Identification of site-specific management zones from combination of soil variables
Site-specific management demands the identification of homogeneous subfield regions within the field or management zones (ZM). However, due to the spatial variability of soil variables, determination of ZM from several variables, is often complex. Although the zonification or delimitation of MZ may...
- Autores:
-
Córdoba, Mariano
Balzarini, Mónica
Bruno, Cecilia
Costa, José Luis
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2012
- Institución:
- Agrosavia
- Repositorio:
- Agrosavia
- Idioma:
- spa
- OAI Identifier:
- oai:repository.agrosavia.co:20.500.12324/35122
- Acceso en línea:
- http://revistacta.agrosavia.co/index.php/revista/article/view/239
http://hdl.handle.net/20.500.12324/35122
- Palabra clave:
- Transversal
- Rights
- License
- Attribution-NonCommercial-ShareAlike 4.0 International
id |
Agrosavia2_1e49b8056a76c31136833990acef328a |
---|---|
oai_identifier_str |
oai:repository.agrosavia.co:20.500.12324/35122 |
network_acronym_str |
Agrosavia2 |
network_name_str |
Agrosavia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Identification of site-specific management zones from combination of soil variables Identificación de zonas de manejo sitio-específico a partir de la combinación de variables de suelo |
title |
Identification of site-specific management zones from combination of soil variables |
spellingShingle |
Identification of site-specific management zones from combination of soil variables Transversal |
title_short |
Identification of site-specific management zones from combination of soil variables |
title_full |
Identification of site-specific management zones from combination of soil variables |
title_fullStr |
Identification of site-specific management zones from combination of soil variables |
title_full_unstemmed |
Identification of site-specific management zones from combination of soil variables |
title_sort |
Identification of site-specific management zones from combination of soil variables |
dc.creator.fl_str_mv |
Córdoba, Mariano Balzarini, Mónica Bruno, Cecilia Costa, José Luis |
dc.contributor.author.none.fl_str_mv |
Córdoba, Mariano Balzarini, Mónica Bruno, Cecilia Costa, José Luis |
dc.subject.red.spa.fl_str_mv |
Transversal |
topic |
Transversal |
description |
Site-specific management demands the identification of homogeneous subfield regions within the field or management zones (ZM). However, due to the spatial variability of soil variables, determination of ZM from several variables, is often complex. Although the zonification or delimitation of MZ may be univariate, it is more appropriate to consider all variables simultaneously. Fuzzy k-means clustering (KM) and principal component analysis (PCA) are multivariate analyses that have been used for zonification. Nevertheless, PCA and KM have not been explicitly developed for georeferenced data. Novel versions of PCA, known as Multispati-PCA (PCAe), incorporate spatial autocorrelation among data of neighbor sites of regionalized variables. The objective of this study was to propose a new analytical tool to identify homogeneous zones from the combination of KM and PCAe on multiple soil variable data. The performance of proposed method was assessed through comparison of the average yields obtained in each zone delimited by combination of KM with PCA, as well as KM on the original variables and the new proposed method KM-PCAe. The results showed that KM-PCAe was the only method able to identify zones statistically different in terms of production potential. PCAe and its combination with KM are useful tools to map spatial variability and to identify ZM within fields from georeferenced data |
publishDate |
2012 |
dc.date.issued.none.fl_str_mv |
2012 |
dc.date.accessioned.none.fl_str_mv |
2019-08-09T19:29:57Z |
dc.date.available.none.fl_str_mv |
2019-08-09T19:29:57Z |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.localeng.eng.fl_str_mv |
article |
dc.type.local.spa.fl_str_mv |
Artículo científico |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.none.fl_str_mv |
https://purl.org/redcol/resource_type/ART |
dc.type.version.none.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.identifier.none.fl_str_mv |
http://revistacta.agrosavia.co/index.php/revista/article/view/239 10.21930/rcta.vol13_num1_art:239 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/20.500.12324/35122 |
dc.identifier.reponame.spa.fl_str_mv |
reponame:Biblioteca Digital Agropecuaria de Colombia |
dc.identifier.repourl.none.fl_str_mv |
repourl:https://repository.agrosavia.co |
dc.identifier.instname.spa.fl_str_mv |
instname:Corporación colombiana de investigación agropecuaria AGROSAVIA |
url |
http://revistacta.agrosavia.co/index.php/revista/article/view/239 http://hdl.handle.net/20.500.12324/35122 |
identifier_str_mv |
10.21930/rcta.vol13_num1_art:239 reponame:Biblioteca Digital Agropecuaria de Colombia repourl:https://repository.agrosavia.co instname:Corporación colombiana de investigación agropecuaria AGROSAVIA |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.spa.fl_str_mv |
http://revistacta.agrosavia.co/index.php/revista/article/view/239/244 |
dc.rights.*.fl_str_mv |
Attribution-NonCommercial-ShareAlike 4.0 International |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ |
rights_invalid_str_mv |
Attribution-NonCommercial-ShareAlike 4.0 International http://creativecommons.org/licenses/by-nc-sa/4.0/ http://purl.org/coar/access_right/c_abf2 |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Corporación colombiana de investigación agropecuaria - AGROSAVIA |
dc.source.spa.fl_str_mv |
Revista Ciencia y Tecnología Agropecuaria; Vol 13 No 1 (2012); 47-54 |
institution |
Agrosavia |
bitstream.url.fl_str_mv |
https://repository.agrosavia.co/bitstream/20.500.12324/35122/1/Ver_Documento_35122.pdf https://repository.agrosavia.co/bitstream/20.500.12324/35122/2/Ver_Documento_35122.pdf.jpg |
bitstream.checksum.fl_str_mv |
0a3fc59480ba6e74b3b879e0dbbfbe7a d267524260d54880f6b59d4c2a553bf2 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Agrosavia - Corporación colombiana de investigación agropecuaria |
repository.mail.fl_str_mv |
bac@agrosavia.co |
_version_ |
1814380182279028736 |
spelling |
Córdoba, Marianoe6f70351-2814-4bb2-96d1-130d9e479befBalzarini, Mónica74bab6b6-7042-444e-8ef4-a87fe193c955Bruno, Ceciliac8ce1e89-8de6-427a-aed8-861abee78f19Costa, José Luis3107be5b-e325-4685-8122-1cb5538a2e702019-08-09T19:29:57Z2019-08-09T19:29:57Z2012http://revistacta.agrosavia.co/index.php/revista/article/view/23910.21930/rcta.vol13_num1_art:239http://hdl.handle.net/20.500.12324/35122reponame:Biblioteca Digital Agropecuaria de Colombiarepourl:https://repository.agrosavia.coinstname:Corporación colombiana de investigación agropecuaria AGROSAVIASite-specific management demands the identification of homogeneous subfield regions within the field or management zones (ZM). However, due to the spatial variability of soil variables, determination of ZM from several variables, is often complex. Although the zonification or delimitation of MZ may be univariate, it is more appropriate to consider all variables simultaneously. Fuzzy k-means clustering (KM) and principal component analysis (PCA) are multivariate analyses that have been used for zonification. Nevertheless, PCA and KM have not been explicitly developed for georeferenced data. Novel versions of PCA, known as Multispati-PCA (PCAe), incorporate spatial autocorrelation among data of neighbor sites of regionalized variables. The objective of this study was to propose a new analytical tool to identify homogeneous zones from the combination of KM and PCAe on multiple soil variable data. The performance of proposed method was assessed through comparison of the average yields obtained in each zone delimited by combination of KM with PCA, as well as KM on the original variables and the new proposed method KM-PCAe. The results showed that KM-PCAe was the only method able to identify zones statistically different in terms of production potential. PCAe and its combination with KM are useful tools to map spatial variability and to identify ZM within fields from georeferenced data El manejo sitio-específico demanda la identificación de sub-regiones homogéneas, o zonas de manejo (ZM), dentro del espacio productivo. Sin embargo, definir ZM suele ser complejo debido a que la variabilidad espacial del suelo puede depender de varias variables. La zonificación o delimitación de ZM puede realizarse utilizando una variable de suelo a la vez o considerando varias variables simultáneamente. Entre los métodos de análisis multivariado, difundido para la zonificación, se encuentra el análisis de conglomerados fuzzy k-means (KM) y el análisis de componentes principales (PCA). No obstante, como otros métodos multivariados, éstos no han sido desarrollados específicamente para datos georreferenciados. Una nueva versión del PCA, conocido como MULTISPATI-PCA (PCAe), permite contemplar la autocorrelación espacial entre datos de variables regionalizadas. El objetivo de este estudio fue proponer una nueva estrategia de análisis para la identificación de ZM, combinando la aplicación KM y PCAe sobre datos de múltiples variables de suelo. La capacidad del método propuesto se evaluó en base a la comparación de los rendimientos promedios alcanzados en cada zona delimitada, tanto para la combinación de KM con PCA, la aplicación tradicional de KM sobre las variables originales y la nueva propuesta KM-PCAe. Los resultados mostraron que KM-PCAe fue el único método que permitió distinguir zonas estadísticamente diferentes en cuanto al potencial productivo. Se concluye que la combinación propuesta constituye una herramienta importante para el mapeo de la variabilidad espacial y la identificación de ZM a partir de datos georreferenciados. application/pdfspaCorporación colombiana de investigación agropecuaria - AGROSAVIAhttp://revistacta.agrosavia.co/index.php/revista/article/view/239/244Attribution-NonCommercial-ShareAlike 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-sa/4.0/http://purl.org/coar/access_right/c_abf2Revista Ciencia y Tecnología Agropecuaria; Vol 13 No 1 (2012); 47-54Identification of site-specific management zones from combination of soil variablesIdentificación de zonas de manejo sitio-específico a partir de la combinación de variables de sueloTransversalarticleArtículo científicohttp://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/resource_type/c_6501info:eu-repo/semantics/articlehttps://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85ORIGINALVer_Documento_35122.pdfVer_Documento_35122.pdfapplication/pdf820819https://repository.agrosavia.co/bitstream/20.500.12324/35122/1/Ver_Documento_35122.pdf0a3fc59480ba6e74b3b879e0dbbfbe7aMD51open accessTHUMBNAILVer_Documento_35122.pdf.jpgVer_Documento_35122.pdf.jpgIM Thumbnailimage/jpeg9410https://repository.agrosavia.co/bitstream/20.500.12324/35122/2/Ver_Documento_35122.pdf.jpgd267524260d54880f6b59d4c2a553bf2MD52open access20.500.12324/35122oai:repository.agrosavia.co:20.500.12324/351222023-10-18 14:10:49.612open accessAgrosavia - Corporación colombiana de investigación agropecuariabac@agrosavia.co |