(3), 135-140. Turnbull, P. C. (1996). Bacillus. En S. Baron (Ed.), Barron's Medical Microbiology Medical Branch. Texas, EE. UU.: University of Texas. Umesha, S., Dharmesh, S. M., Shetty, S. A., Krishnappa, M., & Shetty, H.S. (1998). Biocontrol of downy mildew disease of pearl millet using Pseudomonas fluorescens. Crop Protection, 17(5), 387-392. doi:10.1016/S0261-2194(98)00014-3. Urbasch, I. (1983). On the genesis and germination of chlamydospores of Botrytis cinerea. Phytopathologische Zeitschrift, 108(1), 54-60. Vali, G. (1995). Principles of ice nucleation. En R. E. Lee, G. J. Warren, L.V. Gusta (Eds.), Biological ice nucleation and its applications (pp. 1-28). Saint Paul, EE. UU.: The American Phytopathological Society (aps). Van Baarlen, P., Woltering, E. J., Staats, M., & Van Kan, J. A. L. (2007). Histochemical and genetic analysis of host and non-host interactions of Arabidopsis with three Botrytis species: an important role for cell death control. Molecular Plant Pathology, 8(1), 41-54. doi:10.1111/j.1364-3703.2006.00367.x. Van Damme, E. J. M., Barre, A., Barbieri, L., Valbonesi, P., Rouge, P., ... Peumans, W. J. (1997). Type 1 ribosome-inactivating proteins are the most abundant proteins in iris (Iris hollandica var. Professor Blaauw) bulbs: characterization and molecular cloning. The Biochemical Journal, 324(Pt. 3), 963. Van Kan, J. A. L., Shaw, M. W., & Grant-Downton, R. T. (2014). Botrytis species: relentless necrotrophic thugs or endophytes gone rogue? Molecular Plant Pathology, 15(9), 957-961. doi:10.1111/ mpp.12148. Verdier, V., Restrepo, S., Mosquera, G., Jorge, V., & López, C. (2004). Recent progress in the characterization of molecular determinants in the Xanthomonas axonopodis pv. manihotis–cassava interaction. Plant Molecular Biology, 56(4), 573-584. doi:10.1007/ s11103-004-5044-8. Verger, P. J. P., & Boobis, A. R. (2013). Reevaluate pesticides for food security and safety. Science, 341(6147), 717-718. doi:10.1126/science.1241572. Verma, H. N. (1994). Induction of durable resistance by primed Clerodendrum aculeatum leaf extract. Indian Phytopathology, 47(1), 19-22. Verma, H. N., & Awasthi, L. P. (1980). Occurrence of a highly antiviral agent in plants treated with Boerhaavia diffusa inhibitor. Canadian Journal of Botany, 58(20), 2141-2144. doi:10.1139/b80-246. Verma, H. N., & Dwivedi, S. D. (1984). Properties of a virus inhibiting agent, isolated from plants which have been treated with leaf extracts from Bougainvillea spectabilis. Physiological Plant Pathology, 25(1), 93- 101. doi:10.1016/0048-4059(84)90020-1. Vidhyasekaran, P., Rabindran, R., Muthamilan, M., Nayar, K., Rajappan, K., ... Vasumathi, K. (1997). Development of a powder formulation of Pseudomonas fluorescens for control of rice blast. Plant Pathology, 46(3), 291-297. doi:10.1046/j.1365-3059.1997. d01-27.x. Voegele, R. T., & Mendgen, K. W. (2011). Nutrient uptake in rust fungi: how sweet is parasitic life? Euphytica, 179(1), 41-55. doi:10.1007/s10681-011- 0358-5. Völksch, B., & May, R. (2001). Biological control of Pseudomonas syringae pv. glycinea by epiphytic bacteria under field conditions. Microbial Ecololy, 41(2), 132- 139. doi:10.1007/s002480000078. Vorholt, J. A. (2012). Microbial life in the phyllosphere. Nature reviews. Microbiology, 10(12), 828. doi:10.1038/nrmicro2910. Walker, A. S., Micoud, A., Rémuson, F., Grosman, J., Gredt, M., & Leroux, P. (2013). French vineyards provide information that opens ways for effective resistance management of Botrytis cinerea (grey mould). Pest Management Science, 69(6), 667-678. doi:10.1002/ps.3506. Wang, Q.-M., & Bai, F.-Y. (2004). Four new yeast species of the genus Sporobolomyces from plant leaves. fems Yeast Research, 4(6), 579-586. doi:10.1016/j. femsyr.2003.11.002. Wang, X., Xue, Y., Han, M., Bu, Y., & Liu, C. (2014). The ecological roles of Bacillus thuringiensis within phyllosphere environments. Chemosphere, 108, 258- 264. doi:10.1016/j.chemosphere.2014.01.050. Wasik, A. A., & Schiller, H. B. (2017). Functional proteomics of cellular mechanosensing mechanisms. Seminars in Cell and Developmental Biology, 71, 118- 128. doi:10.1016/j.semcdb.2017.06.019. Wheeler, G. S., & Madeira, P. T. (2017). Phylogeny within the Anacardiaceae predicts host range of potential biological control agents of Brazilian peppertree. Biological Control, 108, 22-29. doi:10.1016/j. biocontrol.2017.01.017. Whipps, J. M., Hand, P., Pink, D., & Bending, G. D. (2008). Phyllosphere microbiology with special reference to diversity and plant genotype. Journal of Applied Microbiology, 105(6), 1744-1755. doi:10.1111/j.1365-2672.2008.03906.x. Whipps, J. M., McQuilken, M. P., & Budge, S. P. (1993). Use of fungal antagonists for biocontrol of dampingoff and sclerotinia diseases. Pestic Management Science, 37(4), 309-313. doi:10.1002/ps.2780370402. Williamson, B., Tudzynski, B., Tudzynski, P., & Van Kan, J. A. L. (2007). Botrytis cinerea: the cause of grey mould disease. Molecular Plant Pathology, 8(5), 561- 580. doi:10.1111/j.1364-3703.2007.00417.x. Woo, S. L., Ruocco, M., Vinale, F., Nigro, M., Marra, R., ... Lorito, M. (2014). Trichoderma-based products and their widespread use in agriculture. The Open Mycology Journal, 8, 71-126. doi:10.2174/18744370 01408010071. Wu, M., Zhang, J., Yang, L., & Li, G. (2016). rna mycoviruses and their role in Botrytis biology. En S. Fillinger & Y. Elad (Eds.), Botrytis – the fungus, the pathogen and its management in agricultural systems (pp. 71-90). Cham, Alemania: Springer International Publishing. doi:10.1007/978-3-319-23371-0_5. Wood, R. K. S. (1951). The control of diseases of lettuce by the use of antagonistic organisms I. The control of Botrytis cinerea pers. Annals of Applied Biology, 38(1), 203-216. doi:10.1111/j.1744-7348.1951.tb07797.x. Wyand, R. A., & Brown, J. K. M. (2003). Genetic and forma specialis diversity in Blumeria graminis of cereals and its implications for host-pathogen coevolution. Molecular Plant Pathology, 4(3), 187-198. doi:10.1046/j.1364-3703.2003.00167.x. Yang, C.-H., Crowley, D. E., Borneman, J., & Keen, N. T. (2001). Microbial phyllosphere populations are more complex than previously realized. Proceedings of the National Academy of Sciences, 98(7), 3889-3894. doi:10.1073/pnas.051633898. Yang, H.-H., Yang, S. L., Peng, K.-C., Lo, C.-T., & Liu, S.-Y. (2009). Induced proteome of Trichoderma harzianum by Botrytis cinerea. Mycological Research, 113(Pt. 9), 924-932. doi:10.1016/jmycres.200 9.04.004. Yoshida, K., Goto, T., & Iizuka, N. (1985). Attenuated isolates of Cucumber Mosaic Virus produced by satellite RNA and cross protection between attenuated isolates and Virulent Ones. Japanese Journal of Phytopathology, 51(2), 238-242. doi:10.3186/jjphytopath.51.238. Yoshida, S., Hiradate, S., Koitabashi, M., Kamo, T., & Tsushima, S. (2017). Phyllosphere methylobacterium bacteria contain UVA-absorbing compounds. Journal of Photochemestry and Photobiology. B: Biology, 167: 168-175. doi:10.1016/j.jphotobiol.2016.12.019 Young, C., & Andrews, J. (1990). Inhibition of pseudothecial development of Venturia inaequalis by the basidiomycete Athelia bombacina in apple leaf litter. Phytopathology, 80(6), 536-542. doi:10.1094/ Phyto-80-536. Young, J. M., Bradbury, J. F., Davis, R. E., Dickey, R. S., Ercolani, G. L., ... Vidaver, A. K. (1991). Nomenclatural revisions of plant pathogenic bacteria and list of names 1980-1988. Review of Plant Pathology, 70(4), 211-221. Young, J. M., Park, D. C., Shearman, H. M., & Fargier, E. (2008). A multilocus sequence analysis of the genus Xanthomonas. Systematic and Applied Microbiology, 31(5), 366-377. doi:10.1016/j.syapm.2008.06.004. Zapata, J., Acosta, C., Díaz, A., Villamizar, L., & Cotes, A. (2011). Characterization of Rhodotorula glutinis and Pichia onychis Isolates with Potential as Biopesticides for Controlling Botrytis cinerea. International Symposium on Biological Control of Postharvest Diseases: Challenges and Opportunities, 905, 155-160. doi:10.17660/ActaHortic.2011.905.16. Zapata, J., Villamizar, L., Díaz, L., Uribe, L., Bolaños, C., ... Cotes, A. M. (2013a). Biological control of Rhizoctonia solani and growth promotion activity of Trichoderma koningiopsis Th003 and Trichoderma asperellum Th034 formulations in potato (Solanum tuberosum). IOBC Bulletin, 86, 223-227. Zapata, J., Villamizar, L., Díaz, L., Uribe, L., Bolaños, C., Gómez, M., & Cotes, A. M. (2013b). Development of a biopesticide prototype based on the yeast Rhodotorula glutinis Lv316 for controlling Botrytis cinerea in blackberry. IOBC Bulletin, 86, 263-269. Zapata, J. A., & Cotes, A. M. (2013). Eficacia de dos prototipos de bioplaguicida a base de R. glutinis cepa LvCo7 y un bioplaguicida a base de T. koningiopsis |
dc.relation.ispartofbook.spa.fl_str_mv |
33829 ; Control biológico de fitopatógenos, insectos y ácaros: agentes de control biológico. V. 1 |
dc.rights.*.fl_str_mv |
Attribution-NonCommercial-ShareAlike 4.0 International |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ |
rights_invalid_str_mv |
Attribution-NonCommercial-ShareAlike 4.0 International http://creativecommons.org/licenses/by-nc-sa/4.0/ http://purl.org/coar/access_right/c_abf2 |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.coverage.country.spa.fl_str_mv |
Colombia |
dc.publisher.spa.fl_str_mv |
Corporación colombiana de investigación agropecuaria - AGROSAVIA |
dc.publisher.place.spa.fl_str_mv |
Bogotá (Colombia) |
institution |
Agrosavia |
bitstream.url.fl_str_mv |
https://repository.agrosavia.co/bitstream/20.500.12324/34058/2/license.txt https://repository.agrosavia.co/bitstream/20.500.12324/34058/3/Ver_Documento_34058.pdf https://repository.agrosavia.co/bitstream/20.500.12324/34058/5/Ver_Documento_34058.pdf.jpg |
bitstream.checksum.fl_str_mv |
8a4605be74aa9ea9d79846c1fba20a33 30b95eda72cc2a958546cd07e7c37675 cfc14ecf19c1ad9d5577a0b03c97f0a0 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Agrosavia - Corporación colombiana de investigación agropecuaria |
repository.mail.fl_str_mv |
bac@agrosavia.co |
_version_ |
1814380531138166784 |
spelling |
Cotes Prado, Alba Marina8e81a379-2909-4b7e-a52b-afcee7b4894f600Zapata Narváez, Yimmy Alexander1a0815b1-b6df-490b-8047-d14a0574ce03600Beltrán Acosta, Camilo Rubén4a1de6b0-5c4d-4300-9dc7-ab6c196b10ee600Kobayashi, Sadao18e040bc-e2c6-455b-870e-811213ffa373600Uribe Gutiérrez, Liz Alejandrae6f1c991-9f79-4920-bb12-b1a1403f69f7600Elad, Yigalf9c63e8f-be44-4d6f-88dc-1c9bf544f84a6002018-11-21T16:20:34Z2018-11-21T16:20:34Z2018978-958-740-253-7 (e-book)http://hdl.handle.net/20.500.12324/34058reponame:Biblioteca Digital Agropecuaria de Colombiarepourl:https://repository.agrosavia.coinstname:Corporación colombiana de investigación agropecuaria AGROSAVIALos fitopatógenos foliares representan una grave amenaza para la seguridad alimentaria mundial. El control biológico se considera ecológicamente amigable y una alternativa clave en el manejo de las enfermedades producidas por estos. Además, se ha demostrado que varios microorganismos son efectivos en el control de muchas de estas enfermedades. En este capítulo se analizan varios de los más importantes patógenos foliares, así como los microorganismos antagonistas más frecuentemente usados, incluyendo su distribución, ecología, biología y modo de acción. Para ello, se revisan investigaciones realizadas durante las últimas décadas en todo el mundo sobre la evaluación de la eficacia de los agentes de control biológico, con algunas historias de éxito convincentes, así como los factores que fomentan o dificultan su desarrollo.application/pdfspaCorporación colombiana de investigación agropecuaria - AGROSAVIABogotá (Colombia)Attribution-NonCommercial-ShareAlike 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-sa/4.0/http://purl.org/coar/access_right/c_abf2Control biológico de patógenos foliaresBiological control of foliar pathogensPlagas de las plantas - H10BioplaguicidasControl biológicoOrganismos patógenosTransversalTécnicoProfesionalInvestigadorCientíficobook partCapítulohttp://purl.org/coar/resource_type/c_3248info:eu-repo/semantics/bookParthttps://purl.org/redcol/resource_type/CAP_LIBhttp://purl.org/coar/version/c_970fb48d4fbd8a85Colombia56143Abanda-Nkpwatt, D., Krimm, U., Coiner, H. A., Schreiber, L., & Schwab, W. (2006). Plant volatiles can minimize the growth suppression of epiphytic bacteria by the phytopathogenic fungus Botrytis cinerea in co-culture experiments. Environmental and Experimental Botanic, 56(1), 108-119. doi:10.1016/j.envexpbot.2005.01.010.Abdallah, M. E., Haroun, S. A., Gomah, A. A., ElNaggar, N. E., & Badr, H. H. (2013). Application of actinomycetes as biocontrol agents in the management of onion bacterial rot diseases. Arch. Phytopathol. Plant Protection, 46(15), 1797-1808. Do i:10.1080/03235408.2013.778451.Abel., P. P., Nelson. R. S., De, B., Hoffmann, N., Rogers, S. G., ... Beachy, R. N. (1986). Delay of disease development in transgenic plants that express the tobacco mosaic virus coat protein gene. Science, 232(4751), 738-744.Abriouel, H., Franz, C. M. A. P., Omar, N. B., & Gálvez, A. (2011). Diversity and applications of Bacillus bacteriocins. FEMS Microbiology Review, 35(1), 201-232. doi:10.1111/j.1574-6976.2010.00244.x.Agencia de Protección Ambiental de Estados Unidos (epa). (2002). Pseudozyma flocculosa strain PF-A22 UL (PC Code 119196) Pseudozyma flocculosa strain PF-A22 UL (TGAI) sporodex L (ep). Recuperado de https://www3.epa.gov/pesticides/chem_search/reg_actions/registration/decision_PC-119196_1- Sep-02.pdf.Agencia de Protección Ambiental de Estados Unidos (epa). (2009). Candida oleophila Strain O PC Code: 021010 office of pesticide programs biopesticides and pollution prevention division last updated. Recuperado de https://www3.epa.gov/pesticides/chem_search/reg_actions/registration/decision_PC-021010_15-Jul-09.pdf.Agencia de Protección Ambiental de Estados Unidos (epa). (2017). Pesticides. Recuperado de https:// www.epa.gov/pesticides. Agrios, G. N. (2015). Plant pathology. Londres, Inglaterra: Elsevier.Ajith, P., & Lakshmidevi, N. (2010). Effect of volatile and non-volatile compounds from Trichoderma spp. against Colletotrichum capsici incitant of anthracnose on bell peppers. Nature and Science, 8(9), 265-269.Ajouz, S., Nicot, P. C., & Bardin, M. (2010). Adaptation to pyrrolnitrin in Botrytis cinerea and cost of resistance. Plant Pathology, 59(3), 556-566. doi:10.1111/j.1365-3059.2009.02230.x.Aksu, Z., & Eren, A. T. (2007). Production of carotenoids by the isolated yeast of Rhodotorula glutinis. Biochemical Engineering Journal, 35(2), 107-113. doi:10.1016/j.bej.2007.01.004.Al-Awadhi, H., Al-Mailem, D., Dashti, N., Hakam, L., Eliyas, M., & Radwan, S. (2012). The abundant occurrence of hydrocarbon-utilizing bacteria in the phyllospheres of cultivated and wild plants in Kuwait. International Biodeterioration & Biodegradation, 73, 73-79. doi:10.1016/j.ibiod.2012.05.016.Albano, S., Chagnon, M., De Oliveira, D., Houle, E., Thibodeau, P., & Mexia, A. (2009). Effectiveness of Apis mellifera and bombus impatiens as dispersers of the Rootshield® biofungicide (Trichoderma harzianum, strain T-22) in a strawberry crop. Hellenic Plant Protection Journal, 2(2), 57-66.Alfonzo, A., Conigliaro, G., Torta, L., Burruano, S., & Moschetti, G. (2009). Antagonism of Bacillus subtilis strain AG1 against vine wood fungal pathogens. Phytopathologia Mediterranea, 48, 155-158. doi:10.14601/Phytopathol_Mediterr-2886.Ali, G. S., El-Sayed, A. S. A., Patel, J. S., Green, K. B., Ali, M., ... Norman, D. (2016). Ex vivo application of secreted metabolites produced by soil-inhabiting Bacillus spp. Efficiently controls foliar diseases caused by Alternaria spp. Applied and Environmental Microbiology, 82(12), 478-490. doi:10.1128/aem.02662-15.Ali, H., & Nadarajah, K. (2014). Evaluating the efficacy of Trichoderma spp. and Bacillus subtilis as biocontrol agents against Magnaporthe grisea in rice. Australian Journal of Crop Science, 8(9), 1324.Ali, N., Sorkhoh, N., Salamah, S., Eliyas, M., & Radwan, S. (2012). The potential of epiphytic hydrocarbonutilizing bacteria on legume leaves for attenuation of atmospheric hydrocarbon pollutants. Journal of Environmental Management, 93(1), 113-120. doi:10. 1016/j.jenvman.2011.08.014.Alippi, A. M., Perelló, A. E., Sisterna, N. M., Greco, N. M., & Cordo, C. A. (2000). Potential of Spore-forming bacteria as biocontrol agents of wheat foliar diseases under laboratory and greenhouse conditions. Journal of Plant Diseases and Protection, 107(2), 155-169.Allard, H. A. (1915). Distribution of the virus of the mosaic disease in capsules, filaments, anthers, and pistils of affected tobacco plants. Journal of Agricultural Research, 5(6), 251-256.Anagnostakis, S. L. (1982). Biological control of chestnut blight. Science, 215(4532), 466-471. doi:10.1126/ science.215.4532.466.Andrews, J. H. (1990). Biological control in the phyllosphere: Realistic goal or false hope? Canadian Journal of Plant Pathology, 12(3), 300-307. doi:10. 1080/07060669009501004.Andrews, J. H. (1992). Biological control in the phyllosphere. Annual Review of Phytopathology, 30, 603- 635. doi:10.1146/annurev.py.30.090192.003131.Andrews, J. H., & Harris, R. F. (2000). The ecology and biogeography of microorganisms on plant surfaces. Annual Review of Phytopathology, 38, 145-180. doi:10. 1146/annurev.phyto.38.1.145.Aoki, M., Tan, M., Fukushima, A., Hieda, T., Kubo, S., ... Mikami, Y. (1993). Antiviral substances with systemic effects produced by basidiomycetes such as fomes fomentarius. Bioscience, Biotechnology and Biochemistry, 57(2), 278-282. doi:10.1271/bbb.57.278.Ara, I., Bukhari, N. A., Aref, N., Shinwari, M. M., & Bakir, M. (2012). Antiviral activities of streptomycetes against tobacco mosaic virus (tmv) in Datura plant: Evaluation of different organic compounds in their metabolites. African Journal of Biotechnology, 11(8), 2130-2138. doi:10.5897/AJB11.3388.Arguelles-Arias, A., Ongena, M., Halimi, B., Lara, Y., Brans, A., ... Fickers, P. (2009). Bacillus amyloliquefaciens GA1 as a source of potent antibiotics and other secondary metabolites for biocontrol of plant pathogens. Microbial Cell Factories, 8, 63. doi:10.1186/1475-2859-8-63.Arnold, A. E., Maynard, Z., Gilbert, G. S., Coley, P. D., & Kursar, T. A. (2000). Are tropical fungal endophytes hyperdiverse? Ecology Letters, 3(4), 267- 274. doi:10.1046/j.1461-0248.2000.00159.x.Arya, S., & Parashar, R. (2002). Biological control of cotton bacterial blight with phylloplane bacterial antagonists. Troical Agriculture, 79(1), 51-55.Ashwini, N., & Srividya, S. (2014). Potentiality of Bacillus subtilis as biocontrol agent for management of anthracnose disease of chilli caused by Colletotrichum gloeosporioides OGC1. Biotechnology, 4(2), 127-136. doi:10.1007/s13205-013-0134-4.Atlas, R. M., & Bartha, R. (2002). Ecología microbiana y microbiología ambiental. Madrid, España: PearsonAddison Wesley.Audy, P., Palukaitis, P., Slack, S. A., & Zaitlin, M. (1994). Replicase-mediated resistance to potato virus Y in transgenic tobacco plants. Molecular Plant Microbe Interactions, 7(1), 15-15. doi:10.1094/MPMI-7-0015.Autoridad Europea de Seguridad Alimentaria (efsa). (2004a). Ampelomyces quisqualis 4205/VI/98. Recuperado de http://ec.europa.eu/food/plant/pesticides/ eu-pesticides-databasepublic/?event=activesubstance. detail&language=EN&selectedID=959.Autoridad Europea de Seguridad Alimentaria (efsa). (2004b). Gliocladium catenulatum SANCO/103 83/2004. Recuperado de http://ec.europa.eu/food/ plant/pesticides/eu-pesticides-database/public/ ?event=activesubstance.detail&language=EN&selec tedID=1435.Autoridad Europea de Seguridad Alimentaria (efsa). (2006). Bacillus subtilis SANCO/10184/2003. Recuperado de http://ec.europa.eu/food/plant/ pesticides/eu-pesticides-database/public/?event =activesubstance.detail&language=EN&selected ID=986.Autoridad Europea de Seguridad Alimentaria (efsa). (2013a). Candida oleophila strain O SANCO /10395/2013. Recuperado de http://ec.europa. eu/food/plant/pesticides/eu-pesticides-database/ public/?event=activesubstance.detail&language=E N&selectedID=1074.Autoridad Europea de Seguridad Alimentaria (efsa). (2013b). Pythium oligandrum M1 SANCO/1864 /08. Recuperado de http://ec.europa.eu/food/ plant/pesticides/eu-pesticides-database/public/ ?event=activesubstance.detail&language=EN&selec tedID=1810.Autoridad Europea de Seguridad Alimentaria (efsa). (2014a). Bacillus amyloliquefaciens subsp. Plantarum strain D747. SANCO/11391/2014. Recuperado de http://ec.europa.eu/food/plant/pesticides/eu-pes ticides-database/public/?event=activesubstance.det ail&language=EN&selectedID=2252.Autoridad Europea de Seguridad Alimentaria (efsa). (2014b). Bacillus pumilus QST 2808 SANCO/ 12800/2013. Recuperado de http://ec.europa.eu/ food/plant/pesticides/eu-pesticides-database/ public/?event=activesubstance.detail&language=E N&selectedID=2253.Autoridad Europea de Seguridad Alimentaria (efsa). (2014c). Streptomyces K61 (formerly Streptomyces griseoviridis) SANCO/1865/08. Recuperado de http: //ec.europa.eu/food/plant/pesticides/eu-pesticides -database/public/?event=activesubstance.detail&lan guage=EN&selectedID=1895.Autoridad Europea de Seguridad Alimentaria (efsa). (2014d). Streptomyces lydicus strain WYEC 108 SANCO/11427/2014. Recuperado de http://ec. europa.eu/food/plant/pesticides/eu-pesticides-data base/public/?event=activesubstance.detail&languag e=EN&selectedID=2256.Autoridad Europea de Seguridad Alimentaria (efsa). (2014e). Trichoderma asperellum (formerly T. harzianum) ICC012 SANCO/1842/08. Recuperado de http:// ec.europa.eu/food/plant/pesticides/eu-pesticidesdatabase/public/?event=activesubstance.detail&lan guage=EN&selectedID=1979.Autoridad Europea de Seguridad Alimentaria (efsa). (2014f ). Trichoderma atroviride IMI 206040 (formerly T. harzianum imi 206040) SANCO/1866/08. Recuperado de http://ec.europa.eu/food/plant/pesticides/eu-pesti cides-database/public/?event=activesubstance.detail& language=EN&selectedID=1980.Autoridad Europea de Seguridad Alimentaria (efsa). (2014g). Trichoderma gamsii ICC080, Trichoderma asperellum T25 and TV1, formerly Trichoderma viride strain ICC080, strain T-25 and strain TV1 SANCO/1868/08. Recuperado de http://ec.europa. eu/food/plant/pesticides/eu-pesticides-database/ public/?event=activesubstance.detail&language=E N&selectedID=1982.Autoridad Europea de Seguridad Alimentaria (efsa). (2014h). Trichoderma polysporum imi 206039 SANCO /1867/08. Recuperado de http://ec.europa.eu/ food/plant/pesticides/eu-pesticides-database/ public/?event=activesubstance.detail&language=E N&selectedID=1984.Autoridad Europea de Seguridad Alimentaria (efsa). (2015). European Food Safety Authority. Conclusion on the peer review of the pesticide risk assessment of the active substance Saccharomyces cerevisiae LAS02. EFSA Journal, 13(12), 4322-4329 doi:10.2903/j. efsa.2015.4322.Autoridad Europea de Seguridad Alimentaria (efsa). (2016a). Bacillus amyloliquefaciens strain mbi 600 SANTE/10008/2016. Recuperado de http:// ec.europa.eu/food/plant/pesticides/eu-pesticidesdatabase/public/?event=activesubstance.detail&lan guage=EN&selectedID=2325.Autoridad Europea de Seguridad Alimentaria (efsa). (2016b). Pseudomonas sp. strain DSMZ 13134 SANCO/11455/2013. Recuperado de http:// ec.europa.eu/food/plant/pesticides/eu-pesticidesdatabase/public/?event=activesubstance.detail&lan guage=EN&selectedID=1787.Autoridad Europea de Seguridad Alimentaria (efsa). (2017a). Bacillus amyloliquefaciens strain FZB24 SANTE/12037/2016. Recuperado de http:// ec.europa.eu/food/plant/pesticides/eu-pesticidesdatabase/public/?event=activesubstance.detail&lan guage=EN&selectedID=2324.Autoridad Europea de Seguridad Alimentaria (efsa). (2017b). Healt and food safety. Recuperado de http://ec.europa.eu/food/plant/pesticides/eupesticides-database/public/?event=activesubstance. selection&language=EN.Avelino, J., Cristancho, M., Georgiou, S., Imbach, P., Aguilar, L., Bornemann, G., ... Morales, C. (2015). The coffee rust crises in Colombia and Central America (2008-2013): impacts, plausible causes and proposed solutions. Food Security, 7(2), 303-321. doi:10.1007/s12571-015-0446-9.Avis, T. J., & Bélanger, R. R. (2002). Mechanisms and means of detection of biocontrol activity of Pseudozyma yeasts against plant-pathogenic fungi. FEMS Yeast Research, 2(1), 5-8. doi:10.1111/j.1567-1364.2002. tb00062.x.Avis, T. J., Caron, S. J., Boekhout, T., Hamelin, R. C., & Bélanger, R. R. (2001). Molecular and physiological analysis of the powdery mildew antagonist Pseudozyma flocculosa and related fungi. Phytopathology, 91(3), 249-254. doi:10.1094/PHYTO.2001.91.3.249.Baker, C. J., Stavely, J. R., & Mock, N. (1985). Biocontrol of bean rust by Bacillus subtilis under field conditions. Plant Disease, 69(9), 770-772.Baker, K. F. (1987). Evolving concepts of biological control of plant pathogens. Annual Review of Phytopathology, 25, 67-85. doi:10.1146/annurev. py.25.090187.000435.Barbieri, L., Battelli, M. G., & Stirpe, F. (1993). Ribosomeinactivating proteins from plants. Biochimica et Biophysica Acta, 1154(3-4), 237-282. doi:10.1016/ 0304-4157(93)90002-6.Beachy, R. N. (1999). Coat-protein-mediated resistance to tobacco mosaic virus: discovery mechanisms and exploitation. Philosophical Transactions of the Royal Society B: Biological Sciences, 354(1383), 659-664. doi:10.1098/rstb.1999.0418.Beattie, G. A., & Lindow, S. E. (1995). The secret life of foliar bacterial pathogens on leaves. Annual Review of Phytopathology, 33, 145-172. doi:10.1146/annurev. py.33.090195.001045.Beever, R. E., & Weeds, P. L. (2004). Taxonomy and genetic variation of botrytis and Botryotinia. En Y. Elad, B. Williamson, P. Tudzynski, & N. Delen (Eds.), Botrytis: Biology, Pathology and Control (pp. 29-52). Dordrecht, Holanda: Springer. doi:10.1007/978-1- 4020-2626-3_3.Beever, R. E., & Weeds, P. L. (2004). Taxonomy and genetic variation of botrytis and Botryotinia. En Y. Elad, B. Williamson, P. Tudzynski, & N. Delen (Eds.), Botrytis: Biology, Pathology and Control (pp. 29-52). Dordrecht, Holanda: Springer. doi:10.1007/978-1- 4020-2626-3_3.Begerow, D., Bauer, R., & Boekhout, T. (2000). Phylogenetic placements of ustilaginomycetous anamorphs as deduced from nuclear LSU rDNA sequences. Mycology Research, 104(1), 53-60. doi:10.1017/S0953756299001161.Bélanger, R. R., Dufour, N., Caron, J., & Benhamou, N. (1995). Chronological events associated with the antagonistic properties of Trichoderma harzianum against Botrytis cinerea: Indirect evidence for sequential role of antibiosis and parasitism. Biocontrol Science and Technology, 5(1), 41-54. doi:10.1080/ 09583159550040006.Belsare, S. W., Moniz, L., & Deo, V. B. (1980). The hyperparasite Ampelomyces quisqualis Ces. from Maharashtra State, India. Biovigyanam, 6(2), 173-176.Beltrán-Acosta, C. R., & Cotes-Prado, M. A. (2009). Promoción de crecimiento en endurecimiento de plántulas de mora producidas in vitro (efecto de la aplicación de Trichoderma koningiopsis Th003). En L. S. Barrero-Meneses (Ed.), Caracterización, evaluación y producción de material limpio de mora con alto valor agregado (pp. 57-63). Bogotá, Colombia: Corporación Colombiana de Investigación Agropecuaria (Corpoica).Bhatt, D. D., & Vaughan, E. K. (1962). Preliminary investigations on biological control of grey mould (Botrytis cinerea) of strawberries. Plant Disease Reporter, 46, 342-345.Bilu, A., Dag, A., Elad, Y., & Shafir, S. (2004). Honey bee dispersal of biocontrol agents: An evaluation of dispensing devices. Biocontrol Science Technology, 14(6), 607-617. doi:10.1080/095831504100016 82340.Bochow, H., El-Sayed, S. F., Junge, H., Stavropoulou, A., & Schmiedeknecht, G. (2001). Use of Bacillus subtilis as biocontrol agent. IV. Salt-stress tolerance induction by Bacillus subtilis FZB24 seed treatment in tropical vegetable field crops, and its mode of action. Journal of Plant Diseases and Protection, 108(1), 21-30.Boddy, L. (2016). Pathogens of Autotrophs. En S. C. Watkinson, N. Money, & L. Boddy (Ed.), The Fungi (pp. 245-292). Boston, EE. UU.: Academic Press. doi:10.1016/B978-0-12-382034-1.00008-6.Boekhout, T. (1995). Pseudozyma bandoni emend. Boekhout, a genus for yeast-like anamorphs of ustilaginales. The Journal of General and Applied Microbiology, 41(4), 359-366. doi:10.2323/jgam. 41.359.Boland, G. J., & Hunter, J. E. (1988). Influence of Alternaria alternata and Cladosporium cladosporioides on white mold of bean caused by Sclerotinia sclerotiorum. Canadian Journal of Plant Pathology, 10(2), 172-177. doi:10.1080/07060668809501750.Borriss, R. (2011). Use of plant-associated Bacillus strains as biofertilizers and biocontrol agents in agriculture. En: D. K. Maheshwari (Ed.), Bacteria in agrobiology: Plant growth responses (pp. 41-76). Berlin, Alemania: Springer. doi:10.1007/978-3-642-20 332-9_3.Bradbury, J. F. (1986). Guide to plant pathogenic bacteria. Minnesota, EE. UU: CAB International, University of Minnesota.Brederode, F. T., Taschner, P. E. M., Posthumus, E., & Bol, J. F. (1995). Replicase-mediated resistance to Alfalfa Mosaic Virus. Virology, 207(2), 467-474. doi:10.1006/viro.1995.1106.Brent, K. J., & Hollomon, D. W. (2007). Fungicide resistance: the assessment of risk. Bruselas, Belgica: Global crop protection federation Brussels.Brigneti, G., Voinnet, O., Li, W. X., Ji, L.H., Ding, S. W., & Baulcombe, D. C. (1998). Retracted: Viral pathogenicity determinants are suppressors of transgene silencing in Nicotiana benthamiana. The EMBO Journal, 17(22), 6739-6746. doi:10.1093/ emboj/17.22.6739.Brunner, K., Zeilinger, S., Ciliento, R., Woo, S. L., Lorito, M., Kubicek, C. P., & Mach, R. L. (2005). Improvement of the fungal biocontrol agent Trichoderma atroviride to enhance both antagonism and induction of plant systemic disease resistance. Applied and Environmental Microbiology, 71(7), 3959-3965. doi:10.1128/aem.71.7.3959- 3965.2005.Buck, J. W., & Andrews, J. H. (1999). Attachment of the yeast Rhodosporidium toruloides is mediated by adhesives localized at sites of bud cell development. Applied and Environmental Microbiology, 65(2), 465-471.Buck, J. W., & Burpee, L. L. (2002). The effects of fungicides on the phylloplane yeast populations of creeping bentgrass. Canadian Journal of Microbiology, 48(6), 522-529. doi:10.1139/w02-050.Caffi, T., Legler, S. E., Bugiani, R., & Rossi, V. (2013). Combining sanitation and disease modelling for control of grapevine powdery mildew. European Journal of Plant Pathology, 135(4), 817-829. doi:10.1007/s10658-012-0124-0.Calvente, V., Benuzzi, D., & de Tosetti, M. I. S. (1999). Antagonistic action of siderophores from Rhodotorula glutinis upon the postharvest pathogen Penicillium expansum. International Biodeterioration and Biodegradation, 43(4), 167-172. doi:10.1016/ S0964-8305(99)00046-3.Campbell, R. (1989). Biological control of microbial plant pathogens. Cambridge, Reino Unido: Cambridge University. doi.10.1017/CBO9780511608612.Cannon, P. F., Damm, U., Johnston, P. R., & Weir, B. S. (2012). Colletotrichum – current status and future directions. Studies in Mycology, 73, 181-213. doi:10.3114/sim0014.Cano, R., & Borucki, M. K. (1995). Revival and identification of bacterial spores in 25- to 40- million-year-old dominican amber. Science, 268(5213), 1060-1064.Carisse, O., & Rolland, D. (2004). Effect of timing of application of the biological control agent microsphaeropsis ochracea on the production and ejection pattern of ascospores by Venturia inaequalis. Phytopathology, 94(12), 1305-1314. doi:10.1094/ PHYTO.2004.94.12.1305.Carisse, O., Willman-Desbiens, W., Toussaint, V., & Otis, T. (1998). Preventing Black Rot. Quebec, Canadá: Agriculture and Agri-Food Canada.Carrer-Filho, R., Romeiro, R. S., & Garcia, F. A. O. (2008). Biocontrole de doenças de parte aérea do tomateiro por Nocardioides thermolilacinus. Tropical Plant Pathology, 33(6), 457-460. doi:10.1590/ S1982-56762008000600010.Collins, D. P., & Jacobsen, B. J. (2003). Optimizing a Bacillus subtilis isolate for biological control of sugar beet cercospora leaf spot. Biological Control, 26(2), 153-161. doi:10.1016/S1049-9644(02)00132-9.Comité Nacional Sistema Producto Mango (Conaspromango). (2012). Plan rector nacional de sistema producto mango. Colima, México: Comite Nacional del Sistema Producto Mango.Cook, R. J. (1988). Biological control and holistic plant-health care in agriculture. American Journal of Alternative Agriculture, 3(2-3), 51-62. doi:10.1017/ S0889189300002186.Cooper, B., Lapidot, M., Heick, J. A., Dodds, J. A., & Beachy, R. N. (1995). Multivirus resistance in transgenic tobacco plants expressing a dysfunctional movement protein of tobacco mosaic virus. Virology, 206, 307-313.Cotes, A. M. (2001). Biocontrol of fungal plant pathogens - from the discovery of potential biocontrol agents to the implementation of formulated products. IOBC Bulletin, 24(3), 43-47.Cotes, A. M., Moreno, C. A., Molano, L. F., Villamizar, L., & Piedrahita, W. (2007). Prospects for integrated management of Sclerotinia sclerotiorum in lettuce. IOBC/WPRS Bulletin, 30(6), 391-394.Cotes, A. M., Zapata, J., Díaz, A., García, M., Medina, C., ... Uribe, D. (2011). Selección de levaduras filosféricas con potencial para el control biológico de Botrytis cinerea. Fitopatología Colombiana, 35(2), 51-56.Cuéllar-Quintero, A., Álvarez-Cabrera, E., & CastañoZapata, J. (2011). Evaluación de resistencia de genotipos de plátano y banano a la Sigatoka negra. Revista Facultad Nacional de Agronomía Medellín, 64(1), 5853-5865.Cullen, D., Berbee, F. M., & Andrews, J. H. (1984). Chaetomium globosum antagonizes the apple scab pathogen, Venturia inaequalis, under field conditions. Canadian Journal of Botany, 62(9), 1814-1818. doi:10.1139/b84-245.Cuppels, D. A., Higham, J., & Traquair, J. A. (2013). Efficacy of selected streptomycetes and a streptomycete+pseudomonad combination in the management of selected bacterial and fungal diseases of field tomatoes. Biological Control, 67, 361-372. doi:10.1016/j.biocontrol.2013.09.005.Chaparro, A. P., Carvajal, L. H., & Orduz, S. (2011). Fungicide tolerance of Trichoderma asperelloides and T. harzianum strains. Agricultural sciences, 2(3), 301- 307. doi:10.4236/as.2011.23040.Chen, X. H., Koumoutsi, A., Scholz, R., Schneider, K., Vater, J., ... Borriss, R. (2009). Genome analysis of Bacillus amyloliquefaciens FZB42 reveals its potential for biocontrol of plant pathogens. Journal of Biotechnology, 140(1-2): 27-37. doi:10.1016/j. jbiotec.2008.10.011.Chet, I., Benhamou, N., & Haran, S. (1998). Mycoparasitism and lytic enzymes. En G. E. Harman, C. P. Kubicek (Eds.), Trichoderma and Gliocladium (pp. 153-171). Londres, Reino Unido: Taylor and Francis Ltd.Chitarra, G. S., Breeuwer, P., Nout, M. J. R., Van Aelst, A. C., ... Abee, T. (2003). An antifungal compound produced by Bacillus subtilis YM 10–20 inhibits germination of Penicillium roqueforti conidiospores. Journal Applied Microbiology, 94(2), 159-166. doi:10.1046/j.1365-2672.2003.01819.x.Daoust, R. A., & Hofstein, R. (1996). Ampelomyces quisqualis, a new biofungicide to control powdery mildew in grapes. En British Crop Protection Council (Ed.), Brighton Crop Protection Conference, Pest and Diseases (pp. 33-40). Farnham, Reino Unido: British Crop Protection Council.Dayarathne, M., Boonmee, S., Braun, U., Crous, P., Daranagama, D., ... Maharachchikumbura, S. (2016). Taxonomic utility of old names in current fungal classification and nomenclature: Conflicts, confusion & clarifications. Mycosphere, 7(11), 1622-1648. doi:10. 5943/mycosphere/7/11/2.De Jong, J. C., McCormack, B. J., Smirnoff, N., & Talbot, N. J. (1997). Glycerol generates turgor in rice blast. Nature, 389, 244. doi:10.1038/38418.De Meyer, G., Bigirimana, J., Elad, Y., & Höfte, M. (1998). Induced systemic resistance in Trichoderma harzianum T39 biocontrol of Botrytis cinerea. European Journal of Plant Pathology, 104(3), 279-286. doi:10. 1023/a:1008628806616.Dean, R., Van Kan, J. A., Pretorius, Z.A., HammondKosack, K.E., Di Pietro, A., Spanu, P.D., ... Ellis, J. (2012). The Top 10 fungal pathogens in molecular plant pathology. Molecular Plant Pathology, 13(4), 414-430. doi:10.1111/j.1364-3703.2011.00783.x.Défago, G., Berling, C. H., Burger, U., Haas, D., Kahr, G., ... Wüthrich, B. (1990). Suppression of black root rot of tobacco and other root diseases by strains of Pseudomonas fluorescens: potential applications and mechanisms. En D. Hornby (Ed.), Biological control of soil-borne plant pathogens (pp. 93-108). Wallingford, Reino Unido: CAB International.Dennis, C., & Webster, J. (1971). Antagonistic properties of species-groups of Trichoderma: II. Production of volatile antibiotics. Transactions of the British Mycological Society, 57(1), 41-IN44. doi:10.1016/S0007-1536(71)80078-5.Deom, C. M., Schubert, K. R., Wolf, S., Holt, C. A., Lucas, W. J., & Beachy, R. N. (1990). Molecular characterization and biological function of the movement protein of tobacco mosaic virus in transgenic plants. Proceedings of the National Academy of Sciences, 87(9), 3284-3288.Dewey, F. M., & Grant-Downton, R. (2016). Botrytis -Biology, Detection and Quantification. En S. Fillinger & Y., Elad (Eds.), Botrytis – the Fungus, the Pathogen and its Management in Agricultural Systems (pp. 17-34). Cham, Suiza: Springer International Publishing.Dickinson, C. H., & Preece, T. F. (1977). Microbiology of aerial plant surfaces. Londres, Inglaterra: Academic Press. doi:10.1002/jobm.19770170712.Ding, S. W., Li, W. X., & Symons, R. H. (1995). A novel naturally occurring hybrid gene encoded by a plant rna virus facilitates long distance virus movement. The EMBO Journal, 14(23), 5762-5772.Dodd, S. L., Lieckfeldt, E., & Samuels, G. J. (2003). Hypocrea atroviridis sp. nov., the teleomorph of Trichoderma atroviride. Mycologia, 95(1), 27-40. doi: 10.1080/15572536.2004.11833129.Doudoroff, M., & Palleroni, N. J. (1974). Genus I. Pseudomonas migula. En R. E. Buchanan & N. E. Gibbons (Eds.), Bergey’s manual of determinative bacteriology (pp. 217-243). Baltimore, EE. UU.: Williams & Wilkins.Droby, S., Wisniewski, M., Macarisin, D., & Wilson, C. (2009). Twenty years of postharvest biocontrol research: Is it time for a new paradigm? Postharvest Biology and Technology, 52(2), 137-145. doi:10.1016/j.postharvbio.2008.11.009.Druzhinina, I. S., Kopchinskiy, A. G., & Kubicek, C. P. (2006). The first 100 Trichoderma species characterized by molecular data. Mycoscience, 47, 55-64. doi:10.1007/S10267-006-0279-7.Duan, C. G., Wang, C. H., & Guo, H. S. (2012). Application of rna silencing to plant disease resistance. Silence, 3, 5. doi:10.1186/1758-907X-3-5.Dubos, B. (1992). Biological control of Botrytis, State -of-the-art. En K. Verhoeff, N. Malathrakis, & B. Williamson (Eds.), Recent advances in Botrytis research (pp. 169-178). Wageningen, Holanda: Pudoc Scientific Publishers.Duggar, B. M., & Armstrong, J. K. (1925). The effect of treating the Virus of Tobacco Mosaic with the juices of various plants. Annals of the Missouri Botanical Garden, 12(4), 359-366. doi:10.2307/2394061.Edwards, S., & Seddon, B. (1992). Bacillus brevis as biocontrol agent against Botrytis cinerea on protected Chinese cabbage. En K. Verhoeff, N. Malathrakis, & B. Williamson (Eds.), Recent advances in Botrytis research (pp. 267-271). Wageningen, Holanda: Pudoc Scientific Publishers.Eichenlaub, R., & Gartemann, K. H. (2011). The Clavibacter michiganensis subspecies: Molecular investigation of gram-positive bacterial plant pathogens.Annual Review of Phytopathology, 49, 445- 464. doi:10.1146/annurev-phyto-072910-095258.Elad, Y. (1990). Reasons for the delay in development of biological control of foliar pathogens. Phytoparasitica, 18(2): 99-105. doi:10.1007/bf02981226.Elad, Y. (1994). Biological control of grape grey mould by Trichoderma harzianum. Crop Protection, 13(1), 35-38. doi:10.1016/0261-2194(94)90133-3.Elad, Y. (1995). Mycoparasitism. En K. Kohmoto, R. P. Singh, & U. S. Singh, (Eds.), Pathogenesis and host specificity in plant diseases: histopathological, biochemical, genetic and molecular basis (pp. 289-307). Oxford, Reino Unido: Elsevier Science Ltd.Elad, Y. (1996). Mechanisms involved in the biological control of Botrytis cinerea incited diseases. European Journal of Plant Pathology, 102(8), 719-732. doi:10.1007/bf01877146.Elad, Y. (2000a). Biological control of foliar pathogens by means of Trichoderma harzianum and potential modes of action. Crop Protection, 19(8), 709-714. doi:10.1016/S0261-2194(00)00094-6.Elad, Y. (2000b). Trichoderma harzianum T39 preparation for biocontrol of plant diseases-control of Botrytis cinerea, Sclerotinia sclerotiorum and Cladosporium fulvum. Biocontrol Science and Technology, 10(4), 499- 507. doi:10.1080/09583150050115089.Elad, Y. (2001). Trichodex: commercialization of Trichoderma harzianum T39 – a case study. Agrow report, biopesticides: Trends and opportunities. Richmond, Reino Unido: PJB Publications Ltd.Elad, Y. (2003). Biocontrol of foliar pathogens: mechanisms and application. Communications in Agricultural and Applied Biological Sciences, 68(4 pt. A), 17-24.Elad, Y., & Freeman, S. (2002). Biological control of fungal plant pathogens. En F. Kempken (Ed.), The Mycota, a comprehensive treatise on fungi as experimental systems for basic and applied research. Vol. 11 Agricultural Applications (pp. 93-109). Heidelberg, Alemania: Springer.Elad, Y., & Kapat, A. (1999). The role of Trichoderma harzianum protease in the biocontrol of Botrytis cinerea. European Journal of Plant Pathology, 105(2), 177-189. doi:10.1023/a:1008753629207.Elad, Y., Kirshner, B., Yehuda, N., & Sztejnberg, A. (1998). Management of powdery mildew and gray mold of cucumber by Trichoderma harzianum T39 and Ampelomyces quisqualis AQ10. BioControl, 43(2), 241-251. doi:10.1023/a:1009919417481.Elad, Y., Pertot, I., Cotes-Prado, A. M., & Stewart, A. (2016). Plant hosts of Botrytis spp. En S. Fillinger & Y.Elad, (Eds.), Botrytis – the fungus, the pathogen and its management in agricultural systems (pp. 413-486). Cham, Suiza: Springer International Publishing. doi:10.1007/978-3-319-23371-0_20.Elad, Y., & Shtienberg, D. (1995). Botrytis cinerea in greenhouse vegetables: chemical, cultural, physiological and biological controls and their integration. Integrated Pest Management Review, 1(1), 15-29. doi:10.1007/BF00140331.Elad, Y., & Shtienberg, D. (1997). Integrated management of foliar diseases in greenhouse vegetables according to principles of a decision support system – Greenman. IOBC WPRS Bulletin, 20(4), 71-76.Elad, Y., & Stewart, A. (2004). Microbial control of Botrytis spp. En: Y. Elad (Ed.), Botrytis: Biology, Pathology and Control (pp. 223-240). Norwell, EE. UU.: Kluwer Academic Publishers.Elad, Y., & Zimand, G. (1991). Experience in integrated chemicalbiological control of grey mould (Botrytis cinerea). WPRS Bulletin, 14, 195-199.Elad, Y., & Zimand, G. (1992). Integration of biological and chemical control for grey mould. En K. Verhoeff, N. Malathrakis, & B. Williamson (Eds.), Recent advances in Botrytis research (pp. 272-276). Wageningen, Holanda: Pudoc Scientific Publishers.Elad, Y., Zimand, G., Zaqs, Y., Zuriel, S., & Chet, I. (1993a). Biological and integrated control of cucumber grey mould (Botrytis cinerea) under commercial greenhouse condition. Plant Pathology, 42(3), 324-332. doi:10.1111/j.1365-3059.1993. tb01508.x.Elad, Y., Zimand, G., Zaqs, Y., Zuriel, S., & Chet, I. (1993b). Use of Trichoderma harzianum in combination or alternation with fungicides to control cucumber grey mould (Botrytis cinerea) under commercial greenhouse conditions. Plant Pathology, 42(3), 324-332. doi10.1111/j.1365-3059.1993. tb01508.x.Elad, Y., Köhl, J., & Fokkema, N. J. (1994a). Control of infection and sporulation of Botrytis cinerea on bean and tomato by saprophytic bacteria and fungi. European Journal Plant Pathology, 100(5), 315-336. doi:10.1007/bf01876443.Elad, Y., Köhl, J., & Fokkema, N. J. (1994b). Control of infection and sporulation of Botrytis cinerea on bean and tomato by saprophytic yeasts. Phytopathology, 84(10), 1193-1200. doi:10.1094/Phyto-84-1193.Elmer, P. A. G., & Reglinski, T. (2006). Biosuppression of Botrytis cinerea in grapes. Plant Pathology, 55(2), 155-177. doi:10.1111/j.1365-3059.2006.01348.x.Errampalli, D., & Brubacher, N. R. (2006). Biological and integrated control of postharvest blue mold (Penicillium expansum) of apples by Pseudomonas syringae and cyprodinil. Biological Control, 36(1), 49- 56. doi:10.1016/j.biocontrol.2005.07.011.Etchegaray, A., de Castro-Bueno, C., de Melo, I. S., Tsai, S. M., de Fátima-Fiore, M., ... Teschke, O., 2008. Effect of a highly concentrated lipopeptide extract of Bacillus subtilis on fungal and bacterial cells. Archives of Microbiology, 190(6), 611-622. doi:10.1007/ s00203-008-0409-z.Farré-Armengol, G., Filella, I., Llusia, J., & Peñuelas, J. (2016). Bidirectional interaction between phyllospheric microbiotas and plant volatile emissions. Trends Plant Science, 21(10), 854-860. doi:10.1016/j.tplants.2016.06.005.Fenner, K., Canonica, S., Wackett, L. P., & Elsner, M. (2013). Evaluating pesticide degradation in the environment: Blind spots and emerging opportunities. Science, 341(6147), 752-758. doi:10. 1126/science.1236281.Fernández, N. V., Mestre, M. C., Marchelli, P., & Fontenla, S. B. (2012). Yeast and yeast-like fungi associated with dry indehiscent fruits of Nothofagus nervosa in Patagonia, Argentina. FEMS Microbiology Ecology, 80(1), 179-192. doi:10.1111/j.1574-6941. 2011.01287.x.Fernando, W. G. D., Ramarathnam, R., Krishnamoorthy, A. S., & Savchuk, S. C. (2005). Identification and use of potential bacterial organic antifungal volatiles in biocontrol. Soil Biology and Biochemestry, 37(5), 955-964. doi:10.1016/j.soilbio.2004.10.021.Filonow, A. B., Vishniac, H. S., Anderson, J. A., & Janisiewicz, W. J. (1996). Biological control of Botrytis cinerea in apple by yeasts from various habitats and their putative mechanisms of antagonism. Biological Control, 7(2), 212-220. doi:10.1006/ bcon.1996.0086.Fincheira, P., Parra, L., Mutis, A., Parada, M., & Quiroz, A. (2017). Volatiles emitted by Bacillus sp. BCT9 act as growth modulating agents on Lactuca sativa seedlings. Microbiologyical Research, 203, 47-56. doi:10.1016/j.micres.2017.06.007.Fitch, M. M. M., Manshardt, R. M., Gonsalves, D., Slightom, J. L., & Sanford, J. C. (1992). Virus resistant papaya plants derived from tissues bombarded with the coat protein gene of papaya ringspot virus. Bio/Technology, 10, 1466-1472. doi.10.1038/nbt1192-1466Flint, M. L. (1998). Pests of the garden and small farm: a grower's guide to using less pesticide. Oakland, EE. UU.: University of California, Agriculture and Natural Resources.Fokkema, N. J. (1993). Opportunities and problems of control of foliar pathogens with micro-organisms. Pest Management Science, 37(4), 411-416. doi:10.1002/ ps.2780370416.Fravel, D. (1999). Commercial biocontrol products for use against soilborne crop diseases. Recuperado de http://www.barc.usda.gov/psi/bpdl/bpdlprod/ bioprod.html.Fravel, D. R. (2005). Commercialization and implementation of biocontrol. Annual Review of Phytopathology, 43, 337-359. doi:10.1146/annurev. phyto.43.032904.092924.Freeman, S., Minz, D., Kolesnik, I., Barbul, O., Zveibil, A., Maymon, M., ... Elad, Y. (2004). Trichoderma biocontrol of Colletotrichum acutatum and Botrytis cinerea and survival in strawberry. European Journal of Plant Pathology, 110(4), 361-370. doi:10.1023/ B:EJPP.0000021057.93305.d9.Fuchs, M., & Gonsalves, D. (1995). Resistance of transgenic hybrid squash zw-20 expressing the coat protein genes of zucchini yellow mosaic virus and watermelon mosaic virus 2 to mixed infections by both potyviruses. Bio/Technology, 13, 1466-1473. doi:10.1038/nbt1295-1466.Fujiwara, M., Kanamori, T., Ohki, S. T., & Osaki, T. (2001). Purification and partial characterization of figaren, an RNase-like novel antiviral protein from Cucumis figarei. Journal of General Plant Pathology, 67(2), 152-158. doi:10.1007/PL00013002.Fulcher, M. R., Cummings, J. A., & Bergstrom, G. C. (2017). First report of an Alternaria leaf spot of wheat in the U.S.A. Plant Disease, 101(7), 1326- 1326. doi:10.1094/PDIS-10-16-1541-PDN.Gafni, A., Calderon, C. E., Harris, R., Buxdorf, K., DafaBerger, A., ... Levy, M. (2015). Biological control of the cucurbit powdery mildew pathogen Podosphaera xanthii by means of the epiphytic fungus Pseudozyma aphidis and parasitism as a mode of action. Frontiers in Plant Science, 6, 132. doi:10.3389/fpls.2015.00132.Galindo, E., Serrano-Carreón, L., Gutiérrez, C. R., Balderas-Ruíz, K. A., Muñoz-Celaya, A. L., ... ArroyoColín, J. (2015). Desarrollo histórico y los retos tecnológicos y legales para comercializar Fungifree AB®, el primer biofungicida 100% mexicano. tip. Revista Especializada en Ciencias Químico-Biológicas, 18(1), 52-60.Gao, Y.-R., Han, Y.-T., Zhao, F.-L., Li, Y.-J., Cheng, Y., ... Wen, Y.-Q. (2016). Identification and utilization of a new Erysiphe necator isolate NAFU1 to quickly evaluate powdery mildew resistance in wild Chinese grapevine species using detached leaves. Plant Physiology and Biochemestry, 98, 12-24. doi:10.1016/j. plaphy.2015.11.003.Garibaldi, L. A., Bartomeus, I., Bommarco, R., Klein, A. M., Cunningham, S. A., ... Woyciechowski, M. (2015). Editor's choice: Review: Trait matching of flower visitors and crops predicts fruit set better than trait diversity. Journal of Applied Ecology, 52(6), 1436-1444. doi:10.1111/1365-2664.12530.Garry, G., Forbes, G., Salas, A., Santa-Cruz, M., Pérez, W., & Nelson, R. J. (2005). Genetic diversity and host differentiation among isolates of Phytophthora infestans from cultivated potato and wild solanaceous hosts in Peru. Plant Pathology, 54(6), 740-748. doi:10.1111/j.1365-3059.2005.01250.x.Ghabrial, S. A., & Suzuki, N. (2009). Viruses of plant pathogenic fungi. Annual Review of Phytopathology, 47, 353-384. doi:10.1146/annurevphyto-080508-081932.Goldman, G. H., Temmerman, W., Jacobs, D., Contreras, R., Van Montagu, M., & Herrera-Estrella, A. (1993). A nucleotide substitution in one of the β-tubulin genes of Trichoderma viride confers resistance to the antimitotic drug methyl benzimidazole-2-ylcarbamate. Molecular and General Genetics, 240(1), 73-80. doi:10.1007/bf00276886.Golemboski, D. B., Lomonossoff, G. P., & Zaitlin, M. (1990). Plants transformed with a tobacco mosaic virus nonstructural gene sequence are resistant to the virus. Proceedings of the National Academy of Sciences, 87(16), 6311-6315. doi:10.1073/pnas.87.16.6311.Gómez-Expósito, R., Postma, J., Raaijmakers, J. M., & De Bruijn, I. (2015). Diversity and activity of Lysobacter species from disease suppressive soils. Frontiers in Microbiology, 6, 1243. doi:10.3389/ fmicb.2015.01243.Goodwin, S. B., Cohen, B. A., & Fry, W. E. (1994). Pan global distribution of a single clonal lineage of the Irish potato famine fungus. Proceedings of the National Academy of Sciences of the United States of America, 91(24), 11591-11595.Grant, T. J., & Costa, A. S. (1951). A mild strain of the tristeza virus of citrus. Phytopathology, 41, 114-122.Guamán-Burneo, C., & Carvajal-Barriga, J. (2009). Caracterización e identificación de aislados de levaduras carotenogénicas de varias zonas naturales del Ecuador. Universitas Scientiarum, 14(2-3), 11. doi:10.11144/javeriana.SC14-2-3.ceid.Guetsky, R., Shtienberg, D., Elad, Y., & Dinoor, A. (2001). Combining biocontrol agents to reduce the variability of biological control. Phytopathology, 91(7), 621-627. doi:10.1094/PHYTO.2001.91.7.621.Guetskyl, R., Shtienberg, D., Dinoor, A., & Elad, Y. (2002). Establishment, survival and activity of the biocontrol agents Pichia guilliermondii and Bacillus mycoides applied as a mixture on strawberry plants. Biocontrol Science and Technology, 12(6), 705-714. do i:10.1080/0958315021000039888.Gupta, B. M., Chandra, K., Verma, H. N., & Verma, G. S. (1974). Induction of antiviral resistance in Nicotiana glutinosa plants by treatment with Trichothecium polysaccharide and its reversal by actinomycin d. Journal of General Virology, 24(1), 211-213. doi:10.1099/0022-1317-24-1-211.Hahn, M. (2014). The rising threat of fungicide resistance in plant pathogenic fungi: Botrytis as a case study. Journal of Chemical Biology, 7(4), 133-141. doi:10.1007/s12154-014-0113-1.Hajlaoui, M. R., & Bélanger, R. R. (1991). Comparative effects of temperature and humidity on the activity of three potential antagonists of rose powdery mildew. Netherlands Journal of Plant Pathology, 97(4), 203- 208. doi:10.1007/bf01989818.Hajlaoui, M. R., & Bélanger, R. R. (1993). Antagonism of the yeast-like phylloplane fungus Sporothrix flocculosa against Erysiphe graminis var tritici. Biocontrol Science and Technology, 3(4), 427-434. doi:10.1080/ 09583159309355297Hammami, W., Castro, C. Q., Rémus-Borel, W., Labbé, C., & Bélanger, R. R. (2011). Ecological basis of the interaction between Pseudozyma flocculosa and powdery mildew fungi. Applied and Environmental Microbiology, 77(3), 926-933. doi:10.1128/aem. 01255-10.Harel, Y. M., Mehari, Z. H., Rav-David, D., & Elad, Y. (2014). Induced systemic resistance against gray mold in tomato (Solanum lycopersicum) by benzothiadiazole and Trichoderma harzianum T39. Phytopathology, 104(2), 150-157. doi:10.1094/ PHYTO-02-13-0043-R.Harman, G. E. (2000). Myths and dogmas of biocontrol changes in perceptions derived from research on Trichoderma harzianum T-22. Plant Disase, 84(4), 377-393. doi:10.1094/PDIS.2000.84.4.377.Harman, G. E., Howell, C. R., Viterbo, A., Chet, I., & Lorito, M. (2004). Trichoderma species — opportunistic, avirulent plant symbionts. Nature Reviews Microbiology, 2, 43-56. doi:10.1038/nrmicro797.Hashioka, Y., & Nakai, Y. (1980). Ultrastructure of pycnidial development and mycoparasitism of Ampelomyces quisqualis parasitic on Erysiphales. Transactions of the Mycological Society of Japan, 21(3), 329-338.Heath, M. C., Howard, R. J., Valent, B., & Chumley, F. G. (1992). Ultrastructural interactions of one strain of Magnaporthe grisea with goosegrass and weeping lovegrass. Canadian Journal of Botany, 70(4), 779- 787. doi:10.1139/b92-099.Hellwald, K.-H., & Palukaitis, P. (1995). Viral rna as a potential target for two independent mechanisms of replicase-mediated resistance against cucumber mosaic virus. Cell, 83(6), 937-946. doi:10.1016/0092-8674(95)90209-0.Hemenway, C., Fang, R.-X., Kaniewski, W. K., Chua, N.-H., & Tumer, N. E. (1988). Analysis of the mechanism of protection in transgenic plants expressing the potato virus X coat protein or its antisense rna. The EMBO Journal, 7(5), 1273-1280.Heydari, A., & Pessarakli, M. (2010). A review on biological control of fungal plant pathogens using microbial antagonists. Journal of Biological Sciences, 10(4), 273-290. doi:10.3923/jbs.2010. 273.290.Heye, C. C. (1982). Biological control of the perfect stage of the apple scab pathogen, Venturia inaequalis (Cke.) Wint. Madison, Wisconsin, EE. UU.: University of Wisconsin.Hijwegen, T., & Buchenauer, H. (1984). Isolation and identification of hyperparasitic fungi associated with Erysiphaceae. Netherlands Journal of Plant Pathology, 90(2), 79-83. doi:10.1007/bf01999956.Hiltunen, L. H., Ojanpera, T., Kortemaa, H., Richter, E., Lehtonen, M. J., & Valkonen, J. P. T. (2009). Interactions and biocontrol of pathogenic Streptomyces strains cooccurring in potato scab lesions. Journal of Applied Microbiology, 106(1), 199-212.Hino, I., & Kato, H. (1929). Cicinnoboli parasitic on mildew fungi. Bulletin of the Miyazaki Collegium of Agriculture and Forestry, 1, 91-100.Hiradate, S., Yoshida, S., Sugie, H., Yada, H., & Fujii, Y. (2002). Mulberry anthracnose antagonists (iturins) produced by Bacillus amyloliquefaciens RC-2. Phytochemistry, 61(6), 693-698. doi:10.1016/S0031- 9422(02)00365-5.Hirai, T., Hiashima, A., Itoh, T., Takahashi, T., Shimomura, T., & Hayashi, H. (1966). Inhibitory effect of blasticidin S on Tobacco Mosaic Virus multiplication. Phytopathology, 56(4), 1236-1239. doi:10.1016/0042-6822(68)90195-5.Hirano, S. S., & Upper, C. D. (2000). Bacteria in the leaf ecosystem with emphasis on Pseudomonas syringae—a pathogen, ice nucleus, and epiphyte. Microbiology Molecular Biology Reviews, 64(3), 624- 653. doi:10.1128/mmbr.64.3.624-653.2000.Hislop, E. C., & Cox, T. W. (1969). Effects of captan on the non-parasitic microflora of apple leaves. Transactions of the British mycological society, 52(2), 223-235. doi:10.1016/S0007-1536(69)80035-5.Hjeljord, L., & Tronsmo, A. (1998). Trichoderma and Gliocladium in biological control: an overview. En G. E. Harman & C. P. Kubice (Eds.), Trichoderma & Gliocladium: Enzymes, biological control and commercial applications (pp. 131-151). Londres, Reino Unido: Taylor & Francis Ltd.Hofstein, R., Daoust, R. A., & Aeschlimann, J. P. (1996). Constraints to the development of biofungicides: The example of “AQ10”, a new product for controlling powdery mildews. Entomophaga, 41(3-4), 455-460. doi:10.1007/bf02765797.Hogenhout, S. A., Ammar, E. D., Whitfield, A. E., & Redinbaugh, M. G. (2008). Insect vector interactions with persistently transmitted viruses. Annual Review of Phytopathology, 46, 327-359. doi:10.1146/ annurev.phyto.022508.092135.Hokama, N., Kawano, S., & Tokashiki, I. (1993). Effectiveness of cross protection by a mild strain of Zucchini Yellow Mosaic Virus for Mosaic disease of pumpukin ( Japanese). Annals of Phytopathology of Society Japan, 59, 323.Holmes, F. O. (1934). A masked strain of tobaccomosaic virus. Phytopathology, 24, 845-873.Holtz, G., Coertze, S., & Williamson, B. (2007). The ecology of Botrytis on plant surfaces. En: Y. Elad, B. Williamson, P. Tudzynski, & N. Delen (Eds.), Botrytis: Biology, Pathology and Control (pp. 9-27). Dordrecht, Holanda: Springer. doi:10.1007/978-1- 4020-2626-3_2.Hoog, G. S., & Guarro, J. (1995). Atlas of clinical fungi. Baarn, Holanda: Centraalbureau voor Schimmelcultures.Horst, R. K. (2013). Powdery mildews. En R. K. Horst (Ed.), Westcott's plant disease handbook. Springer Netherlands (pp. 285-293). Dordrecht, Holanda: Springer. doi:10.1007/978-94-007-2141-8_40.Howard, R. J., Ferrari, M. A., Roach, D. H., & Money, N. P. (1991). Penetration of hard substrates by a fungus employing enormous turgor pressures. Proceedings of the national academy of sciences, 88(24), 11281- 11284.Howell, C. R. (2003). Mechanisms employed by Trichoderma species in the biological control of plant diseases: The history and evolution of current concepts. Plant Disease, 87(1), 4-10. doi:10.1094/ PDIS.2003.87.1.4.Hughes, J. A., & Ollennu, L. A. A. (1994). Mild strain protection of cocoa in Ghana against cocoa swollen shoot virus—a review. Plant Pathology, 43(3), 442- 457. doi:10.1111/j.1365-3059.1994.tb01578.x.Hull, R. (2014). Plant Virology (5.a ed.). Boston, EE. UU.: Elsevier.Iáñez, E. (1998). Curso de microbiología general. Acción de los agentes físicos sobre las bacterias (ii). Recuperado de http://www.biologia.edu.ar/microgeneral/microianez/18_micro.htm.Index Fungorum (ifs). (2017). Index Fungorum. Recuperado de http://www.indexfungorum.org/ Index.htm.Inácio, J., Rodrigues, M. G., Sobral, P., & Fonseca, Á. (2004). Characterisation and classification of phylloplane yeasts from Portugal related to the genus Taphrina and description of five novel Lalaria species. FEMS Yeast Research, 4(4-5), 541-555. doi:10.1016/ S1567-1356(03)00226-5.Ippolito, A., & Nigro, F. (2000). Impact of preharvest application of biological control agents on postharvest diseases of fresh fruits and vegetables. Crop Protection, 19(8), 715-723. doi:10.1016/S0261 -2194(00)00095-8.International Service for the Acquisition of Agribiotech Applications (isaaa). (2017). GM Approval Database. Recuperado de http://www.isaaa.org/gmap provaldatabase/.Ishimaru, C. A., Klos, E. J., & Brubaker, R. R. (1988). Multiple antibiotic production by Erwinia herbicola. Phytopathology, 78(6), 746-750. doi:10.1094/ Phyto-78-746International Subcommission on Trichoderma and Hypocrea Taxonomy (isth). (2017). Hypocrea/ Trichoderma diversity. List of known species described by 2006. Recuperado de http://www.isth.info/bio diversity/index.php.Izuno, A., Tanabe, A. S., Toju, H., Yamasaki, M., Indrioko, S., & Isagi, Y. (2016). Structure of phyllosphere fungal communities in a tropical dipterocarp plantation: A massively parallel nextgeneration sequencing analysis. Mycoscience, 57(3), 171-180. doi:10.1016/j.myc.2015.12.005.Jackson, A. J., Walters, D. R., & Marshall, G. (1997). Antagonistic interactions between the foliar pathogen Botrytis fabae and isolates of Penicillium brevicompactum and Cladosporium cladosporioides on faba beans. Biological Control, 8(2), 97-106. doi:10.1006/bcon.1996.0481.Jackson, D., Skillman, J., & Vandermeer, J. (2012). Indirect biological control of the coffee leaf rust, Hemileia vastatrix, by the entomogenous fungus Lecanicillium lecanii in a complex coffee agroecosystem. Biological Control, 61(1), 89-97. doi:10.1016/j. biocontrol.2012.01.004.Jacobs, J. L., & Sundin, G. W. (2001). Effect of solar UV-B radiation on a phyllosphere bacterial community. Applied and Environmental Microbiology, 67(12), 5488-5496. doi: 10.1128/AEM.67.12.5488- 5496.2001.Jacobsen, B. (2006). Biological control of plant diseases by phyllosphere applied biological control agents. En M. J. Bailey, A. K. Lilley, T. M. Timms-Wilson, P. T. N. Spencer-Phillips (Eds.), Microbial Ecology of Aerial Plant Surfaces (pp. 133-147). Londres, Reino Unido: CABI.Jacques, M., Kinkel, L. L., & Morris, C. E. (1995). Population sizes, immigration, and growth of epiphytic bacteria on leaves of different ages and positions of field-grown endive (Cichorium endivia var. latifolia). Applied and Environental Microbiology, 61(3), 899-906.Janisiewicz, W. J., Tworkoski, T. J., & Sharer, C. (2000). Characterizing the mechanism of biological control of postharvest diseases on fruits with a simple method to study competition for nutrients. Phytopathology, 90(11), 1196-1200. doi:10.1094/ PHYTO.2000.90.11.1196.Jarvis, W. R. (1977). Botryotinia and Botrytis species: taxonomy, physiology, and pathogenicity. Quebec, Canadá: Department of Agriculture of Canada.Jeleń, H., Błaszczyk, L., Chełkowski, J., Rogowicz, K., & Strakowska, J. (2014). Formation of 6-n-pentyl-2Hpyran-2-one (6-PAP) and other volatiles by different Trichoderma species. Mycological Progress, 13(3), 589-600. doi:10.1007/s11557-013-0942-2.Jijakli, M., Lepoivre, P., Tossut, P., & Thonard, P. (1993). Biological control of Botrytis cinerea and Penicillium sp. on post-harvest apples by two antagonistic yeasts. Mededelingen van de Faculteit Landbouwkundige en Toegepaste Biologische Wetenschappen (Rijksuniversiteit te Gent), 58(3b), 1349-1358.Jin, Y., Szabo, L. J., & Carson, M. (2010). Century-old mystery of Puccinia striiformis life history solved with the identification of Berberis spp. as an alternate host. Phytopathology, 100(5), 432-435. doi:10.1094/ PHYTO-100-5-0432.Jones, D. G. (1993). Exploitation of microorganisms. London, United Kingdom: Springer science & business media. doi:10.1007/978-94-011-1532-2.Junqueira, N. T. V., & Gasparotto, L. (1991). Controle biológico de fungos estromáticos causadores de doenças foliares em seringueira. En: W. Bettiol (Ed.) Controle biológico de doenças de plantas (pp. 307-331, Vol. 1). Jaguariúna, Brasil: Embrapa-cnpda.Kalogiannis, S., Tjamos, S. E., Stergiou, A., Antoniou, P. P., Ziogas, B. N., & Tjamos, E. C. (2006). Selection and evaluation of phyllosphere yeasts as biocontrol agents against grey mould of tomato. European Journal of Plant Pathology, 116(1), 69-76. doi:10.1007/ s10658-006-9040-5.Kämpfer, P. (2006). The family Streptomycetaceae, Part I: Taxonomy. En: M. Dworkin, S. Falkow, E. Rosenberg, K.-H. Schleifer & E. Stackebrandt (Eds.), The Prokaryotes: Volume 3: Archaea. bacteria: Firmicutes, Actinomycetes (pp. 538-604). Nueva York, EE. UU.: Springer. doi:10.1007/0-387-30743-5_22.Kaniewski, W., Lawson, C., & Thomas, P. (1993). Agronomically useful resistance in Russet Burbank potato containing a plrv cp gene. Documento presentado en ix International Congress of Virology. Glasgow, Scotland.Kapat, A., Zimand, G., & Elad, Y. (1998). Biosynthesis of pathogenicity hydrolytic enzymes by Botrytis cinerea during infection of bean leaves and in vitro. Mycology Research, 102(8), 1017-1024. doi:10.1017/ S0953756297006023.Karabulut, O. A., Tezcan, H., Daus, A., Cohen, L., Wiess, B., & Droby, S. (2004). Control of preharvest and postharvest fruit rot in Strawberry by Metschnikowia fructicola. Biocontrol Science and Technology, 14(5), 513-521. doi:10.1080/09583150410001682287.Keel, C., Schnider, U., Maurhofer, M., Voisard, C., Laville, J., Burger, U., … Défago, G. (1992). Suppression of root diseases by Pseudomonas fluorescens CHA0: Importance of the bacterial secondary metabolite 2,4-Diacetylphloroglucinol. Molecular Plant-Microbe Interactions, 5(1), 4-13.Kema, G., Annone, J., Sayoud, R., & Van Silfhout, C. (1996). Genetic variation for virulence and resistance in the wheat-Mycosphaerella graminicola pathosystem. I. Interactions between pathogen isolates and host cultivars. Phytopathology, 86(2), 200-212. doi:10.1094/Phyto-86-200.Kema, G., Sayoud, R., Annone, J., & Van Silfhout, C. (1996). Genetic variation for virulence and resistance in the wheat-Mycosphaerella graminicola pathosystem. ii. Analysis of interactions between pathogen isolates and host cultivars. Phytopathology, 86(2), 213-220. doi:10.1094/Phyto-86-213Kerling, L. C. P. (1958). De microflora of het blad van Beta vulgaris. Tijdschrift Over Plantenziekten, 64, 402-410. doi:10.1007/bf02137361.Kevan, P., Kapongo, J., Al-mazra'awi, M., & Shipp, L. (2008). Honey bees, bumble bees, and biocontrol: New alliances between old friends. En R. James & T. L. Pitts-Singer (Eds.), Bee pollination in agricultural ecosystems (pp. 65-81). Oxford, Reino Unido: Oxford University Press.Khan, M. M. A. A., & Verma, H. N. (1990). Partial characterisation of an induced virus inhibitory protein, associated with systemic resistance in Cyamopsis tetragonoloba (L.) Taub. plants. Annals of Applied Biology, 117(3), 617-623. doi:10.1111/j.1744-7348.1990. tb04827.x.Khan, N., Mishra, A., & Nautiyal, C. S. (2012). Paenibacillus lentimorbus B-30488r controls early blight disease in tomato by inducing host resistance associated gene expression and inhibiting Alternaria solani. Biological Control, 62(2), 65-74. doi:10.1016/j. biocontrol.2012.03.010.Khoa, N. Đ., Giàu, N. Đ. N., & Tuấn, T. Q. (2016). Effects of Serratia nematodiphila CT-78 on rice bacterial leaf blight caused by Xanthomonas oryzae pv. oryzae. Biological Control, 103, 1-10. doi:10.1016/j. biocontrol.2016.07.010.Kim, J. J., Goettel, M. S., & Gillespie, D. R. (2007). Potential of Lecanicillium species for dual microbial control of aphids and the cucumber powdery mildew fungus, Sphaerotheca fuliginea. Biological Control, 40(3), 327-332. doi:10.1016/j.biocontrol.2006.12.002.Kiss, L. (1997). Graminicolous powdery mildew fungi as new natural hosts of Ampelomyces mycoparasites. Canadian Journal of Botany, 75(4), 680-683. doi:10.1139/b97-076.Kiss, L. (1998). Natural occurrence of ampelomyces intracellular mycoparasites in mycelia of powdery mildew fungi. The New Phytologist, 140(4), 709-714. doi:10.1046/j.1469-8137.1998.00316.x.Kiss, L. (2003). A review of fungal antagonists of powdery mildews and their potential as biocontrol agents. Pest Management Science, 59(4), 475-483. doi:10.1002/ps.689.Klatt, B. K., Holzschuh, A., Westphal, C., Clough, Y., Smit, I., . . . Tscharntke, T. (2014). Bee pollination improves crop quality, shelf life and commercial value. Proceedings of the Royal Society B: Biological Sciences, 281(1775). doi:10.1098/rspb.2013.2440.Knudsen, G. R., & Hudler, G. W. (1987). Use of a computer simulation model to evaluate a plant disease biocontrol agent. Ecological Modelling, 35(1- 2), 45-62. doi:10.1016/0304-3800(87)90090-1.Ko, H.-S., Jin, R.-D., Krishnan, H. B., Lee, S.-B., & Kim, K.-Y. (2009). Biocontrol ability of Lysobacter antibioticus HS124 against Phytophthora Blight is mediated by the production of 4-Hydroxyphenylacetic acid and several lytic enzymes. Current Microbiology, 59(6), 608-615. doi:10.1007/s00284-009-9481-0.Kobayashi, N., Hiramatsu, A., & Akatsuka, T. (1987). Purification and chemical properties of an inhibitor of plant virus infection from fruiting bodies of Lentinus edodes. Agricultural and Biological Chemistry, 51(3), 883-890. doi:10.1271/bbb1961.51.883.Köhl, J., & Fokkema, N. J. (1993). Fungal interactions on living and necrotic leaves. En J. P. Blakeman & B. Williamson (Eds.), Ecology of plant pathogens (pp. 321-334). Oxon, Reino Unido: cabi.Köhl, J., Molhoek, W., Van der Plas, C., & Fokkema, N. (1995). Effect of Ulocladium atrum and other antagonists on sporulation of Botrytis cinerea on dead lily leaves exposed to field conditions. Phytopathology, 85(4), 393-400.Köhl, J., & Schlösser, E. (1989). Decay of sclerotia of Botrytis cinerea by Trichoderma spp. At low temperatures. Journal of Phytopathology, 125(4), 320- 326. doi:10.1111/j.1439-0434.1989.tb01076.x.Kokalis-Burelle, N., Backman, P. A., RodríguezKábana, R., & Ploper, L. D. (1992). Potential for biological control of early leafspot of peanut using Bacillus cereus and chitin as foliar amendments. Biological Control, 2(4), 321-328. doi:10.1016/1049- 9644(92)90026-A.Korsten, L., De Villiers, E. E., Wehner, F. C., & Kotzé, J. M. (1997). Field sprays of Bacillus subtilis and fungicides for control of preharvest fruit diseases of avocado in South Africa. Plant Disease, 81(5), 455- 459. doi:10.1094/PDIS.1997.81.5.455.Kovach, J., Petzoldt, R., & Harman, G. E. (2000). Use of honey bees and bumble bees to disseminate Trichoderma harzianum 1295-22 to Strawberries for Botrytis control. Biological Control, 18(3), 235-242. doi:10.1006/bcon.2000.0839.Krauss, U., & Soberanis, W. (2002). Effect of fertilization and biocontrol application frequency on cocoa pod diseases. Biological Control, 24(1), 82-89. doi:10.1016/S1049-9644(02)00007-5.Kubicek, C. P., & Penttila, M. (1998). Regulation of production of plant polysaccharide degrading enzymes by Trichoderma. En G. E. Harman & C. P. Kubicek (Eds.), Trichoderma and Gliocladium (Chapter 3). Londres, Reino Unido: Taylor & Francis Ltd.Kubo, S., Ikeda, T., Imaizumi, S., Takanami, Y., & Mikami, Y. (1990). A potent plant virus inhibitor found in Mirabilis jalapa L. Japanese Journal of Phytopathology, 56(4), 481-487. doi:10.3186/jjphy topath.56.481.Kubota, K., Tsuda, S., Tamai, A., & Meshi, T. (2003). Tomato mosaic virus replication protein suppresses virus-targeted posttranscriptional gene silencing. Journal of Virology, 77(20), 11016-11026. doi:10.1128/jvi.77.20.11016-11026.2003.Kumar, A., & Purohit, A. K. (2012). The role of indigenous knowledge in biological control of plant pathogens: Logistics of new research initiatives. En: J. M. Mérillon & K. G. Ramawat (Eds.), Plant defence: Biological control (pp. 161-194). Dordrecht, Holanda: Springer. doi:10.1007/978-94-007-1933-0_7.Kupferschmidt, K. (2013). A lethal dose of rna. Science, 341(6147), 732-733. doi:10.1126/science. 341.6147.732.Kutuzova, S. N., Porokhovinova, E. A., & Brutch, N. B. (2017). Evolution of virulence in a population of the flax rust pathogen Melampsora lini (Pers.) Lev. in northwestern Russia. Russian Journal of Genetics: Applied Research, 7(2), 159-169. doi:10.1134/S20 7905971702006X.Labudova, I., & Gogorova, L. (1988). Biological control of phytopathogenic fungi through lytic action of Trichoderma species. FEMS Microbiology Letters, 52(3), 193-198. doi:10.1111/j.1574-6968.1988.tb 02594.x.Lam, K. S. (2006). Discovery of novel metabolites from marine actinomycetes. Current in Opinion Microbiology, 9(3), 245-251. doi:10.1016/j.mib. 2006.03.004. Lam, Y.-H., Wong, Y.-S., Wang, B., Wong, R.N.S., Yeung, H.-W., & Shaw, P.-C. (1996). Use of trichosanthin to reduce infection by turnip mosaic virus. Plant Science, 114(1), 111-117. doi:10.1016/0168-9452 (95)04310-1.Landry, C., Bonnot, F., Ravigné, V., Carlier, J., Rengifo, D., . . . Abadie, C. (2017). A foliar disease simulation model to assist the design of new control methods against black leaf streak disease of banana. Ecological Modelling, 359(C), 383-397. doi:10.1016/j.ecolmodel. 2017.05.009.Lapsker, Z., & Elad, Y. (2001). Involvement of reactive oxygen species and antioxidant process in the disease caused by Botrytis cinerea on bean leaves and in its biological control by means of Trichoderma harzianum T39. Biological Control of Fungal and Bacterial Plant Pathogens IOBC WPRS Bulletin, 24(3), 21-25.Larone, D. H., & Howard, D. H. (1996). Medically Important Fungi: A Guide to Identification. Washington, D.C., EE. UU.: ASM Press.Law, J. W.-F., Ser, H.-L., Khan, T. M., Chuah, L.-H., Pusparajah, P., . . . Lee, L.-H. (2017). The potential of Streptomyces as biocontrol agents against the rice blast fungus, Magnaporthe oryzae (Pyricularia oryzae). Frontiers in Microbiology, 8, 3. doi:10.3389/ fmicb.2017.00003.Lee, G., Lee, S.-H., Kim, K.M., & Ryu, C.-M. (2017). Foliar application of the leaf-colonizing yeast Pseudozyma churashimaensis elicits systemic defense of pepper against bacterial and viral pathogens. Scientific Reports, 7, 39432. doi:10.1038/srep39432Lee, R. E. J., Warren, G. J., & Gusta, L. V. (1995). Bioquímica de nucleos de hielo bacteriales. En F. Ray & K. Paul (Eds.), Nucleación biológica de hielo y sus aplicaciones (pp. 63-83). St. Paul, Minnesota, EE. UU.: The American Phytopathological Society (aps).Legler, S. E., Caffi, T., Kiss, L., Pintye, A., & Rossi, V. (2011). Methods for screening new Ampelomyces strains to be used as biocontrol agents against grapevine powdery mildew. IOBC/WPRS Bulletin, 67(marzo), 149-154.Legler, S. E., Pintye, A., Caffi, T., Gulyás, S., Bohár, G., ... Kiss, L. (2016). Sporulation rate in culture and mycoparasitic activity, but not mycohost specificity, are the key factors for selecting Ampelomyces strains for biocontrol of grapevine powdery mildew (Erysiphe necator). European Journal of Plant Pathology, 144(4), 723-736. doi:10.1007/s10658-015-0834-1.Lelliott, R. A., & Dickey, R. S. (1984). Genus VII. Erwinia. En J. Holt (Ed.), Bergey's Manual of Systematic Bacteriology (pp. 469-476). Filadelfia, EE. UU.: Wolters Kluwer Health.Lemanceau, P., Barret, M., Mazurier, S., Mondy, S., Pivato, B., ... Vacher, C. (2017). Chapter Five - plant communication with associated microbiota in the Spermosphere, Rhizosphere and Phyllosphere. Advances in Botanical Research, 82, 101-133. doi:10.1016/bs.abr.2016.10.007.Leonard, K. J., & Bushnell, W. R. (2003). Fusarium head blight of wheat and barley. St. Paul, EE. UU.: American Phytopathological Society (aps).Leroux, P. (2004). Chemical control of Botrytis and its resistance to chemical fungicides. En Y. Elad, B. Williamson, P. Tudzynski & N. Delen, (Eds.), Botrytis: Biology, pathology and control (pp. 195-222). Dordrecht, Holanda: Springer. doi:10.1007/978-1- 4020-2626-3_12.Leveau, J. H. J. (2007). Microbia communities in the phyllosphere. En M. Riederer & C. Müller (Eds.), Annual plant reviews volume 23: Biology of the plant cuticle (pp. 334-367). New Jersey, EE. UU.: Blackwell Publishing Ltd. doi:10.1002/9780470988718.ch11.Libkind, D. (2007). Evaluación de la técnica de msp-pcr para la caracterización molecular de aislamientos de Rhodotorula mucilaginosa provenientes de la Patagonia noroccidental. Revista Argentina de Microbiología, 39(3), 133-137.Lindow, S., Hecht-Poinar, E., & Elliott, V. (2004). Phyllosphere microbiology. St. Paul, EE. UU.: American Phytopathological Society (aps).Lindow, S. E., & Andersen, G. L. (1996). Influence of immigration on epiphytic bacterial populations on navel orange leaves. Applied and Environmental Microbiology, 62(8), 2978-2987.Lindow, S. E., & Brandl, M. T. (2003). Microbiology of the Phyllosphere. Applied Environmental Microbiology, 69(4), 1875-1883. doi:10.1128/aem.69.4.1875- 1883.2003.Lindow, S. E., & Leveau, J. H. J. (2002). Phyllosphere microbiology. Current Opinion in Biotechnology, 13(3), 238-243. doi:10.1016/S0958-1669(02)00313-0.Lo, C.-T. (1998). General mechanisms of action of microbial biocontrol agents. Plant Pathology Bulletin, 7(4), 155-166.Lorito, M., Woo, S. L., Harman, G. E., & Monte, E. (2010). Translational research on Trichoderma: from omics to the field. Annual Review of Phytopathology, 48, 395-417. doi:10.1146/annurev-phyto-073009- 114314.Louws, F. J., Rivard, C. L., & Kubota, C. (2010). Grafting fruiting vegetables to manage soilborne pathogens, foliar pathogens, arthropods and weeds. Scientia horticulturae, 127(2), 127-146. doi:10.1016/j.scienta. 2010.09.023.Maiti, C. K., Sen, S., Paul, A. K., & Acharya, K. (2012). Pseudomonas aeruginosa WS-1 for biological control of leaf blight disease of Withania somnifera. Arch. Phytopathol. Plant Protection, 45(7), 796-805. doi:10 .1080/03235408.2011.597150.Mansfield, J., Genin, S., Magori, S., Citovsky, V., Sriariyanum, M., Ronald, P., ... Foster, G. D. (2012). Top 10 plant pathogenic bacteria in molecular plant pathology. Molecular Plant Pathology, 13(6), 614-629. doi:10.1111/j.1364-3703.2012.00804.x.Marchand, D., & McNeil, J. N. (2000). Effects of wind speed and atmospheric pressure on mate searching behavior in the aphid parasitoid Aphidius nigripes (Hymenoptera: Aphidiidae). Journal of Insect Behavior, 13(2), 187-199. doi:10.1023/a:1007732113390.Martirosyan, V., & Steinberger, Y. (2014). Microbial functional diversity in the phyllosphere and laimosphere of different desert plants. Journal of Arid Environments, 107, 26-33. doi:10.1016/j. jaridenv.2014.04.002.Masih, E. I., Slezack-Deschaumes, S., Marmaras, I., Barka, E. A., ... Paul, B. (2001). Characterisation of the yeast Pichia membranifaciens and its possible use in the biological control of Botrytis cinerea, causing the grey mould disease of grapevine. fems Microbiology Letters, 202(2), 227-232. doi:10.1111/j.1574-6968.2001.tb10808.x.Mastouri, F., Björkman, T., & Harman, G. E. (2010). Seed treatment with Trichoderma harzianum alleviates biotic, abiotic, and physiological stresses in germinating seeds and seedlings. Phytopathology, 100(11), 1213-1221. doi:10.1094/ PHYTO-03-10-0091.Matei, A., & Doehlemann, G. (2016). Cell biology of corn smut disease—Ustilago maydis as a model for biotrophic interactions. Current Opinion in Microbiology, 34, 60-66. doi:10.1016/j.mib. 2016.07.020.McCain, A. (1994). Powdery Mildew. HortScript # 3. California, EE. UU.: University of California Cooperative Extension Marin County.McCook, S. (2006). Global rust belt: Hemileia vastatrix and the ecological integration of world coffee production since 1850. Journal of Global History, 1(2), 177-195. doi:10.1017/S174002280600012X.McGuire, J. M., Kim, K. S., & Douthit, L. B. (1970). Tobacco ringspot virus in the nematode Xiphinema americanum. Virology 42(1), 212-216. doi:10.1016/0042-6822(70)90254-0. McKinney, H. H. (1929). Mosaic diseases in the Canary Islands, West Africa and Gibraltar. Journal of Agricultural Research, 39, 577-578.McManus, P. S., Stockwell, V. O., Sundin, G. W., & Jones, A. L. (2002). Antibiotic use in plant agriculture. Annual Review of Phytopathology, 40, 443-465. doi:10.1146/annurev.phyto.40.120301.093927.McQuilken, M. P., Gemmell, J., & Lahdenperä, M. I. (2001). Gliocladium catenulatum as a potential biological control agent of damping-off in bedding plants. Journal of Phytopathology, 149(3-4), 171-178. doi:10.1046/j.1439-0434.2001.00602.x.McSpadden-Gardener, B. B., & Fravel, D. (2002). Biological control of plant pathogens: Research, commercialization, and application in the usa. Plant health progress (pp. 207-209). doi:10.1094/PHP2002-0510-01-RV.Meena, B. (2014). Biological control of pest and diseases using fluorescent pseudomonads. En K. Sahayaraj (Ed.), Basic and Applied Aspects of Biopesticides (pp. 17-29). Nueva Delhi, India: Springer. doi.10.1007/978-81-322-1877-7_2.Mercier, J., & Lindow, S. E. (2000). Role of leaf surface sugars in colonization of plants by bacterial epiphytes. Applied and Environmental Microbiology, 66(1), 369- 374. doi:10.1128/aem.66.1.369-374.2000.Mew, T. W., Alvarez, A. M., Leach, J. E., & Swings, J. (1993). Focus on bacterial blight of rice. Plant Disease, 77(1), 5-12. doi:10.1094/PD-77-0005.Meyer, K. M., & Leveau, J. H. J. (2012). Microbiology of the phyllosphere: a playground for testing ecological concepts. Oecologia, 168(3), 621-629. doi:10.1007/ s00442-011-2138-2.Meyer, U., Fischer, E., Barbul, O., & Elad, Y. (2001). Effect of biocontrol agents on antigens present in the extracellular matrix of Botrytis cinerea, which are important for pathogenesis. IOBC WPRS Bulletin, 24(3), 5-9.Miedtke, U., & Kennel, W. (1990). Athelia bombacina and Chaetomium globosum as antagonists of the perfect stage of the apple scab pathogen (Venturia inaequalis) under field conditions. Journal of Plant Diseases and Protection, 97(1), 24-32.Milgroom, M. G., & Cortesi, P. (2004). Biological control of chestnut blight with hypovirulence: A critical analysis. Annual Review of Phytopathology, 42, 311- 338. doi:10.1146/annurev.phyto.42.040803.140325.Mizukami, T., & Wakimoto, S. (1969). Epidemiology and control of bacterial leaf blight of rice. Annual Review of Phytopathology, 7, 51-72. doi:10.1146/ annurev.py.07.090169.000411.Mommaerts, V., Put, K., Vandeven, J., Jans, K., Sterk, G., ... Smagghe, G. (2010). Development of a new dispenser for microbiological control agents and evaluation of dissemination by bumblebees in greenhouse strawberries. Pest Management Science, 66(11), 1199-1207. doi:10.1002/ps.1995.Momonoi, K., Mori, M., Matsuura, K., Moriwaki, J., & Morikawa, T. (2015). Quantification of Mirafiori lettuce big-vein virus and its vector, Olpidium virulentus, from soil using real-time pcr. Plant Pathology, 64(4), 825-830. doi:10.1111/ppa.12333.Montesinos, E., & Bonaterra, A. (2009). Pesticides, Microbial. En Reference module in life sciences (pp. 110- 120). Oxford, Reino Unido: Elsevier. doi:10.1016/ B978-0-12-809633-8.13087-0.Morandi, M. A. B., Sutton, J. C., & Maffia, L. A. (2000). Effects of host and microbial factors on development of Clonostachys rosea and control of Botrytis cinerea in rose. European Journal of Plant Pathology, 106(5), 439-448. doi:10.1023/a:1008738513748.Moreno, C., & Cotes, A. (2006). Survival in the phylloplane of Trichoderma koningii and biocontrol activity against tomato foliar pathogens. IOBC/ WPRS Bulletin, 30, 557-561.Moreno, C., Ramírez, J., Zapata, J., Diaz, A., & Cotes, A. (2012). Selection of Pichia onychis isolate for biological control of Botrytis cinerea based on its ecophysiological characteristics. IOBC-WPRS Bulletin, 78, 229-232.Moreno, C., Smith, A., & Cotes, A. M. (2010a). Pruebas de eficacia de Trichoderma koningiopsis Th003 para el control del moho blanco de la lechuga. En C. A. Moreno & A. M. Cotes (Eds.), Desarrollo de un bioplaguicida a base de Trichoderma koningiopsis Th003 y uso en el cultivo de lechuga para el control del moho blanco (Sclerotinia sclerotiorum y Sclerotinia minor) (pp. 60-75). Bogotá, Colombia: Corporación Colombiana de Investigación Agropecuaria (Corpoica).Moreno, C. A., Cotes, A. M., Smith, A., Beltrán, C., Villamizar, L., ... Santos, A. (2010b). Desarrollo de un bioplaguicida a base de Trichoderma koningiopsis Th003 y uso en el cultivo de lechuga para el control del moho blanco Sclerotinia sclerotiorum y Sclerotinia minor. Bogotá, Colombia: Corporación Colombiana de Investigación Agropecuaria (Corpoica).Moreno, C. A., Cotes, A. M., & Vergara, E. G. (2007). Biological control of foliar diseases in tomato greenhouse crop in Colombia: selection of antagonists and efficacy tests. IOBC WPRS Bulletin, 30, 59.Moretto, C., Cervantes, A. L. L., Batista, A., & Kupper, K. C. (2014). Integrated control of green mold to reduce chemical treatment in post-harvest citrus fruits. Scientia Horticulturae, 165, 433-438. doi:10.1016/j. scienta.2013.11.019.Morris, C., E., Monteil, C. L., & Berge, O. (2013). The life history of Pseudomonas syringae: Linking agriculture to earth system processes. Annual Review Phytopathology, 51, 85-104. doi:10.1146/annurevphyto-082712-102402.Muccilli, S., & Restuccia, C. (2015). Bioprotective role of yeasts. Microorganisms, 3(4), 588-611. doi:10.3390/ microorganisms3040588.Mukherjee, P., Sherkhane, P., & Murthy, N. (1999). Induction of stable benomyl-tolerant phenotypic mutants of Trichoderma pseudokoningii mtcc 3011, and their evaluation for antagonistic and biocontrol potential. Indian Journal of Experimental Biology, 37(7), 710-712.Mukherjee, P. K., Horwitz, B. A., & Kenerley, C. M. (2012). Secondary metabolism in Trichoderma – a genomic perspective. Microbiology, 158(1), 35-45. doi:10.1099/mic.0.053629-0. Mukherjee, P. K., Horwitz, B. A., Singh, U. S.,Mukherjee, M., & Schmoll, M. (2013). Trichoderma in agriculture, industry and medicine: an overview. En P. K. Mukherjee, U. S. Singh, B. A. Horwitz, M. Schmoll, & M. Mukherjee (Eds.), Trichoderma biology and applications (pp. 1-9). CAB International. doi:10.1079/9781780642475.0001.Murphy, J. F. (2006). Applied aspects of induced resistance to plant virus infection. En G. Loebenstein & J. P. Carr (Eds.), Natural resistance mechanisms of plants to viruses (pp. 1-11). Dordrecht, Holanda: Springer. doi:10.1007/1-4020-3780-5_1.Murty, V. S. & Devadath, S. (1984). Role of seed in survival and transmission of Xanthomonas campestris pv. oryzae causing bacterial Blight of rice. Journal of Phytopathology, 110(1), 15-19. doi:10.1111/j.1439-0434.1984.tb00735.x.Nakano, M. M. & Zuber, P. (1998). Anaerobic growth of a “Strict aerobe” (Bacillus subtilis). Annual Review of Microbiology, 52, 165-190. doi:10.1146/annurev. micro.52.1.165.Nakazono-Nagaoka, E., Sato, C., Kosaka, Y., & Natsuaki, T. (2004). Evaluation of cross-protection with an attenuated isolate of Bean yellow mosaic virus by differential detection of virus isolates using rt-pcr. Journal of General Plant Pathology, 70(6), 359-362. doi:10.1007/s10327-004-0138-3.Narayanasamy, P. (2013). Mechanisms of action of fungal biological control agents. En P. Narayanasamy (Ed.), Biological management of diseases of crops: Volume 1: Characteristics of biological control agents (pp. 99-200). Dordrecht, Holanda: Springer. doi:10.1007/978-94- 007-6380-7_3.Navazio, L., Baldan, B., Moscatiello, R., Zuppini, A., Woo, S. L., ... Lorito, M. (2007). Calcium-mediated perception and defense responses activated in plant cells by metabolite mixtures secreted by the biocontrol fungus Trichoderma atroviride. BMC Plant Biology, 7, 41. doi:10.1186/1471-2229-7-41.National Center for Biotechnology Information (ncbi). (2017). Taxonomy browser. Recuperado de https:// www.ncbi.nlm.nih.gov/Taxonomy/Browser/ wwwtax.cgi?id=1883.Nelson, M. E., & Powelson, M. L. (1998). Biological control of gray mold of snap beans by Trichoderma hamatum. Plant Disease, 72(8), 727-729. doi:10.1094/ PD-72-0727.Newhook, F. J. (1951). Microbiological control of Botrytis cinerea pers. Ii. Antagonism by fungi and actinomycetes. Annals of Applied Biology, 38(1), 185- 202. doi:10.1111/j.1744-7348.1951.tb07796.x.Niño-Liu, D. O., Ronald, P. C., & Bogdanove, A. J. (2006). Xanthomonas oryzae pathovars: model pathogens of a model crop. Molecular Plant Pathology, 7(5), 303- 324. doi:10.1111/j.1364-3703.2006.00344.x.Nishiguchi, M., Kikuchi, S., Kiho, Y., Ohno, T., Meshi, T., & Okada, Y. (1985). Molecular basis of plant viral virulence; the complete nucleotide sequence of an attenuated strain of tobacco mosaic virus. Nucleic Acids Research, 13(15), 5585-5590. doi:10.1093/ nar/13.15.5585.Nishiguchi, M., & Kobayashi, K. (2011). Attenuated plant viruses: preventing virus diseases and understanding the molecular mechanism. Journal of General Plant Pathology, 77(4), 221-229. doi:10.1007/ s10327-011-0318-x.Noris, E., Accotto, G. P., Tavazza, R., Brunetti, A., Crespi, S., & Tavazza, M. (1996). Resistance to tomato yellow leaf curl geminivirus in Nicotiana benthamiana plants transformed with a truncated viral C1 gene. Virology, 224(1), 130-138. doi:10.1006/viro.1996.0514.O'Neill, T. M., Elad, Y., Shtienberg, D., & Cohen, A. (1996). Control of grapevine grey mould with Trichoderma harzianum T39. Biocontrol Science and Technology, 6(2), 139-146. doi:10.1080/09583159650039340.Orton, E. S., Deller, S., & Brown, J. K. M. (2011). Mycosphaerella graminicola: from genomics to disease control. Molecular Plant Pathology, 12(5), 413-424. doi:10.1111/j.1364-3703.2010.00688.x.Oshima, N. (1981). Control of tomato mosaic disease by attenuated virus. Japan Agricultural Research Quarterly, 14(4), 222-228.Pal, K. K., & Gardener, B. M. (2006). Biological control of plant pathogens. The Plant Health Instructor, 2, 1117-1142. doi:10.1094/PHI-A-2006-1117-02.Palaniyandi, S. A., Yang, S. H., Cheng, J. H., Meng, L., & Suh, J. W. (2011). Biological control of anthracnose (Colletotrichum gloeosporioides) in yam by Streptomyces sp. MJM5763. Journal of Applied Microbiology, 111(2), 443-455. doi:10.1111/j.1365- 2672.2011.05048.x.Palmieri, M. C., Perazzolli, M., Matafora, V., Moretto, M., Bachi, A., & Pertot, I. (2012). Proteomic analysis of grapevine resistance induced by Trichoderma harzianum T39 reveals specific defence pathways activated against downy mildew. Journal of Experimental Botany, 63(17), 6237-6251. doi:10.1093/jxb/ers279.Parker, J. E., Schulte, W., Hahlbrock, K., & Scheel, D. (1991). An extracellular glycoprotein from Phytophthora megasperma f. sp. glycinea elicits phytoalexin synthesis in cultured parsley cells and protoplasts. Molecular Plant-Microbe Interaction, 4, 19-27.Patiño-Vera, M., Jiménez, B., Balderas, K., Ortiz, M., Allende, R., ... Galindo, E. (2005). Pilot-scale production and liquid formulation of Rhodotorula minuta, a potential biocontrol agent of mango anthracnose. Journal of Applied Microbiology, 99(3), 540-550. doi:10.1111/j.1365-2672.2005.02646.x.Paulitz, T. C., & Bélanger, R. R. (2001). Biological control in greenhouse systems. Annual Review of Phytopathology, 39, 103-133. doi:10.1146/annurev. phyto.39.1.103.Pearson, M. N., & Bailey, A. M. (2013). Viruses of Botrytis. Advances in Virus Research, 86, 249-272. doi.10.1016/B978-0-12-394315-6.00009-X.Peng, G., & Sutton, J. C. (1991). Evaluation of microorganisms for biocontrol of Botrytis cinerea in strawberry. Canadian Journal of Plant Pathology, 13(3), 247-257. doi:10.1080/07060669109500938.Peng, G., Sutton, J. C., & Kevan, P. G. (1992). Effectiveness of honey bees for applying the biocontrol agent Gliocladium roseum to strawberry flowers to suppress Botrytis cinerea. Canadian Journal of Plant Pathology, 14(2), 117-129. doi:10.1080/07060669209500888.Peñuelas, J., & Terradas, J. (2014). The foliar microbiome. Trends Plant Science, 19(5), 278-280. doi:10.1016/j. tplants.2013.12.007.Perazzolli, M., Dagostin, S., Ferrari, A., Elad, Y., & Pertot, I. (2008). Induction of systemic resistance against Plasmopara viticola in grapevine by Trichoderma harzianum T39 and benzothiadiazole. Biological Control, 47(2), 228-234. doi:10.1016/j. biocontrol.2008.08.008.Perazzolli, M., Moretto, M., Fontana, P., Ferrarini, A., Velasco, R., ... Pertot, I. (2012). Downy mildew resistance induced by Trichoderma harzianum T39 in susceptible grapevines partially mimics transcriptional changes of resistant genotypes. BMC Genomics, 13, 660. doi:10.1186/1471-2164-13-660.Perazzolli, M., Roatti, B., Bozza, E., & Pertot, I. (2011). Trichoderma harzianum T39 induces resistance against downy mildew by priming for defense without costs for grapevine. Biological Control, 58(1), 74-82. doi:10.1016/j.biocontrol.2011.04.006.Perelló, A., & Mónaco, C. (2007). Reseña de “status and progress of biological control of wheat (Triticum aestivum l.) foliar diseases in argentina”. Fitosanidad, 11(2), 85-105.Perlak, F., Kaniewski, W., Lawson, C., Vincent, M., & Feldman, J. (1994). Genetically improved potatoes: Their potential role in integrated pest management. En M. Manka (Ed.), 3th Conference of the European Foundation for Plant Pathology (efpp) (pp. 451-454). Wageningen, Holanda: efpp.Phillips, M. W. A., & McDougall, J. (2012). Crop protection market trends and opportunities for new active ingredients. En American Chemical Society, Abstracts of Papers of the American Chemical Society (p. 244). Washington, EE. UU.: American Chemical Society.Piggot, P. J., & Hilbert, D. W. (2004). Sporulation of bacillus subtilis. Current Opinion in Microbiology, 7(6). 579-586. doi:10.1016/j.mib.2004.10.001.Pintye, A., Bereczky, Z., Kovács, G. M., Nagy, L. G., Xu, X., ... Kiss, L. (2012). No indication of strict host associations in a widespread mycoparasite: Grapevine powdery mildew (Erysiphe necator) is attacked by phylogenetically distant ampelomyces strains in the field. Phytopathology, 102(7), 707- 716. doi:10.1094/PHYTO-10-11-0270.Prabhakaran, N., Prameeladevi, T., Sathiyabama, M., & Kamil, D. (2015). Screening of different Trichoderma species against agriculturally important foliar plant pathogens. Journal of Environmental Biology, 36(1), 191.Prins, M., Laimer, M., Noris, E., Schubert, J., Wassenegger, M., & Tepfer, M. (2008). Strategies for antiviral resistance in transgenic plants. Molecular Plant Pathology, 9(1), 73-83. doi:10.1111/j.1364- 3703.2007.00447.x.Prusky, D. (1996). Pathogen quiescence in postharvest diseases. Annual Review of Phytopathology, 34(1), 413-434. doi:10.1146/annurev.phyto.34.1.413.Punja, Z. K., & Utkhede, R. S. (2003). Using fungi and yeasts to manage vegetable crop diseases. Trends Biotechnology, 21(9), 400-407. doi:10.1016/S0167- 7799(03)00193-8.Pusey, P. L., Stockwell, V. O., & Mazzola, M. (2009). Epiphytic bacteria and yeasts on apple blossoms and their potential as antagonists of Erwinia amylovora. Phytopathology, 99(5), 571-581. doi:10.1094/PHY TO-99-5-0571.Rabindran, R., & Vidhya sekaran, P. (1996). Development of a formulation of Pseudomonas fluorescens PfALR2 for management of rice sheath blight. Crop Protection, 15(8), 715-721. doi:10.1016/ S0261-2194(96)00045-2.Ramarathnam, R., Fernando, W. G. D., & de Kievit, T. (2011). The role of antibiosis and induced systemic resistance, mediated by strains of Pseudomonas chlororaphis, Bacillus cereus and B. amyloliquefaciens, in controlling blackleg disease of canola. BioControl, 56(2), 225-235. doi:10.1007/s10526-010-9324-8.Ramesh, S., & Mathivanan, N. (2009). Screening of marine actinomycetes isolated from the Bay of Bengal, India for antimicrobial activity and industrial enzymes. World Journal of Microbiology and Biotechnology, 25(12),2103-2111. doi:10.1007/ s11274-009-0113-4.Redford, A. J., & Fierer, N. (2009). Bacterial succession on the leaf surface: A novel system for studying successional dynamics. Microbial Ecology, 58(1), 189- 198. doi:10.1007/s00248-009-9495-y.Redmond, J., Marois, J., & MacDonald, J. (1987). Biological control of Botrytis cinerea on roses with epiphytic microorganisms. Plant Disease, 71(9), 799- 802. doi:10.1094/PD-71-0799.Robiglio, A., Sosa, M. C., Lutz, M. C., Lopes, C. A., & Sangorrín, M. P. (2011). Yeast biocontrol of fungal spoilage of pears stored at low temperature. International Journal of Food Microbiology, 147(3), 211-216. doi:10.1016/j.ijfoodmicro.2011.04.007.Rodríguez-Palenzuela, P., Matas, I. M., Murillo, J., López-Solanilla, E., Bardaji, L., Pérez-Martínez, I., ... Ramos, C. (2010). Annotation and overview of the Pseudomonas savastanoi pv. savastanoi ncppb 3335 draft genome reveals the virulence gene complement of a tumour-inducing pathogen of woody hosts. Environmental Microbiology, 12(6), 1604-1620. doi:10.1111/j.1462-2920.2010.02207.x.Romero, D., de Vicente, A., Rakotoaly, R. H., Dufour, S. E., Veening, J. W., ... Pérez-García, A. (2007a). The iturin and fengycin families of lipopeptides are key factors in antagonism of Bacillus subtilis toward Podosphaera fusca. Molecular Plant-Microbe Interactions Journal, 20(4), 430-440. doi:10.1094/ mpmi-20-4-0430.Romero, D., De Vicente, A., Zeriouh, H., Cazorla, F. M., Fernández-Ortuño, D., ... Pérez-García, A. (2007b). Evaluation of biological control agents for managing cucurbit powdery mildew on greenhouse-grown melon. Plant Pathology, 56(6), 976-986. doi:10.1111/ j.1365-3059.2007.01684.x.Romero, D., Rivera, M. E., Cazorla, F. M., De Vicente, A., & Pérez-García, A. (2003). Effect of mycoparasitic fungi on the development of Sphaerotheca fusca in melon leaves. Mycological Research, 107(1), 64-71. doi:10.1017/S0953756202006974.Roossinck, M. J., Sleat, D., & Palukaitis, P. (1992). Satellite RNAs of plant viruses: structures and biological effects. Microbiological Reviews, 56(2), 265-279.Ruanjan, P., Kertbundit, S., & Juříček, M. (2007). Posttranscriptional gene silencing is involved in resistance of transgenic papayas to papaya ringspot virus. Biologia Plantarum, 51(3), 517-520. doi:10.1007/ s10535-007-0110-0.Ruberson, J. R. (1999). Handbook of pest management. Nueva York, EE. UU.: CRC Press.Rückert, C., Blom, J., Chen, X., Reva, O., & Borriss, R. (2011). Genome sequence of B. amyloliquefaciens type strain DSM7T reveals differences to plantassociated B. amyloliquefaciens FZB42. Journal of Biotechnology, 155(1), 78-85. doi:10.1016/j. jbiotec.2011.01.006Ruinen, J. (1956). Occurrence of Beijerinckia species in the “Phyllosphere”. Nature, 177, 220-221. doi:10.1038/177220a0.Saha, D., Kumar, R., Ghosh, S., Kumari, M., & Saha, A. (2012). Control of foliar diseases of tea with Xanthium strumarium leaf extract. Industrial crops and products, 37(1), 376-382. doi:10.1016/j.indcrop.2011.12.030.Saligkarias, I. D., Gravanis, F. T., & Epton, H. A. S. (2002). Biological control of Botrytis cinerea on tomato plants by the use of epiphytic yeasts Candida guilliermondii strains 101 and US 7 and Candida oleophila strain I-182: II. a study on mode of action. Biological Control, 25(2), 151-161. doi:10.1016/ S1049-9644(02)00052-X.Samac, D. A., Willert, A. M., McBride, M. J., & Kinkel, L. L. (2003). Effects of antibiotic-producing Streptomyces on nodulation and leaf spot in alfalfa. Applied Soil Ecology, 22(1), 55-66. doi:10.1016/S0929- 1393(02)00109-9Samuels, G. J. (1996). Trichoderma: a review of biology and systematics of the genus. Mycological Research, 100(8), 923-935. doi:10.1016/S0953- 7562(96)80043-8.Sanders, P. R., Sammons, B., Kaniewski, W., Haley, L., Layton, J., ... Tumer, N. (1992). Field resistance of transgenic tomatoes expressing the tobacco mosaic virus or tomato mosaic virus coat protein genes. Phytopathology, 82(6), 683-690. doi:10.1094/ Phyto-82-683.Sansone, G., Rezza, I., Fernández, G., Calvente, V., Benuzzi, D., & Sanz, M. I. (2011). Inhibitors of polygalacturonase and laccase of Botrytis cinerea and their application to the control of this fungus. International Biodeterioration and Biodegradation, 65(1), 243-247. doi:10.1016/j.ibiod.2010.09.010.Saravanakumar, D., Spadaro, D., Garibaldi, A., & Gullino, M. L. (2009). Detection of enzymatic activity and partial sequence of a chitinase gene in Metschnikowia pulcherrima strain MACH1 used as post-harvest biocontrol agent. European Journal of Plant Pathology, 123(2), 183-193. doi:10.1007/ s10658-008-9355-5.Sawant, I. S. (2014). Trichoderma-foliar pathogen interactions. The Open Mycology Journal, 8, 58-70. do i:10.2174/1874437001408010058.Sawant, I. S., Rajguru, Y. R., Salunkhe, V. P., & Wadkar, P. N. (2012). Evaluation and selection of efficient Trichoderma species and isolates from diverse locations in India for biological control of anthracnose disease of grapes. Journal of Biological Control, 26, 144-154.Sawant, I. S., Wadkar, P. N., Ghule, S. B., Rajguru, Y. R., Salunkhe, V. P., & Sawant, S. D. (2017). Enhanced biological control of powdery mildew in vineyards by integrating a strain of Trichoderma afroharzianum with sulphur. Biological Control, 114, 133-143. doi:10.1016/j.biocontrol.2017.08.011.Scarselletti, R., & Faull, J. L. (1994). In vitro activity of 6-pentyl-α-pyrone, a metabolite of Trichoderma harzianum, in the inhibition of Rhizoctonia solani and Fusarium oxysporum f. sp. lycopersici. Mycology Research, 98(10), 1207-1209. doi:10.1016/S0953- 7562(09)80206-2.Scherm, H., Ngugi, H. K., Savelle, A. T., & Edwards, J. R. (2004). Biological control of infection of blueberry flowers caused by Monilinia vaccinii-corymbosi. Biological Control, 29(2), 199-206. doi:10.1016/S10 49-9644(03)00154-3.Schirmböck, M., Lorito, M., Wang, Y. L., Hayes, C. K., Arisan-Atac, I., ... Kubicek, C. P. (1994). Parallel formation and synergism of hydrolytic enzymes and peptaibol antibiotics, molecular mechanisms involved in the antagonistic action of Trichoderma harzianum against phytopathogenic fungi. Applied and Environmental Microbiology, 60(12), 4364-4370.Scholthof, K. B. Adkins, S., Czosnek, H., Palukaitis, P., Jacquot, E., Hohn, T., … Foster, G. D. (2011). Top 10 plant viruses in molecular plant pathology. Molecular Plant Pathology 12(9), 938-954. doi: 10.1111/j.1364- 3703.2011.00752.x.Schoonbeek, H.-J., Jacquat-Bovet, A.-C., Mascher, F., & Métraux, J.-P. (2007). Oxalate-degrading bacteria can protect Arabidopsis thaliana and crop plants against Botrytis cinerea. Molecular Plant-Microbe Interactions, 20(12), 1535-1544. doi:10.1094/MPMI-20- 12-1535.Schuster, A., & Schmoll, M. (2010). Biology and biotechnology of Trichoderma. Applied and Microbiological Biotechnology, 87(3), 787-799. doi:10. 1007/s00253-010-2632-1.Ser, H.-L., Law, J. W.-F., Chaiyakunapruk, N., Jacob, S. A., Palanisamy, U. D., ... Lee, L.-H. (2016). Fermentation conditions that affect clavulanic acid production in Streptomyces clavuligerus: A systematic review. Frontiers in Microbiology, 7, 522. doi:10.3389/ fmicb.2016.00522.Serrano, L., Manker, D., Brandi, F., & Cali, T. (2013). The use of Bacillus subtilis qst 713 and Bacillus pumilus qst 2808 as protectant fungicides in conventional application programs for black leaf streak control. Acta Horticulturae, 986. pp. 149-155. doi: 10.17660/ ActaHortic.2013.986.15.Shade, A., Jacques, M. A., & Barret, M. (2017). Ecological patterns of seed microbiome diversity, transmission, and assembly. Current Opinion in Microbiology, 37, 15-22. doi:10.1016/j.mib.2017.03.010.Shafir, S., Dag, A., Bilu, A., Abu-Toamy, M., & Elad, Y. (2006). Honey bee dispersal of the biocontrol agent Trichoderma harzianum T39: effectiveness in suppressing Botrytis cinerea on strawberry under field conditions. European Journal of Plant Pathology, 116(2), 119-128. doi:10.1007/s10658- 006-9047-y.Sharma, R. R., Singh, D., & Singh, R. (2009). Biological control of postharvest diseases of fruits and vegetables by microbial antagonists: A review. Biological Control, 50(3), 205-221. doi:10.1016/j. biocontrol.2009.05.001.Shigetou, N., Kaishu, L., Gonsalves, C., Gonsalves, D., & Slightom, J. L. (1991). Expression of the gene encoding the coat protein of cucumber mosaic virus (cmv) strain wl appears to provide protection to tobacco plants against infection by several different cmv strains. Gene, 107(2), 181-188. doi:10.1016/0378-1119(91)90317-5.Shoresh, M., Harman, G. E., & Mastouri, F. (2010). Induced systemic resistance and plant responses to fungal biocontrol agents. Annual Review of Phytopathology, 48, 21-43. doi:10.1146/annurevphyto-073009-114450.Shtienberg, D., & Elad, Y. (1997). Incorporation of weather forecasting in integrated, biological-chemical management of Botrytis cinerea. Phytopathology, 87(3), 332-340. doi:10.1094/PHYTO.1997.87.3.332.Singh, D., Verma, N., & Varma, A. (2008). The fungal transmitted viruses. En A. Varma (Ed.), Mycorrhiza: State of the art, genetics and molecular biology, ecofunction, biotechnology, eco-physiology, structure and systematics (pp. 485-503). Berlín, Alemania. Springer. doi:10.1007/978-3-540-78826-3_24.Smith, A., Beltrán, C. A., Kusunoki, M., Cotes, A. M., Motohashi, K., ... Deguchi, M. (2013). Diversity of soil-dwelling Trichoderma in Colombia and their potential as biocontrol agents against the phytopathogenic fungus Sclerotinia sclerotiorum (Lib.) de Bary. Journal of General Plant Pathology, 79(1), 74-85. doi:10.1007/s10327-012-0419-1.Sivasithamparam, K., & Ghisalberti, E. (1998). Secondary metabolism in Trichoderma and Gliocladium. En G. E. Harman & C. P. Kubicek (Eds.), Trichoderma and Gliocladium (pp. 139-191). Londres, Reino Unido: Taylor & Francis Ltd.Smits, T. H. M., Rezzonico, F., Kamber, T., Goesmann, A., Ishimaru, C. A., ... Duffy, B., (2010). Genome sequence of the biocontrol agent Pantoea vagans strain C9-1. Journal of Bacteriology, 192(24), 6486- 6487. doi:10.1128/jb.01122-10.Sreenivasulu, C., & Aparna, Y. (2001). Bioremediation of methylparathion by free and immobilized cells of Bacillus sp. isolated from soil. Bulletin of Environmental Contamination and Toxicology, 67(1), 98-105. doi:10.1007/s001280096.Stefanova, M., Leiva, A., Larrinaga, L., & Coronado, M. (1999). Metabolic activity of Trichoderma spp. isolates for a control of soilborne phytopathogenic fungi. Revista de la Facultad de Agronomía Universidad de Zulia, 16, 509-516.Stein, T. (2005). Bacillus subtilis antibiotics: structures, syntheses and specific functions. Molecular Microbiology, 56(4), 845-857. doi:10.1111/j.1365- 2958.2005.04587.x.Stirpe, F., Williams, D. G., Onyon, L. J., Legg, R. F., & Stevens, W. A. (1981). Dianthins, ribosomedamaging proteins with anti-viral properties from Dianthus caryophyllus L. (carnation). The Biochemcal Journal, 195(2), 399-405.Sultan, M. (2012). Biological control of leaf pathogens of tomato plants by Bacillus subtilis (strain FZB24): antagonistic effects and induced plant resistance. Bonn, Alemania: University of Bonn.Sundheim, L., & Krekling, T. (1982). Host-parasite relationships of the hyperparasite Ampelomyces quisqualis and its powdery mildew host Sphaerotheca fuliginea. Journal of Phytopathology, 104(3), 202-210. doi:10.1111/j.1439-0434.1982.tb00527.x.Sutton, J., & Peng, G. (1993a). Biocontrol of Botrytis cinerea in strawberry leaves. Phytopathology, 83(6), 615-621. doi:10.1094/Phyto-83-615. Sutton, J. C., & Peng, G. (1993b). Manipulation and vectoring of biocontrol organisms to manage foliage and fruit diseases in cropping systems. Annual Review of Phytopathology, 31(1), 473-493. doi:10.1146/ annurev.py.31.090193.002353.Swings, J., Van den Mooter, M., Vauterin, L., Hoste, B., Gillis, M., ... Kersters, K. (1990). Reclassification of the causal agents of bacterial blight (Xanthomonas campestris pv. oryzae) and bacterial leaf streak (Xanthomonas campestris pv. oryzicola) of rice as pathovars of Xanthomonas oryzae (ex ishiyama 1922) sp. nov., nom. rev. International Journal of Systematic and Evolutionary Microbiology, 40(3), 309-311. doi:10. 1099/00207713-40-3-309.Szentiványi, O., & Kiss, L. (2003). Overwintering of Ampelomyces mycoparasites on apple trees and other plants infected with powdery mildews. Plant Pathology, 52(6), 737-746. doi:10.1111/j.1365- 3059.2003.00937.x.Tahvonen, R., & Avikainen, H. (1987). The biological control of seed-borne Alternaria brassicicola of cruciferous plants with a powdery preparation of Streptomyces sp. Journal of Agricultural Science in Finland, 59, 199-208.Takamatsu, S. (2004). Phylogeny and evolution of the powdery mildew fungi (Erysiphales, Ascomycota) inferred from nuclear ribosomal dna sequences. Mycoscience, 45(2), 147-157. doi:10.1007/S10267- 003-0159-3.Teng, P. (1994). Epidemiological basis for blast management. En R. S. Zeigler, S. A. Leong & P. S. Teng (Eds.), Rice blast disease (pp. 409-433). Wallingford, EE. UU.: CAB International.Thapa, S., Prasanna, R., Ranjan, K., Velmourougane, K., & Ramakrishnan, B. (2017). Nutrients and host attributes modulate the abundance and functional traits of phyllosphere microbiome in rice. Microbiology Research, 204, 55-64. doi:10.1016/j. micres.2017.07.007.Thresh, J. M., & Cooter, R. J. (2005). Strategies for controlling cassava mosaic virus disease in Africa. Plant Pathology, 54(5), 587-614. doi:10.1111/j.1365- 3059.2005.01282.x.Torres, D. E., Rojas-Martínez, R. I., Zavaleta-Mejía, E., Guevara-Fefer, P., Márquez-Guzmán, G. J., & PérezMartínez, C. (2017). Cladosporium cladosporioides and Cladosporium pseudocladosporioides as potential new fungal antagonists of Puccinia horiana Henn., the causal agent of chrysanthemum white rust. PLoS ONE, 12(1), e0170782. doi:10.1371/journal. pone.0170782.Tronsmo, A., & Dennis, C. (1977). The use of Trichoderma species to control strawberry fruit rots. Netherlands Journal of Plant Pathology, 83, 449. doi:10.1007/bf03041462.Truchado, P., Gil, M. I., Reboleiro, P., Rodelas, B., & Allende, A. (2017). Impact of solar radiation exposure on phyllosphere bacterial community of red-pigmented baby leaf lettuce. Food Microbiology, 66, 77-85. doi:10.1016/j.fm.2017.03.018.Tsay, J. G., & Tung, B. (1991). Ampelomyces quisqualis ces. Ex schilecht., a hyper-parasite of the asparagus bean powdery mildew pathogen Erysiphe polygoni in Taiwan. Transactions of the Mycological Society of Republic of China, 6(2), 55-58. doi:10.7099/ TMSRC.199106.0055.Tucker, S. L., & Talbot, N. J. (2001). Surface attachment and pre-penetration stage development by plant pathogenic fungi. Annual Review of Phytopathology, 39, 385-417. doi:10.1146/annurev.phyto.39.1.385.Tuohimetsä, S., Hietaranta, T., Uosukainen, M., Kukkonen, S., & Karhu, S. (2014). Fruit development in artificially self- and cross-pollinated strawberries (Fragaria × ananassa) and raspberries (Rubus idaeus). Acta Agriculturae Scandinavica, Section B — Soil & Plant Science, 64(5), 408-415. doi:10.1080/090647 10.2014.919348.Tuon, F. F., & Costa, S. F. (2008). Rhodotorula infection. A systematic review of 128 cases from literature. Revista Iberoamericana de Micología, 25(3), 135-140.Turnbull, P. C. (1996). Bacillus. En S. Baron (Ed.), Barron's Medical Microbiology Medical Branch. Texas, EE. UU.: University of Texas.Umesha, S., Dharmesh, S. M., Shetty, S. A., Krishnappa, M., & Shetty, H.S. (1998). Biocontrol of downy mildew disease of pearl millet using Pseudomonas fluorescens. Crop Protection, 17(5), 387-392. doi:10.1016/S0261-2194(98)00014-3.Urbasch, I. (1983). On the genesis and germination of chlamydospores of Botrytis cinerea. Phytopathologische Zeitschrift, 108(1), 54-60.Vali, G. (1995). Principles of ice nucleation. En R. E. Lee, G. J. Warren, L.V. Gusta (Eds.), Biological ice nucleation and its applications (pp. 1-28). Saint Paul, EE. UU.: The American Phytopathological Society (aps).Van Baarlen, P., Woltering, E. J., Staats, M., & Van Kan, J. A. L. (2007). Histochemical and genetic analysis of host and non-host interactions of Arabidopsis with three Botrytis species: an important role for cell death control. Molecular Plant Pathology, 8(1), 41-54. doi:10.1111/j.1364-3703.2006.00367.x.Van Damme, E. J. M., Barre, A., Barbieri, L., Valbonesi, P., Rouge, P., ... Peumans, W. J. (1997). Type 1 ribosome-inactivating proteins are the most abundant proteins in iris (Iris hollandica var. Professor Blaauw) bulbs: characterization and molecular cloning. The Biochemical Journal, 324(Pt. 3), 963.Van Kan, J. A. L., Shaw, M. W., & Grant-Downton, R. T. (2014). Botrytis species: relentless necrotrophic thugs or endophytes gone rogue? Molecular Plant Pathology, 15(9), 957-961. doi:10.1111/ mpp.12148.Verdier, V., Restrepo, S., Mosquera, G., Jorge, V., & López, C. (2004). Recent progress in the characterization of molecular determinants in the Xanthomonas axonopodis pv. manihotis–cassava interaction. Plant Molecular Biology, 56(4), 573-584. doi:10.1007/ s11103-004-5044-8.Verger, P. J. P., & Boobis, A. R. (2013). Reevaluate pesticides for food security and safety. Science, 341(6147), 717-718. doi:10.1126/science.1241572.Verma, H. N. (1994). Induction of durable resistance by primed Clerodendrum aculeatum leaf extract. Indian Phytopathology, 47(1), 19-22.Verma, H. N., & Awasthi, L. P. (1980). Occurrence of a highly antiviral agent in plants treated with Boerhaavia diffusa inhibitor. Canadian Journal of Botany, 58(20), 2141-2144. doi:10.1139/b80-246.Verma, H. N., & Dwivedi, S. D. (1984). Properties of a virus inhibiting agent, isolated from plants which have been treated with leaf extracts from Bougainvillea spectabilis. Physiological Plant Pathology, 25(1), 93- 101. doi:10.1016/0048-4059(84)90020-1.Vidhyasekaran, P., Rabindran, R., Muthamilan, M., Nayar, K., Rajappan, K., ... Vasumathi, K. (1997). Development of a powder formulation of Pseudomonas fluorescens for control of rice blast. Plant Pathology, 46(3), 291-297. doi:10.1046/j.1365-3059.1997. d01-27.x.Voegele, R. T., & Mendgen, K. W. (2011). Nutrient uptake in rust fungi: how sweet is parasitic life? Euphytica, 179(1), 41-55. doi:10.1007/s10681-011- 0358-5.Völksch, B., & May, R. (2001). Biological control of Pseudomonas syringae pv. glycinea by epiphytic bacteria under field conditions. Microbial Ecololy, 41(2), 132- 139. doi:10.1007/s002480000078.Vorholt, J. A. (2012). Microbial life in the phyllosphere. Nature reviews. Microbiology, 10(12), 828. doi:10.1038/nrmicro2910.Walker, A. S., Micoud, A., Rémuson, F., Grosman, J., Gredt, M., & Leroux, P. (2013). French vineyards provide information that opens ways for effective resistance management of Botrytis cinerea (grey mould). Pest Management Science, 69(6), 667-678. doi:10.1002/ps.3506.Wang, Q.-M., & Bai, F.-Y. (2004). Four new yeast species of the genus Sporobolomyces from plant leaves. fems Yeast Research, 4(6), 579-586. doi:10.1016/j. femsyr.2003.11.002.Wang, X., Xue, Y., Han, M., Bu, Y., & Liu, C. (2014). The ecological roles of Bacillus thuringiensis within phyllosphere environments. Chemosphere, 108, 258- 264. doi:10.1016/j.chemosphere.2014.01.050.Wasik, A. A., & Schiller, H. B. (2017). Functional proteomics of cellular mechanosensing mechanisms. Seminars in Cell and Developmental Biology, 71, 118- 128. doi:10.1016/j.semcdb.2017.06.019.Wheeler, G. S., & Madeira, P. T. (2017). Phylogeny within the Anacardiaceae predicts host range of potential biological control agents of Brazilian peppertree. Biological Control, 108, 22-29. doi:10.1016/j. biocontrol.2017.01.017.Whipps, J. M., Hand, P., Pink, D., & Bending, G. D. (2008). Phyllosphere microbiology with special reference to diversity and plant genotype. Journal of Applied Microbiology, 105(6), 1744-1755. doi:10.1111/j.1365-2672.2008.03906.x.Whipps, J. M., McQuilken, M. P., & Budge, S. P. (1993). Use of fungal antagonists for biocontrol of dampingoff and sclerotinia diseases. Pestic Management Science, 37(4), 309-313. doi:10.1002/ps.2780370402.Williamson, B., Tudzynski, B., Tudzynski, P., & Van Kan, J. A. L. (2007). Botrytis cinerea: the cause of grey mould disease. Molecular Plant Pathology, 8(5), 561- 580. doi:10.1111/j.1364-3703.2007.00417.x.Woo, S. L., Ruocco, M., Vinale, F., Nigro, M., Marra, R., ... Lorito, M. (2014). Trichoderma-based products and their widespread use in agriculture. The Open Mycology Journal, 8, 71-126. doi:10.2174/18744370 01408010071.Wu, M., Zhang, J., Yang, L., & Li, G. (2016). rna mycoviruses and their role in Botrytis biology. En S. Fillinger & Y. Elad (Eds.), Botrytis – the fungus, the pathogen and its management in agricultural systems (pp. 71-90). Cham, Alemania: Springer International Publishing. doi:10.1007/978-3-319-23371-0_5.Wood, R. K. S. (1951). The control of diseases of lettuce by the use of antagonistic organisms I. The control of Botrytis cinerea pers. Annals of Applied Biology, 38(1), 203-216. doi:10.1111/j.1744-7348.1951.tb07797.x.Wyand, R. A., & Brown, J. K. M. (2003). Genetic and forma specialis diversity in Blumeria graminis of cereals and its implications for host-pathogen coevolution. Molecular Plant Pathology, 4(3), 187-198. doi:10.1046/j.1364-3703.2003.00167.x.Yang, C.-H., Crowley, D. E., Borneman, J., & Keen, N. T. (2001). Microbial phyllosphere populations are more complex than previously realized. Proceedings of the National Academy of Sciences, 98(7), 3889-3894. doi:10.1073/pnas.051633898.Yang, H.-H., Yang, S. L., Peng, K.-C., Lo, C.-T., & Liu, S.-Y. (2009). Induced proteome of Trichoderma harzianum by Botrytis cinerea. Mycological Research, 113(Pt. 9), 924-932. doi:10.1016/jmycres.200 9.04.004.Yoshida, K., Goto, T., & Iizuka, N. (1985). Attenuated isolates of Cucumber Mosaic Virus produced by satellite RNA and cross protection between attenuated isolates and Virulent Ones. Japanese Journal of Phytopathology, 51(2), 238-242. doi:10.3186/jjphytopath.51.238.Yoshida, S., Hiradate, S., Koitabashi, M., Kamo, T., & Tsushima, S. (2017). Phyllosphere methylobacterium bacteria contain UVA-absorbing compounds. Journal of Photochemestry and Photobiology. B: Biology, 167: 168-175. doi:10.1016/j.jphotobiol.2016.12.019Young, C., & Andrews, J. (1990). Inhibition of pseudothecial development of Venturia inaequalis by the basidiomycete Athelia bombacina in apple leaf litter. Phytopathology, 80(6), 536-542. doi:10.1094/ Phyto-80-536.Young, J. M., Bradbury, J. F., Davis, R. E., Dickey, R. S., Ercolani, G. L., ... Vidaver, A. K. (1991). Nomenclatural revisions of plant pathogenic bacteria and list of names 1980-1988. Review of Plant Pathology, 70(4), 211-221.Young, J. M., Park, D. C., Shearman, H. M., & Fargier, E. (2008). A multilocus sequence analysis of the genus Xanthomonas. Systematic and Applied Microbiology, 31(5), 366-377. doi:10.1016/j.syapm.2008.06.004.Zapata, J., Acosta, C., Díaz, A., Villamizar, L., & Cotes, A. (2011). Characterization of Rhodotorula glutinis and Pichia onychis Isolates with Potential as Biopesticides for Controlling Botrytis cinerea. International Symposium on Biological Control of Postharvest Diseases: Challenges and Opportunities, 905, 155-160. doi:10.17660/ActaHortic.2011.905.16.Zapata, J., Villamizar, L., Díaz, L., Uribe, L., Bolaños, C., ... Cotes, A. M. (2013a). Biological control of Rhizoctonia solani and growth promotion activity of Trichoderma koningiopsis Th003 and Trichoderma asperellum Th034 formulations in potato (Solanum tuberosum). IOBC Bulletin, 86, 223-227.Zapata, J., Villamizar, L., Díaz, L., Uribe, L., Bolaños, C., Gómez, M., & Cotes, A. M. (2013b). Development of a biopesticide prototype based on the yeast Rhodotorula glutinis Lv316 for controlling Botrytis cinerea in blackberry. IOBC Bulletin, 86, 263-269.Zapata, J. A., & Cotes, A. M. (2013). Eficacia de dos prototipos de bioplaguicida a base de R. glutinis cepa LvCo7 y un bioplaguicida a base de T. koningiopsis33829 ; Control biológico de fitopatógenos, insectos y ácaros: agentes de control biológico. V. 1 LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repository.agrosavia.co/bitstream/20.500.12324/34058/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52open accessORIGINALVer_Documento_34058.pdfVer_Documento_34058.pdfapplication/pdf12192804https://repository.agrosavia.co/bitstream/20.500.12324/34058/3/Ver_Documento_34058.pdf30b95eda72cc2a958546cd07e7c37675MD53open accessTHUMBNAILVer_Documento_34058.pdf.jpgVer_Documento_34058.pdf.jpgGenerated Thumbnailimage/jpeg3569https://repository.agrosavia.co/bitstream/20.500.12324/34058/5/Ver_Documento_34058.pdf.jpgcfc14ecf19c1ad9d5577a0b03c97f0a0MD55open access20.500.12324/34058oai:repository.agrosavia.co:20.500.12324/340582024-06-14 16:29:56.065open accessAgrosavia - Corporación colombiana de investigación agropecuariabac@agrosavia.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |